第12讲习题答案及解题分析
【易错题精析】第12讲 估算、连乘及解决问题 小学数学三年级上册易错专项练(含答案)
![【易错题精析】第12讲 估算、连乘及解决问题 小学数学三年级上册易错专项练(含答案)](https://img.taocdn.com/s3/m/07cfe316443610661ed9ad51f01dc281e43a5674.png)
【易错题精析】第12讲估算、连乘及解决问题小学数学三年级上册易错专项练(含答案)第12讲估算、连乘及解决问题(讲义)小学数学三年级上册易错专项练(知识梳理+易错汇总+易错精讲+易错专练)1.两、三位数乘一位数的估算方法。
先把两位数或三位数看作和它最接近的整十数或整百数(有时把个位看成5也行),再乘一位数,得到的积就是估算的结果。
2.连乘的运算顺序。
按从左往右的顺序依次计算。
3.连乘的简算。
哪两个数相乘的积是整十、整百、整千数,可以通过交换位置或添加小括号,先算这两个数的积,所得的积再乘另一个数。
4. 在解决路程问题时,通常画出线路图,能够更好地理解题意。
在画线路图时,越简单越好,目的是使题意明确。
5. 在路线图上标出位置,可以根据题意,先算出行驶的路程,再和总路程进行比较,看看大约是总路程的多少,然后利用题目中提供的信息,标出相应的位置来。
1. 估算钱数问题时,要做到估多不估少,否则会造成所带钱数不够。
2. 在计算连乘算式时,乘数之间都是相乘的关系。
【易错一】一幢楼房有8个单元,每个单元有19层,一个单元每层有2家住户,一共有多少家住户?下面列式错误的是()。
A.B.C.【解题思路】根据题意可知,用8×19计算出8个单元一共的层数,再乘2即可进球的总住户数;或者用2×19求得一单元一共的住户数,再乘8即可求得总住户数,据此即可解答。
【完整解答】8×19×2=152×2=304(户)2×19×8=38×8=304(户)故答案为:B【易错点】掌握本题的数量关系式列出算式是解题的关键。
【易错二】实验小学有6个年级,每个年级有3个班,平均每个班为贫困地区的小伙伴捐了104本书,全校一共捐了( )本书。
【解题思路】104乘每个年级班数等于一个年级捐书的本数,再乘年级数等于全校一共捐书的本数;据此即可解答。
【完整解答】104×3×6=312×6=1872(本)【易错点】熟练掌握整数乘法知识是解答本题的关键。
小学六年级奥数第12讲 倒推法解题(含答案分析)
![小学六年级奥数第12讲 倒推法解题(含答案分析)](https://img.taocdn.com/s3/m/8ae724b1a0116c175f0e487c.png)
第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
用假设法解题
![用假设法解题](https://img.taocdn.com/s3/m/9a228f0c02020740be1e9b0b.png)
鸡:35-12=23(只)
完成58页第1题
2、有一个饲养小组,养了若干只鸡 和兔,已知共有35个头和94只脚,问 这个饲养小组养了鸡和兔各多少只。
35个头表示有35只动物,鸡有2只脚,兔子有4只脚。 假设35只动物全是鸡,则有35 × 2=70只脚
35× 2=70只 4-2=2(只)
94-70=24(只)
兔子:24 ÷ 2=12(只) 答:
第12讲 用假设法解题
1、一条船从东港驶向西港,去时每小时 行15千米,返回时每小时行10千米,这条 船往返平均每小时行驶多少千米?
先假设一个距离 假设东港到西港的距离为30千米。 去时时间:30÷15=2(小时) 回来时间:30÷10=3 (小时) (30× 2) ÷(3+2)=12(千米) 答:这条船往返平均每小时行驶12千米
第12讲梯形及中位线(讲义)解析版
![第12讲梯形及中位线(讲义)解析版](https://img.taocdn.com/s3/m/318385d9647d27284b7351ff.png)
第12讲梯形及中位线本章节主要讲述了两部分内容,梯形和中位线,从直角梯形和等腰梯形的性质出发,求解相关的边与角的关系,在求解的过程中,部分题目需要添加辅助线.中位线主要包括两个方面,三角形和梯形,在解题的过程中,要做到灵活应用.模块一:梯形及等腰梯形知识精讲一、梯形及梯形的有关概念(1)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.底:平行的两边叫做底,其中较长的是下底,较短的叫上底.腰:不平行的两边叫做腰.高:梯形两底之间的距离叫做高.(2)特殊梯形直角梯形:一腰垂直于底的梯形叫做直角梯形.特殊梯形等腰梯形:两腰相等的梯形叫做等腰梯形.思考讨论:若上面两个条件同时成立是否是梯形?交流:如果同时具备直角梯形和等腰梯形的特征,那么该图形是矩形.【等腰梯形性质】等腰梯形性质定理1等腰梯形在同一底上的两个内角相等.等腰梯形性质定理2等腰梯形的两条对角线相等.另外:等腰梯形是轴对称图形;【等腰梯形判定】等腰梯形判定定理1在同一底边上的两个内角相等的梯形是等腰梯形.等腰梯形判定定理2对角线相等的梯形是等腰梯形.例题解析例1.(2019·上海八年级课时练习)如图,梯形ABCD中,AD∥BC,∠B=30°,∠BCD=60°,AD=2,AC平分∠BCD,则BC长为( ).A.4 B.6 C.4√3D.3√3【答案】B【分析】过点A作AE∥DC,可判断出△ABE是直角三角形,四边形ADCE是菱形,从而求出CE、BE即可得出BC的长度.【详解】过点A作AE∥DC,∵AD∥BC,∴四边形ADCE是平行四边形,又∵AC平分∠BCD,∴∠DAC=∠ACE=∠DCA,∴AD=CD,∴四边形ADCE是菱形,∴CE=AD=AE=2,∵AE∥CD,∴∠AEB=∠BCD=60°,又∵∠B=30°,∴∠BAE=90°,∴BE=2AE=4,∴BC=BE+CE=6.故答案为:6.【点睛】本题考查等腰三角形的判定与性质、含30度角的直角三角形和梯形,解题的关键是掌握等腰三角形的判定与性质、含30度角的直角三角形和梯形.例2.(2018·上海市清流中学八年级月考)若等腰梯形两底角为30°,腰长为8,高和上底相等,则梯形中位线长为()A.B.10 C.4D.【答案】C【分析】分析题意画出图形,则DE=CD=CF,AD=8,∠A=30°,由DE⊥AB,∠A=30°,AD=8,即可得出DE=4,进而求出CD的长度;运用勾股定理得出AE和BF的长度,易证四边形CDEF是平行四边形,得出EF的长度,进而得出AB+CD的长度,由梯形中位线的性质,即可解答本题.【详解】根据题意画出图形,则DE=CD=CF ,AD=8,∠A=30°.因为DE ⊥AB ,∠A=30°,AD=8, 所以DE=12AD=4,所以CD=4,因为DE ⊥AB ,CF ⊥AB , 所以DE ∥CF. 因为CD ∥EF ,所以四边形CDEF 是平行四边形, 所以EF=CD=4.因为CD=4cm ,,所以,所以梯形的中位线长为12故选C.【点睛】此题考查等腰梯形的性质,解题关键在于需结合梯形中位线的性质,勾股定理等知识进行求解.例3.(2018·上海市清流中学八年级月考)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为( ) A .30° B .45°C .60°D .75°【答案】B【分析】作梯形的两条高线,证明△ABE ≌△DCF ,则有BE=FC ,然后判断△ABE 为等腰直角三角形求解.【详解】如图,作AE ⊥BC 、DF ⊥BC,四边形ABCD 为等腰梯形,AD ∥BC ,BC −AD=12,AE=6,∵四边形ABCD 为等腰梯形, ∴AB=DC ,∠B=∠C , ∵AD ∥BC ,AE ⊥BC ,DF ⊥BC ,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC−AD=BC−EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选B.【点睛】此题考查等腰梯形的性质,解题关键在于画出图形.例4.(2018·上海市清流中学八年级月考)下到关于梯形的叙述中,不正确的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形【答案】A【分析】本题考查对等腰梯形性质的理解.等腰梯形的性质如下:等腰梯形两腰相等;等腰梯形两底平行;等腰梯形的两条对角线相等;等腰梯形同一底上的两个内角相等;等腰梯形是轴对称图形.【详解】由等腰梯形的性质可知,等腰梯形的对角线相等,其在同一底上的两个角相等,可知B、C不符合题意;同时等腰梯形关于两底中点的连线成轴对称,即可得到D不符合题意,而等腰梯形两底平行但不相等,因此A符合题意.故选A.【点睛】此题考查等腰梯形性质,解题关键在于对性质的掌握.例5.(2017·上海八年级期末)一组对边相等,另一组对边平行的四边形是()A.梯形 B.等腰梯形 C.平行四边形 D.等腰梯形或平行四边形【答案】D【解析】根据特殊四边形的性质,分析所给条件,选择正确答案.解:A 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故A 不正确;B 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故B 不正确;C 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故C 不正确;D 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故D 正确. 故选D .“点睛”本题考查了平行四边形和等腰梯形的性质. 考虑问题时应该全面考虑,不能漏掉任何一种情况,要求培养严谨的态度.例6.(2019·上海上外附中)判断:一组邻角相等的梯形是等腰梯形(______) 【答案】错误【分析】根据题设画出反例图形即可.【详解】解:反例:如图,已知梯形ABCD ,//AD BC ,90C D ∠=∠=︒,而梯形ABCD 不是等腰梯形.故该命题是假命题, 故答案为:错误.【点睛】本题考查了等腰梯形的概念,熟悉等腰梯形的性质,举出反例是解题的关键. 例7.(2020·上海杨浦区·八年级期末)已知在梯形ABCD 中,//AD BC ,,AC AB ⊥,那么梯形ABCD 的周长等于__________. 【答案】20【分析】根据等腰三角形的性质得到DAC DCA ∠=∠,根据平行线的性质得到DAC ACB ∠=∠,得到DCA ACB ∠=∠,根据直角三角形的性质列式求出,根据直角三角形的性质求出BC ,根据梯形的周长公式计算,得到答案. 【详解】解:,DAC DCA ∴∠=∠,//AD BC ,, ,//AD BC ,AB DC =,2B BCD ACB ∴∠=∠=∠,AC AB ⊥,,即390BCA ∠=︒, ,28BC AB ∴==,,8BC =,梯形的周长444820=+++=, 故答案为:20.【点睛】本题考查的是梯形的性质、直角三角形的性质、等腰三角形的性质,掌握含30的直角三角形的性质是解题的关键.例8.(2020·上海嘉定区·八年级期末)已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是__________cm . 【答案】4【分析】根据梯形中位线定理解答即可.【详解】解:设该梯形的另一条底边的长是x cm ,根据题意得:()1652x +=,解得:x =4,即该梯形的另一条底边的长是4cm . 故答案为:4.【点睛】本题考查了梯形中位线定理,属于基本题目,熟练掌握该定理是解题关键. 例9.(2018·上海市民办扬波中学八年级期末)如图,在等腰梯形ABCD 中,AB ∥CD ,AD AB =,BD ⊥BC ,则∠C =________.【答案】60°【分析】利用平行线及AB ∥CD ,证明,再证明,再利用直角三角形两锐角互余可得答案.【详解】解:因为:AB ∥CD ,所以:,ADB ABD ∠=∠ 因为:AD AB =,所以:BDC ABD ∠=∠ , 所以;,因为:等腰梯形ABCD , 所以:,设:BDC x ∠=︒ ,所以2BCD x ∠=︒, 因为:BD ⊥BC ,所以:290x x +=,解得: 所以:60C ∠=°. 故答案为:60︒.【点睛】本题考查等腰梯形的性质,等腰三角形的性质及平行线的性质,掌握相关性质是解题关键.例10.(2019·上海上外附中八年级期中)在梯形ABCD 中,AB CD ∥,对角线AC BD ⊥,6AC =,8BD =,则梯形ABCD 的面积为__________.【答案】24【分析】根据对角线互相垂直的四边形的面积公式即可求得答案. 【详解】解:如图所示,梯形对角线垂直,则11682422ABCD S AC BD =⋅⋅=⨯⨯=.故答案是:24【点睛】本题考查对角线互相垂直的四边形的面积公式;对角线垂直时,四边形可看成四个直角三角形的面积之和,可得对角线互相垂直的四边形面积为对角线乘积的一半. 例11.(2020·上海浦东新区·八年级月考)如图,在梯形ABCD 中,AD ∥BC ,BC =12,AB =DC =8.∠B =60°. (1)求梯形的中位线长. (2)求梯形的面积.【答案】(1)8(2)【分析】(1)过A 作AE ∥CD 交BC 于E ,则四边形AECD 是平行四边形,得AD =EC ,AE =DC ,证出△ABE 是等边三角形,得BE =AB =8,则AD =EC =4,即可得出答案;(2)作AF ⊥BC 于F ,则∠BAF =90°﹣∠B =30°,由含30°角的直角三角形的性质得出BF =12AB =4,AF =. 【详解】解:(1)过A 作AE ∥CD 交BC 于E ,∵AD ∥BC ,∴四边形AECD 是平行四边形, ∴AD =EC ,AE =DC , ∵AB =DC , ∴AB =AE , ∵∠B =60°,∴△ABE 是等边三角形, ∴BE =AB =8,∴AD =EC =BC ﹣BE =12﹣8=4, ∴梯形ABCD 的中位线长=12(AD +BC )=12(4+12)=8; (2)作AF ⊥BC 于F , 则∠BAF =90°﹣∠B =30°,∴BF =12AB =4,AF =∴梯形ABCD 的面积=12(AD +BC )×AF =12(4+12)×【点睛】此题考查了平行四边形的判定及性质,等边三角形的判定及性质,梯形中位线的性质,直角三角形30度角的性质.例12.(2020·上海浦东新区·八年级期末)如图,等腰三角形ABC 中,AB=AC ,点E 、F 分别是AB 、AC 的中点,CE ⊥BF 于点O . (1)求证:四边形EBCF 是等腰梯形; (2)EF=1,求四边形EBCF 的面积.【答案】(1)见解析;(2)94. 【分析】(1)根据三角形的中位线定理和等腰梯形的判定定理即可得到结论;(2)如图,延长BC 至点G ,使CG=EF ,连接FG ,根据平行四边形的性质得到FG=EC=BF ,根据全等三角形的性质和三角形中位线定理即可得到结论. 【详解】(1)∵点E 、F 分别是AB 、AC 的中点, ∴EF//BC ,BE=12AB=12AC=CF ,∴四边形EBCF 是等腰梯形;(2)如图,延长BC 至点G ,使CG=EF ,连接FG ,∵EF//BC ,即EF//CG ,且CG=EF , ∴四边形EFGC 是平行四边形, 又∵四边形EBCF 是等腰梯形, ∴FG=EC=BF , ∵EF=CG ,FC=BE , ∴△EFB ≌△CGF (SSS ), ∴BFG EBCF S S=四边形,∵GC=EF=1,且EF=12BC , ∴BC=2,∴BG=BC+CG=1+2=3. ∵FG//EC ,∴∠GFB=∠BOC=90°, ∴FH=12BG=32, ∴BFGEBCF 1393224S S==⨯⨯=四边形. 【点睛】本题考查了等腰梯形的判定,全等三角形的判定和性质,平行四边形的性质,正确的作出辅助线是解题的关键.例13.如图,已知梯形ABCD 中,BC 是下底,∠ABC =60°,BD 平分∠ABC ,且BD ⊥CD ,若梯形周长是30cm ,求此梯形的面积.【难度】★★【答案】2cm .【解析】∵BD 平分∠ABC , ∴∠ABD =∠DBC =12∠ABC =30°. ∵AD //BC ,∴∠ADB =∠DBC =30°,∴AB =AD∵BD ⊥CD ,∴∠DCB =60°,∴∠ABC =∠DCB , ∴AB =CD . 设AB = CD = AD = x ,Rt △BCD 中,∵∠DBC =30°,∴BC = 2CD = 2x ,∴30 = x +x +x +2x ,解得:x =6. 作AE ⊥BC ,Rt △ABE 中,∵∠BAE =30°, ∴BE =3,AE =∴S =12(AD +BC )AE =2cm . 【总结】本题考查梯形面积公式及等腰梯形性质的综合运用.例14.如图,直角梯形ABCD 中,∠A =90°,AD ∥BC ,AD =5,∠D =45°,CD 的垂直平分线交AD 于点E ,交BA 的延长线于点F ,求BF 的长.【难度】★★ 【答案】5 【解析】联结CE∵EG 垂直平分CD ,∴EC =ED ,∠ECD =∠D =45°,∴∠CED =90°, ∵∠A =90°,AD ∥BC , ∴四边形BAEC 是矩形, ∴BC = AE .设BC =x =AE ,∴ED =EC =AB =5-x∵∠FEA =∠GED =45°,∴△AEF 是等腰直角三角形, ∴AF =AE =x∴BF =BA +AF =5-x +x =5.【总结】本题考查中垂线的性质,等腰直角三角形,直角梯形的性质的综合运用,注意用整体思想求出线段BF 的长.例15.如图,在梯形ABCD 中,AD ∥BC ,AB =AD =DC ,∠B =60°, (1) 求证:AB ⊥AC ;(2) 若DC =6,求梯形ABCD 的面积.【难度】★★【答案】(1)见解析;(2)【解析】(1)∵AB =CD ,∴∠B =∠DCB =60°,∠BAD =∠D =120°∵AD =DC ,∴∠DAC =∠DCA =30°∴∠BAC =∠BAD -∠DAC =120°- 30°=90°∴BA ⊥AC ;(2)∵AB =AD =DC ,DC =6, ∴CD =AD =AB =6在直角三角形ABC 中,∵∠ACB =30°, ∴BC =2AB =12作AE ⊥BC ,则AE =∴S 梯ABCD =1()2AD BC AE +=【总结】本题主要考查含30°的直角三角形性质与梯形面积公式的综合运用.例16.如图,在梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,DE ∥AC ,交BC 的延长线于点E ,∠B =2∠E .求证:AB =DC .【难度】★★【解析】∵AC 平分∠BCD∴∠BCA =∠ACD =12∠DCB∵DE //AC ,∴∠E =∠ACB =12∠DCB ∵∠B =2∠E ,∴∠B =∠DCB ∵梯形ABCD 中,AD ∥BC , ∴AB =CD【总结】本题考查等腰梯形性质与角平分线的综合运用,注意对基本模型的总结运用. 例17.如图,在等腰三角形ABC 中,点D 、E 分别是两腰AC 、BC 上的点,联结BE 、CD 相交于点O ,∠1=∠2.求证:梯形BDEC 是等腰梯形.【难度】★★【解析】∵AB AC =, ∴∠DBC =∠ECB在△BCD 与△ECB 中,∠1=∠2,BC =BC ∴△BCD ≌△ECB ,∴BD =CE∵AB =AC , ∴AD =AE ,∴∠ADE =∠AED =1(180)2A ︒-∠=∠ABC =∠ACB∴DE //BC , 又∵BD 与CE 不平行∴四边形BDEC 是梯形,且BD =CE ,∴梯形BDEC 是等腰梯形【总结】本题考查等腰梯形判定定理的运用,注意证明梯形的方法的总结.例18.如图,梯形OABC 中,O 为直角坐标系的原点,A 、B 、C 的坐标分别为(14,0)、 (14,3)、(4,3).点P 、Q 同时从原点出发,分别作匀速运动,点P 沿OA 以每秒1个单位向终点A 运动,点Q 沿OC 、CB 以每秒2个单位向终点B 运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x 秒,当x 等于多少时,四边形OPQC 为平行四边形? (2)四边形OPQC 能否成为等腰梯形?说明理由.【难度】★★【答案】(1)x =5; (2)不能.【解析】(1)由题可知:OC =5,BC =10,OA =14.∵BC //OA∴当Q 点在BC 上,且OP =CQ 时,四边形OPQC 是平行四边形 即2x -5= x ,解得:x = 5;(2)作点C 作CE ⊥OA 于点E ,过点Q 作QF ⊥OP 与点F∵AO //BC ,∴CE =QF当OE =PF =4时,△OCE ≌△PQF ,此时四边形OPQC 为等腰梯形, 即OP =OE +CQ +PF ,∴x =4+(2x -5)+4,解得:x =-3(舍), ∴四边形OPQC 不能成为等腰梯形.【总结】本题考查梯形的性质,平行四边形的判定与性质以及等腰梯形的判定与性质的综合运用,注意掌握辅助线的做法,以及数形结合思想与方程思想的综合运用.例19.如图,等腰梯形花圃ABCD 的底边AD 靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB 的长为x 米.(1)请求出底边BC 的长(用含x 的代数式表示);(2)若∠BAD =60°,该花圃的面积为S 米²,求S 与x 之间的函数关系式,指出自变量x 的取值范围,并求当S =x 的值.【难度】★★★【答案】(1)BC =40-2x ;(2)2S =+(020x <<),x =4. 【解析】(1)等腰梯形ABCD 中,AB =CD =x ,∴BC =40-x -x =40-2x ;(2)作BE ⊥AD ,CF ⊥AD在Rt △ABE 中,∵∠ABE =30°, ∴AE =12x .同理FD =AE =12x , ∴BE =CF .∴EF =BC =40-2x , ∴AD =40-x∴()1(4024022BC AD BE S x x +==-+-=+(020x <<),当S =x =4或683x =(舍)∴当S =x 的值为4.【总结】本题考查等腰梯形性质与函数解析式的结合,注意面积公式中各个量的含义.例20.已知,一次函数144y x =-+的图像与x 轴,y 轴,分别交于A 、B 两点,梯形AOBC(O 是原点)的边AC =5,(1)求点C 的坐标;(2)如果一个一次函数y kx b =+(k 、b 为常数,且k ≠0)的图像经过A 、C 两点,求这个一次函数的解析式. 【难度】★★★【答案】(1)C (13,4)或(19,4)或(16,5); (2)46433y x =-+或46433y x =-.【解析】由题可知:A (16,0),B (0,4).当OB ∥AC 时,点C 坐标为(16,5),当BC ∥AO 时,点C 坐标为(13,4)或(19,4);(2)∵一次函数的图像经过A 、C 两点,∴C 点坐标不能为(16,5),当A (16,0),C (13,4)时,利用待定系数法可得解析式为:46433y x =-+;当A (16,0),C (19,4)时,利用待定系数法可得解析式为:46433y x =-. 【总结】本题考查直角梯形性质及一次函数的综合运用,注意分类讨论,综合性较强.例21.如图,直角梯形ABCD 中,AB //CD ,∠A =90°,AB =6,AD =4,DC =3,动点P 从点A 出发,沿A →D →C →B 方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,线段AQ 的长度为y ,线段PQ 平分梯形ABCD 的周长. (1)求y 与x 的函数关系式,并求出这个函数的定义域;(2)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,请说明理由.【难度】★★★ 【答案】(1);(2)x =3时,PQ 平分梯形面积.【解析】(1)过点C 作CE ⊥AB 于点E ,则CD =AE =3,CE =4, 可得:BC =5,所以梯形ABCD 的周长是18.∵PQ 平分梯形ABCD 的周长,∴x +y =9, ∵06y ≤≤, ∴39x ≤≤, ∴;(2)由题可知,梯形ABCD 的面积是18. 因为P 不在BC 上,所以37x ≤≤. 当3≤x <4时,P 在AD 上,此时12APQ S xy ∆=, ∵线段PQ 能平分梯形ABCD 的面积,则有192xy =可得方程组,解得:或(舍);可得方程组,方程组无解,∴当x =3时,线段PQ 能平分梯形ABCD 的面积.【总结】本题利用梯形的性质,三角形的面积公式,建立方程和方程组求解,注意针对不同情况讨论,利用数形结合的思想进行计算.模块二:辅助线 知识精讲解决梯形问题常用的方法① 作高法:使两腰在两个直角三角形中;②移腰法:使两腰在同一个三角形中,梯形两个下底角是互余的,那么一般会用到这种添辅助线的方式,构造直角三角形;③延腰法:构造具有公共角的两个等腰三角形;④等积变形法:联结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形;⑤移对角线法:平移对角线,可以构造特殊的图形,如平行四边形,如果是对角线互相垂直的等腰梯形,那么在平移的过程中,还可构造等腰直角三角形,结合三线合一,求梯形的高 等.例题解析例1.如图,已知在梯形ABCD 中,//AD BC ,,AE BC ⊥,垂足为E ,12AE =,则BC 边的长等于( )A .20B .21C .22D .23【难度】★★ 【答案】D【解析】∵AE BC ⊥,13AB =,12AE =, ∴BE = 5.∵梯形ABCD 中,//AD BC ,,AE BC ⊥, ∴, 故选D .【总结】本题主要考查等腰梯形性质的综合运用.例2.已知梯形ABCD 中,//AD BC ,70B ∠=,40C ∠=,2AD =,10BC =.求DC 的长.【难度】★★ 【答案】CD = 8.【解析】作DE //AB ,则四边形ABED 是平行四边形.∴AD =BE =2,∠DEC =∠B =70°.在△DEC 中,∠C =40°,∴∠EDC =180°-40°-70°=70°,∴CD =CE =BC -BE =10-2=8. 【总结】本题考查辅助线——做一边的平行线,构造平行四边形.例3.如图,梯形ABCD 中,//AB CD ,90A B ∠+∠=,AB b =,CD a =,E 、F 分别为AB 、CD 的中点,则EF 的长等于( )A .B .C .D .【难度】★★ 【答案】C【解析】分别过点F 做FG //AD ,FH //BC ,分别交BA 于点G ,H可得平行四边形DFGA 与平行四边形FCBH∴AG =FD =CF =BH =1122CD a =,∴GH =b -a∵∠A +∠B =90°, ∴可得直角△FGH ,E 是GH 中点∴EF =11()22GH b a =-, 故选C .【总结】本题考查直角三角形中线性质与梯形辅助线的添加.例4.已知:如图,在梯形ABCD 中,AD ∥BC ,AB =AC ,∠BAC =90°,BD =BC ,BD 交AC 于O .求证:CO =CD .【难度】★★【解析】作AF ⊥BC ,DE ⊥BC ,∵AD //BC ,∴AF =DE .在Rt △ABC 中,AB =AC , ∴AF =12BC .∵BC =BD , ∴DE =12BD .∴在Rt△BDE中,∠DBC=30°,∴∠BCD=∠BDC=75°∴∠DOC=∠DBC+∠ACB=75°,∴∠CDO=∠COD=75°,∴CD=CO.【总结】本题考查梯形的常用辅助线—做梯形的高,把梯形问题转化成三角形,矩形的问题,然后根据已知条件和三角形性质解题.例5.在等腰梯形ABCD中,AD∥BC,AB=DC,对角线AC与BD相交于点O,∠BOC=60°,AC=10cm,求梯形的高DE的长.【难度】★★【答案】.【解析】等腰梯形ABCD中,∵OB=OC,∠BOC=60°,可得等边△OCB,∴∠DBC=∠ACB=60°∵AC=BD=10,∴在直角△BDE中,BE=152BD=,∴DE=cm.【总结】本题考查梯形的相关计算,注意方法的运用.例6.如图,在梯形ABCD中,,,若AE=10,则CE=__________.【难度】★★★【答案】4或6.【解析】过点B作DA的垂线交DA延长线于M,M为垂足,延长DM到G,使得MG=CE,联结BG,可得四边形BCDM是正方形.∴BC=BM,∠C=∠BMG=90°,EC=GM,∴△BEC≌△BMG,∴∠MBG=∠CBE∵∠ABE=45°,∴∠CBE+∠ABM=45°,∴∠GBM+∠ABM=45°,∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10设CE=x,则AM=10x,∴AD=12(10x)=2+x,DE=12x.在Rt△ADE中,由AE2=AD2+DE2,解得:x=4或x=6.故CE的长为4或6.【总结】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和对应边相等的性质,注意辅助线的添加方法,将问题转化为解直角三角形的问题.模块三:中位线知识精讲三角形中位线的定义和性质:1. 定义三角形的中位线:联结三角形两边中点的线段,(强调它与三角形的中线的区别);2. 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.3. 梯形中位线定理:梯形的中位线平行于底边,并且等于两底和的一半.【要点点拨】经过三角形的一边中点作另一边的平行线,也可以证明得到的平行线段为中位线.同样地,从梯形的一腰中点作底的平行线,可以证明得到的平行线段为中位线.如果把三角形看成是一个上底长度为零的特殊的梯形的话,那么三角形中位线定理就成为梯形中位线定理的特例了.例题解析例1(1)顺次联结四边形各边中点所组成的四边形是;(2)顺次联结平行四边形各边中点所组成的四边形是;(3)顺次联结矩形各边中点所得到的四边形是;(4)顺次联结正方形各边中点所得到的四边形是;(5)顺次联结菱形各边中点所得到的四边形是;(6)顺次联结对角线互相垂直的四边形各边中点所得到的四边形是;(7)顺次联结等腰梯形各边中点所得到的四边形是;(8)顺次联结对角线相等的四边形各边中点所得到的四边形是;(9)顺次联结对角线相等且互相垂直的四边形各边中点所得到的四边形是.【难度】★【答案】(1)平行四边形;(2)平行四边形;(3)菱形;(4)正方形;(5)矩形;(6)矩形;(7)菱形;(8)菱形;(9)正方形.【解析】利用三角形中位线性质可证明.【总结】本题考查中位线性质和四边形判定方法,注意对相关规律的总结.例2.(2019·上海浦东新区·八年级期中)如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.5【答案】B【分析】根据三角形的中位线的定理即可求出答案.【详解】∵AD=BD,AE=EC,∴DE是△ABC的中位线,∴BC=2DE,∴DE=3,故选B.【点睛】此题考查三角形的中位线,解题的关键是熟练运用三角形的中位线定理,本题属于基础题型.例3.(2018·上海市清流中学八年级月考)顺次连接等腰梯形各边中点所围成的四边形是 ( ) A .平行四边形 B .矩形C .菱形D .等腰梯形【答案】C【分析】由E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,得出EF ,HG ,FG ,EH 是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】如图所示,因为E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,连接AC 、BD ,因为E 、F 分别是AB 、BC 的中点, 所以EF=12AC ,同理可得HG=12AC ,FG=12BD ,EH=12BD , 又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE , 所以连接等腰梯形各中点所得四边形为菱形. 故选C.【点睛】此题考查三角形中位线的性质,解题关键在于画出图形.例4.(2019·上海上外附中)梯形两条对角线互相垂直,且长度分别为4,6,则梯形的中位线长为_________【分析】作//DE AC 交AC 延长线于点E ,得到直角三角形BDE ,和平行四边形,运用平行四边形的性质和勾股定理求得BE 的长度,依据梯形中位线等于上下底和的一半即可. 【详解】解:如图,梯形ABCD ,//AD BC ,6AC =,4BD =,90BOC ∠=°, 作//DE AC 交AC 延长线于点E ,∴四边形是平行四边形,, ∴CE AD =,6DE AC ==,, ∴,【点睛】本题考查了梯形的中位线的性质、平行四边形的判定和性质、勾股定理,解题的关键是通过作平行线把上下底的和看成一个整体.例5.(2019·上海上外附中)如图,四边形ABCD 中,E ,F 分别为AD ,BC 中点,且6AB =,8CD =,则EF 的长度a 的范围是___________【答案】17a <≤【分析】连接BD ,取BD 的中点G ,连接GE GF 、,得到EG 是DBA 的中位线,FG 是DBC △的中位线,依据三角形中位线的性质求出132GE AB ==,142GF DC ==,分//AB DC ,AB DC 、不平行时,两种情况讨论,依据三角形三边关系即可.【详解】解:连接BD ,取BD 的中点G ,连接GE GF 、,又∵E ,F 分别为AD ,BC 中点,∴EG 是DBA 的中位线,FG 是DBC △的中位线, ∴132GE AB ==,142GF DC ==, ①当//AB DC 时, ;②当AB DC 、不平行时, ∵GF GE EF GE GF -<<+, ∴17EF <<;综上所述:17EF <≤,即17a <≤. 故答案为:17a <≤.【点睛】本题考查了三角形三边大小关系,构造三角形的中位线、分类讨论是解题的关键. 例6.(2017·上海闵行区·八年级期末)如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是______.【答案】AD=BC.【解析】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.解:条件是AD=BC.∵EH、GF分别是△ABC、△BCD的中位线,∴EH∥=BC,GF∥=BC,∴EH∥=GF,∴四边形EFGH是平行四边形.要使四边形EFGH是菱形,则要使AD=BC,这样,GH=AD,∴GH=GF,∴四边形EFGH是菱形.例7.(2018·上海宝山区·八年级期末)如图,将▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF为_____.【答案】4【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=12BC=12×8=4.故答案为:4.【点睛】本题主要考查了平行四边形的性质与三角形中位线的性质.例8.(2017·上海徐汇区·八年级期末)如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是6,则AC=____.【答案】12.【分析】根据三角形中位线定理计算即可.【详解】解:∵点D ,E 分别是边AB ,BC 的中点,∴AC=2DE=12,故答案为:12.【点睛】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.例9.(2019·上海上外附中)如图,矩形ABCD 中,6AB =,8AD =,点O 为对角线AC 中点,点M 为边AD 中点,则四边形ABOM 的周长为________【答案】18【分析】根据题意可知OM 是ADC 的中位线,所以OM 的长可求;根据勾股定理可求出AC 的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO 的长,进而求出四边形ABOM 的周长.【详解】解:∵矩形ABCD 中,6AB =,8AD =,,O 为AC 的中点,M 为AD 的中点,OM ∴为ADC 的中位线,142AM AD ==, 116322OM DC ∴==⨯=, ,四边形ABOM 的周长346518OM AM AB BO =+++=+++=,故答案为:18.【点睛】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.例10.(1)点D 、E 、F 分别是ABC 三边的中点,D EF 的周长为10cm ,则ABC 的周长为;(2)ABC 三条中位线的长为3cm 、4cm 、5cm ,则ABC 的面积为.【难度】★【答案】(1)20cm ;(2)242cm .【解析】(1)2()20ABC C AB BC AC DE EF DF ∆=++=++=cm .(2)∵三条中位线的长为3cm 、4cm 、5cm , 且2223+45=,∴可知△ABC 是直角三角形, ∴168242S =⨯⨯=2cm . 【总结】本题考查三角形中位线的性质的综合运用.例11.如图,在ABC 中,点D 是边BC 的中点,点E 在ABC 内,AE 平分BAC ∠,CE AE ⊥点F 在边AB 上,EF //BC .(1) 求证:四边形BDEF 是平行四边形;(2) 线段BF 、AB 、AC 之间有怎么样的数量关系?并证明.【难度】★★【答案】(1)见解析;(2)2BF +AC =AB .【解析】(1)延长CE 交AB 于点G∵AE ⊥CG ,AE 平分∠BAC∴△AEG 与△ACE 中,∠GAE =∠CAE ,AE =AE ,∠AEG =∠AEC∴△AGE ≌△ACE ∴AG =AC ,即△AGC 是等腰三角形,∴E 是GC 的中点.∵D 是CB 的中点,∴DE //BA , ∵EF //BD , ∴四边形BDEF 是平行四边形;(2)∵ED 是△BCG 的中位线, ∴ED =12BG . 又∵平行四边形BDEF ,∴ED =BF ,∴BF =12BG ,即BG =2BF . ∵AG =AC , ∴2BF +AC =BG +AG =BA .【总结】本题考查了平行四边形的判定和性质,全等三角形的判定与性质、中位线的性质等知识,解题的关键是作辅助线,构造全等三角形,用中位线的性质解题.例12.如图所示,在梯形ABCD 中,//AD BC ,对角线AC BD ⊥交于点O ,MN 是梯形ABCD 的中位线,30DBC ∠=,求证:AC =MN .【难度】★★【解析】∵AD //BC , ∴∠ADO =∠DBC =30°.∴在Rt △AOD 和Rt △BOC 中,OA =12AD ,OC =12BC , ∴AC =OA +OC =1()2AD BC +. ∵MN 是梯形ABCD 的中位线,∴MN =1()2AD BC +, ∴AC =MN .。
2020年中考数学二轮核心考点讲解第12讲运动路径长度问题解析版
![2020年中考数学二轮核心考点讲解第12讲运动路径长度问题解析版](https://img.taocdn.com/s3/m/ffc07693fad6195f312ba6c0.png)
【中考数学二轮核心考点讲解】第12讲运动路径长度问题想要对运动路径长度问题掌握得信手拈来,那么建议你对以下知识点进行提前学习会更好:1.《隐圆模型》2.《共顶点模型》-也可称“手拉手模型”3.《主从联动模型》-也可称“瓜豆原理模型”4.《旋转问题》—本系列的第二讲中所阐述的旋转相似模型此外,还需要明白的动点类型还有:5.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上6.角平分线——到角两边距离相等的动点一定在这个角的角平分线上7.三角形中位线——动点到某条线的距离恒等于某平行线段的一半8.平行线分线段成比例——动点到某条线的距离与某平行线段成比例9.两平行线的性质——平行线间的距离,处处相等一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长解题关键:通过《隐圆模型》中五种确定隐圆的基本条件作出隐圆,即可轻易得出结论. 二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可解题关键:解题过程中常常出现中位线,平行线分线段成比例,相似证动角恒等于顶角等知识点三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点解题关键:解题过程中常常出现相似转线段长、《主从联动模型》中的滑动模型等【例题1】如图,等腰Rt△AOB中,∠AOB=90°,OA=,⊙O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.【分析】解题标签:《共顶点模型》中的旋转相似、《隐圆模型》中的动点定长模型、《主从联动模型》【解析】如图,连接OP,AQ,设⊙O与AB相切于C,连接OC,则OC⊥AB,∵OA=OB,∠AOB=90°,OB=,∴AB=2,OP=OC=AB=,∵△ABO和△QBP均为等腰直角三角形,∴=,∠ABO=∠QBP=45°,∴=,∠ABQ=∠OBP,∴△ABQ∽△OBP,∴∠BAQ=∠BOP,=,即=,∴AQ=,又∵点P在弧MN上由点M运动到点N,∴0°≤∠BOP≤90°,∴0°≤∠BAQ≤90°,∴点Q的运动轨迹为以A为圆心,AQ长为半径,圆心角为90°的扇形的圆弧,∴点Q运动的路径长为=,故选:D.[本题用《主从联动模型》来接替会更快得到结果]【例题2】已知⊙O,AB是直径,AB=4,弦CD⊥AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【分析】解题标签:“定边对直角”确定隐圆模型【解析】作DQ⊥AC于Q,如图,当P点在C点时,F点与Q重合;当P点在B点时,F点与E点重合,∵∠AFD=90°,∴点F在以AD为直径的圆上,∴点F运动的路径为,∵弦CD⊥AB且过OB的中点,∴OE=OD,CE=DE=,AC=AC=2,∴∠DOE=60°,∴∠DAC=60°,∴△ACD为等边三角形,∴MQ和ME为中位线,∴MQ=,∠QME=60°,∴F运动的路径长度==.故选:A.【例题3】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.【分析】解题标签:“定边对定角”确定隐圆模型【解析】连结OA、OB,作△ABC的外接圆D,如图1,∵OA=OB=1,AB=1,∴△OAB为等边三角形,∴∠AOB=60°,∴∠APB=∠AOB=30°,∵AC⊥AP,∴∠C=60°,∵AB=1,要使△ABC的最大面积,则点C到AB的距离最大,∵∠ACB=60°,点C在⊙D上,∴∠ADB=120°,如图2,当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,且面积为AB2=,∴△ABC的最大面积为.故答案为:.【例题4】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【分析】解题标签:“线段垂直平分线”产生“平行定距型”【解析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC= AB= ,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=22AP=22CQ,QF=22BQ,∴PE+QF=22(CQ+BQ)=22BC=2×22=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=12(PE+QF)=12,即点M到AB的距离为12,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=12AB=1,故答案为:C.[或连接OM,CM,点M运动路径为线段OC中垂线]【例题5】已知:如图1,平面直角坐标系中,点A的坐标是(0,6),点B在x轴上,且∠BAO=30°,点D是线段OA上的一点,以BD为边向下作等边△BDE.(1)如图2,当∠ODB=45°时,求证:OE平分∠BED.(2)如图3,当点E落在y轴上时,求出点E的坐标.(3)利用图1探究并说理:点D在y轴上从点A向点O滑动的过程中,点E也会在一条直线上滑动;并直接写出点E运动路径的长度.【分析】解题标签:“共顶点模型”、“全等或相似转固定角度法确定动点的直线运动”【解析】(1)∵∠ODB=45°,∠AOB=90°,∴∠OBD=∠ODB=45°,∴OD=OB,∵△BDE是等边三角形,∴DE=BE,在△DOE和△BOE中,,∴△DOE≌△BOE(SSS),∴∠DEO=∠BEO,即OE平分∠BED;(2)∵△BOE是等边三角形,∴∠EDB=60°,∵OB⊥DE,设OD=x,则OE=x,∵∠BAO=30°,∠AOB=90°,∴∠DBO=∠ABD=∠BAO=30°,∴BD=2OD=2x,AD=BD=2x,∵OA=AD+OD=3x=6,解得,x=2,∴E(0,﹣2);(3)如图1,在x轴上取点C,使BC=BA,连接CE,∵∠ABD+∠OBD=∠CBE+∠OBD=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴∠BCE=∠BAO=30°,∴当D在OA上滑动时,点E总在与x轴夹角为30°的直线CE上滑动,如图可知,点E运动路径的长度为6.【例题6】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是8﹣12.【分析】解题标签:“运动路径为来回型”【解析】①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长,∴AC′=OC=8,∵AC′∥OB,∴∠AC′O=∠COB,∴cos∠AC′O=cos∠COB==,∴=,∴OC′=4,∴CC′=4﹣8;②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:8﹣12.【例题7】如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A 出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t杪,连结OP并延长交抛物线于点B,连结OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.【分析】解题标签:“运动路径为来回型”【解析】(1)∵抛物线y=x2+bx+c经过原点O,且对称轴是直线x=2,∴c=0,﹣=2,则b=﹣4、c=0,∴抛物线解析式为y=x2﹣4x;(2)设点B(a,a2﹣4a),∵y=x2﹣4x=(x﹣2)2﹣4,∴点A(2,﹣4),则OA2=22+42=20、OB2=a2+(a2﹣4a)2、AB2=(a﹣2)2+(a2﹣4a+4)2,①若OB2=OA2+AB2,则a2+(a2﹣4a)2=20+(a﹣2)2+(a2﹣4a+4)2,解得a=2(舍)或a=,∴B(,﹣),则直线OB解析式为y=﹣x,当x=2时,y=﹣3,即P(2,﹣3),∴t=(﹣3+4)÷1=1;②若AB2=OA2+OB2,则(a﹣2)2+(a2﹣4a+4)2=20+a2+(a2﹣4a)2,解得a=0(舍)或a=,∴B(,),则直线OB解析式为y=x,当x=2时,y=1,即P(2,1),∴t=[1﹣(﹣4)]÷1=5;③若OA2=AB2+OB2,则20=(a﹣2)2+(a2﹣4a+4)2+a2+(a2﹣4a)2,整理,得:a3﹣8a2+21a﹣18=0,a3﹣3a2﹣5a2+15a+6a﹣18=0,a2(a﹣3)﹣5a(a﹣3)+6(a﹣3)=0,(a﹣3)(a2﹣5a+6)=0,(a﹣3)2(a﹣2)=0,则a=3或a=2(舍),∴B(3,﹣3),∴直线OB解析式为y=﹣x,当x=2时,y=﹣2,即P(2,﹣2),∴t=[﹣2﹣(﹣4)]÷1=2;综上,当△AOB为直角三角形时,t的值为1或2或5.(3)∵⊙M为△AOB的外接圆,∴点M在线段OA的中垂线上,∴当1≤t≤5时,点M的运动路径是在线段OA中垂线上的一条线段,当t=1时,如图1,由(2)知∠OAB=90°,∴此时Rt△OAB的外接圆圆心M是OB的中点,∵B(,﹣),∴M(,﹣);当t=5时,如图2,由(2)知,∠AOB=90°,∴此时Rt△OAB的外接圆圆心M是AB的中点,∵B(,)、A(2,﹣4),∴M(,﹣);当t=2时,如图3,由(2)知,∠OBA=90°,∴此时Rt△OAB的外接圆圆心M是OA的中点,∵A(2,﹣4),∴M(1,﹣2);则点M经过的路径长度为=.【例题8】如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2B.2C.D.5【分析】解题标签:“利用解析法计算几何路径长”【解析】建立如图坐标系.设OB=t,则OA=5﹣t,∴B(t,0),A(0,5﹣t),∵AP=PB,∴P(,),令x=,y=,消去t得到,y=﹣x+(0≤x≤),∴点P的运动轨迹是线段HK,H(0,),K(,0),∴点P的运动路径的长为=,故选:C.【例题9】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0),在整个运动过程中,求出线段PQ中点M所经过的路径长.【分析】解题标签:“利用解析法计算几何路径长”【解析】如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【例题10】(1)如图1,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作等边△BDE,当点D由点A运动到点C时,求点E运动的路径长;(2)如图2,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以E为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(3)如图3,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(4)如图4,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直顶点的等腰△BDE,且∠BDE=120°,当点D由点A运动到点C时,求点E运动的路径长;【分析】解题标签:“主从联动模型”【解析】22;2;4;26【例题11】如图,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的动点.以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.【分析】解题标签:“定边对定角”确定隐圆模型、主从联动模型【解析】如图所示,易得点D的运动轨迹的长为=2 π.1.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.【解析】如图,连接OP,OC,取OC的中点K,连接MK.∵AC=BC=,∠ACB=90°,∴AB==2,∴OP=AB=1,∵CM=MP,CK=OK,∴MK=OP=,∴当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,长为半径的半圆,∴点M运动的路径长=•2•π•=,故答案为.2.已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若∠AEP=∠BFP,则当点P由点C移动到点D时,点M移动的路径长度为4﹣3.【解析】如图,分别延长AE、BF交于点H.∵△APE和△PBF都是等腰三角形,且∠AEP=∠BFP∵∠A=∠FPB,∴AH∥PF,同理,BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线QN.∵CD=AB﹣AC﹣BD=8﹣6,∴QN=CD=4﹣3,即M的移动路径长为4﹣3.故答案是:4﹣3.3.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为5.【解析】如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EP A=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.∴MN=AB=5,即G的移动路径长为5.故答案为:54.如图,AB为⊙O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ=AB2.若点P由B运动到C,则点Q运动的路径长为3.【解析】连接BQ,如图,∵AB为⊙O的直径,∴∠APB=90°,∵AP•AQ=AB2.即=,而∠BAP=∠QAB,∴△ABP∽△AQB,∴∠ABQ=∠APB=90°,∴BQ为⊙O的切线,点Q运动的路径长为切线长,∵弧AC的度数是60°,∴∠AOC=60°,∴∠OAC=60°,当点P在C点时,∠BAQ=60°,∴BQ=AB=3,即点P由B运动到C,则点Q运动的路径长为3.故答案为3.5.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F.设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.【答案】4【解析】如图所示:过点M作GH⊥AD.∵AD∥CB,GH⊥AD,∴GH⊥BC.在△EGM和△FHM中,∴△EGM≌△FHM.∴MG=MH.∴点M的轨迹是一条平行于BC的线段当点P与A重合时,BF1=AE=2,当点P与点B重合时,∠F2+∠EBF1=90∘,∠BEF1+∠EBF1=90∘,∴∠F2=∠EBF1.∵∠EF1B=∠EF1F2,∴△EF1B∽△∠EF1F2.∴,即∴F1F2=8,∵M1M2是△EF1F2的中位线,∴M1M2= F1F2=4.故答案为:4.6.等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE=CF,连接AF,BE相交于点P.(1)∠APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.【解析】(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.(2)如图1,∵AE=CF,∴点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP 为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=2,∴OA=2,点P的路径是l===;(3)如图2,∵AE=CF,∴点P的路径是一段弧,∴当点E运动到AC的中点时,CP长度的最小,即点P为△ABC的中心,过B作BE′⊥AC于E′,∴PC=BE′,∵△ABC是等边三角形,∴BE′=BC=3,∴PC=2.∴CP长度的最小值是2.方法二:由图1可知,CP最小值等于CO减OA,OA就是那圆弧的半径,可得PC的最小值为2.7.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.【答案】【解析】解:点C从点A运动到点D与点B从何时,AD与BC的相点P运动的轨迹是一条弧,C,D两点运动到恰好是半圆的三等分点时,AD与BC的相点P是弧的最高点,作AP,BP的中垂线,两线交于点E,点E是弧APB的圆心;由题意知:AD=BD,∠PAB=∠PBA=30°,连接AE,DE,根据圆的对称性得出A、O、E三点在同一直线上,易证△ADE是一个等边三角形,∠AED=60°,在Rt△ADO中,∠DOA=90°,∠PAB=30°,AO=1,故AD=,∴AE=AD=,弧APB的长度==。
【暑假自学课】2024年新九年级数学暑假提升精品(浙教版)12讲圆内接四边形与正多边形(解析卷讲义)
![【暑假自学课】2024年新九年级数学暑假提升精品(浙教版)12讲圆内接四边形与正多边形(解析卷讲义)](https://img.taocdn.com/s3/m/6c62a65edf80d4d8d15abe23482fb4daa58d1ddf.png)
第12讲圆内接四边形与正多边形模块导航『模块一思维导图串知识模块二基础知识全梳理(吃透教材)学习目标『1.掌握圆内接四边形的概念和定理;2.掌握圆与正多边形的关系;模块三教材习题学解题模块四核心考点精准练模块五小试牛刀过关测◎模块一思维导图串知识02求四边形外接圆的直径03已知正多边形的中心角求边数01已知圆内接四边形求角度—04求正多边形的中心角05正多边形与圆综合输模块二基础知识全梳理-----------------------------一、圆内接四边形如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.二、圆内接四边形性质定理圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.三、正多边形的概念各边相等,各角也相等的多边形是正多边形.要点:判断一个多边形是否是正多边形,必须满足两个条件:⑴各边相等;⑵各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).四、正多边形的重要元素1.正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2.正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3.正多边形的有关计算⑴正n边形每-个内角的度数是J");⑵正n边形每个中心角的度数是—;n⑶正n边形每个外角的度数是犯1.n要点:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.五、正多边形的性质1.正多边形都只有一个外接圆,圆有无数个内接正多边形.2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.4.边数相同的正多边形相似。
【易错题精析】第12讲 圆的面积和扇形小学数学六年级上册易错专项练人教版,含答案
![【易错题精析】第12讲 圆的面积和扇形小学数学六年级上册易错专项练人教版,含答案](https://img.taocdn.com/s3/m/2ee43a050812a21614791711cc7931b765ce7bea.png)
【易错题精析】第12讲圆的面积和扇形小学数学六年级上册易错专项练(人教版,含答案)第12讲圆的面积和扇形(讲义)小学数学六年级上册易错专项练(知识梳理+易错汇总+易错精讲+易错专练)1.圆的面积。
圆所占平面的大小叫圆的面积,一般用字母S表示。
圆的面积的大小与半径的长短有关。
2.圆的面积计算公式。
如果用S表示圆的面积,那么S = π r2或S = π( d÷2)2。
3.圆环。
两个半径不等的同心圆之间的部分叫作圆环,也叫作环形。
4.圆环的面积计算公式。
外圆的半径是R,内圆的半径是r,圆环的面积=外圆面积-内圆面积,用字母表示为S=π R2-π r2或S=π (R2- r2)。
5.“外方内圆”和“外圆内方”的问题。
(1)在正方形内画一个最大的圆,这个圆的直径等于正方形的边长。
如果圆的半径是r,那么正方形和圆之间部分的面积为0.86r2。
(2)在圆内画一个最大的正方形,这个正方形的对角线等于圆的直径。
如果圆的半径是r,那么正方形和圆之间部分的面积为1.14r2。
6.扇形。
弧:圆上任意两点(如下图A、B)之间的部分叫作弧,读作弧AB。
圆心角:由两条半径组成,顶点在圆心的角叫圆心角。
如下图∠AOB。
扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫作扇形。
如下图中涂色部分就是扇形。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
1.在计算圆的面积时,r2是r×r,不是r×2。
2.圆环必须是两个同心圆形成。
3.求圆环的面积时,要先算出的是“平方差”,不是“差的平方”。
4.在正方形内画一个最大的圆,这个圆的直径等于正方形的边长,在长方形内画一个最大的圆,这个圆的直径等于长方形的宽。
5.在圆内画一个最大的正方形,这个正方形的对角线等于圆的直径。
6.圆心角必须具备两个条件:一是顶点在圆心上;二是角的两边是圆的半径。
7.在同一个圆中,扇形越大,这个扇形所对的圆心角就越大。
【易错一】长方形、正方形和圆的周长相等时,面积最大的是()。
高斯小学奥数六年级上册含答案第12讲 复杂行程问题
![高斯小学奥数六年级上册含答案第12讲 复杂行程问题](https://img.taocdn.com/s3/m/addab22365ce050877321332.png)
第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。
2025届高考数学二轮复习导数经典技巧与方法第12讲数形结合与巧用放缩法含解析
![2025届高考数学二轮复习导数经典技巧与方法第12讲数形结合与巧用放缩法含解析](https://img.taocdn.com/s3/m/8e6ddb285bcfa1c7aa00b52acfc789eb172d9e2a.png)
第12讲数形结合与巧用放缩法学问与方法数形结合思想就是依据试题中给出的条件和结论,考虑几何含义来证明不等式.若想要运用好数形结合思想,必需敏捷地把抽象笼统的数量关系式与直观明白的图形结合起来,然后在几何与代数的背景下找寻解题的突破口.数形结合有两种状况:一是以数解形,二是以形助数,而通常状况下我们是以形助数来解题,所谓“以形助数”就是构造出与题意相吻合的图形,并通过图象的性质来帮助解决“数”的问题.典型例题f2−ff有两个极值点f1,f2(e为自然对数的底数). 【例1】已知函数f(f)=e f−12(1)求实数f的取值范围;(2)求证:f(f1)+f(f2)>2.f2−ff,则f′(f)=e f−f−f,【解析】(1)由于f(f)=e f−12设f(f)=f′(f)=e f−f−f,则f′(f)=e f−1.令f′(f)=e f−1=0,解得f=0.所以当f∈(−∞,0)时,f′(f)<0;当f∈(0,+∞)时,f′(f)>0.所以f(f)min=f(0)=1−f.(1)当f⩽1时,f(f)=f′(f)⩾0,所以函数f(f)单调递增,没有极值点;(2)当f>1时,f(f)min=1−f<0,且当f→−∞时,f(f)→+∞;当f→+∞时,f(f)→+∞.此时,f(f)=f′(f)=e f−f−f有两个零点f1,f2,不妨设f1<f2,则f1<0<f2−ff有两个极值点时,实数f的取值范围是(1,+∞); f2,所以函数f(f)=e f−12(2)由(1)知,f1,f2为f(f)=0的两个实数根,f1<0<f2,f(f)在(−∞,0)上单调递减.下面先证f1<−f2<0,只需证f(−f2)<f(f1)=0.由于f(f2)=e f2−f2−f=0,得f=e f2−f2,所以f(−f2)=e−f2+f2−f=e−f2−e f2+2f2.−e f+2<0,设f(f)=e−f−e f+2f(f>0),则f′(f)=−1e f所以f(f)在(0,+∞)上单调递减,所以f(f)<f(0)=0,f(f2)=f(−f2)<0,所以f1<−f2<0.由于函数f(f)在(f1,0)上也单调递减,所以f(f1)>f(−f2).要证f(f1)+f(f2)>2,只需证f(−f2)+f(f2)>2,即证e f2+e−f2−f22−2>0.设函数f(f)=e f+e−f−f2−2,f∈(0,+∞),则f′(f)=e f−e−f−2f.设f(f)=f′(f)=e f−e−f−2f,则f′(f)=e f+e−f−2>0,所以f(f)在(0,+∞)上单调递增,f(f)>f(0)=0,即f′(f)>0.所以f(f)在(0,+∞)上单调递增,f(f)>f(0)=0.故当f∈(0,+∞)时,e f+e−f−f2−2>0,则e f2+e−f2−f22−2>0,所以f(−f2)+f(f2)>2,亦即f(f1)+f(f2)>2.【点睛】第一问函数f(f)有两个极值点实质上就是其导数f′(f)有两个零点,亦即函数f=e f与直线f=f+f有两个交点,如图所示,明显实数f的取值范围是(1,+∞).其次问是极值点偏移问题的泛化,是拐点的偏移,依旧可以运用极值点偏移问题的有关方法来解决.只不过须要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的f1<−f2<0,假如“脑中有'形'”,如图所示,并不难得出.【例2】已知函数f(f)=e f−ff2,且曲线f=f(f)在点f=1处的切线与直线f+ (f−2)f=0垂直.(1)求函数f(f)的单调区间;(2)求证:f>0时,e f−ex−1⩾f(lnf−1).【解析】(1)由f(f)=e f−ff2,得f′(f)=e f−2ff.因为曲线f=f(f)在点f=1处的切线与直线f+(e−2)f=0垂直,所以f′(1)=e−2f=e−2,所以f=1,即f(f)=e f−f2,f′(f)=e f−2f.令f(f)=e f−2f,则f′(f)=e f−2,f′(ln2)=0.所以f∈(−∞,ln2)时,f′(f)<0,f(f)单调递减;f∈(ln2,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)min=f(ln2)=2−2ln2>0,所以f′(f)>0,f(f)单调递增.即f(f)的单调递增区间为(−∞,+∞),无递减区间;(2)由(1)知f(f)=e f−f2,f(1)=e−1,所以f=(f)在f=1处的切线为f−(e−1)=(e−2)(f−1),即f=(e−2)f+1. 令f(f)=e f−f2−(e−2)f−1,则f′(f)=e f−2f−(e−2)=e f−e−2(f−1),且f′(1)=0,f′′(f)=e f−2,f ∈(−∞,ln 2)时,f ′′(f )<0,f ′(f )单调递减; f ∈(ln 2,+∞)时,f ′′(f )>0,f ′(f )单调递增.因为f ′(1)=0,所以f ′(f )min =f ′(ln 2)=4−e −2ln 2<0, 因为f ′(0)=3−e >0,所以存在f 0∈(0,1),使f ∈(0,f 0)时,f ′(f )>0,f (f )单调递增;f ∈(f 0,1)时,f ′(f )<0,f (f )单调递减; f ∈(1,+∞)时,f ′(f )>0,f (f )单调递增.又f (0)=f (1)=0,所以f >0时,f (f )⩾0,即e f −f 2−(e −2)f −1⩾0,所以e f −(e −2)f −1⩾f 2. 今f f (f )=ln f −f ,则f ′(f )=1f −1=1−ff.所以f ∈(0,1)时,f ′(f )>0,f (f )单调递增;f ∈(1,+∞)时,f ′(f )<0,f (f )单调递减,所以f (f )⩽f (1)=−1,即ln f +1⩽f ,因为f >0,所以f (ln f +1)⩽f 2,所以f >0时,e f −(e −2)f −1⩾f (ln f +1), 即f >0时,e f −e f −1⩾f (ln f −1).强化训练1.若关于f 的不等式f −ff >e f (2f −1)(f >−1)有且仅有两个整数解,则实数f 的取值范围为 A.(−34,53e 2] B.(−1,−32e ]C.(−32e ,−53e 2]D.(−34,−53e 2]【答案】C【解析】设f (f )=f −ff ,f (f )=e f (2f −1), 不等式f −ff >e f (2f −1)(f >−1)即f (f )>f (f ),f ′(f )=e f (2f +1),由f ′(f )>0得f >−12,由f ′(f )<0得f <−12, f (f )在(−∞,−12)单调递减,在(−12,+∞)单调递增.作出f (f )的图象如图所示,直线f (f )=f −ff 过定点(1,0).若不等式f (f )>f (f )有且仅有两个整数解,则这两个整数只能是0和−1,所以{f (−1)>f (−1),f (−2)⩽f (−2),得−32e <f ⩽−53e 2,实数f 的取值范围是(−32e ,−53e 2],故选:f .2.已知关于f 的不等式|ln f +f −4e f|>ff 的解集中只有两个整数,则实数f 的取值范围为()A.(ln 22f 4,2−ln 22f 2] B.[ln 3−13f 3,2−ln 22f 2) C.[ln 3+13f 3,2−ln 22f 2)D.(ln 3+13e 3,2−ln 22e 2)【答案】A【解析】依题意,f <|ln f +f −4|f e f=|ln f +f −4f e f|,令f (f )=ln f +f −4f e f,则f ′(f )=−(f +1)(ln f +f −5)f 2f f,令f (f )=ln f +f −5,则f ′(f )=1f +1>0,则f (f )在(0,+∞)上单调递增, 又f (3)=ln 3−2<0,f (4)=ln 4−1>0,所以存在f ∈(3,4),使得f (f )=0,所以f ∈(0,f ),f (f )<0即f ′(f )>0,f (f )在(0,f )单调递增,当f ∈(f ,+∞),f (f )>0,即f ′(f )<0,f (f )在(f ,+∞)单调递减, 因为f (1)=−3e <0,f (2)=ln 2−22e 2<0,f (3)=ln 3−12e 3>0,且当f >3时,f (f )>0, 又|f (1)|=3e ,|f (2)|=2−ln 22e 2>|f (3)|=ln 3−12e 3,|f (4)|=ln 22e 4>|f (3)|,故要使不等式|ln f +f −4e f|>ff 的解集中只有两个整数,f 的取值范围应为ln 22e 4<f ⩽2−ln 22e 2.故选:f .3.已知函数f (f )=ln f +12f 2+ff (f ∈f ),f (f )=e f +32f 2−f .(1)探讨f (f )的单调性;(2)定义:对于函数f (f ),若存在f 0,使f (f 0)=f 0成立,则称f 0为函数f (f )的不动点.假如函数f (f )=f (f )−f (f )存在不动点,求实数f 的取值范围. 【解析】(1)f (f )的定义域为(0,+∞),f ′(f )=f 2+ff +1f(f >0),对于函数f =f 2+ff +1,(1)当Δ=f 2−4⩽0时,即−2⩽f ⩽2时,f 2+ff +1⩾0在f >0恒成立. 所以f ′(f )=f 2+ff +1f⩾0在(0,+∞)恒成立.所以f (f )在(0,+∞)为增函数; (2)当Δ>0,即f <−2或f >2时, 当f <−2时,由f ′(f )>0, 得f <−f −√f 2−42或f >−f +√f 2−42,0<−f −√f 2−42<−f +√f 2−42,所以f (f )在(0,−f −√f 2−42)上递增, 在(−f −√f 2−42,−f +√f 2−42)上递减.在(−f +√f 2−42,+∞)上递增;当f >2时,由f ′(f )=f 2+ff +1f>0在(0,+∞)恒成立,所以f (f )在(0,+∞)为增函数. 综上:当f <−2时,f (f )在(0,−f −√f 2−42)上为增函数,在(−f −√f 2−42,−f +√f 2−42)上为减函数,在(−f +√f 2−42,+∞)上为增函数;当f ⩾−2时,f (f )在(0,+∞)上为增函数.(2)f (f )=f (f )−f (f )=ln f −f 2+ff +f −e f (f >0), 因为f (f )存在不动点,所以方程f (f )=f 有实数根,即f =e f −ln f +f 2f有解,令f (f )=e f +f 2−ln ff(f >0),f ′(f )=f f (f −1)+ln f +(f +1)(f −1)f 2=(f f +f +1)(f −1)+ln ff 2,令f ′(f )=0,得f =1,当f ∈(0,1)时,f ′(f )<0,f (f )单调递减; 当f ∈(1,+∞)时,f ′(f )>0,f (f )单调递增;所以f (f )⩾f (1)=e +1,当f ⩾e +1时,f (f )有不动点,所以f 的范围为[e +1,+∞). 【点睛】导数式含参数时,如何探讨参数范围而确定到数值的正负是解决这类题的难点,般采纳求根法和图像法.(1)对函数f (f )求导,结合二次函数的性质探讨f 的范围,即可推断f (f )的单调性;(2)由f (f )存在不动点,得到f (f )=f 有实数根,即f =e f −ln f +f 2f有解,构造函数令f (f )=e f +f 2−ln ff(f >0),通过求导即可推断f (f )的单调性,从而得到f (f )的取值范围,即可得到f 的范围.巧用放缩法学问与方法放缩法就是针对不等式的结构特征,运用不等式的性质,将不等式的一边或两边进行放大或缩小,也就是对代数式进行恰到好处的变形,使问题便于解决.放缩法大致分为以下几类:1.将代数式中的分母和分子同时扩大和缩小;2.利用均值不等式或其它的不等式放缩数式;3.也可以在不等式两边同时加上或减去某一项;4.可以把代数式中的一些项进行分解再重新组合,这样就可以消去一些项便于求解,这也是我们常用的裂项法.导数的解答题中,常常会用到一些不等式进行放缩,主要分为五类:1.切线不等式(1)e f⩾f+1;(2)lnf⩽f−1;(3)e f⩾e f;(4)lnf⩽1e f;(5)lnf⩾1−1f.2.与三角有关的一些不等式(1)当f⩾0时,sinf⩽f,cosf⩾1−f22;(2)当0⩽f⩽f2时,cosf⩽1−f24;(3)当0<f<f2时,sinf<f<ffff;(4)当0<f⩽f2时,sinff⩾2f.3.一些常见不等式(略微提高)(1)当f>1时,f2−1f2+1<2(f−1)f+1<fff<√f√f<12(f−1f);(2)当0<f<1时,12(f−1f)<√f√f<fff<2(f−1)f+1<f2−1f2+1;(3)对数平均不等式:∀f1>f2>0,√f1f2<f1−f2lnf1−lnf2<f1+f22.4.一些不常见的不等式(1)当f>0时,e f>1+f+12f2;(2)当0<f<1时,ln1+f1−f >2f+23f3;当−1<f<0时,ln1+f1−f<2f+23f3.5.间或用上的不等式当f>1,f∈N∗,f>−1时,则:(1+f)f⩾1+ff,(1+f)1f⩽1+1ff.(当且仅当f=0时等号成立.)在解答导数问题时,我们常常运用到函数的切线、割线靠近进行放缩,两个常用的结论为lnf⩽f−1(当且仅当f=1时取等号),e f⩾f+1(当且仅当f=0时取等号),借助这两个结论可以将超越函数放缩成一次函数.针对高考压轴导数问题,放缩法可以起到很好的效果.运用放缩法须要较高的拆分组合技巧,肯定要点睛意同向传递,还要把握好放缩的“尺度”,否则将达不到预期的目的,或者会得出错误的结论.典型例题指数放缩【例1】已知函数f(f)=f e f+2f−1(其中常数e=2.71828⋯,是自然对数的底数).(1)探讨f(f)的单调性;(2)证明:对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.【解析】(1)求导,得f′(f)=f e f+2.当f⩾0时,f′(f)>0,f(f)在R上单调递增;当f<0时,令f′(f)=0,得f=ln(−2f).当f∈(−∞,ln(−2f))时,f′(f)>0,f(f)单调递增;当f∈(ln(−2f),+∞)时,f′(f)<0,f(f)单调递减.综上,当f⩾0时,f(f)在R上单调递增;当f<0时,f(f)在(−∞,ln(−2f ))上单调递增,在(ln(−2f),+∞)上单调递减.(2)解法1:指对处理技巧fe f型当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f e f−f2+(2−f e)f−1⩾0,即1−f2−(2−f e)f+1f e f⩾0,令f(f)=1−f2−(2−f e)f+1f e f,则f′(f)=(f−1)(f+f e−3)f e f,(f)当f⩾3e时,令f′(f)=0,得f=1,故当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞),f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即f(f)⩾(f+f e)f.(ii)当1⩽f<3e吋,令f′(f)=0,得f=1,或f=3−f e.当f∈(0,3−f e),(1,+∞),f′(f)>0,f(f)单调递增;当f∈(3−f e,1),f′(f)<0,f(f)单调递减.又f(0)=1−1f⩾0,f(1)=0,故此时f(f)⩾0,即f(f)⩾(f+f e)f. 综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.解法2:指对处理技巧e ff+主元放缩当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f(e f−e f)−(f−1)2⩾0,即证e ff −ff−1ff+2f−e⩾0,令f(f)=e ff −ff−1ff+2f−e,则f′(f)=(f−1)(f e f−f−1)ff2,当f⩾1时,f e f−f−1⩾e f−f−1,当且仅当f=1时等号成立, 令f(f)=e f−f−1,则f′(f)=e f−1>0在(0,+∞)上恒成立,故f(f)单调递增,f(f)>f(0)=0,f′(f)=0,则f=1, 所以f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即e ff −ff−1ff+2f−e⩾0,即f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.解法3:干脆探讨法当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f(e f−e f)−(f−1)2⩾0,令f(f)=f e f−f2+(2−f e)f−1,则f′(f)=f e f−2f−(f e−2),因此f′′(f)=f e f−2在(0,+∞)上单调递增.(f)当f⩾2时,f′′(f)>0在(0,+∞)上恒成立,故f′(f)单调递增,又f′(1)=0,故当f∈(0,1)时,f′(f)<0,f(f)单调递减,当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即f(f)⩾(f+f e)f.当1⩽f<2时,令f′′(f)=0,得f=ln2f∈(0,1).当f∈(0,ln2f),f′′(f)<0,f′(f)单调递减;当f∈(ln2f,+∞),f′′(f)>0,f′(f)单调递增.(ii)当2e−1⩽f<2时,f′(0)=f(1−e)+2⩽0,又f′(1)=0,f′(ln2f)<f′(1)=0,故当f∈(0,1)时,f′(f)<0,f(f)单调递减; 当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即f(f)⩾(f+f e)f.(iii)当1⩽f<2e−1时,则f′(0)=f(1−e)+2>0,又f′(ln2f )<f′(1)=0,故存在唯一f0∈(0,ln2f),使得f(f0)=0,当f∈(0,f0),(1,+∞)时,f′(f)>0,f(f)单调递增;当f∈(f0,1)时,f′(f)<0,f(f)单调递减.又f(0)=f−1⩾0,f(1)=0.故此时f(f)⩾0,即f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.解法4:主元放缩+指数放缩法当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f(e f−e f)−(f−1)2⩾0,令f(f)=e f−e f,则f′(f)=e f−e,令f′(f)=0,得f=1.当f∈(−∞,1),f′(f)<0,f(f)单调递减;当f∈(1,+∞),f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即e f−e f⩾0,当且仅当f=1时等号成立,故f(e f−e f)⩾e f−ex,当且仅当f=1,f=1时等号成立;要证f(e f−e f)−(f−1)2⩾0,只须要证e f−e f−(f−1)2⩾0.策略一:干脆探讨法令f(f)=e f−e f−(f−1)2(f>0),则f′(f)=e f−e−2(f−1),f′′(f)=e f−2,令f′′(f)=0,得f=ln2.当f∈(0,ln2)时,f′′(f)<0,f′(f)单调递减;当f∈(ln2,+∞)时,f′′(f)>0,f′(f)单调递增.又f′(0)=3−e>0,f′(1)=0,f′(ln2)<0,因此存在唯一f0∈(0,ln2),使得f′(f0)=0.当f∈(0,f0)时,f′(f)>0,f(f)单调递增;当f∈(f0,1),f′(f)<0,f(f)单调递减.又f(0)=0,f(1)=0,故此时f(f)⩾0恒成立,即f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.策略二:指数处理,同解法1即证1−e f+(f−1)2e f ⩾0,令f(f)=1−e f+(f−1)2e f,则f′(f)=(f−1)(f+e−3)e f,令f′(f)=0,得f=1,或f=3−e.当f∈(0,3−e),(1,+∞)时,f′(f)>0,f(f)单调递增;当f∈(3−e,1)时,f′(f)<0,f(f)单调递减.又f(0)=0,f(1)=0,故此时f(f)⩾0,即f(f)⩾(f+f e)f. 综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.策略三:指对处理,同解法2即证e ff −f−1f+2−e⩾0,令f(f)=e ff −f−1f+2−e,则f′(f)=(f−1)(e f−f−1)f2.令f(f)=e f−f−1,则f′(f)=e f−1>0在(0,+∞)上恒成立,故f(f)单调递增, 从而f(f)>f(0)=0,令f′(f)=0,则f=1.当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即e ff −f−1f+2−e⩾0,从而f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.【点睛】本题的第(2)问是一道开放性较强的试题,可以从多角度入手分析.当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f e f−f2+(2−f e)f−1⩾0,视察此时含有指数项f e f,也含有二次项,干脆探讨至少要求两次导数才便于探究(解法2),结合指对处理技巧,可考虑同时除以f e f,这样求导后就只须要探讨二次型函数即可.即证f(f)=1−f2−(2−f e)f+1f e f⩾0,求导后分耇竕是可因式分解的二次函数,且两根易求,分别为f=1与f=3−f e.但对于f=3−f e是否在区间(0,+∞)内不能确定,因此须要进行探讨.解法1采纳的是整理为fe f 型函数,解法2则是整理为eff型的函数,解法2采纳的是干脆探讨.对于解法4,视察到所证不等式中含有e f与ex,即可联想到e f⩾e f,为此将待证式整理成f(e f−ex)−(f−1)2⩾0,借助e f⩾ex,只须要证明e f−ex−(f−1)2⩾0即可.接下来的证明与前述含参探讨的情形大同小异,可干脆探讨,也可采纳指对处理对数放缩【例2】已知函数f(f)=f−1lnf.(1)求函数f(f)的单调区间;(2)证明:在f>12且f≠1时,f(f)<f2+34恒成立.【解析】(1)f′(f)=lnf−1+1 f(lnf)2(f>0,且f≠1),令f(f)=lnf−1+1f ,则f′(f)=1f−1f2=f−1f2,当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增;故f(f)>f(1)=0,即f′(f)>0恒成立,故f(f)在(0,1),(1,+∞)上单调递增.综上,f(f)的单调递增区间为(0,1),(1,+∞),无单调递减区间.(2)解法1:放缩法今f(f)=f−1−lnf(f>0),则f′(f)=f−1f,当f∈(0,1),f′(f)<0,f(f)单调递减;当f∈(1,+∞),f′(f)>0,f(f)单调递增. 故f(f)⩾f(1)=0,即f−1⩾lnf,当且仅当f=1时等号成立.因此,当f∈(12,1),f−1>fff,则f−1lnf<1,而此时f2+34>1,所以f−1lnf<f2+34;另一方面,f∈(1,+∞),由(1)可知lnf>1−1f,因此f−1lnf <f−11−1f=f,而f2+34−f>0在(1,+∞)恒成立,故f2+34>f>f−1lnf成立.综上,不等式f−1lnf <f2+34在f>12,且f≠1时恒成立.解法2:等价变形当f∈(12,1)时,即证f−1f2+34>fff;当f∈(1,+∞),即证f−1f2+34<fff;令f(f)=f−1f2+34−lnf(f>12,且f≠1),则f′(f)=f 2+34−2f(f−1)(f2+34)2−1f=−f4+f3−12f2−34f+916f(f2+34)2,令f(f)=f4+f3−12f2−34f+916 ,则f′(f)=4f3+3f2−f−34=4f2(f+34)−(f+34)=(f+34)(4f2−1)>0,故f(f)单调递增,f(f)>f(12)=14>0,故f′(f)<0,所以f(f)单调递减,而f(1)=0,故当f∈(12,1)时,f(f)>0,即f−1f2+34>fff;当f∈(1,+∞)时,f(f)<0,即f−1f2+34<fff.综上,不等式f−1lnf <f2+34在f>12且f≠1时成立.指对混合放缩【例3】已知函数f(f)=e f.(1)探讨函数f(f)=f(ff)−f−f的单调性;(2)证明:f(f)+lnf+3f >√f.【解析】(1)f(f)=f(ff)−f−f=e ff−f−f,f′(f)=f e ff−1,(1)若f⩽0时,f′(f)<0,f(f)在R上单调递减;(2)若f>0时,当f<−1flnf时,f′(f)<0,f(f)单调递减;当f>−1flnf时,f′(f)>0,f(f)单调递增;综上若f⩽0时,f(f)在R上单调递减;若f>0时,f(f)在(−∞,−1f lnf)上单调递减;在(−1flnf,+∞)上单调递增;(2)证明:要证f(f)+lnf+3f >√f,只需证f(lnf+e f)−4√f+3>0,由(1)可知当f=1时,e f−f−1⩾0,即e f⩾f+1,当f+1>0时,上式两边取以e为底的对数,可得ln(f+1)⩽f(f>−1),用f−1代替f可得lnf⩽f−1(f>0),又可得ln1f ⩽1f−1(f>0),所以lnf⩾1−1f(f>0),所以f(lnf+e f)−4√f+3>f(1−1f+f+1)−4√f+3=f2+2f+2−4√f=(f+1)2−4√f+1⩾(2√f)2−4√f+1=(2√f−1)2⩾0,从而不等式f(f)+lnf+3f >√f成立.【例4】已知函数f(f)=e f−ff2,f(f)=f lnf−f2+(e−1)f+1,且曲线f= f(f)在f=1处的切线方程为f=ff+1.(1)求f,f的值;(2)求函数f(f)在[0,1]上的最小值;(3)证明:当f>0时,f(f)⩽f(f).【解析】(1)f=1,f=e−2.(2)f(f)min=1;(3)即证:e f+(1−e)f−f lnf−1⩾0,因为f(0)=1,且曲线f=f(f)在f=1处的切线方程为f=(e−2)f+1,故可揣测:当f>0且f≠1时,f(f)的图象恒在切线f=(e−2)f+1的上方.下面证明:当f>0时,f(f)⩾(e−2)f+1.解法1:设f(f)=f(f)−(e−2)f−1(f>0),则f′(f)=e f−2f−(e−2),今f(f)=f′(f),f′(f)=e f−2,当f∈(0,ln2)时,f′(f)<0,f′(f)单调递减;当f∈(ln2,+∞)时,f′(f)>0,f′(f)单调递增.又f′(0)=3−e>0,f′(1)=0,0<ff2<1,f′(ln2)<0所以,存在f0∈(0,1),使得f′(f0)=0.当f∈(0,f0)∪(1,+∞)时,f′(f)>0;当f∈(f0,1),f′(f)<0;故f(f)在(0,f0)上单调递增,在(f0,1)上单调递减,在(1,+∞)上单调递增.又f(0)=f(1)=0,所以f(f)=e f−f2−(e−2)f−1⩾0,当且仅当f=1时取等号.故e f+(2−e)f−1f⩾f(f>0).由(2)知,e f⩾f+1,故f⩾ln(f+1),所以f−1⩾lnf,当且仅当f=1时取等号.所以e f+(2−e)f−1f⩾f⩾lnf+1,即e f+(2−e)f−1f⩾lnf+1.所以e f+(2−e)f−1⩾f lnf+f,即e f+(1−e)f−f lnf−1⩾0成立(当f=1时等号成立). 故当f>0时,f(f)⩽f(f).解法2:要证f lnf−f2+(e−1)f+1⩽e f−f2,等价于证明f lnf+(e−1)f+1−e f⩽0,又f>0,可转化为证明lnf+e−1+1f −e ff⩽0,令f(f)=lnf+e−1+1f −e ff,则f′(f)=1f−1f2−e f(f−1)f2=(f−1)(1−e f)f2,因为f>0,所以当f∈(0,1)时,f′(f)>0,f(f)单调递增;当f∈(1,+∞)时,f′(f)<0,f(f)单调递减;所以f(f)有最大值f(1)=0,故f(f)⩽0恒成立,即当f>0时,f(f)⩽f(f).三角放缩【例5】设f>0,且f≠1,函数f(f)=sinff−f sinf.(1)若f(f)在区间(0,2f)上有唯一极值点f0,证明:f(f0)<fff{2ff,(1−f)f};(2)若f(f)在区间(0,2f)没有零点,求f的取值范围.【解析】(1)f′(f)=f cosff−f cosf=f(cosff−cosf)=−2f sinf+12f sinf−12f,若f>1,则f′(f)在区间(0,2f)至多有f1=2ff+1,f2=4ff+1两个变号零点,故0<f<1,令f′(f)=0,得f f=2fff+1,f f=2fff+1,其中f,f∈f,仅当f=1时,f1=2ff+1∈(0,2f),且在f1的左右两侧,导函数的值由正变负,故当0<f<1时,f(f)在区间(0,2f)有唯一极值点f0=2ff+1,此时f(f0)=sinff0−f sinf0.解法1:将f0=2ff+1代入得f(f0)=sin2fff+1−f sin2ff+1=sin2fff+1+f sin(2f−2ff+1)=(1+f)sin2fff+1,(1)当2ff+1⩽12,即0<f⩽13时,2ff⩽(1−f)f,由不等式f>0,ffff<f知:(1+f)sin2fff+1<(1+f)2fff+1=2ff;(2)当2f f +1>12,即当13<f <1时,(1−f )f <2ff ,(1+f )sin 2fff +1=(1+f )sin (f −2fff +1)=(1+f )sin (1−f )ff +1,由不等式f >0,fff f <f 知:(1+f )sin 2fff +1<(1+f )(1−f )ff +1=(1−f )f .由(1)(2)知f (f 0)<fff {2ff ,(1−f )f }. 解法2:由f 0=2f f +1⇒ff 0=2f −f 0,f =2ff 0−1,代入得f (f 0)=sin ff 0−f sin f 0=sin (2f −f 0)−(2ff−1)sin f 0,即f (f 0)=−2ff 0sin f 0.以下用分析法可证:f (f 0)<fff {2ff ,(1−f )f }. (2)(1)当f >1时,f (f f )=sin (f ⋅f f )−f sin f f =−f sin f f <0,f (3f 2)=sin (3ff 2)+f >0,所以f (ff )f (3f 2)<0,由零点存在性定理知,f (f )在区间(f f ,3f2)至少有一个零点; (2)当12<f <1时,f <ff<2f ,f 2<ff <f ,f <2ff <2f ,f (f f )=−f sin ff >0,f (f )=sin ff >0,f (2f )=sin 2ff <0,由零点存在定理可知,f (f )在区间(f ,2f )至少有一个零点;(3)当0<f ⩽12时,f ′(f )=f cos ff −f cos f =f (cos ff −cos f ),令f (f )=cos ff −cos f ,则f ′(f )=−f sin ff +sin f , 在区间(0,f )上,cos ff >fff f ,f ′(f )>0,f (f )是增函数;在区间(f ,2f )上,f ′(f )<0,即f (f )递减,即f ′(f )递减,f ′(f )<f ′(2f )<0, 故f (f )在(0,f )上递增,在(f ,2f )上递减,又f (0)=0,f (f )=sin ff >0,f (2f )=sin 2ff ⩾0,即在(f ,2f )上,f (f )>0.所以f(f)在区间(0,2f)上没有零点,满意题意.综上所述,若f(f)在区间(0,2f)没有零点,则正数f的取值范围是(0,12].含三角函数的指对放缩【例6】已知函数f(f)=e f−ff−cosf,其中f∈f.(1)求证:当f⩽−1时,f(f)无极值点;(2)若函数f(f)=f(f)+ln(f+1),是否存在f,使得f(f)在f=0处取得微小值?并说明理由.【解析】(1)证明:f′(f)=e f−f+sinf,明显e f>0,−1⩽ffff⩽1,当f⩽−1时,f f−f+sinf>0−f−1⩾0,即f′(f)>0,所以函数f(f)在其定义域上为增函数,故f(f)无极值点;(2)f(f)=e f−ff−cosf+ln(f+1),f′(f)=e f−f+sinf+1f+1,明显f=0是f(f)的微小值点的必要条件,为f′(0)=2−f=0,即f=2.此时f′(f)=e f+1f+1+sinf−2,明显当f∈(0,f2)时,f′(f)=e f+1f+1+sinf−2>1+f+1f+1+sinf−2>ffff>0,当f∈(−14,0)时,(1+f)(1−f+32f2)=1+f22(3f+1)>1,故11+f <1−f+32f2,令f(f)=(1+f+f22)e−f,则f′(f)=−f22e−f⩽0,故f(f)是减函数,故当f<0时,f(f)>f(0)=1,即e f<1+f+f22,令f(f)=sinf−12f,则f′(f)=cosf−12,当−1<f<0时,f′(f)>fff1−12>0,故f(f)在(−1,0)单调递增,故当−1<f <0时,f (f )<f (0)=0,即sin f <12f ,故当f ∈(−14,0)时,f ′(f )=e f +1f +1+sin f −2⩽(1+f +f 22)+(1−f +32f 2)−2+f 2=2f 2+f 2<0,因此,当f =2时,f =0是f (f )的微小值点,即充分性也成立. 综上,存在f =2,使得f (f )在f =0处取得微小值.【点睛】本题第(2)问先由必要性探路可知f =2,再证明当f =2时,f =0是函数f (f )的微小值点,即证明其充分性,由此即可得出结论.【例7】已知函数f (f )=2ln (f +1)+sin f +1,函数f (f )=ff −1−ln f (f ∈R ,且f ≠0).(1)探讨函数f (f )的单调性;(2)证明:当f ⩾0时,f (f )⩽3f +1;(3)证明:当f >−1时,f (f )<(f 2+2f +2)e sin f . 【解析】(1)f (f )定义域为(0,+∞),f ′(f )=f −1f=ff −1f. 当f <0时,f ′(f )<0,则f (f )在(0,+∞)上单调递减;当f >0时,令f ′(f )>0,得f >1f,即f (f )在(1f,+∞)上单调递增;令f ′(f )<0,得0<f <1f ,得f (f )在(0,1f )上单调递减.综上所述,当f <0时,f (f )在(0,+∞)上单调递减;当f >0时,f (f )在(1f ,+∞)上单调递增,在(0,1f )上单调递减. (2)解法1:作差法+干脆求导设函数f (f )=f (f )−(3f +1),则f ′(f )=2f +1+cos f −3. 因为f ⩾0,所以2f +1∈(0,2],cos f ∈[−1,1],则f ′(f )⩽0,从而f(f)在[0,+∞)上单调递减,所以f(f)=f(f)−(3f−1)⩽f(0)=0,即f(f)⩽3f+1.解法2:常用不等式+兵分两路当f=1时,f(f)=f−1−lnf,由(1)知f(f)min=f(1)=0,所以lnf⩽f−1,所以2ln(f+1)⩽2f.令f(f)=f−sinf,则f′(f)=1−cosf⩾0恒成立,又f(0)=0,所以当f⩾0时,有f(f)=f−sinf⩾0,即sinf⩽f.所以f(f)=2ln(f+1)+sinf+1⩽2f+f+1=3f+1.(3)证明:当f=1时,f(f)=f−1−lnf,由(1)知f(f)min=f(1)=0,所以f⩾lnf+1,当f>−1时,(f+1)2>0,(f+ 1)2f sinf>0,所以(f+1)2e sinf>ff[(f+1)2e sinf]+1=2ln(f+1)+sinf+1.从而(f2+2f+2)e sinf>(f+1)2e sinf>ff[(f+1)2e sinf]+1=2ln(f+1)+sinf+1=f(f),所以f(f)<(f2+2f+2)e sinf.强化训练1.已知函数f(f)=f+fe f(f∈R)在f=0处取得极值.(1)求f,并求f(f)的单调区间;(2)证明:当0<f⩽e,f∈(1,+∞)时,f e f−2−f(f−1)lnf>0.【解析】(1)f′(f)=1−f−fe f,由题意可得,f′(0)=1−f=0,故f=1,f(f)=1+fe f ,f′(f)=−fe f,由f′(f)>0可得f<0,故函数单调递增区间(−∞,0), 由f′(f)<0可得f>0,故函数单调递减区间(0,+∞),(2)证明:由(1)可知f(f)在(−∞,0)上单调递增,在(0,+∞)单调递减,故f(f)⩽f(0)=1,即f+1e f⩽1,故e f⩾f+1,所以e f−2⩾f−1,当且仅当f=2时取等号,又因为f>0,所以f e f−2⩾f(f−1),所以f e f−2−f(f−1)lnf⩾f(f−1)−f(f−1)lnf=(f−1)(f−f lnf), 因为f>1,所以lnf>0,因为0<f⩽e,所以f−f lnf⩾f−eln f,令f(f)=f−elnf,则f′(f)=1−ef,由f′(f)>0可得,f>f,故f(f)在(e,+∞)上单调递增,由f′(f)<0可得,f<f,故f(f)在(−∞,e)上单调递减,所以f(f)⩾f(e)=0,即f−eln f⩾0在f=e处取得等号,所以f e f−2−f(f−1)lnf⩾(f−1)(f−f lnf)⩾(f−1)(f−elnf)⩾0, 由于取等条件不同,所以f e f−2−f(f−1)lnf>0.2.已知函数f(f)=lnf−fe.(1)若曲线f=f(f)存在一条切线与直线f=ff垂直,求f的取值范围.(2)证明:f(f)<f2−lnf−34sinf.【解析】(1)f′(f)=1f −1e.因为f(f)的定义域为(0,+∞),所以1f−1e>−1e.因为曲线f=f(f)存在一条切线与直线f=ff垂直,所以−1f >−1e,解得f<0或f>f,则f的取值范围为(−∞,0)∪(e,+∞).(2)f′(f)=1f −1e=e−ff e.当f∈(0,e)时,f′(f)>0;当f∈(e,+∞)时,f′(f)<0.所以f(f)max=f(e)=lne−ee=0.设函数f(f)=f2−lnf,则f′(f)=2f−1f =2f2−1f.当f∈(0,√22)时,f′(f)<0;当f∈(√22,+∞)时,f′(f)>0.所以f(f)min=f(√22)=12−12ln12=12+12ln2.因为ln2>ff√e=12,f(f)min>34.因为34sinf∈[−34,34],所以f2−lnf−34sinf>0.又f(f)⩽f(f)max=0,所以f(f)<f2−lnf−34sinf.3.已知函数f(f)=f lnf+32f2−(f+1)f+f.(1)当f=3时,求f(f)的单调区间;(2)e为自然对数的底数,若f∈(3e−1,3e+1)时,f(f)⩾0恒成立,证明:f−2f+6>0.【解析】(1)当f=3时,f(f)=f lnf+32f2−4f+f,则f′(f)=lnf+3f−3在(0,+∞)上单调递增,又f(1)=0,故当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.综上,当f=3时,f(f)的单调咸区间为(0,1),单调增区间为(1,+∞).(2)对f(f)求导,得f′(f)=lnf+3f−f,知f′(f)在(0,+∞)上单调递增.因为f∈(3e −1,3e+1),故f′(1e)=3e−1−f<0,f′(e)=3e+1−f>0,故存在唯一f0∈(1e,e),使得f′(f0)=0,即lnf0+3f0−f=0,所以f=lnf0+3f0.当f∈(0,f0)时,f′(f)<0,f(f)单调递减; 当f∈(f0,+∞)时,f′(f)>0,f(f)单调递增.又f(f)⩾0,故f(f)min=f(f0)=f0lnf0+32f2−(f+1)f0+f⩾0,即f0lnf0+32f2−(lnf0+3f0+1)f0+f=−32f2−f0+f⩾0在f0∈(1e,e)上恒成立.令f(f)=−32f2−f+f,则f(f)在(1e,e)上单调递减,故只需f(e)=−32e2−e+f⩾0,即f⩾32e2+e,故f−2f+6⩾32e2+e−6e−2+6=32e2−5e+4>0,从而得证.解法2:转化为关于f0的函数所以f⩾32f2+f0,则f−2f+6⩾32f2+f0−2(lnf0+3f0)+6=32f2−5f0−2lnf0+6,令f(f)=32f2−5f−2lnf+6(1e<f<f),则f′(f)=3f−5−2f =3f2−5f−2f=(3f+1)(f−2)f,令f′(f0)=0,得f=2.当f∈(1e,2),f′(f)<0,f(f)单调递减;当f∈(2,e)时,f′(f)>0,f(f)单调递增.故f(f)min=f(2)=32×4−10−2ln2+6=2(1−ln2)>0,即f−2f+6>0,从而不等式得证.。
小学六年级奥数第12讲 倒推法解题(含答案分析)
![小学六年级奥数第12讲 倒推法解题(含答案分析)](https://img.taocdn.com/s3/m/78f2191ab84ae45c3a358c5e.png)
第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
2023年春上海七年级下数学辅导讲义(沪教版)第12讲全等三角形的综合(讲义)解析版
![2023年春上海七年级下数学辅导讲义(沪教版)第12讲全等三角形的综合(讲义)解析版](https://img.taocdn.com/s3/m/2b31ef06974bcf84b9d528ea81c758f5f61f29cb.png)
第12讲 全等三角形的综合本节课通过推理和专题训练,学会运用全等三角形的判定方法去解决三角形全等的综合问题.通过添加辅助线解决相关的边角证明问题,本节的内容相对综合,难度稍大.模块一:全等三角形判定的综合知识精讲全等三角形综合主要是通过全等得出结论,进而求出相应的边和角之间的关系.对于稍复杂的会通过添加平行线,倍长中线或截长补短等方法,解决综合问题.例题解析例1.已知:AE =ED ,BD =AB ,试说明:CA =CD .【难度】★【解析】在△ABE 与△DBE 中,AE ED AB BD BE BE =⎧⎪=⎨⎪=⎩, ()ABE DBE SSS ∴∆≅∆,AEB DEB ∴∠=∠, AEC DEC ∴∠=∠.在△ACE 与△DCE 中,AE ED AEC DEC CE CE =⎧⎪∠=∠⎨⎪=⎩, ()AEC DEC SAS ∴∆≅,CA CD ∴=(全等三角形的对应边相等). 【总结】本题主要考查了全等三角形判定定理的应用.例2.如图,已知AB =DC ,AC =DB ,BE =CE ,试说明:AE =DE .【难度】★【解析】在△ABC 和△DCB 中,AB DC AC DB BC CB =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DCB (S.S.S ), ∴∠ABC=∠DCB .在△ABE 和△DCE 中,AB DC ABC DCB BE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DCE (S.A.S ), ∴AE=DE (全等三角形的对应边相等).【总结】本题主要考查了全等三角形判定定理的应用.例3.已知:AB ∥CD ,OE =OF ,试说明:AB =CD .【难度】★【解析】//AB CD ,A D B C ∴∠=∠∠=∠,.(..)A D B CA D AOE DOF AOE DOF OE OF AOE DOF A A S AO DO∴∠=∠∠=∠∠=∠⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴=,在和中,,(..)AO DO AOB DOC A DB C AOB DOC A A S =⎧⎪∆∆∠=∠⎨⎪∠=∠⎩∴∆≅∆在和中,AB CD ∴=(全等三角形的对应边相等). 【总结】本题主要考查了全等三角形判定定理和性质定理的综合应用.例4.如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB =CD ,AB ∥CD .试说明:BD 平分EF .【难度】★★【解析】∵AB ∥CD ,∴∠A=∠C .在△AGB 和△CGD 中,A C AGB CGD AB CD ∠=∠∠=∠=⎧⎪⎨⎪⎩∴ΔAGB ≌ΔCGD(AAS), ∴BG=DG .∵BE ⊥AC ,DF ⊥AC , ∴∠BEG=∠DFG=90°.在△BGE 和△DGF 中,BGE DGF BEG DGF BG DG ∠=∠∠=∠=⎧⎪⎨⎪⎩∴ΔBGE ≌ΔDGF (A .A .S ), ∴GE=GF , 即BD 平分EF .【总结】本题主要考查了全等三角形判定定理和性质定理的应用.例5.如图,已知AD =AE ,AB =AC .试说明:BF =FC .【难度】★★【解析】ABE ACD ∆∆在和中,AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩,()ABE ACD SAS ∴∆≅∆, B C ∴∠=∠.BD AB AD CE AC AE BD CE =-=-∴=,,.BDF CEF ∆∆在和中,DFB EFC B CBD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(..)BDF CEF A A S ∴∆≅∆ , .BF CF ∴= 【总结】本题主要考查了全等三角形判定定理和性质定理的应用.例6.(2018·山东济南市·七年级期中)如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠ ∴EAF BAD ∠=∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.例7.(2020·山东东营市·七年级期中)如图,点E 在CD 上,BC 与AE 交于点F ,AB=CB ,BE=BD ,∠1=∠2.(1)求证:ABE CBD ≅△△;(2)证明:∠1=∠3.【分析】(1)先根据角的和差可得ABE CBD ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得A C ∠=∠,再根据对顶角相等可得AFB CFE ∠=∠,然后根据三角形的内角和定理、等量代换即可得证.【详解】(1)12∠=∠,12CBE CBE ∴∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE △和CBD 中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,()ABE CBD SAS ∴≅;(2)由(1)已证:ABE CBD ≅△△,A C ∴∠=∠,由对顶角相等得:AFB CFE ∠=∠,又11803180A AFB C CFE ∠=︒-∠-∠⎧⎨∠=︒-∠-∠⎩, 13∠∠∴=.【点睛】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.例8.(2020·山东济南市·七年级期末)已知Rt △ABC 和Rt △DBE ,∠ABC =∠DBE =90°,AB =CB ,DB =EB , CE 所在的直线交AD 于点F .(1)如图1,若点D 在△ABC 外,点B 在AB 边上,求证:AD =CE ,AD ⊥CE .(2)若将图1中的△DBE 绕点B 顺时针旋转,使点B 在△ABC 内部,如图2,求证:AD =CE ,AD ⊥CE .(3)若将图1中的△DBE 绕点B 逆时针旋转,使点D 、E 都在△ABC 外部,如图3,请直出AD和CE 的数量和位置关系.【答案】(1)证明见解析;(2)证明见解析;(3)AD CE =,AD CE ⊥【分析】(1)证明ABD CBE ≌,根据全等三角形的性质得到AD CE =,BAD BCE ∠=∠,根据垂直的定义证明即可;(2)证明ABD CBE ∠=∠,同(1)的方法证明;(3)证明ABD CBE ∠=∠,同(2)的方法证明结论.【详解】(1)证明:在ABD △和CBE △中,90DB EB ABD CBE AB CB =⎧⎪∠=∠=︒⎨⎪=⎩, ()ABD CBE SAS ∴△≌△AD CE ∴=,BAD BCE ∠=∠,90ABD ∠=︒,90ADB BAD ∴∠+∠=︒,90ADB BCE ∴∠+∠=︒,90CFD ∴∠=︒,AD CE ∴⊥,AD CE ∴=,AD CE ⊥;(2)证明:ABC DBE ∠=∠,ABC ABE DBE ABE ∴∠-∠=∠-∠,即ABD CBE ∠=∠,在ABD △和CBE △中,DB EB ABD CBE AB CB =⎧⎪∠=∠⎨⎪=⎩,()ABD CBE SAS ∴△≌△AD CE ∴=,BAD BCE ∠=∠,90ABC ∠=︒,90BOC BAE ∴∠+∠=︒,BOC AOF ∠=∠,90BAD AOF ∴∠+∠=︒,90AFO ∴∠=︒,AD CE ∴⊥,AD CE ∴=,AD CE ⊥;(3)AD CE =,AD CE ⊥;理由如下:ABC DBE ∠=∠,ABC ABE DBE ABE ∴∠+∠=∠+∠,即ABD CBE ∠=∠,在ABD △和CBE △中,DB EB ABD CBE AB CB =⎧⎪∠=∠⎨⎪=⎩, ()ABD CBE SAS ∴△≌△AD CE ∴=,BAD BCE ∠=∠,90ABC ∠=︒,90BOC BAE ∴∠+∠=︒,BOC AOF ∠=∠,90BAD AOF ∴∠+∠=︒,90AFO ∴∠=︒,AD CE ∴⊥,AD CE ∴=,AD CE ⊥.【点睛】本题考查的是全等三角形的判定和性质、旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.例9.(2020·山东枣庄市·七年级期末)如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)43t =时,点C 位于线段PQ 的垂直平分线上;(2)1t =;(3)不存在,理由见解析. 【分析】(1)根据题意求出BP ,CQ ,结合图形用含t 的代数式表示CP 的长度,根据线段垂直平分线的性质得到CP =CQ ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可.【详解】解:(1)由题意得3BP CQ t ==,则83CP t -=,当点C 位于线段PQ 的垂直平分线上时,CP CQ =,∴833t t -=, 解得,43t =, 则当43t =时,点C 位于线段PQ 的垂直平分线上; (2)∵D 为AB 的中点,10AB AC ==,∴5BD =,∵BPD CQP ≌,∴BD CP =,∴835t -=,解得,1t =, 则当BPD CQP ≌时,1t =; (3)不存在,∵BPD CPQ △≌△,∴BD CQ BP CP =,=,则35383t t t -=,= 解得,53t =,43t =, ∴不存在某一时刻t ,使BPD CPQ △≌△.【点睛】本题考查的是几何动点运动问题、全等三角形的性质、线段垂直平分线的性质、等腰三角形的性质,掌握全等三角形的对应边相等是解题的关键.模块二:添加辅助线构造全等三角形知识精讲1、 倍长中线法;2、 添加平行线构造全等三角形;3、 截长补短构造全等的三角形;4、 图形的运动构造全等三角形.例题解析例1.(2018·江西吉安市·七年级期中)如图,D 是△ABC 的BC 边上的中点,连接AD ,并延长到点E 使DE=AD ,再连接CE. 若AC=10,AB=6,求中线AD 的取值范围.【答案】2<AD <8.【分析】先证△ABD ≌△ECD(SAS),证得4<AE <16,由此即可求得AD 的取值范围.【详解】∵D 是BC 边的中点,∴BD=CD.又∠ADB 与∠EDC 是对顶角,∴∠ADB=∠EDC.在△ABD 和△ECD 中,ADB EDC BD CD,AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ECD(SAS),∴CE=AB=6.在△ACE 中,AE >AC-CE,且AE <AC+CE,∴4<AE <16,即4<2AD <16,∴2<AD <8.【点睛】此题考查三角形的中线的性质,根据全等证得中线的2倍线段AE 的取值范围是解题的关键.例2.(2019·沂源县中庄中学七年级月考)仔细阅读下面的解题过程,并完成填空:如图13,AD 为△ABC 的中线,已知AD=4cm,试确定AB+AC 的取值范围.解:延长AD 到E,使DE = AD,连接BE.因为AD 为△ABC 的中线,所以BD=CD .在△ACD和△EBD中,因为AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(__________). 所以BE=AC(_____________________).因为AB+BE>AE(_____________________),所以AB+AC>AE.因为AE=2AD=8cm,所以AB+AC>_______cm.【分析】根据三角形全等的判定与性质以及三角形的内角和,即可得出答案.【详解】解:延长AD到E,使DE = AD,连接BE.因为AD为△ABC的中线,所以BD=CD.在△ACD和△EBD中,因为AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(SAS).所以BE=AC(全等三角形的性质).因为AB+BE>AE(两边之和大于第三边),所以AB+AC>AE.因为AE=2AD=8cm,所以AB+AC>8cm.【点睛】本题考查的是全等三角形的判定与性质以及三角形边的性质,需要熟练掌握各种性质与定理.例3.(2020·辽宁锦州市·)在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.【答案】(1)全等,见解析;(2)全等,见解析【分析】(1)首先根据同角的余角证明∠DAC =∠BCE ,再利用AAS 定理证明△DAC ≌△ECB ;(2)首先根据同角的余角证明∠DAC =∠BCE ,进而利用HL 定理证明△ACD ≌△CBE .【详解】(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB =90°,AD ⊥MN ,∴∠DAC+∠ACD =∠ACD+∠BCE ,∴∠DAC =∠BCE ,在△ACD 与△CBE 中,∵DAC ECB ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ).【点睛】本题考查全等三角形的判定及其性质定理的同时,还渗透了对旋转变换的考查;解题的关键是灵活运用全等三角形的判定定理解题.4.(2020·辽宁丹东市·七年级期末)已知:如图1,在ABC ∆和ADE ∆中,C E ∠=∠,CAE DAB ∠=∠,BC DE =.(1)请说明ABC ADE ∆∆≌.(2)如图2,连接CE 和BD ,DE ,AD 与BC 分别交于点M 和N ,56DMB ∠=︒,求ACE ∠的度数.(3)在(2)的条件下,若CN EM =,请直接写出CBA ∠的度数.【答案】(1)证明见解析;(2)∠ACE =62°;(3)∠CBA =6°.【分析】(1)根据已知条件可以确定∠CAB =∠EAD ,结合已知条件,用AAS 可判定△ABC ≌△ADE ;(2)由(1)中△ABC ≌△ADE 可得∠CBA=∠EDA ,AC=AE ,在△MND 和△ANB 中,用三角形内角和定理由∠MND=∠ANB 可得∠DAB=∠DMB=56°,即∠CAE =∠DAB=56°,由AC=AE ,可得∠ACE =∠AEC=1(18056)622︒-︒=︒; (3) 连接AM ,先证NCA MEA ≅(SAS),得到AM=AN,EAM CAN ∠=∠,进而可得EAC MAN ∠=∠,由(2)可知=56EAC MAN ︒∠=∠,根据等腰三角形内角和可得ANM ∠= 1(18056)622︒︒︒-=,由三角形外角定理可得CBA ANM DAB ∠=∠-∠=62︒-56︒= 6︒.【详解】解:(1)∵∠CAE =∠DAB ,∴∠CAE +∠CAD =∠DAB +∠CAD ,即∠CAB =∠EAD ,在△ABC 和△ADE 中,C E CAB EAD BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (AAS ),(2)∵△ABC ≌△ADE ,∴∠CBA=∠EDA ,AC=AE ,在△MND 和△ANB 中,∵∠EDA +∠MND+∠DMB =180︒,∠CBA +∠ANB +∠DAB =180︒,又∵ ∠MND=∠ANB ,∴ ∠DAB=∠DMB=56︒,∴∠CAE =∠DAB=56︒,∵AC=AE ,∴∠ACE =∠AEC=1(18056)622︒︒︒-=, ∴∠ACE =62︒,(3)∠CBA=6︒,如图所示,连接AM ,NCA MEA ∠=∠,CN=EM,CA=EA,∴NCA MEA ≅(SAS),∴AM=AN,EAM CAN ∠=∠,∴EAM CAM ∠-∠=CAN CAM ∠-∠即EAC MAN ∠=∠,由(2)可得:=56EAC MAN ︒∠=∠,∴ANM ∠=1(18056)622︒︒︒-=, ∠CAE =∠DAB=56︒∴CBA ANM DAB ∠=∠-∠=62︒-56︒= 6︒.【点睛】本题综合考查了三角形的相关定理与证明,较为综合,熟练掌握三角形的内角和定理,外角定理,全等三角形的判定与性质是解题的关键.例5.(2020·山东济南市·七年级期中)在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△ADC ≌△CEB ;(2)当直线MN 绕点C 旋转到图2的位置时,试问DE 、AD 、BE 的等量关系?并说明理由.【答案】(1)见解析;(2)DE=AD-BE ,理由见解析【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE ,根据AAS 即可得到答案;(2)与(1)证法类似可证出∠ACD=∠EBC ,能推出△ADC ≌△CEB ,得到AD=CE ,CD=BE ,即可得到答案.【详解】解:(1)证明:如图1,∵AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS );(2)结论:DE=AD-BE .理由:如图2,∵BE ⊥EC ,AD ⊥CE ,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD=CE ,CD=BE ,∴DE=EC-CD=AD-BE .【点睛】本题主要考查了余角的性质,全等三角形的性质和判定等知识点,能根据已知证明△ACD ≌△CBE 是解此题的关键,题型较好,综合性比较强.6.(2018·四川达州市·七年级期末)如图,在ABC ∆中,AD BC ⊥,垂足为D ,E 为BD 上的一点,EG AD ,分别交AB 和CA 的延长线于点F ,G ,AFG G ∠=∠.(1)试说明ABD ACD ∆≅∆;(2)若40B ∠=︒,求G ∠和FAG ∠的大小.【答案】(1)见解析(2)50°,80°【分析】(1)根据题意利用角边角判断定理,证明ABD ACD ∆≅∆即可.(2)若40B ∠=︒,再证明50G AFG ∠=∠=︒,即可计算FAG ∠的度数.【详解】(1)∵AD EG ,∴AFG BAD ∠=∠,G DAC ∠=∠,又∵G AFG ∠=∠,∴DAC DAB ∠=∠,又∵AD BC ⊥,∴90ADB ADC ∠=∠=︒,又∵AD DA =,∴ABD ACD ∆≅∆.(2)∵AD BC ⊥,∴90ADB ∠=︒,又∵AD EG ,∴90FEB ∠=︒,又∵40B ∠=︒,∴50EFB ∠=︒,又∵EFB AFG ∠=∠,∴50G AFG ∠=∠=︒,∴80FAG ∠=︒.【点睛】本题主要考查三角形全等的证明,关键在于熟练的利用三角形全等的判定定理. 例7.(2019·全国七年级单元测试)在直角三角形ABC 中,90,30︒︒∠=∠=ACB BAC ,分别以AB 、AC 为边在ABC ∆外侧作等边ABE ∆和等边ACD ∆,DE 交AB 于点F ,求证:=EF FD .【分析】过点E 作EG AB ⊥于点G ,则有1122AG BG AE AB ===,再证 ()SAS ACB EGA ≅,得到EG AC =.从而得到90DAF DAC CAB ∠=∠+∠=︒,所以(AAS)ADF GEF ≅,即可完成证明。
第12讲 直线和圆的方程(解析版)
![第12讲 直线和圆的方程(解析版)](https://img.taocdn.com/s3/m/e04d5d25773231126edb6f1aff00bed5b9f373e1.png)
第12讲 直线和圆的方程【考点梳理】一、直线与方程 1.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在. (2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1(x 1≠x 2).若直线的倾斜角为θ(θ≠π2),则k =tan__θ.3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |(2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d 三、圆的方程 1.圆的定义和圆的方程2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)|MC |>r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外;(2)|MC |=r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上;(3)|MC |<r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.四、直线与圆、圆与圆的位置关系 1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎪⎨⎪⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0 消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:【解题方法和技巧】1.求倾斜角的取值范围的一般步骤(1)求出斜率k=tan α的取值范围.(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.求倾斜角时要注意斜率是否存在.2.已知两直线的一般方程两直线方程l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0中系数A1,B1,C1,A2,B2,C2与垂直、平行的关系:A1A2+B1B2=0⇔l1⊥l2;A1B2-A2B1=0且A1C2-A2C1≠0⇔l1∥l2.3.判断直线与圆的位置关系常见的方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程随后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.4.求圆的弦长的常用方法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则()2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=.5.(1)判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.(2)当两圆相交时求其公共弦所在直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.6.在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.【考点剖析】【考点1】直线的倾斜角与斜率一、单选题1.(2022·上海·高三专题练习)“21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案. 【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. (3)两直线平行时要注意验证,排除掉两直线重合的情况.2.(2022·上海市实验学校模拟预测)已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,a b +有最小值,无最大值; ③221a b +>; ④当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞. 正确的个数是( ) A .1 B .2 C .3 D .4【答案】B【分析】由M 与N 的位置关系有3450a b -+<,数形结合法判断M 位置,结合11b a +-的几何意义判断a b +、11b a +-的范围,应用点线距离公式有222a b +>判断③. 【详解】将(0,1)N -代入有304(1)590⨯-⨯-+=>,而M 与N 在3450x y -+=的两侧,则3450a b -+<,①错误;由上知:3450a b -+<且0a >,则M 在直线上方与y 轴右侧部分, 所以54a b +>,故a b +无最值,②错误; 由上图知:M 在直线左上方,则22222(134a b +>=+,③正确; 由3450x y -+=过5(0,)4且0a >且1a ≠,即M 在直线上方与y 轴右侧部分,而11b a +-表示(1,1)-与M 连线的斜率,由图知:193(,)(,)144b a +∈-∞-⋃+∞-,④正确. 故选:B 二、填空题3.(2022·上海·华师大二附中模拟预测)直线2380ax y -+=与直线10x y --=垂直,则=a ______. 【答案】32-【分析】根据两直线垂直得230a +=,即可求出答案.【详解】由直线2380ax y -+=与直线10x y --=垂直得,32302a a +=⇒=-.故答案为:32-.4.(2022·上海·高三专题练习)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________ 【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=, 所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12, 所以所求直线的方程为:()1022y x -=-,即220x y --=, 故答案为:220x y --=.5.(2022·上海·高三专题练习)求直线2x =-与直线310x y -+=的夹角为________. 【答案】6π【分析】先求出直线的斜率,可得它们的倾斜角,从而求出两条直线的夹角. 【详解】解:直线2x =-的斜率不存在,倾斜角为2π, 直线310x y -+=的斜率为3,倾斜角为3π, 故直线2x =-与直线310x y -+=的夹角为236πππ-=,故答案为:6π.6.(2022·上海·高三专题练习)已知双曲线22145x y Γ-=:的左右焦点分别为1F 、2F ,直线l 与Γ的左、右支分别交于点P 、Q (P 、Q 均在x 轴上方).若直线1PF 、2QF 的斜率均为k ,且四边形21PQF F 的面积为206,则k =___________. 【答案】2±【解析】斜率相等,两条线平行,然后用余弦定理求出1PF 和2QF ,根据四边形 21PQF F 的面积为206建立等式解出tan θ即可.【详解】按题意作出图如下:由双曲线方程可得:2a =,3c =,因为直线1PF 、2QF 的斜率均为k ,所以直线1PF ∥2QF ,在三角形12QF F 中,设2QF x =,则124QF a x x =+=+, 设2QF 的倾斜角为θ,则由余弦定理得()()22364cos 26x x x πθ+-+-=⨯,解得2523cos QF x θ==-,同理可得:1523cos PF θ=+,所以四边形21PQF F 的面积()121221155sin 6sin 2223cos 23cos S PF QF F F θθθθ⎛⎫=+⨯⨯=+⨯⨯=⎪+-⎝⎭解得sin θ=sin θ=tan k θ==故答案为:【点睛】两直线平行转化为:斜率相等或者向量平行; 两直线垂直转化为:斜率之积为1-或者向量数量积为0; 三、解答题7.(2022·上海·高三专题练习)已知函数()22x xf x -=-.(1)设()()()112212,,,A x y B x y x x ≠是()y f x =图象上的两点,直线AB 斜率k 存在,求证:0k >;(2)求函数()()()22224x xg x mf x m R -=+-∈在区间0,1上的最大值.【答案】(1)证明见解析;(2)当38m ≥时,max ()2g x =;当38m <时,max 17()64g x m =-. 【分析】(1)由解析式判断()f x 的单调性,进而判断k 的符号,即可证结论.(2)由题设整理()g x ,令322[0,]2x xt --∈=有2()()42g x h t t mt ==-+,根据二次函数的性质可求区间最大值.【详解】(1)∵2x y =单调递增,2x y -=单调递减,∴()22x xf x -=-在定义域上是单调增函数,而2121y y k x x -=-, ∴0k >恒成立,结论得证.(2)由题意,有()222224(22)(22)4(22)2x x x x x x x xg x m m ----=+-⋅-=--⋅-+且[]0,1x ∈,令322[0,]2x xt --∈=,则2()42h t t mt =-+,开口向上且对称轴为2t m =,∴当324m ≤,即38m ≤时,max 317()()624h t h m ==-,即max 17()64g x m =-;当324m >,即38m >时,max ()(0)2h t h ==,即max ()2g x =;【考点2】直线的方程一、单选题1.(2022·上海·高三专题练习)若点1(,)M a b和1(,)N b c 都在直线:1l x y +=上,又点1(.)P c a 和点1(,)Q b c ,则A .点P 和Q 都不在直线l 上B .点P 和Q 都在直线l 上C .点P 在直线l 上且Q 不在直线l 上D .点P 不在直线l 上且Q 在直线l 上【答案】B【详解】由题意得:1111a bb c ⎧+=⎪⎪⎨⎪+=⎪⎩,易得点1,Q b c ⎛⎫⎪⎝⎭满足1 1b c += 由方程组得1111b a b c b ⎧=⎪⎪-⎨⎪=⎪-⎩,两式相加得11c a +=,即点1,P c a ⎛⎫⎪⎝⎭ 在直线:1l x y +=上,故选B.2.(2022·上海·高三专题练习)如下图,直线l 的方程是( )A 330x y -B 3230x y -C 3310x y --=D .310x -=【答案】D【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解. 【详解】由图可得直线的倾斜角为30°, 所以斜率3tan 30k =︒=所以直线l 与x 轴的交点为()1,0, 所以直线的点斜式方程可得l :)301y x -=-,即310x y --=. 故选:D3.(2022·上海市七宝中学高三期中)在平面直角坐标系中,函数+=+1()1x f x x 的图象上有三个不同的点位于直线上,且这三点的横坐标之和为0,则这条直线必过定点( ) A .1,02⎛⎫- ⎪⎝⎭B .()10-, C .()1,1-- D .()1,1【答案】A【分析】画出函数图像,由图可知,直线0k ≠,当0x ≥时,由1kx b =+,解得其中一根, 当0x <时,联立直线和函数方程,由韦达定理及三根之和为0,即可求解. 【详解】解:当0x ≥,1()1,1x f x x +==+ 当()1220,()1,11x x f x x x --++<==---+-所以1,0()21,01x f x x x ≥⎧⎪=⎨--<⎪-⎩,画出图像:设直线方程为:y kx b =+,当0k =时,直线l 与函数()f x 的图像的交点个数不可能是3个, 故0k ≠,依题意可知,关于x 的方程()f x kx b =+有三个不等实根, 当0x ≥时,由1kx b =+,可解得1b x k -=,不妨令31bx k-=, 当0x <时,由211kx b x --=+-可得, 2(1)10(*)kx b k x b ++-+-=,则关于x 的方程(*)有两个不等负实根12,x x , 则由韦达定理可得,121211,k b bx x x x k k---+==, 依题意可知123110k b b x x x k k---++=+=, 则2k b =,直线方程为:()21y kx b b x =+=+,故直线恒过定点1,02⎛⎫- ⎪⎝⎭,故选:A.4.(2022·上海·高三专题练习)设{}n a 是公比为()1q q ≠,首项为a 的等比数列,n S 是其前n 项和,则点()1,n n S S +( )A .一定在直线y qx a =-上B .一定在直线y ax q =+上C .一定在直线y ax q =-上D .一定在直线y qx a =+上【答案】D【分析】由于()()111111n n n n a q a q S qS qa qq++---=-=--,即可得出.【详解】∵()()111111n n n n a q a q S qS qa qq++---=-=--,∴1n n S qS a +=+,∴点()1,n n S S +一定在直线y qx a =+上. 故选:D.【点睛】本题考查了等比数列的前n 项和公式、直线的方程,考查了推理能力与计算能力,属于中档题. 二、填空题5.(2022·上海奉贤·二模)构造一个二元二次方程组()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩,使得它的解恰好为1112x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩,要求(),0f x y =与(),0g x y =的每个方程均要出现x ,y 两个未知数.答:________. 【答案】()()2235021100x y x y +-=⎧⎪⎨-++-=⎪⎩【分析】不妨令(),0f x y =为过()1,2、()3,4-两点的直线,(),0g x y =为以()1,2、()3,4-两点为直径的圆,即可满足题意.【详解】过()1,2、()3,4-两点的直线为214231y x --=---,整理得350x y +-= ()1,2、()3,4-()1,2、()3,4-两点的中点坐标为()2,1-则以()1,2、()3,4-两点为直径的圆为()222(1)10x y -++=则可令(),0f x y =为350x y +-=,(),0g x y =为()222(1)10x y -++=故答案为:()()2235021100x y x y +-=⎧⎪⎨-++-=⎪⎩6.(2022·上海·高三专题练习)在△ABC 中,3AC =,4AB =,5BC =,P 为角平分线AT 上一点,且在△ABC 内部,则P 到三边距离倒数之和的最小值为________ 【答案】1927012+ 【分析】先根据题意建立平面直角坐标系,求出BC 所在直线的方程为134x y+=和角A平分线AT 的方程为y x =,求出交点的坐标,令(,)P m m ,依题意知1207m <<,根据点到直线的距离表示出P 到三边的距离的倒数和,构造函数25()127f m m m =+-,1207m <<,利用导数求出函数的最小值. 【详解】由3AC =,4AB =,5BC =可知△ABC 为直角三角形,以A 为原点,以直角边AC 为x 轴,直角边AB 为y 轴建立平面直角坐标系,易知(0,4)B ,(3,0)C ,角A 平分线AT 的方程为y x =,由截距式知BC 所在直线的方程为134x y+=,即43120x y +-=,43120y x x y =⎧⎨+-=⎩ 解得1212(,)77T ,令(,)P m m 依题可知1207m <<, 由点到直线的距离公式知P 到BC 的距离为1275m-, 则P 到三边距离倒数之和为11525127127m m m m m++=+-- 令25()127f m m m =+-,1207m <<,则'22235()(127)f m m m =-+-,令'()0f m =,即有m =(该极值点在区间1207m <<上),当 0m <<'()0f m <,则()f m 递减;127m <<时,'()0f m >,则()f m 递增,min ()f m f ∴==【点睛】本题考查了点到直线的距离公式、导数和函数的最值关系,培养了学生的计算能力、转化能力,属于中档题.7.(2022·上海·高三专题练习)已知直线l 过点(2,1)P -,直线l 的一个方向向量是()3,2d =-,则直线l 的点方向式方程是___________. 【答案】2132x y +-=- 【分析】利用直线的点方向式方程可得出结果.【详解】因为直线l 过点(2,1)P -,它的一个方向向量为()3,2d =-, 所以,直线l 的点方向式方程为2132x y +-=-. 故答案为:2132x y +-=-. 8.(2022·上海·复旦附中模拟预测)经过点1,0A 且法向量为()2,1n =的直线l 的一般式方程是______. 【答案】220x y +-=【分析】由法向量的定义求出直线方程法向式再化为一般式.【详解】设(,)P x y 是直线上任一点,则由0AP n ⋅=得直线方程为2(1)0x y -+=,即220x y +-=. 故答案为:220x y +-=.【考点3】两直线的位置关系一、单选题1.(2021·上海市七宝中学模拟预测)“2m =-”是“直线()230m x my -++=与直线30x my --=垂直”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】利用两直线垂直可求得m 的值,再利用集合的包含关系判断可得出结论. 【详解】若直线()230m x my -++=与直线30x my --=垂直,则220m m --=, 即220m m +-=,解得2m =-或1,因为{}2- {}2,1-,所以,“2m =-”是“直线()230m x my -++=与直线30x my --=垂直”的充分非必要条件. 故选:A. 二、填空题2.(2022·上海徐汇·二模)已知m ∈R ,若直线1l :10mx y ++=与直线2l :9230x my m +++=平行,则m =______________.【答案】3【分析】根据两条直线平行的充要条件列方程组求解即可得答案.【详解】解:因为直线1l :10mx y ++=与直线2l :9230x my m +++=平行,所以()29101231m m m ⎧-⨯=⎪⎨⨯+≠⨯⎪⎩,解得3m =,故答案为:3.3.(2022·上海市行知中学高二期中)若直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,则=a ______. 【答案】2-【分析】根据两个直线垂直的公式代入计算即可.【详解】因为直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直, 所以()()1210a a ⨯+-⨯+=,解得2a =-, 故答案为:2-.4.(2022·上海宝山·二模)已知直线20x y ++=与直线0x dy -+=互相平行且距离为m .等差数列{}n a 的公差为d ,且7841035,0a a a a =+<,令123||||||||n n S a a a a =++++,则m S 的值为__.【答案】52【分析】根据平行线的距离求出d 和m 的值,利用等差数列的定义和性质求出通项公式,进而求和即可. 【详解】由题意知,0d ≠,因为两直线平行,所以121d =≠-2d =-,由两平行直线间距离公式得10m ==,由78a a ⋅=77(2)35a a ⋅-=,解得75a =-或77a =. 又410720a a a +=<,所以75a =-,即7165a a d =+=-, 解得17a =,所以1(1)29n a a n d n =+-=-+. 所以1012310S a a a a =++++|7||5||3||1||1||3||5||7||9|=++++-+-+-+-+-|11|52+-=.故答案为:52.5.(2022·上海·同济大学第一附属中学高二阶段练习)若直线1:210l ax y a ++-=与直线2:230l x ay a ++-=平行,则1l 与2l 之间的距离为______.【分析】利用直线平行可求得2a =-,代入距离公式即可得出结果.【详解】根据两直线平行,可得22(1)2(3)a a a a a ⋅=⨯⎧⎨-≠-⎩,解得2a =-,所以两直线的方程为:12:2230,:2250l x y l x y -+=-+=,根据平行线间的距离公式可得,两平行线间的距离2d =,【考点4】直线与圆的位置关系一、单选题1.(2022·上海·模拟预测)设集合(){}222Ω(,)()4,x y x k y kk k =-+-=∈Z ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧;②存在直线l ,使得集合Ω中存在无数点在l 上:( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立 D .①不成立②不成立【答案】B【分析】根据圆与圆的位置关系及直线与圆的位置关系一一判断即可; 【详解】解:若①成立,则相邻两圆外离,不妨设相邻两圆方程为()222(4)k x k y k -+-=,圆心为()2,k k,半径1r =()()()2224111x k y k k -++=-+-,圆心为()()21,1k k ++,半径2r =2>当4k =时(222282360⎡⎤-=-->⎣⎦,2>成立,所以结论①成立;对于②,设直线l 的方程为y mx t =+,则圆心()2,k k到直线l 的距离d =,当k →∞时d r >,所以直线l 只能与有限个圆相交,所以结论②不成立; 故选:B2.(2022·上海·高三专题练习)直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A试题分析:由1k =时,圆心到直线:1l y x =+的距离d =.所以11222OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时, OAB ∆的面积为12.所以不要性不成立.故选A. 考点:1.直线与圆的位置关系.2.充要条件. 二、填空题3.(2022·上海·模拟预测)设直线系:(1)cos (2)sin 1(02)M x y θθθπ-+-=≤≤,对于下列四个命题: ①M 中所有直线均经过一个定点; ②存在定点P 不在M 中的任一条直线上;③对于任意整数(3)n n ≥,存在正n 边形,使其所有边均在M 中的直线上; ④M 中的直线所能围成的正三角形面积都相等.其中真命题的序号是_________(写出所有真命题的序号) 【答案】②③【分析】令1cos 2sin x y θθ-=⎧⎨-=⎩,消去θ,即可得到直线系M 表示圆()()22121x y -+-=的切线的集合,即可判断①②③,再利用特殊值判断④;【详解】解:由直线系:(1)cos (2)sin 1(02)M x y θθθπ-+-=≤≤,可令1cos 2sin x y θθ-=⎧⎨-=⎩,消去θ可得()()22121x y -+-=,故直线系M 表示圆()()22121x y -+-=的切线的集合,故①不正确; 因为对任意θ,存在定点()1,2不在直线系M 中的任意一条上,故②正确;由于圆()()22121x y -+-=的外切正n 边形,所有的边都在直线系M 中,故③正确;M 中的直线所能围成的正三角形的边长不一定相等,故它们的面积不一定相等,如图中等边三角形ABC 和ADE 面积不相等,故④不正确.综上,正确的命题是②③. 故答案为:②③.4.(2022·上海·高三开学考试)已知点P 是直线3420x y +-=上的点,点Q 是圆22(1)(1)1x y +++=上的点,则PQ 的最小值是___________. 【答案】45【分析】由题意可得PQ 的最小值为圆心到直线的距离减去半径即可 【详解】圆22(1)(1)1x y +++=的圆心为(1,1)--,半径为1, 则圆心到直线3420x y +-=的距离为223429534d ---==+,所以PQ 的最小值为94155-=,故答案为:455.(2022·上海·高三专题练习)若直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y ,则1221x y x y +的值为________.【答案】16【分析】直接利用圆与直线的位置关系,建立一元二次方程根与系数的关系,进一步求出结果. 【详解】解:直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y , 则:22516x y x y +=⎧⎨+=⎩所以:221090x x -+=, 则125x x +=,1292x x , 则()()1112221255x x x y x y x x =-+-+121252x x x x25916故答案为:16【点睛】本题考查的知识要点:直线与曲线的位置关系的应用,一元二次方程根与系数的关系的应用. 6.(2022·上海·高三专题练习)过原点且与圆22420x y x y ++-=相切的直线方程为_______. 【答案】20x y -=【分析】切线的斜率显然存在,设出切线方程,利用圆心到直线的距离等于半径,列方程可解得答案. 【详解】由22420x y x y ++-=得22(2)(1)5++-=x y ,所以圆心为(2,1)-,因为圆心到y 轴的距离为2,所以所求切线的斜率一定存在, 所以设所求切线方程为y kx =,即0kx y ,解得2k =,所以所求切线方程为20x y -=. 故答案为:20x y -=.【点睛】本题考查了求圆的切线方程,属于基础题.7.(2022·上海·高三专题练习)在平面直角坐标系xOy 中,过点(3,)P a -作圆2220x y x +-=的两条切线,切点分别为11(,)M x y ,22(,)N x y .若21212121()()()(2)0x x x x y y y y -++-+-=,则实数a 的值等于____________. 【答案】4.【分析】取MN 中点Q ,设()1,0,(0,1)A B ,则利用斜率公式转化条件得1MN BQ k k ⋅=-,再结合圆的切线性质得1MN PA k k ⋅=-,即得BQ PA k k =,最后根据三点共线求结果.【详解】由2220x y x +-=得()2211x y -+=,圆心为1,0A ,设()0,1B ,取MN 中点Q ,由题意得1MN PA k k ⋅=-, 因为21212121()()()(2)0x x x x y y y y -++-+-= 所以21212121()(2)1()()y y y y x x x x -+-=--+,则1MN BQ k k ⋅=-因此BQ PA k k =,从而,,P A B 三点关系,即13110a -=---得4a = . 故答案为:4.【点睛】关键点点睛:本题的关键在于利用斜率关系转化为三点共线问题求解.8.(2022·上海·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.【分析】设直线AB的方程为y b =+,则点()0,A b ,利用直线AB 与圆()2211x y +-=相切求出b 的值,求出AC ,利用勾股定理可求得AB .【详解】设直线AB的方程为y b =+,则点()0,A b ,由于直线AB 与圆()2211x y +-=相切,且圆心为()0,1C ,半径为1,则112b -=,解得1b =-或3b =,所以2AC =, 因为1BC =,故AB ==9.(2021·上海·高三专题练习)过直线:2l x y +=上任意点P 向圆22:1C x y +=作两条切线,切点分别为,A B ,线段AB 的中点为Q ,则点Q 到直线l 的距离的取值范围为______.【答案】 【分析】设P (t ,2﹣t ),可得过O 、A 、P 、B 的圆的方程与已知圆的方程相减可得AB 的方程,进而联立直线方程解方程组可得中点Q 的坐标,由点Q 到直线的距离公式和不等式的性质可得. 【详解】∵点P 为直线:2l x y +=上的任意一点,∴可设(),2P t t -,则过O A P B 、、、的圆的方程为()2222212224t t x y t t -⎛⎫⎛⎫⎡⎤-+-=+- ⎪ ⎪⎣⎦⎝⎭⎝⎭, 化简可得()2220x tx y t y -+--=,与已知圆的方程相减可得AB 的方程为()21tx t y +-=, 由直线OP 的方程为()20t x ty --=, 联立两直线方程可解得2244tx t t =-+,22244t y t t -=-+,故线段AB 的中点222,244244t t Q t t t t -⎛⎫⎪-+-+⎝⎭,∴点Q 到直线l的距离2122d t t ==--+,∵()2222111t t t -+=-+≥,∴210122t t <≤-+, ∴211022t t -≤-<-+,∴2112222t t ≤-<-+,∴21222t t -<-+d ∈⎣故答案为⎣ 【点睛】本题考查直线与圆的位置关系,涉及圆的相交弦和点到直线的距离公式,以及不等式求函数的值域,属中档题.10.(2022·上海交大附中高三期中)圆C 的圆心C 在抛物线22y x =上,且圆C 与y 轴相切于点A ,与x 轴相交于P 、Q 两点,若9OC OA ⋅=(O 为坐标原点),则PQ =______.【答案】【分析】不妨设点C 在第一象限,设()2000,02y C y y ⎛⎫> ⎪⎝⎭,则()00,A y ,根据9OC OA ⋅=求出0y ,从而可求得圆C 的方程,求出,P Q 的坐标即可得解. 【详解】解:不妨设点C 在第一象限, 设()2000,02y C y y ⎛⎫> ⎪⎝⎭,则()00,A y , 故()2200009,0,2y y OC y y OA ⎛⎫=⋅= ⎪⎝⎭⋅=,解得03y =, 故圆心9,32C ⎛⎫⎪⎝⎭,所以圆C 的半径等于92,所以圆C 的方程为()22981324x y ⎛⎫-+-= ⎪⎝⎭,当0y =时,3592x +=或3592-+, 所以3593593522PQ -++=-=. 故答案为:35.11.(2022·上海·高三专题练习)已知圆221:1x y ω+=,圆222:4x y ω+=,P 为1ω上的动点,M 、N 为2ω上的动点,满足23MN =PM PN ⋅的取值范围是___________. 【答案】[3,1]-【分析】先由勾股定理得出MN 的中点Q 的轨迹,再结合向量的运算得出23PM PN QP ⋅=-,最后由2[0,4]QP ∈得出PM PN ⋅的取值范围.【详解】设MN 的中点Q ,22||2(3)1OQ =-=,即MN 的中点Q 的轨迹是221x y +=,所以222()()3PM PN QM QP QN QP QP QM QP ⋅=-⋅-=-=-,又 220,2QP ⎡⎤∈⎣⎦,所以[3,1]PM PN ⋅∈-故答案为:[3,1]-12.(2022·上海·华师大二附中模拟预测)已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是_________. 【答案】1,12⎡⎤-⎢⎥⎣⎦【分析】通过曲线方程判断曲线特征,通过0AP AQ +=,说明A 是PQ 的中点,结合y 的范围,求出m 的范围即可. 【详解】解:曲线2:9C y x =--,是以原点为圆心,3为半径的半圆(圆的下半部分), 并且[3P y ∈-,0],对于点(0,)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的纵坐标2y =,21[,1]22py m +∴=∈-.故答案为:1[,1]2-.【点睛】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 三、解答题13.(2022·上海·模拟预测)如图,由半圆()22200,+=≤>x y r y r 和部分抛物线()()2100y a x y a =-≥>,合成的曲线C 称为“羽毛球开线”,曲线C 与x 轴有AB 、两个焦点,且经过点()23.,(1)求a r 、的值;(2)设()02N ,,M 为曲线C 上的动点,求MN 的最小值;(3)过A 且斜率为k 的直线l 与“羽毛球形线”相交于点、、P A Q 三点,问是否存在实数k ,使得QBA PBA ∠=∠?若存在,求出k 的值;若不存在,请说明理由.【答案】(1)11a r =⎧⎨=⎩;(2)min MN =3)存在,且1k =【分析】(1)将()23,代入()21=-y a x 求出1a =,再由21y x =-与x 轴交点坐标,代入圆的方程,即可求出1r =;(2)先设00(,)M x y ,得到=MN 00≤y ,和00≥y 两种情况,由抛物线与圆的方程,即可求出结果;(3)先由题意得到PQ 的方程,与抛物线联立,求出2(1,2)--Q k k k ;与圆联立,求出22212,11⎛⎫-- ⎪++⎝⎭k k P k k ,根据QBA PBA ∠=∠得到=-BP BQ k k ,化简得到关于k 的方程,求解,即可得出结果.【详解】(1)由题意,将()23,代入()21=-y a x ,得到1a =;所以抛物线21y x =-; 又21y x =-与x 轴交于()1,0±,所以(1,0)(1,0)、-A B ,代入圆的方程,可得1r =; 所以1a =,1r =;(2)设00(,)M x y ,因为()02,N ,则MN当00≤y 时,22001=-x y ,所以=MN所以00y =时,min =MN当00≥y 时,2001=+x y ,=MN所以032=y 时,minMN<MN (3)由题意,可得:PQ 的方程为(1)y k x =-,由2(1)1y k x y x =-⎧⎨=-⎩,整理得:210x kx k -+-=, 解得1x =或1=-x k ,即2(1,2)--Q k k k ;由22(1)1y k x x y =-⎧⎨+=⎩,整理得:2222(1)210+-+-=k x k x k 解得:1x =或2211-=+k x k ,则22212,11⎛⎫-- ⎪++⎝⎭k k P k k ,由QBA PBA ∠=∠,可得=-BP BQ k k ,即2222221111--+=--++kk k k k kk ,整理得2210--=k k,解得1=k因此,存在实数1k =QBA PBA ∠=∠.【点睛】本题主要考查圆与圆锥曲线的综合,熟记直线与圆位置关系,以及直线与抛物线物位置关系即可,属于常考题型.14.(2022·上海·高三专题练习)某景区欲建造同一水平面上的两条圆形景观步道1M 、2M (宽度忽略不计),已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆1M 与AB 、AD 分别相切于点B 、D ,2M 与AC 、AD 分别相切于点C 、D ,且90CAD BAD ︒∠+∠=.(1)若60BAD ︒∠=,求圆1M 、圆2M 的半径(结果精确到0.1米);(2)若景观步道1M 、2M 的造价分别为每米0.8千元、0.9千元,如何设计圆1M 、圆2M 的大小,使总造价最低?最低总造价为多少(结果精确到0.1千元)? 【答案】(1)圆1M 、圆2M 的半径分别为34.6米、16.1米;(2)1M 的半径与圆2M 的半径分别为30米与20米时,总造价最低,最低总造价为84263.9π≈千元. 【分析】(1)直接利用锐角三角函数的定义可计算出两圆的半径; (2)设1M ADα,可得24M ADπα,其中0,4πα⎛⎫∈ ⎪⎝⎭,然后得出总造价y (千元)关于α的函数表达式,并利用基本不等式可求出y 的最小值,利用等号成立求出对应的tan α的值,即可计算出两圆的半径长.【详解】(1)依题意,圆1M的半径1tan 306034.6M B AB =⋅==(米), ()tan 60tan 4531tan15tan 604521tan 60tan 4513--=-===++圆2M 的半径(260tan1560216.1M C =⋅=≈(米) ,答:圆1M 、圆2M 的半径分别为34.6米、16.1米; (2)设1M ADα,则24M ADπα,其中0,4πα⎛⎫∈ ⎪⎝⎭,故景观步道的总造价为260tan 0.8260tan 0.94y ππαπα⎛⎫=⋅⋅⋅+⋅⋅-⋅ ⎪⎝⎭.1tan 2128tan 9128tan 911tan 1tan απαπααα⎡⎤-⎛⎫⎛⎫=+⋅=+-+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦()()18181281tan 1712281tan 17841tan 1tan παπαπαα⎡⎤⎡⎤=++-≥⋅+⋅=⎢⎥⎢⎥++⎣⎦⎣⎦(当且仅当()1tan 0,12α=∈时取等号), 当()1tan 0,12α=∈时,1tan 1tan 41tan 3πααα-⎛⎫-== ⎪+⎝⎭, 答:设计圆1M 的半径与圆2M 的半径分别为30米与20米时,总造价最低,最低总造价为84263.9π≈(千元).【点睛】本题考查直线与圆的位置关系,考查利用基本不等式求最值,解题的关键就是建立函数模型的解析式,考查分析问题和解决问题的能力,属于中等题.【考点5】圆与圆的位置关系一、单选题1.(2020·上海·高三专题练习)已知,x y R ∈,且2220x y x ++<,则( ). A .22680x y x +++< B .22680x y x +++> C .22430x y x +++< D .22430x y x +++>【答案】B【分析】借助圆与圆关系确定选择. 【详解】222212(1)0x y x x y ++<∴++<,表示圆心为1(1,0)C -,半径为11r =的圆内部的点,范围记为P2222680(3)1x y x x y +++<∴++<表示圆心为2(3,0)C -,半径为21r =的圆内部的点,因为1212||2C C r r ==+,所以两圆外切,P 在A 中所表示的点的范围外,所以A 不成立; 2222680(3)1x y x x y +++>∴++>表示圆心为2(3,0)C -,半径为21r =的圆外部的点,因为1212||2C C r r ==+,所以两圆外切,P 在B 中所表示的点的范围内,所以B 成立; 2222430(2)1x y x x y +++<∴++<表示圆心为3(2,0)C -,半径为31r =的圆内部的点,因为121312||||1r r C C r r -<=<+,所以两圆相交,P 中有些点在C 中所表示的点的范围外,所以C 不恒成立; 2222430(2)1x y x x y +++>∴++>表示圆心为3(2,0)C -,半径为31r =的圆外部的点,因为121312||||1r r C C r r -<=<+,所以两圆相交,P 中有些点在D 中所表示的点的范围外,所以D 不恒成立; 故选:B【点睛】本题考查两圆位置关系,考查综合分析判断能力,属中档题.2.(2022·上海·高三专题练习)若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是( ) A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞D .(25,9)(11,)--+∞【答案】D【分析】求出两圆的圆心坐标与半径,再由圆心距与半径间的关系列式求解. 【详解】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k ,则k >﹣25,圆心坐标为(3,4 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则|C 1C 2|1或|C 1C 2|1,即51或51, 解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞). 故选:D .【点睛】本题考查圆与圆位置关系的判定及应用,考查数学转化思想方法,考查计算能力,是基础题.3.(2022·上海黄浦·模拟预测)已知圆C :25cos 35sin x y θθ=-+⎧⎨=+⎩(θ为参数),与圆C 关于直线0x y +=对称的圆的普通方程是( ). A .22(3)(2)25x y ++-= B .22(2)(3)25x y -++= C .22(3)(2)5x y ++-= D .22(3)(2)5x y ++-=【答案】A【分析】根据题意得圆C 的普通方程为22(2)(3)25x y ++-=,与圆C 对称的圆的圆心和圆C 的圆心关于直线0x y +=对称,半径和圆C 相同,求解计算即可.【详解】圆C :25cos 35sin x y θθ=-+⎧⎨=+⎩(θ为参数)转化为普通方程为22(2)(3)25x y ++-=,圆心为(2,3)-,半径为5,设圆C 关于直线0x y +=对称的圆的圆心为(,)a b ,半径为5, 所以点(2,3)-与点(,)a b 关于0x y +=对称,所以()230223112a b b a -+⎧+=⎪⎪⎨-⎪⨯-=-⎪+⎩,解得32a b =-⎧⎨=⎩, 所以对称的圆的圆心为(3,2)-,半径为5, 故对称的圆的普通方程是22(3)(2)25x y ++-=. 故选:A. 二、填空题4.(2020·上海·高三专题练习)若圆2225x y +=与圆22680x y x y m +-++=的公共弦长为8,则m =________.【答案】55-或5【分析】将两圆的方程相减即可得到两圆公共弦所在的直线方程,根据弦长与半径以及弦心距之间的关系即可得到d =|25|10m +=3.从而解得m =﹣55或5. 【详解】解:x 2+y 2=25① x 2+y 2﹣6x +8y +m =0② 两式相减得6x ﹣8y ﹣25﹣m =0.圆x 2+y 2=25的圆心为(0,0),半径r =5.。
专题5 第12讲电磁感应规律及其应用
![专题5 第12讲电磁感应规律及其应用](https://img.taocdn.com/s3/m/d27cb8273169a4517723a335.png)
故图A正确。
BLv Bvsin =定值, 1 r(1 )L r(1 sin) sin
热点考向2
电磁感应电路和动力学问题
【典例2】(18分)(2013·珠海一模)如图所示, 竖直平面内有一宽L=1m、足够长的光滑矩形金
属导轨,电阻不计。在导轨的上、下边分别接
有电阻R1=3Ω 和R2=6Ω 。在MN上方及CD下方有
B B0 故选项C正确。 , t
3.(2013·新课标全国卷Ⅱ)如图,在光滑 水平桌面上有一边长为L、电阻为R的正方 形导线框;在导线框右侧有一宽度为d(d
>L)的条形匀强磁场区域,磁场的边界与
导线框的一边平行,磁场方向竖直向下。导线框以某一初速度 向右运动。t=0时导线框的右边恰与磁场的左边界重合,随后 导线框进入并通过磁场区域。下列v-t图像中,可能正确描述 上述过程的是( )
应电动势的大小和方向。
(2)根据等效电路图,求解回路中电流的大小及方向。 (3)分析安培力对导体棒运动速度、加速度的影响 ,从而推理得 出对电路中的电流有什么影响,最后定性分析导体棒的最终运 动情况。 (4)列牛顿第二定律或平衡方程求解。
【变式训练】(2013·昆明一模)如图甲所示,MN左侧有一垂直 纸面向里的匀强磁场。现将一边长为l、质量为m、电阻为R的 正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc
【解析】选D。导线框开始进入磁场过程,通过导线框的磁通
量增大,有感应电流,进而受到与运动方向相反的安培力作用, 速度减小,感应电动势减小,感应电流减小,安培力减小,导 线框的加速度减小,v-t图线的斜率减小;导线框全部进入磁 场后,磁通量不变,无感应电流,导线框做匀速直线运动;导 线框从磁场中出来过程,有感应电流,又会受到安培力阻碍作 用,速度减小,加速度减小。选项A表示匀速运动,不符合题
第12讲 初识家用电器和电路(教师版) 2024年新九年级物理暑假提升讲义(苏科版)
![第12讲 初识家用电器和电路(教师版) 2024年新九年级物理暑假提升讲义(苏科版)](https://img.taocdn.com/s3/m/dbff2677bc64783e0912a21614791711cc7979ea.png)
第12讲 初识家用电器和电路模块一思维导图串知识 模块二基础知识全梳理(吃透教材)模块三教材习题学解题 模块四核心考点精准练(6大考点)模块五 小试牛刀过关测1.理解电流的形成,及电流方向。
2.知道电路的构成、电路元件符号。
3.掌握电路图的画法和实物图的连接。
4.能够识别电路的三种状态。
5.能进行简单的故障判断。
1、电路的组成(2)电路各部分的作用(3)电源:提供电能的装置,将其他形式的能转化为电能。
的遥控器,都需用干电池为它们提供电能。
用于汽车、摩托车、通讯等。
能的转化:蓄电池在充电时,电能转化为化学能,放电时化学能又转化为电能。
2、电路图及元件符号(1)电路图:用规定的符号表示电路连接情况的图叫做电路图。
(2)几种常见的元件符号如下:3、电路的三种状态(1)通路:正常连接的电路,即用电器能够工作的电路。
通路特征:电路中有电流,用电器正常工作。
(2)断路(开路):断开的电路。
断路特征:电路中无电流,用电器不工作.原因有开关没闭合,接线处松动,导线断了,用电器损坏等。
(3)短路:不经过用电器而直接跟电源的两极相连的电路。
短路特征:用电器不工作,电路有很大电流,会损坏电源甚至烧坏导线的绝缘皮,引起火灾。
4、根据实物图画电路图(1)画好电路图的方法①应完整地反映电路的组成,即有电源、用电器、开关和导线。
②规范地使用电路元件符号,不能自选符号。
③交叉相连的点要画粗黑圆点。
④合理地安排电路元件符号的位置,尽可能让这些元件符号均匀地分布在电路中,使电路图清楚美观,并注意元件符号绝不能画在拐角处。
⑤导线要横平竖直,转弯画成直角,电路图一般呈长方形。
⑥最好从电源的正极开始,沿着电流的方向依次画电路元件,且知道在电路图中导线无长短之分的原则。
(2)根据实物图画出电路图的方法①先理清电流的路径,可从电源正极开始,沿着电流的方向逐个寻找,直到电源负极。
②所画出的电路图中各元件的顺序应与实物图保持一致。
教材习题01设法用一段导线、一节干电池使一个小灯泡发光。
第12讲:运动路径长度问题解析版
![第12讲:运动路径长度问题解析版](https://img.taocdn.com/s3/m/8c1ec706b9f3f90f76c61bf4.png)
第12讲:运动路径长度问题解析版1.《隐圆模型》2.《共顶点模型》-也可称“手拉手模型”3.《主从联动模型》-也可称“瓜豆原理模型”4.《旋转问题》—旋转相似模型5.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上6.角平分线——到角两边距离相等的动点一定在这个角的角平分线上7.三角形中位线——动点到某条线的距离恒等于某平行线段的一半8.平行线分线段成比例——动点到某条线的距离与某平行线段成比例9.两平行线的性质——平行线间的距离,处处相等一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点【例题1】如图,等腰Rt△AOB中,△AOB=90°,OA=,△O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.解题标签:《共顶点模型》中的旋转相似、《隐圆模型》中的动点定长模型、《主从联动模型》【解析】如图,连接OP,AQ,设△O与AB相切于C,连接OC,则OC△AB,△OA=OB,△AOB=90°,OB=,△AB=2,OP=OC=AB=,△△ABO和△QBP均为等腰直角三角形,△=,△ABO=△QBP=45°,△=,△ABQ=△OBP,△△ABQ△△OBP,△△BAQ=△BOP,=,即=,△AQ=,又△点P在弧MN上由点M运动到点N,△0°≤△BOP≤90°,△0°≤△BAQ≤90°,△点Q的运动轨迹为以A为圆心,AQ长为半径,圆心角为90°的扇形的圆弧,△点Q运动的路径长为=,【例题2】已知△O,AB是直径,AB=4,弦CD△AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【分析】解题标签:“定边对直角”确定隐圆模型【解析】作DQ△AC于Q,如图,当P点在C点时,F点与Q重合;当P点在B点时,F点与E点重合,△△AFD=90°,△点F在以AD为直径的圆上,△点F运动的路径为,△弦CD△AB且过OB的中点,△OE=OD,CE=DE=,AC=AC=2,△△DOE=60°,△△DAC=60°,△△ACD为等边三角形,△MQ和ME为中位线,△MQ=,△QME=60°,△F运动的路径长度==.故选:A.【例题3】如图,已知扇形AOB中,OA=3,△AOB=120°,C是在上的动点.以BC 为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.【分析】解题标签:“定边对定角”确定隐圆模型、主从联动模型【解析】如图所示,易得点D的运动轨迹的长为=2 π.【例题4】等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE =CF,连接AF,BE相交于点P.(1)△APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.【解析】(1)△△ABC为等边三角形,△AB=AC,△C=△CAB=60°,又△AE=CF,在△ABE和△CAF中,,△△ABE△△CAF(SAS),△AF=BE,△ABE=△CAF.又△△APE=△BPF=△ABP+△BAP,△△APE=△BAP+△CAF=60°.△△APB=180°﹣△APE=120°.(2)如图1,△AE=CF,△点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且△ABP=△BAP=30°,△△AOB=120°,又△AB=2,△OA=2,点P的路径是l===;(3)如图2,△AE=CF,△点P的路径是一段弧,△当点E运动到AC的中点时,CP长度的最小,即点P为△ABC的中心,过B作BE′△AC于E′,△PC=BE′,△△ABC是等边三角形,△BE′=BC=3,△PC=2.△CP长度的最小值是2.方法二:由图1可知,CP最小值等于CO减OA,OA就是那圆弧的半径,可得PC的最小值为2.【例题5】已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若△AEP=△BFP,则当点P由点C移动到点D时,点M移动的路径长度为4﹣3.【解析】如图,分别延长AE、BF交于点H.△△APE和△PBF都是等腰三角形,且△AEP=△BFP△△A=△FPB,△AH△PF,同理,BH△PE,△四边形EPFH为平行四边形,△EF与HP互相平分.△M为EF的中点,△M为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线QN.△CD=AB﹣AC﹣BD=8﹣6,△QN=CD=4﹣3,即M的移动路径长为4﹣3.故答案是:4﹣3.【例题6】.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE 和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为5.【解析】如图,分别延长AE、BF交于点H,△△A=△FPB=60°,△AH△PF,△△B=△EP A=60°,△BH△PE,△四边形EPFH为平行四边形,△EF与HP互相平分.△G为EF的中点,△G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.△MN=AB=5,即G的移动路径长为5.故答案为:5【例题7】如图,AB为△O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ=AB2.若点P由B运动到C,则点Q运动的路径长为3.【解析】连接BQ,如图,△AB为△O的直径,△△APB=90°,△AP•AQ=AB2.即=,而△BAP=△QAB,△△ABP△△AQB,△△ABQ=△APB=90°,△BQ为△O的切线,点Q运动的路径长为切线长,△弧AC的度数是60°,△△AOC=60°,△△OAC=60°,当点P在C点时,△BAQ=60°,△BQ=AB=3,即点P由B运动到C,则点Q运动的路径长为3.故答案为3.【例题8】.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB运动到点B停止.过点E作EF△PE交射线BC于点F.设点M 是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.【答案】4【解析】如图所示:过点M作GH△AD.△AD△CB,GH△AD,△GH△BC.在△EGM和△FHM中,△△EGM△△FHM.△MG=MH.△点M的轨迹是一条平行于BC的线段当点P与A重合时,BF1=AE=2,当点P与点B重合时,△F2+△EBF1=90△,△BEF1+△EBF1=90△,△△F2=△EBF1.△△EF1B=△EF1F2,△△EF1B△△△EF1F2.△ ,即△F1F2=8,△M1M2是△EF1F2的中位线,△M1M2= F1F2=4.故答案为:4.【例题9】.正方形ABCD的边长为4,P为BC边上的动点,连接AP,作PQ⊥P A交CD 边于点Q.当点P从B运动到C时,线段AQ的中点M所经过的路径长()A.2B.1C.4D.【解析】如图,连接AC,设AC的中点为O′.设BP的长为xcm,CQ的长为ycm.∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ∴=,即=,∴y=﹣x2+x=﹣(x﹣2)2+1(0<x<4);∴当x=2时,y有最大值1cm.易知点M的运动轨迹是M→O→M,CQ最大时,MO=CQ=,∴点M的运动轨迹的路径的长为2OM=1,故选:B.经典练习:1.如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是8﹣12.【分析】解题标签:“运动路径为来回型”【解析】△当A从O到现在的点A处时,如图2,此时C′A△y轴,点C运动的路径长是CC′的长,△AC′=OC=8,△AC′△OB,△△AC′O=△COB,△cos△AC′O=cos△COB==,△=,△OC′=4,△CC′=4﹣8;△当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:8﹣12.2.如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2B.2C.D.5【分析】解题标签:“利用解析法计算几何路径长”【解析】建立如图坐标系.设OB=t,则OA=5﹣t,∴B(t,0),A(0,5﹣t),∵AP=PB,∴P(,),令x=,y=,消去t得到,y=﹣x+(0≤x≤),∴点P的运动轨迹是线段HK,H(0,),K(,0),∴点P的运动路径的长为=,故选:C.3.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.【解析】如图,连接OP,OC,取OC的中点K,连接MK.△AC=BC=,△ACB=90°,△AB==2,△OP=AB=1,△CM=MP,CK=OK,△MK=OP=,△当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,长为半径的半圆,△点M运动的路径长=•2•π•=,故答案为.4.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足△COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.【答案】解:点C从点A运动到点D与点B从何时,AD与BC的相点P运动的轨迹是一条弧,C,D 两点运动到恰好是半圆的三等分点时,AD与BC的相点P是弧的最高点,作AP,BP的中垂线,两线交于点E,点E是弧APB的圆心;由题意知:AD=BD,△PAB=△PBA=30°,连接AE,DE,根据圆的对称性得出A、O、E三点在同一直线上,易证△ADE是一个等边三角形,△AED=60°,在Rt△ADO中,△DOA=90°,△PAB=30°,AO=1,故AD=,△AE=AD=弧APB的长度==。
第12讲简单机械
![第12讲简单机械](https://img.taocdn.com/s3/m/b120f90f68eae009581b6bd97f1922791688be24.png)
活动课·行易
活动课·行易 栏目索引
必做实验类
实验一 探究杠杆的平衡条件
【命题点】 1.实验前杠杆平衡螺母的调节(左高左调,右高右调。注意:实验过程中不能 再调平衡螺母)。 2.实验时调节杠杆水平的目的(①使杠杆重心落在支点上,减少杠杆自重对实 验造成的影响;②方便读出杠杆的力臂)。
活动课·行易 栏目索引
找问题·知易
找问题·知易 栏目索引
1.(2018·潍坊)如图所示,杠杆处于平衡状态。如果杠杆两侧的钩码各减少一 个,杠杆将 ( B )
A.左端下降 B.右端下降 C.仍然平衡 D.无法判断
找问题·知易 栏目索引
2.(2018·常州)今年2月,我国台湾省发生地震,一个结构坚固的水塔因地基松 软而倾斜,为阻止水塔继续倾斜,救援队借助山石用钢缆拉住水塔。下列方案 中,钢缆对水塔拉力最小的是 ( B )
(1)如图A所示,实验前,杠杆左端下倾,则应将左端的平衡螺母向右(选填
活动课·行易 栏目索引
“左”或“右”)调节,直到杠杆在水平位置平衡,目的是便于测量力臂,支点 选在杠杆的中点是为了消除杠杆自重对平衡的影响。 (2)小明同学所在实验小组完成某次操作后,实验现象如图B所示,他们记录的 数据为动力F1=1.5 N,动力臂L1=0.1 m,阻力F2=1 N,则阻力臂L2=0.15m。 (3)甲同学测出了一组数据后就得出了“动力×动力臂=阻力×阻力臂”的结 论,乙同学认为他的做法不合理,理由是一组实验数据太少,具有偶然性,不便 找出普遍规律。 (4)丙同学通过对数据分析后得出的结论是:动力×支点到动力作用点的距离= 阻力×支点到阻力作用点的距离,与小组同学交流后,乙同学为了证明丙同学
总功
公式:④W额=W总-W有用=G动h(提升重物,忽略轮轴摩擦的动滑轮、滑轮组)
(奥数典型题)第12讲 差倍问题--2024年六年级下册小升初数学思维拓展
![(奥数典型题)第12讲 差倍问题--2024年六年级下册小升初数学思维拓展](https://img.taocdn.com/s3/m/0eadaebabb0d4a7302768e9951e79b89680268c1.png)
第12讲差倍问题【知识点归纳】含义:差倍问题即已知两数之差和两数之间的倍数关系,求出两数.公式:差÷(倍数﹣1)=小数;小数+差或小数×倍数=大数.差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题.1.有甲、乙两筐苹果,甲筐苹果重18千克,乙筐苹果重10千克。
如果从两筐中取出同样多的苹果后,甲筐剩下的苹果质量是乙筐的3倍,那么从乙筐中取出了多少千克苹果?2.水果市场有同样筐数的苹果和桔子。
三轮车每次运走3筐苹果和5筐桔子,运了几次以后,桔子没有了,苹果还剩6筐,原来苹果和桔子各有几筐?3.奶奶家养的公鸡比母鸡少24只,母鸡的只数是公鸡的4倍。
奶奶家公鸡和母鸡各养了多少只?4180本,甲阅览室的本数是乙阅览室的5倍。
甲、乙两个阅览室各有图书多少本?5.一件上衣比一条裤子贵108元。
上衣的价钱是裤子价钱的1.5倍,一条裤子多少元?6.小明身上的钱是小华的5倍,小明如果给小华40元,那么两人的钱就一样多.小明和小华原来各有多少元?7.妈妈的年龄是笑笑的4倍,妈妈比笑笑大24岁,笑笑和妈妈各多少岁?8.已知甲乙两数的差是99.99,甲数的小数点向右移动两位就等于乙数。
那么甲、乙各是多少?9.小明比爸爸小30岁,爸爸今年的岁数正好是小明的4倍。
爸爸和小明今年各多少岁?10.教室里的书橱分上、下两层,下层书的本数是上层书本数的3倍。
如果从下层中搬到上层48本,那么两层的本数同样多,下层原来有多少本书?11.有两桶油,第一桶油的质量是第二桶油的1.5倍,如果把第一桶里的油倒入第二桶4kg,两桶油的质量相等,两桶油原来各有多少千克?12.师徒两人一起加工零件,师傅每小时加工零件的个数是徒弟的2.5倍。
加工完成后,师傅比徒弟多加工了90个零件,师傅和徒弟各加工了多少个零件?13.学校门口放有红、黄、蓝三种颜色的花。
二年级奥数(含参考答案) 第12讲 画图解题
![二年级奥数(含参考答案) 第12讲 画图解题](https://img.taocdn.com/s3/m/2a567d144b73f242336c5f62.png)
3.停车场停着大汽车和小汽车共 14 辆,大汽车有 6 个轮子,小汽车有 4 个轮子,现在两种汽 车共有 72 个轮子,问大汽车和小汽车各有几辆?
【例题 5】
小林共有 16 枚硬币,有 5 角和 1 角两种,它们合在一起共有 4 元 4 角。5 角和 1 角的硬币各
有几枚?
思路导航:如果 16 枚都是 1 角硬币,则小林只有 1×16=16(角),16 角=1 元 6 角,而事实上小林优 4 元
4 角,少:4 元 4 角-1 元 6 角=2 元 8 角=28 角。由于 1 枚 5 角与 1 枚 1 角相差 5-1=4(角),28 角里有 28
÷4=7(枚)5 角,这 7 枚就是 5 角硬币,共有 16 枚硬币,5 角的有 7 枚,1 角的就是 16-7=9(枚)
解:1×16=16(角) 4 元 4 角=44 角
【例题 4】 一辆自行车有 2 个轮子,一辆三轮车有 3 个轮子,车棚里放着自行车和三轮车共 12 辆,数数 车轮共 27 个,问自行车有几辆?三轮车有几辆?
思路导航:车棚里的 12 辆车,如果全部是自行车,则有 2×12=24(个)轮子,而题中说有 27 个轮子,显 然多了 27-24=3(个)轮子,而一辆三轮车比一辆自行车多 1 个轮子,多出的三个轮子里面有 3 个 1,即 三轮车有 3÷(3-2)=3(辆),自行车有:12-3=9(辆)。
解:有 2 只鸡,1 只兔
练习 1 1.一只蛐蛐有 6 条腿,一只蜘蛛有 8 条腿,如果蛐蛐和蜘蛛共有 3 只,腿共有 22 条,你知道 有几只蛐蛐、几只蜘蛛吗?
2.自行车和三轮车共有 3 辆,共有 8 个轮子,你知道有几辆自行车、几辆三轮车吗?
期望数学岛
1
期望数学 岛
第12讲 反比例函数及其应用 (跟踪训练解析版)
![第12讲 反比例函数及其应用 (跟踪训练解析版)](https://img.taocdn.com/s3/m/09d11e0f0975f46526d3e12d.png)
第12讲 反比例函数及其应用二、考点分析【考点1 反比例函数的图像及性质】【解题技巧】1.对于反比例函数y =k x(k 是常数,且k ≠0)k 的几何意义: 设P(x ,y)是反比例函数y =k x图像上任一点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,则S 矩形PNOM =PM ·PN =|y|·|x|=|xy|=|k|.2.利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.【例1】(2019 安徽中考)已知点A (1,﹣3)关于x 轴的对称点A '在反比例函数y =的图象上,则实数k 的值为( )A .3B .C .﹣3D .﹣【答案】A .【分析】先根据关于x 轴对称的点的坐标特征确定A '的坐标为(1,3),然后把A ′的坐标代入y =中即可得到k 的值.【解答】解:点A (1,﹣3)关于x 轴的对称点A '的坐标为(1,3),把A ′(1,3)代入y =得k =1×3=3.故选:A .【一领三通1-1】(2019海南中考)如果反比例函数y =(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a <0B .a >0C .a <2D .a >2【答案】D . 【分析】反比例函数y =图象在一、三象限,可得k >0.【解答】解:∵反比例函数y =(a 是常数)的图象在第一、三象限,∴a ﹣2>0,∴a >2.故选:D .【一领三通1-2】(2019 江苏徐州中考)若A (x 1,y 1)、B (x 2,y 2)都在函数y =的图象上,且x 1<0<x 2,则( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 2 【答案】A .【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y =, ∴该函数图象在第一、三象限、在每个象限内y 随x 的增大而减小,∵A (x 1,y 1)、B (x 2,y 2)都在函数y =的图象上,且x 1<0<x 2,∴y 1<y 2,故选:A . 【一领三通1-3】(2019•河北石家庄中考模拟)定义新运算:a ⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x (x ≠0)的图象大致是( )A .B .C .D .【答案】D .【分析】根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】:由题意得:y=2⊕x=, 当x >0时,反比例函数y=在第一象限,当x <0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D 选项符合,故选:D .【一领三通1-4】(2019 吉林中考)已知y 是x 的反比例函数,并且当x =2时,y =6.(1)求y 关于x 的函数解析式;(2)当x =4时,求y 的值.【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)直接利用x =4代入求出答案.【解答】解:(1)y 是x 的反例函数,所以,设,当x =2时,y =6.所以,k =xy =12,所以,; (2)当x =4时,y =3.【考点2 反比例函数的实际应用】【解题技巧】利用反比例函数解决实际问题,首先是建立函数模型.一般地,建立函数模型有两种思路:一是通过问题提供的信息,知道变量之间的函数关系,在这种情况下,可先设出函数的表达式y =k x(k ≠0),再由已知条件确定表达式中k 的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过分析找出变量的关系并确定函数表达式.【例2】(2019 湖北孝感中考)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=【答案】B.【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.【一领三通2-1】(2019 浙江温州中考)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()200 250 400 500 1000 近视眼镜的度数y(度)镜片焦距x0.50 0.40 0.25 0.20 0.10(米)A.y=B.y=C.y=D.y=【答案】A.【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.【一领三通2-2】(2019 河北中考)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O 的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求St的函数关系式(不写t的取值范围)甲与(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t (s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.【一领三通2-3】(2019 浙江杭州中考)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解答】解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.【考点3 反比例函数的图像与几何图形的关系】【解题技巧】1.常见的有(1)双曲线与三角形的关系(2)双曲线与四边形的关系(3)双曲线与圆的关系(4)两条双曲线之间的关系2.在平面直角坐标系中与几何图形相联系时,通常要构造一个三角形,以坐标轴上的边为底,相对顶点的横坐标(或纵坐标)的绝对值为高;如果没有坐标轴上的边,则用坐标轴将其分割后求解.【例3】(2019 重庆中考)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【答案】B.【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.【一领三通3-1】(2019•河北沧州中考模拟)如图,△AOB为等边三角形,点B的坐标为(﹣2,0),过点C (2,0)作直线l交AO于点D,交AB于E,点E在反比例函数<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为()A.B.C.D.【答案】D.【分析】连接AC,先由等边三角形及等腰三角形的性质判断出△ABC是直角三角形,再由S△ADE=S△DCO,S△AEC =S△ADE+S△ADC,S△AOC=S△DCO+S△ADC,可得出S△AEC=S△AOC,故可得出AE的长,再由中点坐标公式求出E点坐标,把点E代入反比例函数y=即可求出k的值.【解答】解:连接AC.∵点B的坐标为(﹣2,0),△AOB为等边三角形,∵AO=OC=2,∴∠OCA=∠OAC,∵∠AOB=60°,∴∠ACO=30°,∠B=60°,∴∠BAC=90°,∴点A的坐标为(﹣1,),∵S△ADE=S△DCO,S△AEC=S△ADE+S△ADC,S△AOC=S△DCO+S△ADC,∴S△AEC=S△AOC=×AE•AC=×CO×,即AE•2=×2×,∴AE=1.∴E点为AB的中点(﹣,)把E点(﹣,)代入y=得,k=(﹣)×=﹣.故选:D.【一领三通3-2】(2019•深圳)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.【答案】【分析】要求k得值,通常可求A的坐标,可作x轴的垂线,构造相似三角形,利用CD=3AD和C(0,﹣3)可以求出A的纵坐标,再利用三角形相似,设未知数,由相似三角形对应边成比例,列出方程,求出待定未知数,从而确定点A的坐标,进而确定k的值.【解答】解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,可证△ADE∽△CDO,∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD,∴BO=OD,∵∠ABC=90°,∴△ABE~△COD,∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.【一领三通3-3】(2019 河北孝感中考)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.【答案】【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n =4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.【一领三通3-4】(2019•辽宁大连中考模拟)如图,点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF﹣OE=6,则k的值是.【答案】9.【分析】过P点作x轴、y轴的垂线,垂足为A、B,根据⊙P与两坐标轴都相切可知,PA=PB,由∠APB=∠EPF=90°可证△BPE≌△APF,得BE=AF,利用OF﹣OE=6,求圆的半径,根据k=OA×PA求解.【解答】解:如图,过P点作x轴、y轴的垂线,垂足为A、B,∵⊙P与两坐标轴都相切,∴PA=PB,四边形OAPB为正方形,∵∠APB=∠EPF=90°,∴∠BPE=∠APF,∴Rt△BPE≌Rt△APF,∴BE=AF,∵OF﹣OE=6,∴(OA+AF)﹣(BE﹣OB)=6,即2OA=6,解得OA=3,∴k=OA×PA=3×3=9.故答案为:9.【一领三通3-5】(2019•兰州)如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=(k≠0)的表达式;(2)若四边形ACBO的面积是3,求点A的坐标.【分析】(1)作BD⊥OC于D,根据等边三角形的性质和勾股定理求得OD=1,BD=,进而求得三角形BOD的面积,根据系数k的几何意义即可求得k=,从而求得反比例函数的表达式;(2)求得三角形AOC的面积,即可求得A的纵坐标,代入解析式求得横坐标,得出点A的坐标.【解答】解:(1)作BD⊥OC于D,∵△BOC是等边三角形,∴OB=OC=2,OD=OC=1,∴BD==,∴S△OBD=OD×BD=,S△OBD=|k|,∴|k|=,∵反比例函数y=(k≠0)的图象在一三象限,∴k=,∴反比例函数的表达式为y=;(2)∵S△OBC=OC•BD==,∴S△AOC=3﹣=2,∵S△AOC=OC•y A=2,∴y A=2,把y=2代入y=,求得x=,∴点A的坐标为(,2).【考点4 反比例函数的图像与其它函数的关系】【解题技巧】反比例函数与一次函数图像的综合应用的四个方面:①探求同一坐标系下两函数的图像常用排除法;②探求两函数表达式常利用两函数的图像的交点坐标;③探求两图像中点的坐标常利用解方程(组)来解决,这也是求两函数图像交点坐标的常用方法;④两个函数值比较大小的方法是以交点为界限,观察交点左、右两边区域的两个函数图像上、下位置关系,从而写出函数值的大小.反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.另外常见的还有反比例函数与二次函数、两个反比例函数之间的关系。
第12讲 积的近似数(讲义)(苏教版,含答案)
![第12讲 积的近似数(讲义)(苏教版,含答案)](https://img.taocdn.com/s3/m/96d7dd7e86c24028915f804d2b160b4e767f81c6.png)
第12讲积的近似数(讲义)小学数学五年级上册易错专项练(知识梳理+易错汇总+易错精讲+易错专练)1. 求积的近似值的方法。
求积的近似值一般用“四舍五入”法。
先算出积,然后看哪些是要省略的部分,再看省略部分的首位数字是几,决定是“舍”还是“入”,最后把取舍后的得数用“≈”连接。
温馨提示:若近似值末尾是0,这个0必须保留。
1. 用“四舍五入”法按要求保留小数位数,不能直接去掉尾数;计算结果是近似值,得数要用“≈”连接。
2. 求得的近似值如果是末尾含有0的小数,那么这个小数末尾的0不能去掉,否则会改变近似值的精确度。
3. 相等的两个小数精确度不一定相同。
如4.8和4.80。
【易错一】李奶奶花22.2元买了5棵大白菜,共重12千克。
照这样计算,买30.5千克大白菜要花()元。
A.56.425 B.56.43 C.11.29 D.11.285【解题思路】根据单价=总价÷数量,用买5棵大白菜的总钱数除以大白菜的质量,求出每千克大白菜的价钱;再根据总价=单价×数量,用每千克大白菜的价钱乘30.5,即是买30.5千克大白菜的钱数;注意计算结果根据“四舍五入”法保留两位小数。
【完整解答】22.2÷12=1.85(元)1.85×30.5≈56.43(元)故答案为:B【易错点】掌握小数乘除法的计算法则及应用,注意结合生活实际,人民币最小单位为分,所以钱数最多是两位小数。
【易错二】我们现在使用的《数学》课本的规格为“210毫米×148毫米”。
那么数学课本封面的面积大约是( )平方米。
(保留两位小数)【解题思路】课本的规格为“210毫米×148毫米”,将毫米变换单位为“米”,再根据长方形面积公式求出面积。
【完整解答】210毫米=0.21米,148毫米=0.148米0.21×0.148≈0.03(平方米)【易错点】此题考查的是小数乘法的应用,解答此题应注意单位不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲习题答案及解题分析
一、答案
1.Internet上使用的是TCP/IP参考模型,其基础协议是TCP/IP传输控制协议/网
络协议。
TCP/IP协议实际是指一组协议的集合,其中最重要的是TCP协议与IP协议。
答案为D。
2.WWW服务是指Internet信息查询、浏览服务。
它是以超文本传输协议HTTP
为基础的。
因此本题答案为C。
3.IP地址是Internet上为每台主机确定的唯一的地址,长度为32位。
因此本题答
案为C。
4.域名是采用层次型命名方式。
最高层域表示国家代码(美国除外)。
其次,第二
层域表示机构域名或地理域名。
本题中第二层域名为edu,表示是教育部门。
因此本题答案为D。
5.WWW称为万维网,是Internet上的信息浏览系统,也是Internet的服务功能之
一。
Internet上提供的服务非常之多,而信息浏览只是其中的一种。
因此本题答案为D。
6.Internet上的每台计算机都有一个IP地址。
Internet域名管理系统DNS(Domain
Name System)给网络上的每台计算机赋予一个形象直观的唯一标识名,即称为域名。
每一台计算机的IP地址和它的域名都是一一对应的,不存在一个IP地址对应多个域名,也不存在一个域名对应多个IP地址,也不存在IP地址表示的是物理地址而域名表示的是逻辑地址。
因此本题答案为C。
7.WWW全称是环球信息网,也称为万维网。
是Internet上的信息浏览系统,可
提供信息的浏览、查询、检查等功能。
因此本题答案为A
8.域名系统DNS是TCP/IP参考模型应用层的协议,它的作用是将域名与IP地址
进行转换。
因此本题答案为B。
9.SMTP是电子邮件协议,是TCP/IP参考模型应用层的协议。
用于实现互连网中
电子邮件传送功能。
因此本题答案为B。
10.域名的形式是自右至左表示:国家代码.机构类型.单位名.主机名。
所以最左边
netlab的是主机名。
因此本题答案为A。
11.Internet网上有许多复杂网络和许多不同类型的计算机,为保证他们之间能够互
相通信的基础是TCP/IP 。
TCP/IP是指传输控制协议/网络互联协议,该协议是针对Internet而开发的一套通信协议。
它规定了所有连入Internet的计算机必须
遵守的通信规范,从而确保数据传输的可靠性。
因此本题答案为A
12.Internet域名管理系统DNS(Domain Name System)采用分层的方法,给网络上的
每台计算机赋予一个由字符组成的形象直观的唯一标识名,结构如下:
计算机主机名.组织机构名.网络名.顶级域名
顶级域名代表建立网络的部门、机构、或网络所属的国家、地区等。
顶级域名大体可分为两类,一类是组织性顶级域名,一类是地理顶级域名。
组织性顶级域名一般采用由三个字母组成的缩写来表明各机构类型,字母不分大小写。
其中:顶级域名.int所代表的机构类型是国际组织,军事系统的顶级域名为.mil。
因此本题答案为D。
13.IP地址是Internet中计算机的地址编码,由32位二进制数组成,用来标识惟一
的主机。
为了便于理解,每个IP地址通常用四组十进制数表示,每组数字取值范围是0-255,各组数之间用圆点(.)分隔开。
因此本题答案为C。
14.域名系统是一个复杂系统。
为加强我国互联网络域名系统的管理,《中国互联
网络域名注册暂行管理办法》规定在中国境内注册域名应采用如下层次结构:1)顶级域名使用cn。
2)二级域名分为“类别域名”和“行政域名”两类。
类别域名6个。
其中,ac适用于科研机构,其他5个为com(商业机构),edu(教育机构),gov(政府机构),net(网络机构),org(其他机构)。
中的顶级域名cn表示中国,二级域名edu代表教育机构,因此它是中国的一个教育站点。
因此本题答案为A。
15.TCP/IP是指传输控制协议/网络互联协议,该协议是针对Internet而开发的一套
通信协议。
它包括四层模型:网络接口层、网络层、传输层和应用层。
IP协议是位于网络层,负责计算机之间的通信。
IP协议是网络互连的数据报协议,依靠上层传输层协议提供端对端的可靠传输。
但IP不负责连接的可靠性、流量控制和差错控制。
只是保证了信息在低层的传输。
因此本题答案为B。
16.使用Telnet协议与远程计算机相连,使之成为远程计算机的一个终端。
故本题
答案为A。
17.HTML是1990年CERN(欧洲离子物理实验室)提出的网页标识语言即超文本标
识语言HTML(Hyper Text Markup Language),它是一种与平台无关的标记语言。
它的最大特点就是使用标记(Tag)来标识信息的排列输出格式、指出需要显示的图像和超文本链接等,将普通文本文档“标记”为超文本文档。
这种超文本文档经WWW浏览器解释,就可以具有网页功能。
因此本题答案为C。
18.在通过电话线拨号上网的情况下,当用户向Internet服务商(ISP)注册账号后,
就可以在Internet服务商的服务器上得到一个电子信箱,以及邮箱的用户名和密码。
答案为D。
19.搜索引擎是一种网上工具,它能帮助用户迅速而全面地找到所要的信息。
故本
题答案为B。
20.目前我国有权与Internet网直接连接的网络有四个:CERNET(中国教育和科
研网)、CHINAGBN(中国金桥信息网)、CSTNET(中国科技网)、CHINANET (中国公用互联网)。
其他网络都是通过这四个网络而接入Internet的,国内用户无论通过哪种方式上网,都是直接或间接地接入这四个网络。
因此答案为C。
N是Local Area Network 的缩写,意为局域网。
因此本题答案为B。
22.统一资源定位器,又叫URL,是专为标识Internet网上字眼位置而设的一种编
制方式。
它的一般格式分为三部分组成:传输协议://主机IP地址或域名地址/资源所在的路径和文件名称。
因此本题答案为A。
23.一般IP地址有4组数字组成,每组数字介于0-255之间。
而B答案中出现256
了。
因此本题答案为B。
24.目前市面上流行的两种浏览器是微软的Internet Explorer 和网景的Netscape。
而Outlook Express、Yahoo、FrontPage都不是浏览器。
因此本题答案为A。
25.统一资源定位器URL是英文Uniform Resource Locator的缩写。
因此本题答案
为D。
26.电子邮件地址的格式是:用户名@域名。
这里@之前是用户自己选择的代表自
己的字符组合或代码,@之后是为用户提供电子邮件服务的服务商名称。
因此本题答案为A。
27.Internet上常用的机构域名有:Com代表商业机构、Gov代表政府机构、Edu代
表教育机构、Net代表网络机构、Int代表国际组织等等。
因此本题答案为B。
28.Internet(因特网)基本功能是:www浏览、电子邮件、文件传输、远程登录、
GOPHER搜索等。
计算机本身有实时监测控制的功能。
因此本题答案为D。
29.TCP/IP 协议是Internet上的最基础和核心的协议,它是一组通信协议的代名词,
是由一系列协议组成的协议簇。
因此本题答案为A。
30.组建网络时需要使用很多设备,常见的网络设备有网卡、集线器、交换机、路
由器、调制解调器等。
这些设备是组建网络的硬件基础,组建不同的网络所需设备不同。
网卡是电脑与网络之间使用最为广泛的硬件设备;调制解调器适用于拨号连接的设备,属于窄带连接设备,它也是网络中的重要连接设备。
因此本题答案为B。