水中有机污染物的迁移转化

合集下载

水体内污染物的迁移与转化

水体内污染物的迁移与转化

水体内污染物的迁移与转化随着人类经济社会的发展,大量的污染物排放到水体中,其中包括无机物和有机物等,这些污染物不仅对水体本身的生态环境造成了极大的破坏,而且还会对人类的健康产生巨大的威胁。

因此,进行水体内污染物的迁移与转化的研究具有非常重要的现实意义。

一、水体内污染物的迁移机制1. 全球水循环过程中的污染物迁移全球水循环是地球大气圈、水圈和陆地生物圈等部分组成的整体系统,在这个系统中,污染物会通过全球水循环向各地的水体中传输。

例如,空气中的污染物(如氧化氮与二氧化硫)在大气中形成酸雨,然后通过雨水向地面水体中传输,进而加剧了水体中的酸性。

2. 水体内不同环境的污染物迁移水体内污染物的迁移机制是多种多样的,因为水环境中的温度、水流速度、离子环境、生物区系等环境因素均会对污染物的迁移方式产生影响。

在静水环境中,污染物多集中分布于底部或者水面附近,而在水流速度较快的河流或者海域中,污染物则随着水流向下游或者海底迁移。

此外,污染物的溶解度、分子质量、分子形式等也会对污染物的迁移方式产生一定的影响。

二、水体内污染物的转化机制1. 水体内生物作用的污染物转化生物是水体内最重要的组成部分之一,因为水体中存在着大量的细菌、藻类、浮游生物等微生物群体,它们可以通过吃掉周围的有机物而将污染物降解为水体生态环境所必需的无害物质,从而起到了水体净化的作用。

例如,强氧化剂过氧化氢可以被水体内的微生物降解为H2O和O2,香料中的L-薄荷烯等芳香类污染物可以被水体内的藻类通过吸收转化为二氧化碳和水,并且藻类中的一些细胞壁也含有丰富的吸附有机物的活性部位,可以吸附水体中的污染物,起到净化作用。

因此,生物作用是水体内污染物转化中最为重要的一个机制。

2. 环境氧化还原的污染物转化环境氧化还原反应是一类水体内污染物转化的重要机制,它通常是指一类化学反应,其中电子在不同的物质之间转移。

在氧气存在的环境下,某些化合物可以发生氧化反应,例如铁离子可以被氧化为铁离子,从而引发一系列反应,最终使得化学反应达到自我平衡。

污染物的环境迁移和转化机制

污染物的环境迁移和转化机制

污染物的环境迁移和转化机制随着现代工业化和城市化的快速发展,环境污染已经成为了我们面临的一个严峻问题。

产生污染物的源头往往是工业、农业、交通等各个方面,而这些污染物在环境中的迁移和转化机制则是我们需要探讨的一个重要话题。

在本文中,我们将从三个方面进行讨论:污染物在大气、土壤和水中的迁移和转化机制。

一、大气中的污染物迁移和转化机制大气污染是全球环境面临的一个共同挑战,其中主要污染物包括二氧化硫、氮氧化物、臭氧、颗粒物等。

这些污染物在大气中的迁移和转化机制主要有以下几方面。

1、物理迁移大气中的污染物往往通过物理迁移的方式,随着气流的传输而在大气中传播。

例如,风起时,二氧化硫、氮氧化物等污染物就会随着气流的传递而向周围传播,范围可以达到数十公里。

2、化学转化大气中的污染物也可以通过化学反应进行转化,这种化学反应可以是自催化反应,也可以是光催化反应。

例如,在光照下,氮氧化物会与挥发性有机物发生反应,生成臭氧等氧气化合物,这就是光化学反应。

3、降雨和沉积大气中的污染物在接近地面时,会被降雨和沉积作用所固定,从而减少它们对环境的影响。

在雨水中,大气中的污染物会形成酸雨,对土壤和水体的污染作用加剧。

二、土壤中的污染物迁移和转化机制土壤是生态系统的一个重要组成部分,土壤中的污染物对环境造成的威胁是不可忽视的。

在土壤中,污染物的迁移和转化机制主要有以下几方面。

1、扩散和渗透土壤中的污染物可以通过扩散和渗透的方式进行迁移,这种方式和大气中的物理迁移类似。

污染物在土壤中的扩散和渗透受到土壤质量和结构的影响,不同的土壤类型对污染物的扩散和渗透具有不同的影响。

2、吸附和解析物质在土壤中的吸附和解析的过程是污染物在土壤中的转化机制之一。

污染物在与土壤颗粒接触时,会被吸附在颗粒表面。

根据不同的污染物和土壤类型,吸附的程度和效果有所不同。

3、微生物降解微生物降解是土壤中污染物的重要转化机制之一。

有些污染物可以被土壤中的细菌和真菌等微生物进行降解,这样就可以减少其对环境的影响。

污染物在水体中的迁移转化方式

污染物在水体中的迁移转化方式

污染物在水体中的迁移转化方式主要有以下三种途径:
(1)氧化-还原作用。

天然水体中有许多无机和有机氧化剂和还原剂,如溶解氧、Fe3+、Mn4+、Fe2+、S2-及有机化合物等,这些物质对污染物的转化起重要作用。

如环境中重金属在一定氧化-还原条件下,容易发生价态变化,结果是其化学性质改变,迁移能力也会发生改变。

水体中的氧化-还原类型、速率和平衡,在很大程度上决定了水中重要溶质和污染物的性质。

如在一个厌氧湖泊中,湖下层的元素以还原态存在:碳还原成CH4,氮还原成[*]等,而表层水由于可被大气中氧补充,成为氧化性介质,达到热力学平衡时,碳成为CO2,氮成为[*]。

显然这种变化对水生生物和水质影响很大。

(2)络合作用。

天然水体中有许多无机配位体,如OH-、Cl-[*]、[*]和有机配位体如氨基酸、腐殖酸,以及洗涤剂、农药、大分子环状化合物等,它们可以与水中的污染物,特别是重金属发生络合反应,改变其性质和存在状态,影响污染物在水体中发生、迁移、反应和生物效应。

(3)生物降解作用。

水体中的微生物,特别是底泥中的厌氧微生物,可以使一些污染物发生转化,如把无机汞转变为有机汞。

环境化学水环境化学第三节讲解

环境化学水环境化学第三节讲解

例:某有机分子量为192,溶解在含有悬浮物的水体中, 若悬浮物种85%为细颗粒,有机碳含量为5%,其余 粗颗粒有机碳含量为1%,已知该有机物在水中溶解 度为0.05mg/L,那么其分配系数(Kp)如何计算?
lgKow=5.00-0.670×lg(0.05×103/192 ) Kow=2.46×105 由公式Koc=0.63Kow Koc=0.63×2.46×105=1.55×105 由公式Kp= Koc[ 0.2(1-f) Xocs + f Xocf ] Kp =1.55×105 [ 0.2(1-0.85) ×0.01 + 0.85×0.05 ] Kp =6.63×103
解;烷ቤተ መጻሕፍቲ ባይዱ芳基磺酸盐LAS,含磷,泡沫减少,可生物降解) 有机农药(有机氯农药DDT、六六六等毒性大,难分解,
禁用,有机磷农药含杀虫剂与除草剂,毒性大,难降解)
取代苯类化合物(苯环上的氢被硝基、胺基取代后生成的芳 香族卤化物,主要来自染料、炸药、电器、塑料、制药、 合成橡胶等工业)。
六、水体的污染小结
四、光解作用
光解作用是有机污染物真正的分解过程,因为它不可逆 的改变了反应分子,强烈的影响水环境中某些污染物 的归趋。
光解过程可分为三类: 1、直接光解:化合物本身直接吸收了光能而进行分解反
应。
2、敏化光解:水体中存在的天然物质被阳光激发后,又 将其激发态的能量转移给化合物而导致的分解反应。
3、氧化反应:天然物质被辐照而产生自由基获纯态氧等 中间体,这些中间体又与化合物作用而生成转化的产 物。
许多有机毒物可以像天然有机化合物那样作为 微生物的生长基质。只要用这些有毒物质作为 微生物培养的唯一碳源便可鉴定是否属于生长 代谢。在这种代谢过程中微生物对这些有毒物 质可以进行较彻底的降解或矿化,因而是解毒 生长基质。

第三章水环境化学

第三章水环境化学
总含盐量(TDS):
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)

水中有机污染物的迁移转化(ppt46张)

水中有机污染物的迁移转化(ppt46张)
能成为生长基质的有毒物质,能快速的被微生物 降解,对环境的威胁较小。 对于生长代谢过程,微生物群落对有毒物质一般 需要较长的适用期(2-50天)


生长代谢过程中的转化速率方程--Mond模型

Monod方程用来描述当化合物作为唯一碳源时的降解速率
E(酶)+S(底物)
ES
E+P(产物)
dB dc B c 1 1K s 1 R Y max dt dt K c R B c s max max

半衰期与有机物属性、温度、 pH有关,与有机物 初始浓度无关.
水解速率与pH的关系

Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程

水解速率为三个催化过反应速度的和:
d[RX] K [RX] h dt K K [H ] K K [OH ] K [H ] K K K /[H ] h A N B A N BW
①分配作用

②吸附作用

土壤矿物质对有机化合物的表面吸附作用
2. 标化分配系数

有机物在沉积物与水之间的分配
Kp cs cw cT cscp cw cw( 1Kpcp) cw cT ( 1Kpcp)
Kp —分配系数(与沉积物中有机质浓度有关) cT —总有机物浓度(μg/L) cs —沉积物中有机物浓度(μg/kg) cw —溶解在溶液中的有机物浓度(μg/L) cp —沉积物浓度(kg/L)
KA、KB、KN的计算

在lg Kh—pH图中,三个交点相对应于三个pH值
IAN-酸性催化与中性催化直线的交点的pH值 IAB-酸性催化与碱性催化直线的交点的pH值 INB-中性催化与碱性催化直线的交点的pH值

有机物在水中迁移转化规律

有机物在水中迁移转化规律

有机物在水中迁移转化规律
有机物迁移转化
(1)需氧污染物.在水中需要消耗大量的水溶氧进行微生物
分解的污染物称为需氧污染物,它们进入水体后即发生生物化学分解作用,由污染物有机成分中的碳水化合物、蛋白质、脂肪和木质素等分解为简单的二氧化碳和水及其它无机物质.
(2)难降解有机物污染物.这是指难以被生物分解的有机物
质.如有机氯农药、多氯联苯、芳香氨基化合物、高分子合成聚合物(塑料、合成橡胶、人造纤维)、染料等有机物质,它们在
环境中难以被生物降解,污染危害时间长.例如有机氯农药喷撒作物后只有一小部分落在作物枝叶上,其余大部分散落在土壤表面或进入大气;而进入大气后又可以随降雨或尘埃降落到地面后再进入水体.。

水环境污染物的迁移转化规律

水环境污染物的迁移转化规律

水环境污染物的迁移转化规律
水环境污染物的迁移转化是一个重要的环境问题,也是当前地球环境污染防治的一个议题。

水环境污染物的迁移转化规律是指,污染物在水中的运动、转化和转移规律,它经历了在
水中的溶解、沉降和扩散三种过程,也就是物理-化学-生物三位一体联合作用过程。

污染物在水环境中的转化是一个复杂的过程,包括物理转化、化学转化和生物转化三种过程。

物理转化是指水的流动和搅动能使污染物聚集;化学转化指的是污染物在水环境中由
于水的化学反应逸散和降解转化;生物转化是指污染物在水环境中被有机降解的过程,靠
微生物的发酵、氧化抑制等作用达到处理效果。

此外,水环境污染物的迁移转化还受到很多其他因素的影响,比如水质、温度、pH值、
向性、气泡等,这些因素可以影响污染物的迁移速率、转化效率以及最终消解率。

综上所述,水环境污染物的迁移转化是一个复杂的过程,要正确预测和分析污染物的迁移、转化和消解情况,需要大量实际调查资料和实验数据,结合理论模拟和理论计算,以便更准确地评估水环境污染物的迁移转化过程,有效地实施环境保护。

环境化学第3章水环境化学-3-有机污染物的迁移转化

环境化学第3章水环境化学-3-有机污染物的迁移转化
Cw :有机毒物在水中的摩尔浓度,mol/L; KH ' :亨利定律常数的替换形式,无量纲。
由于p=CaRT
得:
KH' = KH/RT
对于微溶化合物(摩尔分数≤0.02):
★KH = ps·MW/ρW 式中:ps—纯化合物的饱和蒸汽压,Pa;
MW:分子量; ρ W:化合物在水中的溶解度,mg/L。 ★ KH' = 0.12ps·MW/ ρ WT
2,5-二甲基呋喃在蒸馏水中将其暴露于阳光中没有反应, 但是它在含有天然腐殖质的水中降解很快,这是由于腐殖 质可以强烈地吸收波长小于500nm的光,并将部分能量转 移给它从而导致它的降解反应。
③氧化反应
天然物质被辐照而产生自由基或纯态氧等中间体, 这些中间体又与化合物作用而生成转化的产物。有机 毒物在水环境中所常遇见的氧化剂有单重态氧1O2,烷 基过氧自由基RO2·,烷氧自由基RO·或羟自由基OH·。
3.4 水解作用
化合物的官能X-能与水中OH-发生交换: RX + H2O ROH + HX 反应步骤还可以包括一个或多个中间体的形成,有机物 通过水解反应而改变了原化合物的化学结构。对于许多 有机物来说,水解作用是其在环境中消失的重要途径。
第三章 水 环 境 化 学
3.5 光解作用
①直接光解:化合物直接吸收了太阳能而进行分解反应; ②敏化光解,水体中存在的天然物质被阳光激发,又将其 激发态的能量转移给化合物而导致的分解反应。
3.1 有机污染程度的指标 直接还是间接?
常见的指标有:溶解氧、生化需氧量、化学需氧量、总
有机碳和总需氧量。
溶解氧即在一定温度和压力下,水中溶解氧的含量,是
水质的重要指标之一。(8.32mg/L)

第二章 水中有机污染物的迁移转化

第二章 水中有机污染物的迁移转化

分配系数—标化分配系数
2. 分配系数与标化分配系数 分配系数: 有机毒物在沉积物(或土壤)与水之间的分配,往往可用分配 系数(Kp)表示: KP=cs/cw
式中:cs、cw—分别为有机毒物在沉积物中和水中的平衡浓度 cT = cscp+cw cw = cT/(Kpcp+1)
式中: cT—单位溶液体积内颗粒物上和水中有机毒物质量总和,g/L ; cs、cw—分别为有机毒物在沉积物中和水中的平衡浓度,kg/L, g/L;cp—为有机物在颗粒物上的平衡浓度,g/kg
第二十八课
LOGO
第四节 水质模型
污染物进入水环境后,由于物理、化学和 生物作用的综合效应,其行为的变化十分 复杂的,很难直观地了解它们的变化和归 趋。若借助水质模型,可较好描述污染物 在水环境中的复杂规律及其影响因素之间 的相互关系,因此水质模型是研究水环境 的重要工具。 一、氧平衡模型(Streeter – Phelps 模型) 二、湖泊富营养化预测模型 三、有毒有机污染物的归趋模型
Spurlock和Biggar :极性 有机污染物与活性有机 质基团之间发生的特殊 作用
分配与吸附
①分配作用:溶解作用,相似相溶; ②吸附作用:表面吸附作用,物理吸附通过范德华 力,化学吸附通过化学键\氢键\离子偶极键\配位 键\键等;
分配作用 吸附作用 吸附热 小 大 等温线 线性(整个溶解度范围) 非线性 竞争吸附 不发生,与溶解度有关 存在, 与表面吸 附位有关
(1) (2) (3) (4)
L( x)
x 0
L0 , L() 0
C( x)
x 0
C0 , C() Cs
式中:L 为 x 处河水中的 BOD 值,mg/L;C 为 x 处河水溶解氧浓度,mg/L;Cs 为 河水某温度时的饱和溶解氧浓度,mg/L;u 为河水平均流速,m/s;K1 为 BOD 的衰减系数,

【环境化学】第3.3章 水环境化学——第三节 水中有机污染物的迁移转化:水解作用

【环境化学】第3.3章 水环境化学——第三节  水中有机污染物的迁移转化:水解作用
7
部分有机磷酸酯杀虫剂的水解半衰期值(25℃,pH7.4)
8
四、卤代物
9
部分饱和卤代烃的水解半衰期值 (25℃,pH7)
10 H2O ⇌ ROH + HX 通常测定水中有机物的水解是一级反应,RX的消失速率正比 于[RX],即
-d[RX]/dt = kh[RX] (3-137) 式中:kh——水解速率常数。
16
水解速率常数与pH的关系图
Kh=KA[H+]+KN+KBKw/[H+]
17
改变 pH 值可得一系列kh。在lgkh —pH图(图3-31)中,可得三个 交点相应于三个pH值(IAN、IAB、INB),由此三值和以下三式可计 算出kA、kB和kN
(a) lgkh = lgkA –pH 与 (b) lgkh = lgkN 的交点: lgkA – pH = lgkN pH = IAN = -lg(kN/kA) 酸性催化
exp(x)在x→0处展开,计算e的近似值 Exp(x)=1+x+1/2*x2+1/6*x3+1/24*x4+1/120*x5+1/720*x6+1/5040*x7+1/40320*x8+32……
第三节 水中有机污染物的迁移转化
3.1 吸附作用 3.2 挥发作用 3.3 水解作用 3.4 光解作用 3.5 生物降解 3.6 还原作用
影响因素
阳光的辐射强度、天然水体中光的迁移特征 光的吸收性质 化合物的反应
21
3.4.2 光解作用分类
直接光解:化合物直接吸收太阳辐射而分解; 敏化光解:水体中的天然物质被阳光激发,又将激发态的

多环芳烃(PAHs)在淡水水体中的迁移转化规律

多环芳烃(PAHs)在淡水水体中的迁移转化规律

多环芳烃(PAHs)在淡水水体中的迁移转化规律1 概述多环芳烃( Polycyclic Aromatic Hydrocarbons ,简称PAHs)是指两个或两个以上苯环连在一起的一类化合物,具有高脂溶性和相对低的水溶性,具有“致癌、致畸和致基因突变”(目前已发现的致癌性多环芳烃及其衍生物超过400 种)作用的持久性有机污染物( Persistent Organic Pollutant s ,POPs) 。

这一类物质由于高毒性、低流动性和难降解性使其在环境保护领域备受关注。

美国EPA优先控制名单中确定了16种PAHs作为优先控制污染物,我国也将7 种多环芳烃列入“中国环境优先控制污染物”黑名单。

PAHs由于化石燃料燃烧、机动车、垃圾焚烧、精炼油、焦炭和沥青生产以及铝的生产等人类活动而广泛分布于环境中。

多环芳烃在环境中大多数是以吸附态和乳化态形式存在,一旦进入环境,便受到各种自然界固有过程的影响,发生变迁。

通过复杂的物理迁移、化学及生物转化反应,在大气、水体、土壤、生物体等系统中不断变化,改变分布状况。

处在不同状态、不同系统中的多环芳烃则表现出不同的变化行为。

多环芳烃进入大气后,可通过化学反应、降尘、降雨、降雪等过程进入土壤及水体中。

人们可以通过呼吸、饮食等多种途径摄入,对人类健康产生极大危害,因此研究多环芳烃在环境中的行为具有十分重要的意义。

多环芳烃在环境中,特别是水环境中的迁移转化和归宿也得到广泛关注。

本文着重探讨河流、湖泊等淡水水体中多环芳烃的迁移转化研究成果,并指出存在问题和今后努力的方向。

2 PAHs在淡水水体中的迁移转化规律2.1 PAHs 在大气-水体间迁移转化PAHs 在大气-水体间迁移转化方式有:气态湿沉降、携带PAHs 的颗粒物湿沉降与干沉降、水-气界面PAHs 交换。

李军等利用双膜理论计算多环芳烃在麓湖水面上的交换通量,除萘、苊、二氢苊的通量方向是从湖水到大气外,其它多环芳烃都是从大气进入水体。

003.4水环境化学-有机污染物的迁移转化

003.4水环境化学-有机污染物的迁移转化
生物浓缩因子是有机毒物在生物体内浓度与该有 机物在水中的浓度比值。用符号BCF或KB表示。
生物浓缩因子(BCF)
污染物在生物体内的浓度
BCF=
污染物在水中浓度
污染物在生物体中的浓缩因子大小主要与生物特性、污染 物特性和环境条件等三方面因素有关,污染物的BCF值间 可以相差几万倍甚至更高
生物积累、富集和放大
挥发作用示意图
对于具有两个环的PAH 化合物来说,有较大挥发性。例 如飘浮海面的原油中所含的萘很容易在一定水温、水流、 风速条件下挥发逸散到大气中去,但存在于水体中具有4 或4 个以上苯环的PAH 化合物在任何环境条件下都是不易 挥发的。
包括很多芳烃(苯、甲苯、二甲苯、乙苯等)在内的许多 有机物都具有易挥发特性。由此组成了一个有机化合物大 类,被称为挥发性有机化合物类(VOCs)。
水藻繁生的水体中,由于光合作用的存在,可使水中的氧达 到过饱和状态.
流动水可以靠好氧菌的作用得到自净化
当水体受到有机物严重污染时,水中DO会大大下降,甚至 可接近于零(即缺氧条件)。
在缺氧条件下,有机物分解时出现腐败发酵现象,使水质严重恶化。
2、生化需氧量(BOD)
地表水中微生物将有机物氧化成无机物所消耗的溶解氧量
BOD代表了可生物降解的有机物(第一类)的数量。
微生物分解有机物的过程(分为二个阶段):
有机物 转 化 CO2 + H2O + NH3 一般此耗氧量即BOD
NH3 亚硝化细菌、硝化细菌 亚硝酸盐 + 硝酸盐 硝化过程
温度 最适宜的温度15—300C
影响生化需氧量的因素
即 影响分解速率、分解程度 的因素
吸附在污染控制中的应用
增强吸附固定作用

第五章-地表水环境影响评价(环境影响评价)

第五章-地表水环境影响评价(环境影响评价)

第五章地表水环境影响评价第一节水体中污染物的迁移与转化一、水体中污染物迁移与转化概述水体中污染物的迁移与转化包括物理输移过程,化学转化过程和生物降解过程。

1. 物理过程物理过程作用主要指的是污染物在水体中的混合稀释和自然沉淀过程。

其中混合稀释作用主要由下面三部分作用所致:(1)紊动扩散由水流的紊动特性引起水中污染物自高浓度向低浓度区转移。

(2)移流由于水流的推动使污染物的迁移随流输移。

(3)离散由于水流方向横断面上流速分布的不均匀而引起分散。

2. 化学过程包括氧化还原作用、化学沉淀作用、混凝沉淀作用及吸附作用。

3. 生物过程生物自净的基本过程是水中微生物在溶解氧充分的情况下,将一部分有机污染物转化为自身物质,另一部分氧化分解为无害的简单无机物。

二、河流水体中污染物的对流和扩散混合废水进入河流水体后,不是立即就能在整个河流断面上与河流水体完全混合。

虽然在垂向方向上一般都能很快地混合,但往往需要经过很长一段纵向距离才能达到横向完全混合。

这段距离通常称为横向完全混合距离(x1)。

纵向距离(x)小于x1的区域称为横向混合区,大于x1的区域称为断面完全混合区。

如图6-1所示。

图6-1 污染物在河流中的混合示意在河流中,影响污染物输移的最主要的物理过程是对流和横向、纵向扩散混合。

对流是溶解态或颗粒态物质随水流的运动,在横向、纵向、垂向均可发生,主要为纵向对流。

横向扩散是指由于水流中的紊动作用,在流动的横向方向上,溶解态或颗粒态物质的混合。

纵向扩散是指由于主流在横、垂方向上的流速分布不均匀而引起的在流动方向上的溶解态或颗粒态物质的分散混合。

三、海水中污染物的混合扩散排放到海洋中的污水,一般是含有各种污染物的淡水,其密度比海水小,入海后一面与海水混合而稀释,一面在海面向四周扩展,如图6-2:图6-2污水在海面上的扩展第二节地表水环境影响评价概述一、评价等级与评价范围1. 评价工作等级的分级根据建设项目的污水排放量、污水水质的复杂程度、受纳水域的规模以及水质要求进行地表水环境影响评价工作级别的划分。

水生环境中有机污染物的迁移与转化机制

水生环境中有机污染物的迁移与转化机制

水生环境中有机污染物的迁移与转化机制在现代社会,有机污染物的排放已经成为一个严重的环境问题。

其中,水生环境中的有机污染物对生态系统和人类健康造成了极大的威胁。

了解有机污染物在水生环境中的迁移与转化机制,对于科学有效地减少水体污染具有重要的意义。

1. 有机污染物的迁移机制有机污染物在水生环境中的迁移受到水流、沉积物和生物活动等因素的影响。

其中,水流是主要的迁移途径之一。

当有机污染物进入水体后,其随着水流的运动而迁移。

水流的速度以及水体的流动情况都会对有机污染物的迁移路径和距离产生影响。

此外,沉积物也是有机污染物迁移的重要载体。

有机污染物可以通过吸附或结合到沉积物中,从而随着沉积物的迁移而改变位置。

同时,生物活动也会对有机污染物的迁移产生一定影响。

例如,水生生物的摄食和代谢活动能够加速有机污染物的迁移速度。

2. 有机污染物的转化机制有机污染物在水生环境中还会发生一系列的化学、生物和物理过程,导致其发生转化。

其中,化学转化是有机污染物转化的重要途径之一。

水中的有机污染物可以通过氧化、还原和水解等反应发生转化。

此外,生物转化也是有机污染物转化的重要过程。

水生生物可以通过代谢作用将有机污染物转化为更简单的物质。

这些转化物质可以更易于在环境中分解和消除。

物理过程也会对有机污染物的转化产生一定影响。

例如,光照会促使有机污染物发生光解反应,从而改变其结构和性质。

3. 影响有机污染物迁移与转化的因素有机污染物的迁移与转化机制受到多种因素的影响。

首先,有机污染物的物化性质对其迁移与转化具有重要影响。

例如,有机溶剂在水中具有一定的溶解度,更容易迁移。

其次,环境条件也会对有机污染物的迁移与转化产生一定影响。

如温度、pH值和氧气浓度等环境因素都会对有机污染物的稳定性和活性产生影响。

此外,水体中的微生物群落和生态系统结构也会对有机污染物的转化产生重要影响。

水中存在的微生物能够通过吸附、降解和转化等过程,促进有机污染物的去除和降解。

《水环境化学》PPT课件

《水环境化学》PPT课件

完整版课件ppt
18
2、石油的降解 (P126)
石油是由烷烃、环烷烃、烯烃、芳香烃 和杂环化合物等组成。
石油在水中可光化学降解或生物降解。
完整版课件ppt
19
(1)光化学降解:
在阳光照射下,石油中的烷烃及侧链芳烃受激发 活化进行光化学氧化。
据测,油浓度为2000kg/km3的水面,油膜厚度 2.5μm,由于光化学氧化,几天光照即能把油膜清除。
氧化)
完整版课件ppt
4
不易被氧化的:饱和的脂肪烃、含有苯环
结构的芳香烃、含氮的脂肪胺类化合物等 ;
容易被氧化的:醛、芳香胺、不饱和的烯
烃和炔烃、醇及含硫化合物(如硫醇、硫醚)等。
完整版课件ppt
5
② 还原反应 : 在有机物分子中加氢或脱氧的反应称为有机
物的还原反应。例如:
HCHO (甲醛) + H2→ CH3OH (甲醇 ) (加氢
24
③ 芳香烃的降解: 石油中苯、苯的同系物、萘等在微生物
作用下先是氧化成二酚,然后苯环分裂成 有机酸,再经有关生化反应,最终分解为 二氧化碳和水。
完整版课件ppt
25
④ 环烷烃降解:环烷烃最稳定,只有少
数微生物能使它降解。如环己烷在微生物作用下
缓慢氧化:
完整版课件ppt
26
课堂作业
教材P80 习题3、4、5、7、13、14
进行,最后分解为CO2和H2O。
完整版课件ppt
22
② 烯烃的降解
当双键在中间位置时,主要的降解途径与饱和 烷烃相似。
当双键位在碳1和碳2位时,在不同微生物的 作用下,主要降解途径有三种:即烯烃的不饱和 端氧化成环氧化物、不饱和末端氧化成醇、饱和 末端氧化成醇。

第3章 水中有机污染物的迁移转化(2007级环境工程)

第3章 水中有机污染物的迁移转化(2007级环境工程)


分配作用(partition) 吸附作用(adsorpt水溶液中,土壤有机质(包括水生生物脂肪以及植物有机 质等)对有机化合物的溶解作用,而且在溶质的整个溶解范
围内,吸附等温线都是线性的,与表面吸附位无关,只与有 机化合物的溶解度相关。
(2)吸附作用(adsorption)
颗粒物从水中吸着有机物的量,与颗粒物中有机
质的含量密切相关,而有机化合物在土壤有机质和水 中含量的比值称为分配系数(Kp)。
根据上述讨论可以得出以下结论:
非离子性有机化合物可通过溶解作用分配到土壤有机质中,
并经过一定时间达到分配平衡 在溶质的整个溶解范围内,吸附等温线都是线性的,与表面 吸附位无关,与土壤有机质的含量有关 土壤-水的分配系数与溶质(有机化合物) 的溶解度成反 比
Kh K A H




K B KW KN H

KA、KB、KN分别表示酸性、碱性催化和中性过程的二级反应水解速率常数, 可以从实验求得。
水解作用


水解速率曲线呈U、V型,水解过程中的三个速率常数并 不总是同时出现,如当KN=0,只出现点 如果考虑到吸附作用的影响,则水解速率常数可写为:
2.标化分配系数(Koc)
有机物在沉积物(土壤)与水之间的分配系数Kp
Kp=ρa/ρw
ρa、ρw表示有机物在沉积物和水中的平衡浓度
为了引入悬浮物的浓度,有机物在沉积物和水之间平
衡时的总浓度为CT ( µg/Kg ) 可表示为:
T P W
a
ρT——单位溶液体积内颗粒物上和水中有机毒物质量的总和,
于[RX],即
d [ RX ] / dt K h [ RX ]

海洋污染物的迁移与转化机制

海洋污染物的迁移与转化机制

海洋污染物的迁移与转化机制在我们广袤的蓝色星球上,海洋占据了地球表面约 71%的面积。

它不仅是生命的摇篮,也是地球生态系统中至关重要的组成部分。

然而,随着人类活动的不断加剧,大量的污染物被排入海洋,给海洋生态环境带来了严重的威胁。

了解海洋污染物的迁移与转化机制,对于保护海洋环境、维护生态平衡以及保障人类的可持续发展具有极其重要的意义。

海洋污染物的来源多种多样,包括工业废水、农业化肥和农药、生活污水、石油泄漏、固体废弃物等等。

这些污染物一旦进入海洋,便会在海洋环境中发生迁移和转化。

污染物在海洋中的迁移主要通过以下几种方式进行。

首先是水动力迁移。

海洋中的洋流、海浪和潮汐等水动力过程能够推动污染物在海洋中扩散。

比如,从河流排入海洋的污染物,可能会随着沿岸流被输送到较远的海域。

其次是物理化学迁移。

这包括吸附和解吸、溶解和沉淀、氧化和还原等过程。

例如,重金属离子可能会被海洋中的颗粒物吸附,随着颗粒物的沉降而迁移到海底;而一些有机污染物则可能在特定的化学条件下发生氧化反应,改变其化学性质和迁移能力。

此外,生物迁移也是不可忽视的一种方式。

某些海洋生物会吸收污染物,并通过食物链的传递在生物体内积累和迁移。

海洋污染物的转化机制同样复杂多样。

化学转化是常见的一种方式。

例如,一些有机污染物在光照、氧气和微生物的作用下,可能会发生分解和降解,转化为其他物质。

生物转化也非常重要。

微生物在海洋生态系统中扮演着“清道夫”的角色,它们能够分解有机污染物,将其转化为无害的物质或者能量。

物理转化虽然相对较少,但也存在。

比如,污染物在海洋中的蒸发、挥发等过程。

海洋污染物的迁移与转化相互影响、相互作用。

迁移过程会影响污染物的分布和浓度,从而改变其转化的条件和速率;而转化过程则会改变污染物的化学性质和物理状态,进而影响其迁移的方向和速度。

以石油泄漏为例,泄漏的石油会在海面上形成油膜,随着洋流和海浪扩散。

在这个过程中,部分石油会挥发进入大气,部分会被海洋微生物分解。

3.3水中有机污染物的迁移转化1

3.3水中有机污染物的迁移转化1
一、概述
▪ 水环境中污染物种类繁多,一般分为两大类:
需氧有机物(耗氧有机物):
➢ 危害对水生生物无直接毒害,但是降解耗氧,引起水 体缺氧,水质恶化;
➢ 使得氧化还原条件改变,增加一些重金属溶解和毒性 增强,特别在河口地段,好氧有机污染物的大量增加, 导致水体E急剧下降,Fe2+、Mn2+、Cr3+等释放出来;
式中: Sw—有机物在水中的溶解度,mg / L; M—有机物的分子量。
例如,某有机物分子量为192,溶解在含有悬浮物的水体中, 若悬浮物中85%为细颗粒,有机碳含量为5%,其余粗颗粒 有机碳含量为1%,已知该有机物在水中溶解度为0.05 mg / L,那么,其分配系数(Kp)就可根据式(3—113)至式(3—115) 计算出:
➢ 使得pH降低,一般伴随E降低,pH会降低,酸性增强, 金属溶解,酸性增强情况下,金属Hg容易甲基化;
➢ 静止水体的富营养化。
持久性污染物(有毒有机物):
➢一般人工合成,食品添加剂、洗涤剂、杀虫剂、塑料、化 妆品、涂料、农药等;
➢易于生物累积,有致癌作用;
➢水溶性差,而脂溶性强,易于在生物体内,并通过食物链 放大。
②吸附作用,即在非极性有机溶剂中,土壤矿物质对有机化合物的表 面吸附作用或于土壤矿物质对有机化合物的表面吸附作用,前者主要靠 范德华力,后者则是各种化学键力如氢键、离子偶极键、配位键及π键 作用的结果。其吸附等温线是非线性,并存在着竞争吸附,同时在吸附 过程中往往要放出大量热,来补偿反应中熵的损失。
6、某水体中含有300mg/L的悬浮颗粒物,其中70%为细颗粒 (d<50um),有机碳含量为10%,其余的粗颗粒有机碳含量为5 %。已知苯并[a]芘的Kow为106,请计算该有机物的分配系数。 (p197,29)

环境中的污染物的迁移和转化

环境中的污染物的迁移和转化

环境中的污染物的迁移和转化随着现代工业和城市化的发展,环境污染问题日益严重。

环境中的污染物会通过多种途径迁移和转化,对生态和人类健康造成严重的威胁。

本文将介绍环境中的污染物迁移和转化的相关知识。

一、污染物在水体中的迁移和转化水体是生态系统中不可或缺的重要组成部分,水中污染物的迁移和转化对整个生态系统健康具有举足轻重的影响。

水中污染物迁移和转化主要包括以下几个方面:1、水中污染物的迁移水中污染物的迁移包括水流迁移和水体深度迁移两种方式。

水流迁移指的是污染物随着水流的运动迁移到不同位置,包括沉积物中和水生生物体内。

而水体深度迁移则是指污染物随着水体中的溶解氧、温度和光照条件的变化,从水体表层向深层迁移。

2、水中污染物的转化水中污染物的转化包括生物转化和非生物转化两种方式。

生物转化是指水生生物通过代谢作用将有机污染物转化为更简单的物质,例如水草可以将氨氮转化为硝态氮。

而非生物转化则是指非生物媒介或化学反应的作用下,污染物的结构和性质发生改变的过程,例如有机化合物在光照作用下产生自由基反应。

二、污染物在大气中的迁移和转化大气是地球生态系统环境的另一个组成部分,大气中的污染物对人类健康和生态环境造成的威胁也越来越严重。

大气中污染物的迁移和转化主要包括以下几个方面:1、大气中污染物的迁移大气中污染物的迁移主要是通过大气扩散和输送来实现的。

大气扩散是指大气中的气体、颗粒物质和水滴在大气层中不断的扩散和混合,从而实现了污染物在大气的广泛传递。

而输送则是指污染物在局部和全球尺度下的气流输送,例如大气中的臭氧和氮氧化物可以通过风吹向别的国家和地区。

2、大气中污染物的转化大气中污染物的转化主要是指污染物通过化学反应、光解和生物转化等方式发生结构和性质的变化。

其中,化学反应是大气中污染物转化的重要方式之一,例如大气中的二氧化硫和氮氧化物可以通过光化学反应形成光化学烟雾。

而光解和生物转化则是指污染物在大气中光照或微生物的影响下发生的结构和性质的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、氧化反应:天然物质被辐射而产生自由基或纯态氧等中间 体,这些中间体又与化合物作用而生成转化的产物。
五 . 光解作用
六 . 生物降解作用
水环境中化合物的生物降解依赖于微生物通过酶催化反应分 解有机物。
一些有机物,不能作 为微生物的唯一碳源 和能源,必须由另外 的化合物提供。
六 . 生物降解作用
二 者 区 别
谢谢观赏
有机毒物与水的反应是X-基团与OH-基团交换的过 程:
X—烷基卤、酰胺、胺、氨基甲酸脂、羧酸脂、环氧 化物、腈、磷酸脂、 磺酸脂、硫酸脂等。
四 . 水解作用
几类有机物可能的水解反应产物:
四 . 水解作用
四 . 水解作用
四 . 水解作用 水解反应的动力学分析
通常测定水中有机物的水解是一级反应,RX的消失速率正 比于[RX],即

半衰期与有机物属性、温度、 pH有关,与有机物初始浓度 无关.
五 . 光解作用
光解作用是有机污染物真正的分解过程,因为它不可逆地 改变了反应分子,强烈地影响水环境中某些污染物的归趋。
1、直接光解:化合物本身直接吸收了光能而进行分解反应。
2、敏化光解:水体中存在天然物质被阳光激发后,又将其激 发态的能量转移给化合物而导致的分解反应。
第三章 水环境化学 第三节 水中有机污染物
的迁移转化
主要内容
一 . 概述 二 . 分配作用 三 . 挥发作用 四 . 水解作用 五 . 光解作用
六 . 生物降解作用
一 . 概述
水环境中有机污染物种类繁多,一般分为两大类: 耗氧有机污染物 是生物残体、排放废水和废弃物中的糖类、脂肪和蛋白质等 较易生物降解的有机物质。 在环境中持久性小,相对来说对环境的危害较小。 持久性有机污染物( Persistent Organic Pollutants,简称POPs)
对于微溶化合物(摩尔分数≤ 0.02)
KH=ps· w/ρw M ps—纯化合物的饱和蒸气压,Pa; Mw —化合物的摩尔质量,g/mol; ρw —化合物在水中的质量浓度,mg/L KH’=0.12 ps Mw / ρw T
三 . 挥发作用
注意: 表3-13 Henry定律适用范围
摩尔质量/(g· -1) mol 摩尔分数为0.02时的质量浓度/(mg· -1) L
c) 分配作用的等温线为直线,而吸附作用的等温线为非直线。
d) 当有多种有机物并存时,吸附作用受吸附位竞争的影响,而分 配作用只与有机物的溶解度有关,与表面吸附位无关。
二 . 分配作用
2. 标化分配系数 分配系数: Kp= ρa / ρw
式中:ρa、ρw—分别为有机毒物在沉积物中和水中的平衡质量浓度。
式中: Kow—辛醇-水分配系数,即化学物质在辛醇中质量和在水中质量的比例。
Kow与溶解度sw符合以下关系:
lgKow=5.00 -0.670lg(sw ×103/Mr)
式中: Sw—有机物在水中的溶解度,mg/L; Mr—有机物的相对分子质量。
二 . 分配作用
二 . 分配作用
3. 生物浓缩因子(BCF) 有机毒物在生物群-水之间的分配称为生物浓缩或生物积累。 BCF:有机毒物在生物体内浓度与水中该有机物浓度之比, 用符号BCF或KB表示。 一般采用平衡法和动力学方法测量。
一类具有长期残留性、生物累积性、半挥发性和高毒性,能 够长距离迁移,对人类健康和环境具有严重危害的天然的或人 工合成的有机污染物。(讨论的主要内容)
一 . 概述
一 . 概述
有机污染物在人体和食物链中的迁移、分配和归宿
一 . 概述
一 . 概述
有机污染物在水环境中的迁移转化主要取决于有机污染物
本身的性质以及水体的环境条件。
三 . 挥发作用
许多有机物,特别是卤代脂肪烃和芳香烃,都具有挥 发性。 挥发作用是有机物质从溶解态转入气相的一种重要迁
移过程。
对于有机毒物挥发速率的预测,了解即可。
三 . 挥发作用 1.亨利定律
定义:
表示当一个化学物质在气-液相达到平衡时,溶解于水相的浓 度与气相中化学物质浓度(或分压力)有关。 亨利定律的一般表示式为: p=KHcw
为了在类型各异组分复杂的沉积物或土ห้องสมุดไป่ตู้之间找到表征吸着 的常数,引入标化分配系数(Koc):
Koc = Kp/ωoc
式中: Koc—标化的分配系数,即以有机碳为基础表示的分配系数; ωoc—沉积物中有机碳的质量分数。
对于每一种有机物可得到与沉积物特征无关的一个Koc
二 . 分配作用
若进一步考虑到颗粒物大小产生的影响,其分配系数Kp可表示为:
式中: p—污染物在水面大气中的平衡分压,Pa; cw —污染物在水中平衡浓度,mol/m3 KH —亨利定律常数,Pa · 3/mol m
三 . 挥发作用
KH’=ca/cw 3 一般方法 ca—有机毒物在空气中的摩尔浓度,mol/m ; KH’ —Henry定律常数的替换形式,量纲为1;
KH’=KH/(RT)=KH/8.314T=4.1×10-4KH (在20℃)
• 理论提出: 在土壤-水体系中,土壤对非离子性有机物的吸着主要是溶 质的分配过程(溶解),即非离子性有机物可通过溶解作用分 配到土壤有机质中,并经过一定时间达到分配平衡。此时有机 物在土壤有机质和水中含量的比值称为分配系数。 有机物在土壤(沉积物)中的吸着存在两种机理: 1)分配作用:即在水溶液中,土壤(沉积物)有机质对有机 物的溶解作用。 2)吸附作用:即在非极性有机溶剂中,土壤矿物质对有机物 的表面吸附作用或干土壤矿物质对有机物的表面吸附作用。
30 75
34000 85000
100
200
113000
227000
三 . 挥发作用
2.挥发作用的双膜理论(自学) 化学物质从水中 挥发时必须克服来 自近水表层和空气 层的阻力 气膜和液膜控制
了化学物质由水向
空气中迁移的速率
四 . 水解作用 水解作用是有机化合物与水之间最重要的反应。
二 . 分配作用
“分配作用”与“吸附作用”的比较
a) 分配作用是有机污染物通过分子间作用力将溶质分配到土壤 (沉积物)的有机质中。其作用力主要靠范德华力,取决于土壤中有 机质的量。吸附作用则是表面物理化学现象,其作用力主要是各种化 学键力如氢键、离子偶极键、配位键及π键等。 b) 吸附作用一般有较大的吸附热放出,而分配作用放热很少。
有机污染物迁移转化过程:
迁移
{
吸附作用 生物富集 挥发作用
转化
{
水解作用
光解作用
生物降解作用
二 . 分配作用
1. 分配理论 • 实验现象
a. 几种疏水
性有机化合物 在土壤-水体 系中的吸附— 线性等温线
二 . 分配作用
b.几种疏水 性有机化合 物在活性炭 -水体系中
的吸附—非
线性等温线
二 . 分配作用
f s Kp = Koc [0.2 (1—ωf ) ωoc+ωf ωoc]
式中: ωf—细颗粒的质量分数(d<50μm); s ωoc—粗沉积物组分的有机碳含量; f ωoc—细沉积物组分的有机碳含量。
由于颗粒物对憎水有机物的吸着是分配机制,当Kp不易得到时,可通过 下式预测: Koc=0.63Kow
相关文档
最新文档