水中有机污染物的迁移转化
水体内污染物的迁移与转化
水体内污染物的迁移与转化随着人类经济社会的发展,大量的污染物排放到水体中,其中包括无机物和有机物等,这些污染物不仅对水体本身的生态环境造成了极大的破坏,而且还会对人类的健康产生巨大的威胁。
因此,进行水体内污染物的迁移与转化的研究具有非常重要的现实意义。
一、水体内污染物的迁移机制1. 全球水循环过程中的污染物迁移全球水循环是地球大气圈、水圈和陆地生物圈等部分组成的整体系统,在这个系统中,污染物会通过全球水循环向各地的水体中传输。
例如,空气中的污染物(如氧化氮与二氧化硫)在大气中形成酸雨,然后通过雨水向地面水体中传输,进而加剧了水体中的酸性。
2. 水体内不同环境的污染物迁移水体内污染物的迁移机制是多种多样的,因为水环境中的温度、水流速度、离子环境、生物区系等环境因素均会对污染物的迁移方式产生影响。
在静水环境中,污染物多集中分布于底部或者水面附近,而在水流速度较快的河流或者海域中,污染物则随着水流向下游或者海底迁移。
此外,污染物的溶解度、分子质量、分子形式等也会对污染物的迁移方式产生一定的影响。
二、水体内污染物的转化机制1. 水体内生物作用的污染物转化生物是水体内最重要的组成部分之一,因为水体中存在着大量的细菌、藻类、浮游生物等微生物群体,它们可以通过吃掉周围的有机物而将污染物降解为水体生态环境所必需的无害物质,从而起到了水体净化的作用。
例如,强氧化剂过氧化氢可以被水体内的微生物降解为H2O和O2,香料中的L-薄荷烯等芳香类污染物可以被水体内的藻类通过吸收转化为二氧化碳和水,并且藻类中的一些细胞壁也含有丰富的吸附有机物的活性部位,可以吸附水体中的污染物,起到净化作用。
因此,生物作用是水体内污染物转化中最为重要的一个机制。
2. 环境氧化还原的污染物转化环境氧化还原反应是一类水体内污染物转化的重要机制,它通常是指一类化学反应,其中电子在不同的物质之间转移。
在氧气存在的环境下,某些化合物可以发生氧化反应,例如铁离子可以被氧化为铁离子,从而引发一系列反应,最终使得化学反应达到自我平衡。
污染物的环境迁移和转化机制
污染物的环境迁移和转化机制随着现代工业化和城市化的快速发展,环境污染已经成为了我们面临的一个严峻问题。
产生污染物的源头往往是工业、农业、交通等各个方面,而这些污染物在环境中的迁移和转化机制则是我们需要探讨的一个重要话题。
在本文中,我们将从三个方面进行讨论:污染物在大气、土壤和水中的迁移和转化机制。
一、大气中的污染物迁移和转化机制大气污染是全球环境面临的一个共同挑战,其中主要污染物包括二氧化硫、氮氧化物、臭氧、颗粒物等。
这些污染物在大气中的迁移和转化机制主要有以下几方面。
1、物理迁移大气中的污染物往往通过物理迁移的方式,随着气流的传输而在大气中传播。
例如,风起时,二氧化硫、氮氧化物等污染物就会随着气流的传递而向周围传播,范围可以达到数十公里。
2、化学转化大气中的污染物也可以通过化学反应进行转化,这种化学反应可以是自催化反应,也可以是光催化反应。
例如,在光照下,氮氧化物会与挥发性有机物发生反应,生成臭氧等氧气化合物,这就是光化学反应。
3、降雨和沉积大气中的污染物在接近地面时,会被降雨和沉积作用所固定,从而减少它们对环境的影响。
在雨水中,大气中的污染物会形成酸雨,对土壤和水体的污染作用加剧。
二、土壤中的污染物迁移和转化机制土壤是生态系统的一个重要组成部分,土壤中的污染物对环境造成的威胁是不可忽视的。
在土壤中,污染物的迁移和转化机制主要有以下几方面。
1、扩散和渗透土壤中的污染物可以通过扩散和渗透的方式进行迁移,这种方式和大气中的物理迁移类似。
污染物在土壤中的扩散和渗透受到土壤质量和结构的影响,不同的土壤类型对污染物的扩散和渗透具有不同的影响。
2、吸附和解析物质在土壤中的吸附和解析的过程是污染物在土壤中的转化机制之一。
污染物在与土壤颗粒接触时,会被吸附在颗粒表面。
根据不同的污染物和土壤类型,吸附的程度和效果有所不同。
3、微生物降解微生物降解是土壤中污染物的重要转化机制之一。
有些污染物可以被土壤中的细菌和真菌等微生物进行降解,这样就可以减少其对环境的影响。
污染物迁移与转化机理研究
污染物迁移与转化机理研究第一章污染物迁移与转化机理概述污染物迁移与转化机理研究是环境科学中重要的研究方向之一。
人类活动在很大程度上影响大气、水体和土壤中的污染物的分布和扩散。
了解污染物迁移与转化的机理对于环境保护和生态平衡的维护至关重要。
第二章水体中污染物的迁移与转化机理水体是从源头到终点的一条流动路径,各种污染物的输运和转化会随着水的流动而发生变化。
水体中的化学反应和物理过程会使一些污染物转化成为其他的污染物,例如水中的铜、铁离子可以与有机物结合形成硫酸盐,从而提高水中的硫酸盐浓度。
同时,水体中的污染物也会随着水流向下游迁移。
因此,研究水体中污染物的迁移和转化机理对于保护水环境至关重要。
第三章大气中污染物的迁移与转化机理大气污染是当前环境领域中经常提到的问题。
空气中的气体、颗粒物和云雾滴等都是大气的碳污染物,它们的来源包括燃料的燃烧和人类活动。
这些污染物在大气中的迁移和转化往往是复杂的,并随着大气运动而发生变化。
例如,颗粒物在大气中的吸附、射线和氧化作用等都能够改变其化学成分和物理性质,从而影响其迁移和转化机理。
因此,研究大气中污染物迁移与转化的机理可以帮助人们理解和解决大气污染问题。
第四章土壤中污染物的迁移和转化机理土壤是污染物存在的主要场所之一,污染物在土壤中的迁移和转化往往与土壤物理性质、化学性质和生物性质的变化密切相关。
土壤中污染物的转化通常可以通过酸碱中和、生物降解和吸附等多种方式实现。
同时,土壤中的污染物会随着水流、溶解、重力和土壤特性的变化而向下渗透,从而影响植物和地下水的水质。
因此,对于土壤中污染物的迁移和转化机理的研究具有重要的现实意义。
第五章污染物迁移与转化机理的模拟与预测在研究污染物迁移和转化的机理过程中,数学模型和计算机模拟具有重要的应用价值。
数学模型可以解决复杂的自然和人为系统中的问题,并可以预测出未来的情境。
例如,可以使用非线性数学模型来模拟土壤中污染物的迁移过程,并预测不同污染物在土壤中的降解和吸附行为。
环境科学中的污染物迁移与转化研究
环境科学中的污染物迁移与转化研究在当今社会中,污染物已经成为了环保领域的热门话题。
随着人们对环境保护问题的重视程度不断提高,对污染物迁移与转化的研究也变得越来越重要。
因此,环境科学中的污染物迁移与转化研究已成为学术界的重点研究领域之一。
污染物是指对环境有害的物质。
通常来说,污染物可以分为有机物和无机物两大类。
其实,随着人类工业和生产的不断发展,在环境中人为制造出来的有害物质越来越多,以至于制造出来的污染物种类层出不穷。
污染物对人类的危害也是不言而喻的,它们不仅会对生态环境造成严重破坏,而且还会对人类的身体健康产生不利影响。
因此,对于污染物的研究工作就显得尤为重要。
在环境科学中,污染物迁移与转化研究是十分复杂的。
因为污染物在环境中的一切行为都是由各种因素综合作用的结果。
具体来说,这些因素包括物理、化学、生物等各个方面的因素。
因此,要全面了解污染物迁移与转化的过程,需要对这些因素进行深入的分析,并制定出相应的措施。
首先,从物理因素方面来说,污染物的迁移与转化主要与土壤和水的特性有关。
因为水和土壤都是自然环境中重要的介质,在污染物的迁移过程中都起着非常重要的作用。
土壤质地是影响污染物迁移与转化的一个主要因素。
因为土壤质地的不同会影响水分在土壤中的运输速度和方向。
比如,土壤中含有粘土质地的地区,水的渗透速度就会非常缓慢,这就让污染物的迁移变得更加困难。
水的运动与溶解度也是影响污染物迁移和转化的另一个重要因素。
因为水的运动会决定污染物的迁移方向和速度,并且水中溶解的有机物、无机物质也会对污染物的转化产生影响。
然后,从化学因素方面来看,污染物的迁移与转化主要与污染物的种类、污染物的溶解状态以及环境中的质量浓度等因素有关。
污染物的种类是影响它们在环境中运移和转化的一个主要因素。
在不同的环境中,不同种类污染物的行为也不同,一些易挥发化合物比一些不易挥发化合物向空气中挥发得更快,有机物比无机物更容易分解等。
污染物的溶解状态也是决定其迁移和转化的一个重要因素。
水文地球化学过程中污染物迁移与转化机理分析
水文地球化学过程中污染物迁移与转化机理分析随着人类经济增长和社会发展,水环境污染愈发严重,污染物的迁移与转化机理成为热门研究课题。
水文地球化学过程影响着污染物的迁移和转化,从而决定着污染物对环境的危害程度和寿命。
一、水文地球化学过程以及其影响污染物迁移的机理水文地球化学过程包括水文循环过程和地球化学过程。
水文循环过程是地球上水分从一处不同的状态、介质、形式不断转化,包括蒸发、降雨、地下水循环、河道和湖泊等。
地球化学过程则是水环境中的化学反应,包括化学平衡、溶解氧、微量元素和有机物的溶解、膜过滤和交换反应等。
水循环过程和地球化学过程决定了水环境中污染物的迁移和转化。
水循环过程对于污染物的迁移主要体现在水流速度、径流和渗透度等方面。
污染物通过水流速度被带动向下游迁移,径流和渗透度则影响着污染物的扩散速率。
地球化学过程则对污染物的转化有重要影响。
比如,在水体途中,有氧和无氧的水位条件会导致水体中污染物的化学形态发生改变,从而影响着其对生态与环境的危害程度。
二、不同的环境和类型的污染物对迁移和转化的影响不同的污染物和不同的环境会对迁移和转化机理产生影响。
1.水体中无机物的迁移和转化机理水体中的常见无机物污染物种类有氨氮、硝酸盐和磷酸盐等。
这些无机物污染物是水体富营养化和水体产生异味的重要原因。
随着水流速度和沉积速度的变化,氨氮、硝酸盐和磷酸盐的浓度呈现不同的分布规律。
在水流速度较慢,沉积速度较快的环境中,污染物的浓度较高,而在水流速度较快,沉积速度较慢的环境中,污染物的浓度较低。
除了流速和沉积速度之外,无氧和有氧的水环境也会影响着无机物的转化。
在无氧水环境中,氮氧化物可以还原为氨氮,从而使污染物的浓度增加。
当水环境中存在足够的溶解氧时,氮氧化物会被氧化为无害的氮气,从而使污染物的浓度降低。
2.水体中有机物的迁移和转化机理水体中的有机物污染物包含多种有机化合物,如乙二胺四酸盐、十二烷基苯磺酸钠等。
这些有机物污染物不仅排放难度大,而且对水体生态和环境危害更大。
污染物在水体中的迁移转化方式
污染物在水体中的迁移转化方式主要有以下三种途径:
(1)氧化-还原作用。
天然水体中有许多无机和有机氧化剂和还原剂,如溶解氧、Fe3+、Mn4+、Fe2+、S2-及有机化合物等,这些物质对污染物的转化起重要作用。
如环境中重金属在一定氧化-还原条件下,容易发生价态变化,结果是其化学性质改变,迁移能力也会发生改变。
水体中的氧化-还原类型、速率和平衡,在很大程度上决定了水中重要溶质和污染物的性质。
如在一个厌氧湖泊中,湖下层的元素以还原态存在:碳还原成CH4,氮还原成[*]等,而表层水由于可被大气中氧补充,成为氧化性介质,达到热力学平衡时,碳成为CO2,氮成为[*]。
显然这种变化对水生生物和水质影响很大。
(2)络合作用。
天然水体中有许多无机配位体,如OH-、Cl-[*]、[*]和有机配位体如氨基酸、腐殖酸,以及洗涤剂、农药、大分子环状化合物等,它们可以与水中的污染物,特别是重金属发生络合反应,改变其性质和存在状态,影响污染物在水体中发生、迁移、反应和生物效应。
(3)生物降解作用。
水体中的微生物,特别是底泥中的厌氧微生物,可以使一些污染物发生转化,如把无机汞转变为有机汞。
3.3水中有机污染物的迁移转化1课件(2)
1.计算气体的溶解度时,需要对水蒸气的分压加以校正。 2.亨利定律并不能说明气体在溶液中进一步的化学反应。 溶解于水中的实际气体的量,可以大大高于亨利定律表示 的量。
三、挥发作用—亨利常数的估算
一般方法
KH' Ca /Cw
亨 利 常
Ca 有机毒物在空气中 尔的 浓摩 度m,o/lm3; KH' Henr定y 律常数的替换形 量式 刚, 为 1;
当亨利定律常数小于1.013Pa·m3/mol时,挥发作用 主要受气膜控制,此时可用Kv =KH’Kg这个简化方程。如 果亨利定律常数介于二者之间,则式中两项都是重要的。
四、水解作用
水解作用是有机化合物与水之间最重要的反应。
R+ X H 2O RO +H H X
有机物通过水解反应而改变了原化合物的化学结构。但 并不能总是生成低毒产物。 在环境条件下,一般酯类和饱和卤代烃容易水解,不饱 和卤代烃和芳香烃则不易发生水解。
此时水中有机物的浓度(ρw)为:ρw =ρT / (Kp ρp十1)
二、分配作用—标化分配系数
一般吸附固相中含有有机碳(有机碳多,则Kp大),为了在 类型各异组分复杂的沉积物或土壤之间找到表征吸着的常数, 引入标化分配系数(Koc):
Koc = Kp/Xoc
Koc——标化的分配系数,即以有机碳为基础表示的分配系数; Xoc——沉积物中有机碳的质量分数。
四、水解作用-水解速率与pH的关系
实验表明,水解速率与pH有关。Mabey等把水解速率归纳为由 酸性或碱性催化的和中性的过程,因而水解速率可表示为:
RH Kh[C]{KA[H] KN KB[OH-]}[C]
KA 酸性催化过程的二应 级水 反解速率常数; KB 碱性催化过程的二应 级水 反解速率常数; KN 中性过程的二级反解 应速 水率常数; Kh 在某一下准一级反解 应速 水率常数
水环境污染物的迁移转化规律
水环境污染物的迁移转化规律
水环境污染物的迁移转化是一个重要的环境问题,也是当前地球环境污染防治的一个议题。
水环境污染物的迁移转化规律是指,污染物在水中的运动、转化和转移规律,它经历了在
水中的溶解、沉降和扩散三种过程,也就是物理-化学-生物三位一体联合作用过程。
污染物在水环境中的转化是一个复杂的过程,包括物理转化、化学转化和生物转化三种过程。
物理转化是指水的流动和搅动能使污染物聚集;化学转化指的是污染物在水环境中由
于水的化学反应逸散和降解转化;生物转化是指污染物在水环境中被有机降解的过程,靠
微生物的发酵、氧化抑制等作用达到处理效果。
此外,水环境污染物的迁移转化还受到很多其他因素的影响,比如水质、温度、pH值、
向性、气泡等,这些因素可以影响污染物的迁移速率、转化效率以及最终消解率。
综上所述,水环境污染物的迁移转化是一个复杂的过程,要正确预测和分析污染物的迁移、转化和消解情况,需要大量实际调查资料和实验数据,结合理论模拟和理论计算,以便更准确地评估水环境污染物的迁移转化过程,有效地实施环境保护。
第二章 水中有机污染物的迁移转化
分配系数—标化分配系数
2. 分配系数与标化分配系数 分配系数: 有机毒物在沉积物(或土壤)与水之间的分配,往往可用分配 系数(Kp)表示: KP=cs/cw
式中:cs、cw—分别为有机毒物在沉积物中和水中的平衡浓度 cT = cscp+cw cw = cT/(Kpcp+1)
式中: cT—单位溶液体积内颗粒物上和水中有机毒物质量总和,g/L ; cs、cw—分别为有机毒物在沉积物中和水中的平衡浓度,kg/L, g/L;cp—为有机物在颗粒物上的平衡浓度,g/kg
第二十八课
LOGO
第四节 水质模型
污染物进入水环境后,由于物理、化学和 生物作用的综合效应,其行为的变化十分 复杂的,很难直观地了解它们的变化和归 趋。若借助水质模型,可较好描述污染物 在水环境中的复杂规律及其影响因素之间 的相互关系,因此水质模型是研究水环境 的重要工具。 一、氧平衡模型(Streeter – Phelps 模型) 二、湖泊富营养化预测模型 三、有毒有机污染物的归趋模型
Spurlock和Biggar :极性 有机污染物与活性有机 质基团之间发生的特殊 作用
分配与吸附
①分配作用:溶解作用,相似相溶; ②吸附作用:表面吸附作用,物理吸附通过范德华 力,化学吸附通过化学键\氢键\离子偶极键\配位 键\键等;
分配作用 吸附作用 吸附热 小 大 等温线 线性(整个溶解度范围) 非线性 竞争吸附 不发生,与溶解度有关 存在, 与表面吸 附位有关
(1) (2) (3) (4)
L( x)
x 0
L0 , L() 0
C( x)
x 0
C0 , C() Cs
式中:L 为 x 处河水中的 BOD 值,mg/L;C 为 x 处河水溶解氧浓度,mg/L;Cs 为 河水某温度时的饱和溶解氧浓度,mg/L;u 为河水平均流速,m/s;K1 为 BOD 的衰减系数,
【环境化学】第3.3章 水环境化学——第三节 水中有机污染物的迁移转化:水解作用
部分有机磷酸酯杀虫剂的水解半衰期值(25℃,pH7.4)
8
四、卤代物
9
部分饱和卤代烃的水解半衰期值 (25℃,pH7)
10 H2O ⇌ ROH + HX 通常测定水中有机物的水解是一级反应,RX的消失速率正比 于[RX],即
-d[RX]/dt = kh[RX] (3-137) 式中:kh——水解速率常数。
16
水解速率常数与pH的关系图
Kh=KA[H+]+KN+KBKw/[H+]
17
改变 pH 值可得一系列kh。在lgkh —pH图(图3-31)中,可得三个 交点相应于三个pH值(IAN、IAB、INB),由此三值和以下三式可计 算出kA、kB和kN
(a) lgkh = lgkA –pH 与 (b) lgkh = lgkN 的交点: lgkA – pH = lgkN pH = IAN = -lg(kN/kA) 酸性催化
exp(x)在x→0处展开,计算e的近似值 Exp(x)=1+x+1/2*x2+1/6*x3+1/24*x4+1/120*x5+1/720*x6+1/5040*x7+1/40320*x8+32……
第三节 水中有机污染物的迁移转化
3.1 吸附作用 3.2 挥发作用 3.3 水解作用 3.4 光解作用 3.5 生物降解 3.6 还原作用
影响因素
阳光的辐射强度、天然水体中光的迁移特征 光的吸收性质 化合物的反应
21
3.4.2 光解作用分类
直接光解:化合物直接吸收太阳辐射而分解; 敏化光解:水体中的天然物质被阳光激发,又将激发态的
环境科学中的污染物迁移与转化
环境科学中的污染物迁移与转化近年来,环境污染问题日益严重,其中污染物的迁移和转化是环境科学领域的重要研究方向之一。
污染物是指一切有害物质或能引起人类健康或环境损害的物质,如有机化合物、重金属、放射性物质等,在环境中的存在会对自然界和人类健康造成威胁。
因此,了解污染物的迁移和转化规律对于保护环境和人类健康非常重要。
一、污染物在环境中的迁移污染物在环境中的迁移是指物质在不同介质之间的扩散、渗透、转化、漂移等过程。
其中,介质包括空气、土壤、水域等自然界的不同环境。
污染物通过介质之间的相互作用和作用力进行传播,对环境和生态系统造成危害。
1. 污染物在空气中的传播迁移污染物在空气中的传播和迁移对于大气污染和气候变化产生重要影响。
罪魁祸首是人类活动带来的气体废弃物和大气气溶胶颗粒,如二氧化碳、甲烷、氧化氮等。
这些污染物在空气中通过扩散、对流、湍流等方式,迁移至下风处,并在大气中造成持久的环境负担。
2. 污染物在土壤中的传播迁移土壤是污染物的重要富集场所和传播介质之一。
污染物在土壤中的扩散和迁移主要受颗粒物大小、土壤孔隙度、水分等环境因素的影响。
例如,重金属污染物在土壤中的富集以及向地下水的迁移受土壤粘土和有机物质的化学吸附、离子交换、复合物形成等因素的影响。
3. 污染物在水体中的传播迁移水体是污染物传播的另一个主要介质。
污染物在水中的迁移和转化受到水体流动速度、水深、水温、pH等环境因素的影响。
特别是河流和湖泊这样的水域,会对水体的混合、输运、沉积、分配和生物转化造成不同程度的影响。
二. 污染物的化学转化在环境中,污染物还会发生多种复杂的化学反应和转化。
理解污染物的化学转化规律可以更好地预测它们的迁移速度和路径,从而更好地管控和治理环境污染。
1. 污染物的光化学反应光化学反应是指化学反应的速率由光照引起的过程。
一些有机物质和氧气在光和气体的共同作用下,会发生各种复杂的化学反应,从而形成新的有毒物质,对环境和人类健康造成潜在威胁。
003.4水环境化学-有机污染物的迁移转化
生物浓缩因子(BCF)
污染物在生物体内的浓度
BCF=
污染物在水中浓度
污染物在生物体中的浓缩因子大小主要与生物特性、污染 物特性和环境条件等三方面因素有关,污染物的BCF值间 可以相差几万倍甚至更高
生物积累、富集和放大
挥发作用示意图
对于具有两个环的PAH 化合物来说,有较大挥发性。例 如飘浮海面的原油中所含的萘很容易在一定水温、水流、 风速条件下挥发逸散到大气中去,但存在于水体中具有4 或4 个以上苯环的PAH 化合物在任何环境条件下都是不易 挥发的。
包括很多芳烃(苯、甲苯、二甲苯、乙苯等)在内的许多 有机物都具有易挥发特性。由此组成了一个有机化合物大 类,被称为挥发性有机化合物类(VOCs)。
水藻繁生的水体中,由于光合作用的存在,可使水中的氧达 到过饱和状态.
流动水可以靠好氧菌的作用得到自净化
当水体受到有机物严重污染时,水中DO会大大下降,甚至 可接近于零(即缺氧条件)。
在缺氧条件下,有机物分解时出现腐败发酵现象,使水质严重恶化。
2、生化需氧量(BOD)
地表水中微生物将有机物氧化成无机物所消耗的溶解氧量
BOD代表了可生物降解的有机物(第一类)的数量。
微生物分解有机物的过程(分为二个阶段):
有机物 转 化 CO2 + H2O + NH3 一般此耗氧量即BOD
NH3 亚硝化细菌、硝化细菌 亚硝酸盐 + 硝酸盐 硝化过程
温度 最适宜的温度15—300C
影响生化需氧量的因素
即 影响分解速率、分解程度 的因素
吸附在污染控制中的应用
增强吸附固定作用
3.3水中有机污染物的迁移转化(2)
第三章:水环境化学——水中有机污染物的迁移转化第三节水中有机污染物的迁移转化一、概述二、分配作用三、挥发作用●许多有机物,特别是卤代脂肪烃和芳香烃,都具有挥发性,从水中挥发到大气中后,其对人体健康的影响加速,如CH2Cl2、CH2Cl- CH2Cl等。
●挥发作用是有机物从溶解态转入气相的一种重要迁移过程。
在自然环境中,需要考虑许多有毒物质的挥发作用。
挥发速率依赖于有毒物质的性质和水体的特征。
如果有毒物质具有“高挥发”性质,那么显然在影响有毒物质的迁移转化和归趋方面,挥发作用是一个重要的过程。
●对于有机毒物挥发速率的预测方法,可以根据以下关系得到:∂c /∂t = -K v(c-p/K H)/Z = -K v’(c-p/K H)式中:c—溶解相中有机毒物的浓度;K v—挥发速率常数;K v’—单位时间混合水体的挥发速率常数;Z—水体的混合深度;p—在所研究的水体上面,有机毒物在大气中的分压;K H—亨利定律常数。
●在许多情况下,化合物的大气分压是零,所以方程可简化为:∂c/∂t=-K v’c●挥发性物质在气相和溶解相之间的相互转化过程,关键是亨利定律决定的:1.亨利定律●形式:亨利定律是表示当一个化学物质在气—液相达到平衡时,溶解于水相的浓度与气相中化学物质浓度(或分压力)有关,亨利定律的一般表示式:➢G(aq)=K H P(G(aq)—mol/m3,P—Pa,K H—亨利常数mol*m-3 Pa-1)➢或者P = K H C w(式中:P—污染物在水面大气中的平衡分压,Pa;C w—污染物在水中平衡浓度,mol/m3;K H—亨利定律常数,Pa*m3/mol)。
这里,采用第二种形式,则可以知道,如果大气中存在某种污染物,其分压为P,那么在水中的溶解形成的浓度:Cw=P/K H。
●亨利常数的估算:➢一般方法:K H’=C/C w(C—有机毒物在空气中的摩尔浓度,mol/m3;K H’—亨利定律常数的替换形式,无量纲)。
水生环境中有机污染物的迁移与转化机制
水生环境中有机污染物的迁移与转化机制在现代社会,有机污染物的排放已经成为一个严重的环境问题。
其中,水生环境中的有机污染物对生态系统和人类健康造成了极大的威胁。
了解有机污染物在水生环境中的迁移与转化机制,对于科学有效地减少水体污染具有重要的意义。
1. 有机污染物的迁移机制有机污染物在水生环境中的迁移受到水流、沉积物和生物活动等因素的影响。
其中,水流是主要的迁移途径之一。
当有机污染物进入水体后,其随着水流的运动而迁移。
水流的速度以及水体的流动情况都会对有机污染物的迁移路径和距离产生影响。
此外,沉积物也是有机污染物迁移的重要载体。
有机污染物可以通过吸附或结合到沉积物中,从而随着沉积物的迁移而改变位置。
同时,生物活动也会对有机污染物的迁移产生一定影响。
例如,水生生物的摄食和代谢活动能够加速有机污染物的迁移速度。
2. 有机污染物的转化机制有机污染物在水生环境中还会发生一系列的化学、生物和物理过程,导致其发生转化。
其中,化学转化是有机污染物转化的重要途径之一。
水中的有机污染物可以通过氧化、还原和水解等反应发生转化。
此外,生物转化也是有机污染物转化的重要过程。
水生生物可以通过代谢作用将有机污染物转化为更简单的物质。
这些转化物质可以更易于在环境中分解和消除。
物理过程也会对有机污染物的转化产生一定影响。
例如,光照会促使有机污染物发生光解反应,从而改变其结构和性质。
3. 影响有机污染物迁移与转化的因素有机污染物的迁移与转化机制受到多种因素的影响。
首先,有机污染物的物化性质对其迁移与转化具有重要影响。
例如,有机溶剂在水中具有一定的溶解度,更容易迁移。
其次,环境条件也会对有机污染物的迁移与转化产生一定影响。
如温度、pH值和氧气浓度等环境因素都会对有机污染物的稳定性和活性产生影响。
此外,水体中的微生物群落和生态系统结构也会对有机污染物的转化产生重要影响。
水中存在的微生物能够通过吸附、降解和转化等过程,促进有机污染物的去除和降解。
《水环境化学》PPT课件
完整版课件ppt
18
2、石油的降解 (P126)
石油是由烷烃、环烷烃、烯烃、芳香烃 和杂环化合物等组成。
石油在水中可光化学降解或生物降解。
完整版课件ppt
19
(1)光化学降解:
在阳光照射下,石油中的烷烃及侧链芳烃受激发 活化进行光化学氧化。
据测,油浓度为2000kg/km3的水面,油膜厚度 2.5μm,由于光化学氧化,几天光照即能把油膜清除。
氧化)
完整版课件ppt
4
不易被氧化的:饱和的脂肪烃、含有苯环
结构的芳香烃、含氮的脂肪胺类化合物等 ;
容易被氧化的:醛、芳香胺、不饱和的烯
烃和炔烃、醇及含硫化合物(如硫醇、硫醚)等。
完整版课件ppt
5
② 还原反应 : 在有机物分子中加氢或脱氧的反应称为有机
物的还原反应。例如:
HCHO (甲醛) + H2→ CH3OH (甲醇 ) (加氢
24
③ 芳香烃的降解: 石油中苯、苯的同系物、萘等在微生物
作用下先是氧化成二酚,然后苯环分裂成 有机酸,再经有关生化反应,最终分解为 二氧化碳和水。
完整版课件ppt
25
④ 环烷烃降解:环烷烃最稳定,只有少
数微生物能使它降解。如环己烷在微生物作用下
缓慢氧化:
完整版课件ppt
26
课堂作业
教材P80 习题3、4、5、7、13、14
进行,最后分解为CO2和H2O。
完整版课件ppt
22
② 烯烃的降解
当双键在中间位置时,主要的降解途径与饱和 烷烃相似。
当双键位在碳1和碳2位时,在不同微生物的 作用下,主要降解途径有三种:即烯烃的不饱和 端氧化成环氧化物、不饱和末端氧化成醇、饱和 末端氧化成醇。
第3章 水中有机污染物的迁移转化(2007级环境工程)
分配作用(partition) 吸附作用(adsorpt水溶液中,土壤有机质(包括水生生物脂肪以及植物有机 质等)对有机化合物的溶解作用,而且在溶质的整个溶解范
围内,吸附等温线都是线性的,与表面吸附位无关,只与有 机化合物的溶解度相关。
(2)吸附作用(adsorption)
颗粒物从水中吸着有机物的量,与颗粒物中有机
质的含量密切相关,而有机化合物在土壤有机质和水 中含量的比值称为分配系数(Kp)。
根据上述讨论可以得出以下结论:
非离子性有机化合物可通过溶解作用分配到土壤有机质中,
并经过一定时间达到分配平衡 在溶质的整个溶解范围内,吸附等温线都是线性的,与表面 吸附位无关,与土壤有机质的含量有关 土壤-水的分配系数与溶质(有机化合物) 的溶解度成反 比
Kh K A H
K B KW KN H
KA、KB、KN分别表示酸性、碱性催化和中性过程的二级反应水解速率常数, 可以从实验求得。
水解作用
水解速率曲线呈U、V型,水解过程中的三个速率常数并 不总是同时出现,如当KN=0,只出现点 如果考虑到吸附作用的影响,则水解速率常数可写为:
2.标化分配系数(Koc)
有机物在沉积物(土壤)与水之间的分配系数Kp
Kp=ρa/ρw
ρa、ρw表示有机物在沉积物和水中的平衡浓度
为了引入悬浮物的浓度,有机物在沉积物和水之间平
衡时的总浓度为CT ( µg/Kg ) 可表示为:
T P W
a
ρT——单位溶液体积内颗粒物上和水中有机毒物质量的总和,
于[RX],即
d [ RX ] / dt K h [ RX ]
环境中的污染物的迁移和转化
环境中的污染物的迁移和转化随着现代工业和城市化的发展,环境污染问题日益严重。
环境中的污染物会通过多种途径迁移和转化,对生态和人类健康造成严重的威胁。
本文将介绍环境中的污染物迁移和转化的相关知识。
一、污染物在水体中的迁移和转化水体是生态系统中不可或缺的重要组成部分,水中污染物的迁移和转化对整个生态系统健康具有举足轻重的影响。
水中污染物迁移和转化主要包括以下几个方面:1、水中污染物的迁移水中污染物的迁移包括水流迁移和水体深度迁移两种方式。
水流迁移指的是污染物随着水流的运动迁移到不同位置,包括沉积物中和水生生物体内。
而水体深度迁移则是指污染物随着水体中的溶解氧、温度和光照条件的变化,从水体表层向深层迁移。
2、水中污染物的转化水中污染物的转化包括生物转化和非生物转化两种方式。
生物转化是指水生生物通过代谢作用将有机污染物转化为更简单的物质,例如水草可以将氨氮转化为硝态氮。
而非生物转化则是指非生物媒介或化学反应的作用下,污染物的结构和性质发生改变的过程,例如有机化合物在光照作用下产生自由基反应。
二、污染物在大气中的迁移和转化大气是地球生态系统环境的另一个组成部分,大气中的污染物对人类健康和生态环境造成的威胁也越来越严重。
大气中污染物的迁移和转化主要包括以下几个方面:1、大气中污染物的迁移大气中污染物的迁移主要是通过大气扩散和输送来实现的。
大气扩散是指大气中的气体、颗粒物质和水滴在大气层中不断的扩散和混合,从而实现了污染物在大气的广泛传递。
而输送则是指污染物在局部和全球尺度下的气流输送,例如大气中的臭氧和氮氧化物可以通过风吹向别的国家和地区。
2、大气中污染物的转化大气中污染物的转化主要是指污染物通过化学反应、光解和生物转化等方式发生结构和性质的变化。
其中,化学反应是大气中污染物转化的重要方式之一,例如大气中的二氧化硫和氮氧化物可以通过光化学反应形成光化学烟雾。
而光解和生物转化则是指污染物在大气中光照或微生物的影响下发生的结构和性质的变化。
水环境污染物的迁移与转化过程分析
水环境污染物的迁移与转化过程分析水环境是人类赖以生存的重要组成部分,然而,随着工业化和城市化的进程,水环境也受到了越来越多的污染。
水环境污染物的迁移与转化过程是研究水污染防治的关键。
本文将从不同角度分析水环境污染物的迁移与转化过程,希望能为水污染防治提供一些启示。
首先,我们来看水环境污染物的迁移过程。
污染物通过空气、土壤、地下水等途径进入水环境。
空气中的污染物可以通过降雨和沉降过程进入水域,土壤中的污染物则可以通过渗滤和表面径流进入水体,而地下水中的污染物则可能通过地下水流进入河流湖泊。
这些迁移途径使得污染物在区域尺度上发生迁移,不仅加剧了水环境的污染程度,还可能跨越地理边界,给水源地的保护带来挑战。
其次,我们来研究水环境污染物的转化过程。
污染物在水环境中会发生各种物化和生化反应,形成新的物质。
例如,有机污染物可能会在水中发生氧化、还原、水解等反应,产生新的有机物。
此外,一些污染物在水中还会分解为无害的物质,从而减轻水体的污染程度。
然而,转化过程并非永远对环境有益,有些物质转化后可能形成更有毒、更难降解的产物,加剧了水环境的污染。
在水环境污染物的迁移与转化过程中,环境因素起着关键的作用。
温度、pH 值、氧含量等环境条件会影响污染物的迁移和转化。
比如,高温和酸性环境可能加速有机污染物的降解,从而减轻水环境的污染程度。
此外,水体的流动性也会影响污染物的输运。
强流速和湍流环境下,污染物容易被悬浮物和沉积物吸附,从而减轻其迁移的程度。
除了环境因素,污染物本身的属性也会影响其迁移和转化过程。
有机污染物的溶解度、挥发性、分子结构等特性决定了其在水体中的分布。
一些高挥发性有机污染物易通过蒸发进入大气层,而有些疏水性有机污染物倾向于吸附在底泥和悬浮物上。
此外,一些污染物有毒且难降解,对环境和生物造成长期危害。
如何减少水环境污染物的迁移和转化一直是环境保护的重要课题。
首先,应该加强对污染源的管理和管控,减少污染物排放。
第11讲_水中有机污染物的迁移转化
辐射的形式进行“去活化”再回到基态
(2) 光量子产率与直接光解速率
❖ 进行光化学反应的光子占吸收总光子数之比, 称为光量子产率(Φ)。
生成或破坏给定物种的摩尔数 体系吸收光子的摩尔数
波长为的光所引起的直接光解速率 : dc
dt
I '
K c
假设与波长无关,则全波段光所引起的直接光解速率 :
RP
dc
dt
K c d c
K
d
设, KP K d,
则, RP
dc dt
KPc
c c0 exp(KPt),
t1/ 2 0.693 / K P
(3)水中化合物的直接光解反应
水解速率与pH的关系
❖ Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程
❖ 水解速率为三个催化过反应速度的和:
-
d[RX] dt
K
h [RX]
Kh KA[H ] K N KB[OH-] KA[H ] K N KBK W /[H ]
式中:
KA—酸性催化二级反应水解速率常数; KB—碱性催化二级反应水解速率常数; KN—中性催化二级反应水解速率常数; Kh—在某一pH值下总水解速率常数。
速率
E(酶)+S(底物)
ES
E+P(产物)
R
dB dt
Y
dc dt
max
Bc Ks c
1 1 Ks 1
R B max max c
式中:c—污染物(底物)浓度; B—细菌浓度; Y—消耗一个单位碳所产生的生物量; µm a x — 最 大 的 比 生 长 速 率 ; K s — 半 饱 和 常 数 , 即 R / B = µm a x / 2 时 的 底 物 浓 度 。
有机物在水中迁移转化规律
有机物在水中迁移转化规律
有机物迁移转化
(1)需氧污染物.在水中需要消耗大量的水溶氧进行微生物
分解的污染物称为需氧污染物,它们进入水体后即发生生物化学分解作用,由污染物有机成分中的碳水化合物、蛋白质、脂肪和木质素等分解为简单的二氧化碳和水及其它无机物质.
(2)难降解有机物污染物.这是指难以被生物分解的有机物
质.如有机氯农药、多氯联苯、芳香氨基化合物、高分子合成聚合物(塑料、合成橡胶、人造纤维)、染料等有机物质,它们在
环境中难以被生物降解,污染危害时间长.例如有机氯农药喷撒作物后只有一小部分落在作物枝叶上,其余大部分散落在土壤表面或进入大气;而进入大气后又可以随降雨或尘埃降落到地面后再进入水体.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-3-12
37
水解作用
水解速率曲线呈U、V型,水解过程中的三 个速率常数并不总是同时出现,如当KN=0, 只出现点 I AB 如果考虑到吸附作用的影响,则水解速率常 数可写为:
K h K N W ( K A[ H ] K B [OH ])
2014-3-12 34
水解作用
改变 pH 可得一系列 Kh,作Kh-pH图可 得三个相应的方程: lg K lg K pH (略去KB KN项) 酸性 lg K lg K (略去 KA KB项) 中性 lg K h lg K B KW pH (略去KA KN项) 碱性
2014-3-12
28
二、挥发作用(略)
挥发作用是指有机物质从溶解态转向 气态的过程。挥发速率与有毒物的性 质和水体特征有关
有机污染物的挥发速率( c / t )及 挥发速率常数( Kv )的关系:
C / t K v C
2014-3-12 29
三、水解作用(简述)
有机毒物与水的反应是X-基团与OH-基 团交换的过程:
同Koc的相关性一样,lg(BCF)也与 溶解度相关。 根据上述方程,作者对虹鳟鱼又 得到下列相关方程: lg(BCF) = -0.802 lgSw - 0.497
n = 7 r = 0.977
2014-3-12 27
生物浓缩因子 (BCF)
上述结果是对较高等生物而言, 对占水体生物量大部分的微生物也 可获得类似的相关方程。
Co为有机化合物在正辛醇中的初始浓度 (g/ml), Vo为正辛醇相的体积(ml),
Cw为达到平衡时有机物在水中的浓度 (g/ml),Vw为水相的体积。
2014-3-12 18
2.标化分配系数(Koc)
Kareckhoff and Chiou 等曾广泛地研究 了化学物质包括脂肪烃、芳烃、芳香 酸、有机氯和有机磷农药等的辛醇- 水分配系数Kow和Koc以及有机物在 水中的溶解度Sw的关系,得到: Koc = 0.63Kow
2014-3-12
3
吸附作用(adsorption)
吸附等温线非线性,并存在竞争吸附作 用,有放热现象。
Lambert 研究了农药在土壤-水间的分 配,认为当土壤有机质含量在 0.5-40% 范 围内其分配系数与有机质的含量成正比
2014-3-12
4
吸附作用(adsorption)
Karickhoff 研究了芳烃和氯代烃在水 中沉积物中的吸着现象,发现当颗粒物 大小一致时 其分配系数与有机质的含量
h A
h
N
三线相交处,得到三个pH值IAN、INB、 IAB
2014-3-12 35
水解作用
KN I AN lg K A
K K I NB log B W K N
I AB
K B KW 1 log 2 KA
由三式计算KA、 KB、KN
直接光解
化合物直接吸收太阳能进行分解反应
光敏化反应
水体中天然有机物质(腐殖酸,微生物 等),被太阳光激发,又将其激发态的能 量转给化合物导致的分解反应
2014-3-12 43
四、光解作用
光氧化反应
水中天然物质由于接受辐射 产生了自由基或纯态氧中间体,
它们又与化合物作用。
2014-3-12
44
1. 直接光解
RX H 2 O ROH HX
在水体环境条件下,可能发生水解的 官能团有烷基卤、酰胺、胺、氨基甲酸脂 羧酸脂、环氧化物、腈、磷酸脂、 磺酸脂、 硫酸脂等。
2014-3-12 30
三、水解作用(简述)
水解反应的结果改变了原有化合物
的化学结构,水解产物的毒性、挥发性
和生物或化学降解性均可能发生变化。
分配作用(partition) 吸附作用(adsorption)
2014-3-12 2
吸附作用(adsorption)
在非极性有机溶剂中,土壤矿物质对有机 化合物的表面吸附作用,或干土壤矿物 质对有机化合物的表面吸附作用。 前者靠范德华力,后者是化学键力,如氢 键、离子偶极键、配位键、π键等。
生物浓缩因子 (BCF)
但可以在控制某些条件下, 用所得平衡来判断不同有机物 向各种生物内浓缩的相对趋势, 采用动力学方法求得。
2014-3-12
24
生物浓缩因子 (BCF)
如有人测量了生物摄取有机毒物速率常 数 K1与生物释放有机毒物的速率常数K2
BCF = K1 / K2
而且发现一些稳定的化合物在虹鳟鱼 肌肉中累计lgKB 与lgKow有关:
成正相关
Chiou 进一步发现有机物的土壤-水
分配系数与溶质在水中的溶解度成反比
(图3-27)
2014-3-12 5
2014-3-12
6
2014-3-12
7
分配作用(partition)
分配理论认为,土壤(或沉积物)
对有机化合物的吸着主要是溶质的分 配过程(溶解),即有机化合物通过 溶解作用分配到土壤有机质中,并经 过一定时间达到分配平衡。
2014-3-12
41
四、光解作用
污染物的光解速率依赖于许多化学和 环境因素,其中主要取决于太阳光的 辐射。地球上记录到的太阳辐射的最 短波长约为286nm,作为环境过程, 当然只关心有机物吸收大于286nm波 长的光后所产生的光解过程。
2014-3-12
42
光解作用 (II)
光解过程一般可分为三类:
2014-3-12 16
标化分配系数 (Koc) (IV)
此外,还可以进一步得到Koc与 辛醇水分配系数Kow以及与有机物 在水中溶解度的关系。 Kow—化学物质在平衡状态时在 辛醇中的浓度和水中浓度之比。
2014-3-12
17
2.标化分配系数(Koc)
K OW C CW
K OW COVO CW VW CW VW
水-土的分配系数与溶质(有机化合物)的 溶解度成反比。
2014-3-12 10
2.标化分配系数(Koc)
有机物在沉积物(土壤)与水之间的分 配系数Kp
Cs Kp Cw
Cs、Cw表示有机物在沉积物和水中的 平衡浓度。
2014-3-12 11
2.标化分配系数(Koc)
为了引入悬浮物的浓度,有机物 在沉积物和水之间平衡时的总浓度 为CT ( µ g/Kg ) 可表示为:
2014-3-12 19
2.标化分配系数(Koc)
lgKow = 5.00 - 0.670 lg(Sw×103/M) (图p163)
根据这一关系,通过已知条件可 以计算有机化合物的 Kp 或 Koc。
(见p163)
2014-3-12 20来自2014-3-1221
3. 生物浓缩因子 (BCF)
有机毒物在生物群-水之间的分配称 为生物浓缩或生物积累。 生物浓缩因子(KB)定义:
化合物本身直接吸收太阳能而分解。 理论上认为,只有吸收一定辐射能的分 子才能进行光化学转化,因此光化学反 应的先决条件应该是污染物的吸收光谱
与太阳发射光谱在水环境中可利用的部 分相适应. 因此,首先必须了解水体中污
染物对光子的吸收作用
2014-3-12 45
水环境中光的吸收作用
太阳光的辐射 太阳发射几乎恒定强度的辐射和光谱 分布,但地球表面上的气体和颗粒物通 过散射和吸收作用改变了太阳的辐射强 度,阳光与大气的相互作用又改变了太 阳辐射的谱线分布。
2014-3-12 40
四、光解作用
光解作用是真正意义上的有机物分解过程, 它不可逆的改变了有机物的分子结构。 阳光供给水环境大量能量,吸收了太阳光能 的物质可将辐射能转换为热能。吸收了紫外和 可见光谱一定能量的分子,可得到有效的能量 进行化学反应,如光分解反应,它强烈的影响 水环境中某些污染物的归趋。
2014-3-12 13
2.标化分配系数(Koc)
从温度关系看,有机物在土壤中吸
着时,热墒变化不大,而活性炭上吸附 热墒变化大。因此认为,憎水有机物在 土壤上吸着仅仅是有机物移向土壤有机 质的分配机制。
2014-3-12 14
标化分配系数 (Koc) (III)
根据这一认识,可以在类型各异组分复杂 的土壤或沉积物之间找到表征吸着的常数, 即标化的分配系数Koc,以有机碳为基础 的分配系数
第三节 水中有机污染物的迁移转化 有机污染物在水环境中的迁移,转化 取决于有机污染物的自身性质和环境 水体条件 迁移转化主要方式有: 吸附、挥发、 水解、光解、生物富集、生物降解等
2014-3-12 1
一、分配作用(吸附与解吸)
1 分配理论
吸着(sorption)指有化合物在土壤
(沉积物)中的吸着存在,可以用二种机理 来描述有机污染物和土壤质点表面间物 理化学作用的范围。
2014-3-12
33
水解作用
则水解速率常数为
RH K h [C ] K A[ H ] K N K B [OH ] C
Kh K
A
H
KN
K B KW H
KA、KB、KN分别表示酸性、碱性催化和中性 过程的二级反应水解速率常数,可以从实验求 得。
2014-3-12
46
水环境中光的吸收作用
因此,辐射到水体表面的光强随 波长而变,特别是近紫外部分,由 于大气臭氧层吸收大部分近紫外光 (290- 320nm)使光强度变化很大, 而这部分紫外光往往使许多有机物 发生光解。
K OC KP X OC
Xoc表示沉积物中有机碳的质量分数