28.2解直角三角形同步练习(4份)(人教新课标九年级下)

合集下载

人教版九年级数学下册28.2《解直角三角形及其应用》同步练习 含答案

人教版九年级数学下册28.2《解直角三角形及其应用》同步练习    含答案

2021年人教版九年级下册28.2《解直角三角形及其应用》同步练习一.选择题1.在Rt△ABC中,∠C=90°,∠B=36°,若BC=m,则AB的长为()A.B.m•cos36°C.m•sin36°D.m•tan36°2.如图,△ABC的顶点都在方格纸的格点上,则sin A的值为()A.B.C.3 D.3.如图,已知在4×4的网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠CAB的值为()A.B.C.D.4.如图,在平面直角坐标系中,P是第一象限内的点,其坐标是(a,3)且OP与x轴的夹角α的正切值是,则sinα的值为()A.B.C.D.5.如图,某游乐场山顶滑梯的高BC为50米,滑梯的坡比为5:12,则滑梯的长AB为()A.100米B.110米C.120米D.130米6.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A.B.C.D.7.如图,要测量一条河两岸相对的两点A,B之间的距离,我们可以在岸边取点C和D,使点B,C,D共线且直线BD与AB垂直,测得∠ACB=56.3°,∠ADB=45°,CD=10m,则AB的长约为()(参考数据sin56.3°≈0.8,cos56.3°≈0.6,tan56.3°≈1.5,sin45°≈0.7,cos45°≈0.7,tan45°=1)A.15m B.30m C.35m D.40m8.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC=3m,则AB的长度为()A.6m B.3m C.9m D.6m9.如图,一艘潜水艇在海面下300米的点A处发现其正前方的海底C处有黑匣子,同时测得黑匣子C的俯角为30°,潜水艇继续在同一深度直线航行960米到点B处,测得黑匣子C的俯角为60°,则黑匣子所在的C处距离海面的深度是()A.(480+300)米B.(960+300)米C.780米D.1260米10.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距300m,则图书馆A到公路的距离AB为()A.150m B.150m C.150m D.100m 11.如图,从渔船A处测得灯塔M在北偏东55°方向上,这艘渔船以28km/h的速度向正东方向航行,半小时后到达B处,在B处测得灯塔M在北偏东20°方向上,此时灯塔M与渔船的距离是()A.28km B.14km C.7km D.14km12.如图,两栋大楼相距100米,从甲楼顶部看乙楼的仰角为26°,若甲楼高为36米,则乙楼的高度为()A.(36+100sin26°)米B.(36+100tan26°)米C.(36+100cos26°)米D.(36+)米二.填空题13.在△ABC中,sin B=,tan C=,AB=3,则AC的长为.14.如图,△ABC的顶点都是正方形网格中的格点,则cos A的值为.15.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.16.如图,某商场大厅自动扶梯AB的长为12m,它与水平面AC的夹角∠BAC=30°,则大厅两层之间的高度BC为m.17.如图,大坝横截面的迎水坡AB的坡比为1:2(即BC:AC=1:2),若坡面AB的水平宽度AC为12米,则斜坡AB的长为米.18.再如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为多少km.19.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为54°,∠B为36°,边AB的长为2.1m,BC边上露出部分BD的长为0.9m,则铁板BC 边被掩埋部分CD的长是m.(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38).20.如图,海面上有一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,在B处测得该灯塔的最高点C的仰角为45°,则∠ACB的度数为.三.解答题21.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,求sin∠BPC.22.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°.求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】23.如图,航拍无人机从A处测得一幢建筑物顶部B处的仰角为45°、底部C处的俯角为63°,此时航拍无人机A处与该建筑物的水平距离AD为80米.求该建筑物的高度BC(精确到1米).[参考数据:sin63°=0.89,cos63°=0.45,tan63°=1.96]24.汝阳某公司举办热气球表演来庆祝开业,如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为37°和45°,A、B两地相距100m.当气球沿与BA平行地飘移100秒后到达D处时,在A处测得气球的仰角为60°.(1)求气球的高度;(2)求气球飘移的平均速度.(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75,≈1.7.)25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升120米到达C处,在C处观察A地的俯角为42°,求A、B两地之间的距离.(结果精确到1米)[参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90]26.如图,海面上产生了一股强台风.台风中心A在某沿海城市B的正西方向,小岛C位于城市B北偏东29°方向上,台风中心沿北偏东60°方向向小岛C移动,此时台合风中心距离小岛200海里.(1)过点B作BP⊥AC于点P,求∠PBC的度数;(2)据监测,在距离台风中心50海里范围内均会受到台风影响(假设台风在移动过程中风力保持不变).问:在台风移动过程中,沿海城市B是否会受到台风影响?请说明理由.(参考数:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,≈1.73)参考答案一.选择题1.解:∵∠C=90°,∠B=36°,BC=m,∴cos B=,∴AB==,故选:A.2.解:延长AB到D,连接CD,如右图所示,由题意可得,AC==,CD=1,∴sin∠A==,故选:A.3.解:由题意可得,AC===2,BC==,AB==5,∵(2)2+()2=52,∴AC2+BC2=AB2,∴△ACB是直角三角形,∠ACB=90°,∴cos∠CAB==,故选:B.4.解:过点P作PE⊥x轴于E,如图所示:∵P(a,3),∴OE=a,PE=3,∵tan∠α==,∴a=OE=4,∴OP===5,∴sinα==,故选:A.5.解:∵某游乐场山顶滑梯的高BC为50米,滑梯的坡比为5:12,∴=,则=,解得:AC=120米,故AB===130(米).故选:D.6.解:在Rt△ABC中,∵sin∠ABC=,即sinα=,∴AB=,在Rt△ADC中,∵sin∠ADC=,即sinβ=,∴AD=,∴==,故选:C.7.解:设AB=xm,在Rt△ABD中,∵∠ADB=45°,∴AB=BD=xm,在Rt△ABC中,∵∠ACB=56.3°,且tan∠ACB=,∴BC==≈x,由BC+CD=BD得x+10=x,解得x=30,∴AB的长约为30m,故选:B.8.解:∵迎水坡AB的坡比为1:,∴=,即=,解得,AC=3,由勾股定理得,AB==6(m),故选:A.9.解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=960米,∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=960(米).在Rt△BEC中,sin∠EBC=,∴CE=BC•sin60°=960×=480(米).∴CF=CE+EF=(480+300)米,故选:A.10.解:由题意得,∠AOB=90°﹣60°=30°,OA=300m,∴AB=OA=150(m),故选:C.11.解:根据题意可知:∠MAB=90°﹣55°=35°,∠ABM=90°+20°=110°,∴∠AMB=180°﹣∠ABM﹣∠MAB=35°,∴∠MAB=∠AMB,∴BM=AB=28×=14(km).所以此时灯塔M与渔船的距离是14km.故选:B.12.解:由题意知:AE=CD=36米,AC=DE=100米,在Rt△ABC中,tan∠BAC=,∴BC=AC tan∠BAC=100tan26°(米),则BD=CD+BC=(36+100tan26°)米,即乙楼的高度为(36+100tan26°)米,故选:B.二.填空题13.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为:.14.解:如图,作CH⊥AB于H,设小正方形的边长为1.则AC==,在Rt△ACH中,cos A===,故答案为:.15.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.16.解;在Rt△ABC中,∠BAC=30°,AB=12m,∴BC=m,故答案为:6.17.解:∵大坝横截面的迎水坡AB的坡比为1:2,AC=12米,∴==,∴BC=6(米),∴AB===6(米).故答案为:6.18.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=30(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10(km),∴AC=AE+CE=30+10(km),∴A,C两港之间的距离为(30+10)km,故答案为:(30+10).19.解:在直角三角形中,sin A=,则BC=AB•sin A=2.1sin54°≈2.1×0.81=1.701,则CD=BC﹣BD=1.701﹣0.9,=0.801≈0.8(m),故答案为:0.8.20.解:由题意得:∠BAC=31°,∠CBD=45°,∵∠CBD=∠BAC+∠ACB,∴∠ACB=∠CBD﹣∠BAC=45°﹣31°=14°,故答案为:14°.三.解答题21.解:作AD⊥BC于点D,如右图所示,∵AB=AC=5,BC=8,∴BD=CD=4,∠BAD=∠BAC,∵∠ADB=90°,∴sin∠BAD=,又∵∠BPC=∠BAC,∴∠BPC=∠BAD,∴sin∠BPC=.22.解:由题意得,BE⊥CD于E,BE=AC=22米,∠DBE=32°,在Rt△DBE中,DE=BE•tan∠DBE=22×0.62≈13.64(米),CD=CE+DE=1.5+13.64≈15.1(米),答:旗杆的高CD约为15.1米.23.解:在△ADB中,∠ADB=90°,∠BAD=45°,∴BD=AD=80(米),在△ACD中,∠ADC=90°,∴CD=AD•tan63°=80×1.96≈156.8(米),∴BC=BD+CD=80+156.8=236.8≈237(米),答:该建筑物的高度BC约为237米.24.解:(1)如图,过点C作CE⊥AB于点E,在Rt△ACE中,∵∠CAE=37°,∴CE=AE×tan37°=0.75AE,∴AE=CE,在Rt△BCE中,∵∠CBE=45°,∴BE=CE,∴AB=AE﹣BE=CE﹣CE=CE=100,∴CE=300(米),答:气球的高度为300米;(2)如图,过点D作DF⊥AB于点F,则四边形DFEC是矩形,在Rt△ADF中,∵∠DAF=60°,∴AF=DF=CE=100≈170(米),∴AE=CE=400(米),∴CD=EF=400﹣170=230(米),∴速度为:230÷100=2.3.答:气球飘移的平均速度每分钟为2.3米.25.解:在Rt△ABC中,∵∠ABC=90°,∠A=42°,∴tan42°=,∴AB=≈133(米)答:A、B两地之间的距离约为133米.26.解:(1)∵∠MAC=60°,数学∴∠BAC=30°,又∵BP⊥AC,∴∠APB=90°,∴∠ABP=60°,又∵∠CBN=29°,∠ABN=90°,∴∠ABC=119°,∴∠PBC=∠ABC﹣∠ABP=59°;(2)不会受到影响.理由如下:由(1)可知,∠PBC=59°,∴∠C=90°﹣∠PBC=31°,又∵tan31°=0.60,∴,设BP为x海里,则AP=海里,CP=海里,∴,解得:x≈57,∵57>50,∴沿海城市B不会受到台风影响.。

人教版九年级数学下册28.2: 解直角三角形及其应 用同步练习(附答案)

人教版九年级数学下册28.2: 解直角三角形及其应 用同步练习(附答案)

人教版九年级下册28.2 解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.27.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)15.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车(填“超速”或“没有超速”)(参考数据:≈1.732)16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)参考答案一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米【解答】解:由题意可得:sinα==,故BC=3sinα(m).故选:A.3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.【解答】解:∵AD∥BC,∠DAB=90°,∴∠ABC=180°﹣∠DAB=90°,∠BAC+∠EAD=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴=,∵BC=AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=BC,在Rt△ABC中,tan∠BAC===;故选:C.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选:D.6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.2【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.7.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【解答】解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【解答】解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴cosα=,解得,AB=米,故选:B.11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为4﹣4米.(结果保留根号)【解答】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为54.6米.(≈1.73,结果精确到0.1米)【解答】解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.615.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车没有超速(填“超速”或“没有超速”)(参考数据:≈1.732)【解答】解:作AD⊥直线l于D,在Rt△ADB中,∠ABD=45°,∴BD=AD=100,在Rt△ADB中,tan∠ACD=,则CD==100≈173.2,∴BC=173.2﹣100=73.2(米),小汽车的速度为:0.0732÷=52.704(千米/小时),∵52.704千米/小时<速60千米/小时,∴小汽车没有超速,故答案为:没有超速.16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为3m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为566米.(精确到1米,参考数据:≈1.414,≈1.732)【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)【解答】解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m.21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)【解答】解:过点C作CE⊥AB于点E,∵CD=2,tan∠CMD=,∴MD=6,设BM=x,∴BD=x+6,∵∠AMB=60°,∴∠BAM=30°,∴AB=x,已知四边形CDBE是矩形,∴BE=CD=2,CE=BD=x+6,∴AE=x﹣2,在Rt△ACE中,∵tan30°=,∴=,解得:x=3+,∴AB=x=3+3≈8.2m。

人教版九年级数学下册: 28.2 解直角三角形及应用 同步练习 (含答案)

人教版九年级数学下册: 28.2 解直角三角形及应用   同步练习 (含答案)

解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,在等腰△ABC中,AB=AC,BD是AC边上的高,cosC=,则△BCD与△ABD的面积比是()A.1:3B.2:7C.2:9D.2:112.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.0.5D.3.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan ∠CPN为()A.1B.2C.D.4.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,延长CA到点D,使AD=AB,连接BD.根据此图形可求得tan15°的值是()A.B.C.D.5.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31°,缆车速度为每分钟40米,从山脚下A到达山顶B缆车需要15分钟,则山的高度BC为()A.600•tan31°B.C.600•sin31°D.6.小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°,则灯顶端O到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米7.如图所示,小明所住高楼AB高为100米,楼旁有一座坡比为3:1的山坡CE,小明想知道山坡的高度,于是小明来到楼顶B俯视坡底C,测得俯角为45°,仰视坡项E,测得仰角为27°,请根据小明提供的信息,帮小明求出斜坡CE的高度ED的值.(结果均精确到0.1米.参考数据:sin27°≈0.45,cos37°≈0.89,tan27°≈0.51)()A.151.1米B.168.7米C.171.6米D.181.9米8.如图,要测量小河两岸相对的两点P、A之间的距离,可以在小河边PA的垂线PB上取一点C.测得PC=80米,∠PCA=32°,则PA的长为()A.80sin32°米B.80tan32°米C.D.9.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD=8米,∠D=36°(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到0.1米)()(参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.8.6B.11.4C.13.9D.23.410.如图,在一笔直的海岸线l上有A,B两个测点,AB=4km,从A处测得船C在北偏东45°的方向,从B处得船C在北偏东22.5°的方向,则船C离海岸线l的距离CD的长为()A.4kmB.(4+2)kmC.(4+)kmD.(4-)km11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福土最高楼顶点F的仰角为45°,此时他头项正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为()(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米12.诗人卞之琳的代表作《断章》:“你站在桥上看风景,看风景的人在楼上看你,明月装饰了你的窗子,你装饰了别人的梦”.2019年国庆,重庆来福士广场开业,吸引了全国各地游客前来,重庆又有了一张新的名片.10月2日,游客小王从南滨路的A处,沿坡度i=1:0.75的斜坡上行20米到达B处,再往正前方水平走8米到达C处,对来福士广场拍照.同时,小王身后的一栋居民楼里面的重庆市民小张在D处测得C处的俯角为42°,若居民楼底端E处与A处的距离是45米,A、B、C、D、E在同一平面内,DE⊥AE于点E.则DE的长约为()米.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A.74.5B.74.1C.61.2D.58.5二.填空题(共6小题)13.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了.14.如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为米.(结果保留根号)15.如图,在Rt△ABC中,∠ACB=90°,AC=2,tanB=0.75,CD平分∠ACB交AB于点D,DE ⊥BC,垂足为点E,则DE= .16.如图,渔船在A处看到灯塔C在北偏东60°方向上,渔船向正东方向航行了12km达B 处,在B处看到灯塔C在正北方向上,则A处与灯塔C的距离是.17.在△ABC中,∠A=30°,AB=2,AC=6,则BC的长为18.如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30°,再往塔的方向前进60m至B处,测得仰角为60°,那么塔的高度是 m.(小明的身高忽略不计,结果保留根号).三.解答题(共5小题)19.如图,正在海岛C西南方向20海里作业的海监船A,收到位于其正东方向渔船B发出的遇险求救信号,已知渔船B位于海岛C的南偏东30°方向,海岛C周围13海里内都有暗礁.(参考数据)(1)如果海监船A沿正东方向前去救援是否有触礁的危险?(2)求海监船A与渔船B的距离.(结果精确到0.1海里)20.某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.(1)求∠CAE的度数;(2)求AE的长(结果保留根号);(3)求建筑物AO的高度(精确到个位,参考数据:.21.如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,22.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,AD=BD=DE=30cm,CE=40cm,车杆AB与BC所成的∠ABC=53°,图1中B、E、C三点共线,图2中的座板DE与地面保持平行.问变形前后两轴心BC的长度有没有发生变化?若不变,请写出BC的长度;若变化,请求出变化量?(参考数据:sin53°)23.如图①是某小区入口实景图,图②是该入口抽象成的平面示意图,已知入口BC宽3.9米,门卫室外墙上的O点处装有一盏灯,点O与地面BC的距离为3.3米,灯臂OM长1.2米,(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离,(2)某搬家公司一辆总宽2.55米,总高3.5米的货车能否从该入口安全通过?如果能安全通过,请直接写出货车离门卫室外墙AB的最小距离(精确到0.01米);如果不能安全通过,请说明理由.(参考数据:参考答案1-5:BDBAC 6-10:BDBBB 11-12:BA13、214、)15、16、17、18、19、20、21、22、在Rt△CEN中,△CE=40cm,△由勾股定理可得CN=32cm,则BC=18+30+32=80(cm),答:BC的长度发生了改变,增加了4cm23、(1)过点M作MN⊥OA于点N,∵OM长1.2米,∠AOM=60°.∴ON=0.6米,∴BN=OB+ON=3.3+0.6=3.9米.答:点M到地面的距离为3.9米.(2)一辆总宽2.55米,总高3.5米的货车能从该入口安全通过,理由如下:过点A作AE⊥BA,垂足为A,∵设货车高AB=3.5米,则OA=3.5-3.3=0.2∴AE=OAtan60°=≈0.35答:货车离门卫室外墙AB的最小距离为0.35米。

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》同步练习题(附答案)一.选择题1.如图某河堤迎水坡AB坡比i=tan∠CAB=1:,堤高BC=5m,则坡面AB长是()A.5 m B.10m C.5m D.8 m2.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A.42米B.14米C.21米D.42米3.如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米4.在台风来临之前,有关部门用钢管加固树木(如图),固定点A离地面的高度AC=m,钢管与地面所成角∠ABC=∠1,那么钢管AB的长为()A.B.C.m•cos∠1D.m•sin∠15.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.6.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米7.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.8.如图,一艘船向东航行,上午8时到达A处,测得一灯塔B在船的北偏东30°方向,且距离船48海里;上午11时到达C处,测得灯塔在船的正北方向.则这艘船航行的速度为()A.24海里/时B.8海里/时C.24海里/时D.8海里/时二.填空题9.某斜坡坡角α的正弦值sinα=,则该斜坡的坡比为.10.如图,在市区A道路上建造一座立交桥,要求桥面的高度h为4.8米,引桥的坡角为14°,则引桥的水平距离l为米(结果精确到0.1m,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).11.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)12.如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为6m,则树的高度为m.13.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为54°,∠B为36°,边AB的长为2.1m,BC边上露出部分BD的长为0.6m,则铁板BC边被掩埋部分CD的长是m.(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38)14.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是海里.15.如图,某校无人机兴趣小组借助无人机测量教学楼的高度AB,无人机在离教学楼底部B处16米的C处垂直上升31米至D处,测得教学楼顶A处的俯角为39°,则教学楼的高度AB约为米.(结果精确到0.1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】16.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB的坡度为.三.解答题17.如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).18.如图,已知在一高速公路L边上有一测速站点P,现测得PC=24米,PD=26米,CD =10米.一辆汽车在公路L上匀速行驶,测得此车从点A行驶到点B所用的时间为1秒,并测得∠PBD=60°,∠P AD=30°,计算此车是否超过了每秒25米的限制速度.19.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)20.如图,校门口路灯灯柱AB被钢缆CD固定,已知BD=4米,且cos∠DCB=.(1)求钢缆CD的长度;(2)若AD=2米,灯的顶端E距离A处1.6米,∠EAB=120°,则灯的顶端E距离地面多少米?21.某综合实验小组利用大厦AC测量楼前一棵树EF的高,小明在大厦的B点能透过树梢F看到小强同学在G点,小明上升到达C点透过F点看到小文同学在D点,已知G,D,E,A在同一直线上,AC⊥AG,EF⊥AG测得GD=6米,∠C=27°,∠G=38.5°,则树的高度约为多少米?(参考数据:tan27°=0.50,tan38.5°=0.80).22.图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)参考答案一.选择题1.解:∵tan∠CAB===,∴在Rt△ABC中,∠BAC=30°,又∵BC=5m,∴AB=2BC=10m,故选:B.2.解:根据题意可得:船离海岸线的距离为42÷tan30°=42(米)故选:A.3.解:过点A′作A′C⊥AB于点C,由题意可知:A′O=AO=4,∴sinα=,∴A′C=4sinα,故选:B.4.解:在Rt△ABC中,sin∠1=,∴AB=,故选:A.5.解:∵sinθ=,∴h=l•sinθ,故选:A.6.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.7.解:如图所示,在Rt△ABD中,tan B==.故选:A.8.解:在Rt△ABC中,∵∠B=30°,AB=48海里,∴AC=AB=24海里,则这艘船航行的速度为24÷3=8(海里/小时),故选:D.二.填空题9.解;如图,设BC=x,在Rt△ABC中,sin A==,则AB=2x,由勾股定理得,AC==x,∴斜坡的坡比===1:,故答案为:1:.10.解:由题意可得:tan14°==≈0.25,解得:l=19.2,故答案为:19.2.11.解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5m,DC=BE=1.5m,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(m),∴AB=AE+BE=5.95+1.5≈7.5(m),故答案为:7.5m.12.解:∵tan∠ADB=,∴BD==AB(m),∵tan∠ACB=,∴BC==AB(m),∵CD=BD﹣BC,∴6=AB﹣AB(m),∴AB=9(m),故答案为9.13.解:在直角三角形中,sin A=,∴BC=AB•sin A=2.1sin54°≈2.1×0.81=1.701(m),∴CD=BC﹣BD=1.701﹣0.6=1.101≈1.1(m),故答案为:1.1.14.解:如图所示:由题意可得,∠P AB=30°,∠DBP=30°,故∠PBE=60°,则∠P=∠P AB=30°,可得:AB=BP=40海里.故答案为:40.15.解:过点A作AM⊥CD于点M,则∠DAM=∠ADE=39°,如图所示.在Rt△ADM中,AM=16,∠DAM=39°,∴DM=AM•tan∠DAM=16×0.81=12.96,∴AB=CM=CD﹣DM=31﹣12.96=18.04≈18.0.故答案为:18.0.16.解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.三.解答题17.解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8(千米),∠CAD=30°,∠CDA=90°,∴CD=AC•sin∠CAD=4(千米),AD=AC•cos∠CAD=4(千米)≈6.8(千米).在Rt△BCD中,CD=4(千米),∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4(千米),∴AB=AD+BD=6.8+4≈11(千米).答:A、B两点间的距离约为11千米.18.解:此车超过了每秒25米的限制速度,理由如下:∵PC=24米,PD=26米,CD=10米,242+102=262,∴PC2+CD2=PD2,∴△PCD是直角三角形,∠PCD=90°,∴∠PCB=90°,在Rt△PCB中,∠PBD=60°,sin∠PBD=,∴PB===16≈27.7(米),∵∠P AD=30°,∴∠APB=∠PBD﹣∠P AD=60°﹣30°=30°,∴∠APB=∠P AD,∴AB=PB≈27.7米,∵27.7>25,∴此车超过了每秒25米的限制速度.19.解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80mm,CD=80mm,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40mm=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44(mm),∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80mm,BC=40mm,∴tan∠D===0.500,∴∠D≈26.6°,因此旋转的角度约为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.20.解:(1)在Rt△DCB中,cos∠DCB=,∴∴设BC=3x,DC=5x,∴BD=,∵BD=4m,∴4x=4,∴x=1,∴CD=5米;(2)如图,过点E作EF⊥AB,交BA的延长线于点F.∵∠EAB=120°,∴∠EAF=60°,∴AF=AE•cos∠EAF=1.6×=0.8(米),∴FB=AF+AD+DB=0.8+2+4=6.8(米).∴灯的顶端E距离地面6.8米.21.解:∵AC⊥AG,EF⊥AG,∴∠A=∠FED=90°,∴AC∥EF,∴∠DFE=∠C=27°,在Rt△GEF和Rt△DEF中,tan∠G==,即=0.80,tan∠DFE==0.5,即DE=0.5EF,∴=0.8,解得EF=8(米).答:树的高度约为8米.22.解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK ⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈4.9(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.。

人教版九年级数学下册28.2:解直角三角形及其应用 同步练习 (含解析)

人教版九年级数学下册28.2:解直角三角形及其应用 同步练习 (含解析)

第二十八章 28.2解直角三角形及其应用同步练习直角三角形的边角关系同步练习(答题时间:15分钟)1. 在直角三角形ABC 中,已知∠C =90°,∠A =40°,BC =3,则AC =( )A. 3sin40°B. 3sin50°C. 3tan40°D. 3tan50°2. 在Rt △ACB 中,∠C =90°,AB =10,sinA =53,cosA =54,tanA =43,则BC 的长为( )A. 6B. 7.5C. 8D. 12.5*3. 如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,DC =4,cosC =54,那么AB 边的长为( )A. 4B. 512C. 59D. 5**4. 如图是一把30°的三角尺,外边AC =8,内边与外边的距离都是2,那么EF 的长度是( )A. 4B. 43C. 2.5D. 6-25. 已知在Rt △ABC 中,∠C =90°,BC =3AC ,那么∠A =__________度。

*6. 已知钝角三角形ABC ,点D 在BC 的延长线上,连接AD ,若∠DAB =90°,∠ACB =2∠D ,AD =2,AC =23,根据题意画出示意图,并求tanD 的值。

**7. 通过锐角三角函数的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化。

类似的我们可以在等腰三角形中建立边角之间的联系。

我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad )。

如图在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad A =ABBC 腰底边。

我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的。

根据上述角的正对定义,解下列问题:(1)sad 60°=__________;sad 90°=__________。

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,已知tan A=,BC=a,则AB的长为()A.a B.2a C.a D.a2.如图,四边形ABCD的对角线AC、BD相交于O,∠AOD=60°,AC=BD=2,则这个四边形的面积是()A.B.C.D.3.如图,在4×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠BAC的值为()A.B.C.2D.34.如图,在离铁塔200米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+200sinα)米B.(1.5+200cosα)米C.(1.5+200tanα)米D.(1.5+)米5.如图,AB是垂直于水平面的建筑物,沿建筑物底端B沿水平方向向左走8米到达点C,沿坡度i=1:2(坡度i=坡面铅直高度与水平宽度的比)斜坡走到点D,再继续沿水平方向向左走40米到达点E(A、B、C、D、E在同一平面内),在E处测得建筑物顶端A 的仰角为34°,已知建筑物底端B与水平面DE的距离为2米,则建筑物AB的高度约是()(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)A.27.1米B.30.8米C.32.8米D.49.2米6.如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是()A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m 7.如图,一架水平飞行的无人机在A处测得正前方河岸边C处的俯角为α,tanα=2,无人机沿水平线AF方向继续飞行80米至B处时,被河对岸D处的小明测得其仰角为30°.无人机距地面的垂直高度用AM表示,点M,C,D在同一条直线上,其中MC=100米,则河流的宽度CD为()A.200米B.米C.米D.米8.如图,一条船从灯塔C南偏东42°的A处出发,向正北航行8海里到达B处,此时灯塔C在船的北偏西84°方向,则船与灯塔C距离为()海里.A.4B.8C.16D.24二.填空题9.在△ABC中,sin B=,AC=2,AD是BC边上的高,∠ACD=45°,则BC的长为.10.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则(1)AD=;(2)sin∠BAD=.11.2022年,北京成功举办第24届冬季奥运会后,很多学校都开展了冰雪项目的学习活动.如图,一位同学乘滑雪板沿坡度为i=1:2的斜坡滑行30米,则他下降的高度为米.12.数学课外学习小组利用矩形建筑物ABED测量广场灯塔CF的高,如图所示,在点B处测得灯塔顶端C的仰角为28°,在点D处测得灯塔顶端C的仰角为45°,已知AB=10m,AD=30m.求灯塔CF=m(结果保留整数).(参考数据:tan28°≈0.53,cos28°≈0.88,sin28°≈0.47,)13.一艘轮船位于灯塔P的南偏东60°方向,距离灯塔30海里的A处,它沿北偏东30°方向航行一段时间后,到达位于灯塔P的北偏东67°方向上的B处,此时与灯塔P的距离约为海里.(参考数据:sin37°≈,cos37°≈,tan37°≈)14.公元前240年前后,在希腊的亚历山大城图书馆当馆长的埃拉托色尼通过测得有关数据,求得了地球圆周的长度,他是如何测量的呢?如图所示,由于太阳距离地球很远,太阳射来的光线可以看作平行线,在同时刻,光线与A城和地心的连线OP所夹的锐角记为∠1,光线与B城和地心的连线OQ重合,通过测量A,B两城间的路程(即弧AB)和∠1的度数,利用圆的有关知识,地球圆周的长度就可以大致算出来了.已知弧AB的长度约为800km,若∠1≈7.2°,则地球的周长约为km.15.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以12千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞至村庄C 的正上方A处时,测得∠NAD=60°,该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°,则村庄C、D间的距离为千米.(≈1.732,结果保留一位小数)16.如图1是一台手机支架,图2是其侧面示意图,线段AB,BC可分别绕点A,B转动,已知AB=18cm.当AB转动到∠BAD=30°,BC转动到与AD垂直时,点C恰好落在AD上;当AB转动到∠BAD=60°,BC转动到∠ABC=50°时,点C到AD的距离为cm.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,)三.解答题17.如图,湖边A、B两点由两段笔直的观景栈道AC和CB相连.为了计算A、B两点之间的距离,经测量得:∠BAC=37°,∠ABC=58°,AC=80米,求A、B两点之间的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)18.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).21.如图,在△ABC中,AB=AC,点D在线段BC上运动,连接AD,以AD为边作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.①若tan∠ABC=2,AB=3,AE=2,求BD长?②若直线DE与直线BC所夹锐角的正切值是,cos∠BAC=,BC=4,求BD的长.22.如图,在苏州工业园区的金鸡湖东岸,有一座世界最大的水上摩天轮“苏州之眼”,其直径为120m,旋转1周用时24min.小明从摩天轮的底部(与地面相距0.5m)出发开始观光.(1)4min后小明离地面多高?(2)摩天轮转动1周,小明在离地面90.5m以上的空中有多长时间?23.如图,在屋顶的斜坡面上安装太阳能热水器,先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,要求AD与水平线的夹角α为48°,且两支架之间的水平距离为150cm.现测量出屋顶斜面BC与水平面的夹角β为30°,支架AB的高度为20cm,求支架CD的高度.(结果精确到1cm.参考数值:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,)24.西山公园要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的坡度为1:3,一楼到地下停车场地面的垂直高度CD=3.2米,一楼到地平线的距离BC=1米.(1)为保证斜坡的坡度为1:3,斜面AD的长度应为多少米?(2)如果给该地下停车场送货的货车高度为2.8米,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:)参考答案一.选择题1.解:在Rt△ABC中,∠C=90°,∵tan A==,BC=a,∴AC=2a,由勾股定理得,AB==a,故选:C.2.解:如图,过B、D分别作BE⊥AC于E,DF⊥AC于F,则∠BEO=∠DFO=90°.在Rt△BOE中,∠BOE=∠AOD=60°,∴BE=OB•sin∠BOE=OB•sin60°=OB,在Rt△DOF中,∠AOD=60°,∴DF=OD•sin∠BOE=OD•sin60°=OD.∵AC=BD=2,∴S四边形ABCD=S△ABC+S△ADC=AC•BE+AC•DF=×2×OB+×2×OD=OB+OD=(OB+OD)=BD=×2=.故选:C.3.解:由网格以及勾股定理可得,AB==2,BC==,AC==,∴AB2+BC2=8+2=10=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴tan∠BAC==,故选:B.4.解:过点A作AE⊥BC,垂足为E,则CE=AD=1.5米,AE=CD=200米,在Rt△ABE中,∠BAE=α,∴BE=AE•tanα=200tanα(米),∴BC=BE+EC=(1.5+200tanα)米,∴铁塔的高BC为(1.5+200tanα)米,故选:C.5.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=8米,DE=40米,BF=CG=2米,在Rt△CDG中,i=1:2,∴DG=4米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=52米,∠E=43°,∴AF=FE•tan34°≈52×0.67=34.84(米),∴AB=AF﹣BF=34.84﹣2≈32.8(米);即建筑物AB的高度约为32.8米.故选:C.6.解:设AD=x米,∵AB=16米,∴BD=AB﹣AD=(16﹣x)米,在Rt△ADC中,∠A=45°,∴CD=AD•tan45°=x(米),在Rt△CDB中,∠B=60°,∴tan60°===,∴x=24﹣8,经检验:x=24﹣8是原方程的根,∴CD=24﹣8=8(3﹣))米,∴这棵树CD的高度是8(3﹣)米,故选:A.7.解:作BE⊥MD于点E,如图所示,由已知可得:∠BAC=α,tanα=2,AB=80米,∠BDE=30°,MC=100米,AM⊥MD,AB∥MD,∴ME=AB=80米,∠ACM=∠BAC=α,AM=BE,∴=2,解得AM=200米,∴BE=200米,∵tan∠BDE=,∴tan30°=,解得DE=200米,∴CD=MD﹣MC=ME+DE﹣MC=80+200﹣100=(200﹣20)米,故选:C.8.解:由题意得,∠BAC=42°,∠BCA=84°﹣42°=42°,AB=8海里,∴∠BAC=∠BCA,∴BC=AB=8海里,即船与灯塔C距离为8海里.故选:B.二.填空题9.解:当点D在线段BC的延长线上时,∵AD是BC边上的高,∠ACD=45°,∴CD=AD.∵AC2=CD2+AD2,AC=2,∴CD=AD=2.∵sin B==,∴AB=2.在Rt△ABD中,BD====4.∴BC=BD﹣CD=4﹣2=2.若点D在线段BC上时,同理可求BD=4,CD=2,∴BC=6,故答案为:2或6.10.解:如图,连接AC,根据题意得:,而,∵AD⊥BC,∴,解得:,∴,设AD=4x,则AB=5x,∴,∴.故答案为:,.11.解:设他下降的高度AC为x米,∵斜坡的坡度为i=1:2,∴这位同学滑行的是水平距离BC为2x米,由勾股定理得:AC2+BC2=AB2,即x2+(2x)2=302,解得:x=±6(负值舍去),∴他下降的高度为6米,故答案为:6.12.解:延长BE交CD于点G,交CF于点H,在Rt△DEG中,∠EDG=45°,∴EG=DE=10m.∠EGD=45°,设CH=xm,在Rt△CGH中,∠CGH=∠EGD=45°,∴GH=CH=xm,在Rt△CBH中,∠CBH=28°,∴tan∠CBH=,即:=0.53,解得:x≈45.1,∴灯塔的高CF=45.1+10=55.1≈55(m).答:灯塔的高为55米.13.解:如图所示标注字母,根据题意得,∠CAP=∠EP A=60°,∠CAB=30°,P A=30海里,∴∠P AB=90°,∠APB=180°﹣67°﹣60°=53°,∴∠B=180°﹣90°﹣53°=37°,在Rt△P AB中,sin37°=≈,解得PB≈50,∴此时与灯塔P的距离约为50海里.故答案为:50.14.解:∵太阳射来的光线可以看作平行线,∴∠AOB=∠1≈7.2°.设地球的半径为R千米,由题意得=800,解得R=,∴地球的周长约为2π×=40000(千米).故答案为:40000.15.解:如图,过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=12×=8(千米),∴AE=4(千米).BE=4(千米),∴DE=BE=4(千米),∴AD=(4+4)(千米),∵∠C=90,∠CAD=30°,∴CD=AD=2+2≈5.5(千米).故答案为:5.5.16.解:当AB转动到∠BAD=30°,BC转动到与AD垂直时,点C恰好落在AD上,如图:在Rt△ABC中,BC=AB=×18=9(cm),当AB转动到∠BAD=60°,BC转动到∠ABC=50°时,如图:过点B作BF⊥AD,垂足为F,过点C作CG⊥BF,垂足为G,过点C作CE⊥AD,垂足为E,则FG=CE,∠BGC=90°,在Rt△ABF中,AB=18cm,∠BAD=60°,∴BF=AB•sin60°=18×=9(cm),∠ABF=90°﹣∠BAD=30°,∵∠ABC=50°,∴∠CBG=∠ABC﹣∠ABF=20°,∴∠BCG=90°﹣∠CBG=70°,在Rt△BCG中,BC=9cm,∴BG=BC•sin70°≈9×0.94=8.46(cm),∴CE=FG=BF﹣BG=9﹣8.46≈7.1(cm),∴点C到AD的距离为7.1cm,故答案为:7.1.三.解答题17.解:如图,过点C作CD⊥AB,垂足为点D,在Rt△ACD中,∵∠DAC=37°,AC=80米,∴sin∠DAC=,cos∠DAC=,∴CD=AC•sin37°≈80×0.60=48(米),AD=AC•cos37°≈80×0.80=64(米),在Rt△BCD中,∵∠CBD=58°,CD=48米,∴tan∠CBD=,∴BD=≈=30(米),∴AB=AD+BD=64+30=94(米).答:A、B两点之间的距离约为94米.18.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.21.解:①如图1中,作DF⊥AB于F.∵tan∠B=2=,设BF=k,DF=2k,则AF=3﹣k,在Rt△ADF中,AD=AE=2,∴(2)2=(2k)2+(3﹣k)2,∴k=或,∵BD=k,∴BD=1或5.②如图②中,作DF⊥AB于F,BH⊥AC于H,∵∠AED=∠ACD,∴∠EDC=∠CAE=∠BAD,在Rt△ABH中,∵cos∠BAH==,设AH=m,AB=3m,则CH=2m,BH=2m,在Rt△BCH中,(2m)2+(2m)2=16,解得m=,∴AB=2,∵tan∠BAD==,设DF=n,AF=3n,易知tan B==,∴BF=n,∵AF+BF=AB=2,∴4n=2,∴n=,∴BD=n=.22.解:(1)过点C作CE⊥OA,垂足为E,作CD⊥AM,垂足为D.∵旋转1周用时24min,∴4min后∠AOC的度数为:360°×=60°,在Rt△OCE中,OC=60m,∠AOC=60°,∵cos∠AOC=,∴OE=120×cos60°=30m.∴AE=OA﹣OE=60.5﹣30=30.5(m).∵四边形AECD是矩形,∴CD=AE=30.5m.即4min后小明离地面30.5m.(2)延长AO交圆上点G,过OG的中点H作PQ⊥AG,连接PO、PQ.∵OB=60m,AB=0.5m,OH=30m,∴AH=90.5m.∴PQ上的点都距离地面90.5m,弧PGQ上的点都大于90.5m.在Rt△OPH中,∵OP=60m,OH=30m,∴∠P=30°.∴∠POH=60°.同理∠QOH=60°.∴∠POQ=120°.∵摩天轮旋转1周用时24min,∴摩天轮旋转120°用时:24×=8(min).即摩天轮转动1周,小明有8min在离地面90.5m以上的空中.23.解:过点A作AF⊥DC于点F,过点B作BE⊥DC于点E,∵矩形ABEF中,AF=BE=150cm,AB=EF=20cm.Rt△DAF中,∠DAF=48°,DF=AF•tan48°≈150×1.11≈166.5(cm),Rt△CBE中,∠CBE=30°,CE=BE°tan30°=150×≈86.5(cm),∴DE=DF+EF=166.5+20=186.5(cm),DC=DE﹣CE=186.5﹣86.5=100(cm),答:支架CD的高约为100cm.24.解:(1)∵斜坡的坡度为1:3,∴=,∵BD=CD﹣CB=2.2(米),在Rt△ABD中,AB=3BD=6.6(米),故AD==≈7.04(米),答:斜面AD的长度应约为7.04米.(2)过C作CE⊥AD,垂足为E,∴∠DCE+∠CDE=90°,∵∠BAD+∠ADB=90°,∴∠DCE=∠BAD,∴tan∠BAD=tan∠DCE==,设DE=x米,则EC=3x米,在Rt△CDE中,3.22=x2+(3x)2,解得:x≈1.012,则3x=3.036,∵3.036>2.8,∴货车能进入地下停车场.。

人教版数学九年级下册28.2 解直角三角形 同步练习4

人教版数学九年级下册28.2 解直角三角形 同步练习4

28.2解直角三角形(4)1、测得某坡面垂直高度为2m,水平宽度为4m,则坡度为 [ ]2、在Rt △ABC 中,∠C=90°,∠A=30°,b=310,则a= ,c= ;3、已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34,则底角∠B= ;4.如图:铁路的路基的横截面是等腰梯形,斜坡AB 的坡度为1∶3,BE 为33米,基面AD 宽2米,求路基的高AE ,基底的宽BEC 及坡角B 的度数.(答案可带根号)5.水坝横断面为等腰梯形,尺寸如图,(单位:米)坡度I=DEAE =1,求坡面倾斜角(坡角),并计算修建长1000米的水坝约需要多少土方? 6.如图,上午9时,一条船从A 处出发,以20节的速度向正北航行,11时到达B 处,从A ,B 望灯塔C ,测得∠NAC =36°,∠NBC =72°,那么从B 处到灯塔C 的距离是多少海里?7.如图,王聪同学拿一把∠ACB =30°的小型直角三角尺ABC 目测河流在市区河段的宽度.他先在岸边的点A 顺着30°角的邻边AC 的方向确定河对岸岸边的一棵树M .然后,沿30°角的对边AB 的方向前进到点B ′,顺着斜边C B ''的方向看见M ,并测得B A '=100 m ,那么他目测的宽大约为多少?(结果精确到 1m)8.海中有一个小岛A ,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60°,航行12海里到达D 点,这时测得小岛A 在北偏东30°.如果渔船不改变航向,继续向东捕捞,有没有触礁的危险?思考·探索·交流1.如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°的方向上有一点 A ,以 A 为圆心、500 m 为半径的圆形区域为居民区.取MN 上另一点B ,测得BA 的方向为南偏东 75°.已知MB =400 m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?答案:1、D 2、10,20 3、30°4.解:∵3133 AE∴AE=3(米)BC=(2+63)(米)∠B=30°5. 45°,444000土方6.40 海里.7.河宽约173 m.8.渔船没有触礁的危险.思考·探索·交流答案:1.输水路线不会穿过居民区.提示:过点A作MN的垂线,垂足为C,求AC.。

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习(附答案)1.如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A.15sin32°B.15tan64°C.15sin64°D.15tan32°2.如图,从一热气球的探测器A点,看一栋高楼顶部的仰角为55°,看这栋高楼底部的俯角为35°,若热气球与高楼的水平距离为35m,则这栋高楼度大约是()(考数据:sin55°≈,cos55°≈,tan55°≈)A.74米B.80米C.84米D.98米3.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=()A.B.C.D.4.某校积极开展综合实践活动,一次九年级数学小组发现校园里有一棵被强台风摧折的大树,其残留的树桩DC的影子的一端E刚好与倒地的树梢重合,于是他们马上利用其测量旁边钟楼AB的高度.如图是根据测量活动场景抽象出的平面图形.活动中测得的数据如下:①大树被摧折倒下的部分DE=10m;②tan∠CDE=;③点E到钟楼底部的距离EB=7m;④钟楼AB的影长BF=(20+8)m;⑤从D点看钟楼顶端A点的仰角为60°.(点C,E,B,F在一条直线上).请你选择几个需要的数据,用你喜欢的方法求钟楼AB的高度,则AB=()A.15m B.(15+6)m C.(12+6)m D.15m5.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A.B.C.D.6.如图,小王在山坡上E处,用高1.5米的测角仪EF测得对面铁塔顶端A的仰角为25°,DE平行于地面BC,若DE=2米,BC=10米,山坡CD的坡度i=1:0.75,坡长CD=5米,则铁塔AB的高度约米.(精确到个位,参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)7.如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为6m,则树的高度为m.8.如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,通过测量可知河的宽度CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,则AC=m(计算结果用含根号的式子表示).9.为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)10.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是45m,则甲楼的高AB是m (结果保留根号);11.某兴趣小组借助无人飞机航拍校园,如图,无人机在水平直线AB的正上方从E沿水平方向飞行至F处,用时10秒,在地面A处测得E处的仰角分别为30°,在水平线上的C处测得E处和F处的仰角分别为75°和45°,已知AC=100米,求无人机飞行的速度.12.2020年11月24日4时30分,我国在海南航天发射场,使用长征五号运载火箭成功发射了嫦娥五号探月探测器,引起了全世界的瞩目.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米.仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米.求火箭从A到B处的平均速度.(结果精确到1米/秒,参考数据:≈1.732,≈1.414)13.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,sin53°≈,cos53°≈,tan53°≈)(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.(结果精确到0.1米)14.文物探测队探测出某建筑物下面有地下文物,为了准确测出文物所在的具体位置,他们在文物上方建筑物的一侧地面上相距20米的A、B两处,用仪器测文物C,探测线与地面的夹角分别为30°和75°.(1)求∠C的度数;(2)求BC的长.15.如图,海岛A为物资供应处,海上事务处理中心B在海岛A的南偏西63.4°方向.一艘渔船在行驶到B岛正东方向30海里的点C处时发生故障,同时向A、B发出求助信号,此时渔船在A岛南偏东53.1°位置.(参考数据:tan53.1≈,sin53.1°≈,cos53.1°≈,tan63.4°≈2,sin63.4°≈,cos63.4°≈)(1)求C点到岛的距离;(2)在收到求助信号后,A、B两岛同时派人员出发增援,由于A岛所派快艇装运物资较多,速度比B岛所派快艇慢25海里/小时,若两岛派出的快艇同时到达C处,求A处所派快艇的速度.16.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的A处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向B移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响.(1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈,cos42°≈,tan42°≈)17.疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道DC,在街道C处的正上方A处有一架无人机,该无人机在A处测得俯角为45°的街道B处有人聚集,然后沿平行于街道DC的方向再向前飞行60米到达E处,在E处测得俯角为37°的街道D处也有人聚集.已知两处聚集点B、D之间的距离为120米,求无人机飞行的高度AC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.414.)18.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿某一方向直航140海里的海岛B,其速度为14海里/小时;乙船速度为20海里/小时,先沿正东方向航行3小时后,到达C港口接旅客,停留1小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求海岛B到航线AC的距离;(2)甲船在航行至P处,发现乙船在其正东方向的Q处,问此时两船相距多少?19.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?20.在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角,即望向屏幕中心P(AP=BP)的视线EP 与水平线EA的夹角∠AEP=18°时,对保护眼睛比较好,而且显示屏顶端A与底座C 的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为30cm.(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,≈1.41,≈1.73)参考答案1.解:∵∠CED=64°,∠F=32°,∠CED=∠F+∠EDF,∴∠EDF=∠CED﹣∠F=64°﹣32°=32°,∴∠EDF=∠F,∴DE=EF,∵EF=15米,∴DE=15米,在Rt△CDE中,∵sin∠CED=,∴CD=DE sin∠CED=15sin64°,故选:C.2.解:过点A作AD⊥BC于D,在Rt△ABD中,∠BAD=55°,AD=35m,tan∠BAD=,∴BD=AD•tan∠BAD≈35×=49(m),在Rt△ACD中,∠ACD=90°﹣∠CAD=55°,AD=35m,tan∠ACD=,∴CD=≈=25(m),∴BC=BD+CD=49+25=74(m),故选:A.3.解:如图,连接BE、AE.则:EB=,AB=.∵CD、BE、AE都是正方形的对角线,∴∠CDE=∠BEF=∠AEO=∠BEO=45°.∴CD∥BE,∠AEB=∠AEO+∠BEO=90°.∴∠AOD=∠ABE,△ABE是直角三角形.∴cos∠ABE===.故选:D.4.解:选择:①大树被摧折倒下的部分DE=10m;②tan∠CDE=;③点E到钟楼底部的距离EB=7m;⑤从D点看钟楼顶端A点的仰角为60°.理由如下:过D作DG⊥AB于G,如图所示:则DG=BC,BG=CD,∵DE=10m,tan∠CDE==,∴CE=8(m),BG=CD=6(m),∴DG=BC=CE+BE=8+7=15(m),在Rt△ADG中,∠ADG=60°,tan∠ADG==,∴AG=DG=15,∴AB=AG+BG=(15+6)m,故选:B.5.解:在Rt△ABC中,∵sin∠ABC=,即sinα=,∴AB=,在Rt△ADC中,∵sin∠ADC=,即sinβ=,∴AD=,∴==,故选:C.6.解:如图,过点E、F分别作AB的垂线,垂足分别为G、H,得矩形EFHG,∴GH=EF=1.5米,HF=GE=GD+DE=(GD+2)米,过点D作BC延长线的垂线,垂足为M,得矩形DMBG,∵CD的坡度i=1:0.75=4:3,CD=5米,∴DM=4米,CM=3米,∴DG=BM=BC+CM=10+3=13 (米),BG=DM=4米,∴HF=DG+2=15(米),在Rt△AFH中,∠AFH=25°,∴AH=FH•tan25°≈15×0.47≈7.05,∴AB=AH+HG+GB≈7.05+1.5+4≈12.6(米).答:铁塔AB的高度约是12.6米.故答案为12.6.7.解:∵tan∠ADB=,∴BD==AB(m),∵tan∠ACB=,∴BC==AB(m),∵CD=BD﹣BC,∴6=AB﹣AB(m),∴AB=9(m),故答案为9.8.解:作AB⊥CD交CD的延长线于点B,在Rt△ABC中,∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,∴AC=2AB,DB=AB.设AB=x,则BD=x,AC=2x,CB=50+x,∵tan∠ACB=tan30°,∴AB=CB•tan∠ACB=CB•tan30°.∴x=(50+x)•.解得:x=25(1+),∴AC=50(1+)(米).答:缆绳AC的长为50(1+)米.故答案为:50(1+)9.解:如图,根据题意可知:DE⊥BE,AB⊥BE,过点D作DC⊥AB于点C,所以四边形DEBC是矩形,∴BC=ED=1.70,DC=EB=15,在Rt△ACD中,∠ADC=30°,∴tan30°=,即=,解得AC=5,∴AB=AC+CB=5+1.70≈10.4(米).答:无人机距离地面的高度约为10.4米.故答案为:10.4.10.解:由题意可得:∠BDA=45°,则AB=AD,又∵∠CAD=30°,∴在Rt△ADC中,CD=45m.tan∠CDA=tan30°==,即=,解得:AD=45(m),∴AB=45m.故答案为:45.11.解:过点C作CD⊥AE于点D,过点E作EG⊥CF于点G,∵∠A=30°,∠BCE=75°,∠BCF=45°,∴∠ECF=∠BCE﹣∠BCF=30°,∠ACE=180°﹣∠BCE=105°,又∠CDA=90°,∴∠ACD=90°﹣∠A=60°,∴∠DCE=45°,在Rt△ACD中,∠A=30°,∴CD=AC=50(m),在Rt△CDE中,CE===(m),在Rt△CGE中,∠ECF=30°,∴EG=CE=(m),又EF∥BC,∴∠EFG=∠BCF=45°,在RT△EFG中,EF==50(m),50÷10=5米/秒∴无人机的速度为5米/秒.12.解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD=AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.13.解:(1)如图,过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由题意可知,∠CBN=45°,∠DAE=53°,i=1:,AB=10米,AE=21米.∵i=1:==tan∠BAM,∴∠BAM=30°,∴BM=AB=5(米),即点B距水平地面AE的高度为5米;(2)在Rt△ABM中,∠BAM=30°,∴BM=AB=5(米)=NE,AM=AB=5(米),∴ME=AM+AE=(5+21)米=BN,∵∠CBN=45°,∴CN=BN=ME=(5+21)米,∴CE=CN+NE=(5+26)米,在Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE•tan53°≈21×=28(米),∴CD=CE﹣DE=5+26﹣28=5﹣2≈6.7(米),即广告牌CD的高度约为6.7米.14.解:(1)由题意可得:∠C=75°﹣30°=45°;(2)过点B作BD⊥AC于点D,可得:∠BAC=30°,∵AB=20m,∴BD=AB=10m,∵∠C=45°,∠BDC=90°,∴sin45°===,解得:BC=10,答:BC的长为10m.15.解:(1)过点A作AD⊥BC于D,设AD为x海里,在Rt△ADC中,tan∠DAC=,cos∠DAC=,∠DAC=53.1°,则CD=AD•tan∠DAC≈x(海里),AC=≈x(海里),在Rt△ADB中,tan∠DAB=,∠DAB=63.4°,则BD=AD•tan∠DAB≈2x,由题意得,x+2x=30,解得,x=9,∴x=×9=15(海里),则C点到岛的距离AC约为15海里;(2)设A处所派快艇的速度为y海里/小时,则B处所派快艇的速度为(y+25)海里/小时,由题意得,=,解得,y=25,经检验,y=25是原方程的根,答:A处所派快艇的速度为25海里/小时.16.解:(1)该城市会受到这次台风的影响.理由如下:如图,过C作CD⊥BA于D.在Rt△ACD中,∵∠CAD=43°,AC=200千米,∴CD=AC•sin43°≈200×=150(千米),∵城市受到的风力达到或超过六级,则称受台风影响,∴受台风影响范围的半径为30×(12﹣6)=180(千米),∵150(千米)<180(千米),∴该城市会受到这次台风的影响.(2)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(150÷30)=7(级).答:受到台风影响的最大风力为7级;(3)如图以C为圆心,180为半径作⊙A交BC于E、F.则CE=CF=180.∴台风影响该市持续的路程为:EF=2DE=2×=60(千米).∴台风影响该市的持续时间:t=60÷20=3(时);答:台风影响该城市的持续时间为3小时.17.解:如图,过点E作EM⊥DC于M.∵AE∥CD.∴∠ABC=∠BAE=45°.∵BC⊥AC,EM⊥DC,∴AC∥EM,∴四边形AEMC为矩形.∴CM=AE=60 米.设BM=x米.则AC=BC=EM(60+x)米.DM=(120+x)米.在Rt△EDM中,∵∠D=37°.∴tan∠D==,解得:x=120,∴AC=60+x=60+120=180 (米).∴飞机高度为180米.答:无人机飞行的高度AC为180米.18.解:(1)过点B作BD⊥AE于D,在Rt△BCD中,∠BCD=60°,设CD=x,则BD=x,∵在Rt△BDA中,∠BDA=90°∴AD2+BD2=AB2,得1402=(60+x)2+(x)2x2+30x﹣4000=0,∴x=50或﹣80(舍弃),∴BD=50.(2)设运动时间为t,则AP=14t,CQ=20(t﹣4).BC=100若点Q在点P的正东方向,则PQ∥AC,∴=,即:=,得t=8,由∵△BPQ∽△BAC,∴=,即:=,得PQ=12.19.解:(1)∵在直角△BEF中,tan∠EBF=,∴BF===12.同理AF=EF=12(米),则AB=BF+AF=12+12(米);(2)作AG⊥BE于点G,在直角△ABG中,AG=AB•sin30°=(12+12)=6+6.又∵直角△AGC中,∠ACG=45°,∴AC=AG=6+6(米).20.解:(1)由已知得AP=BP=AB=15(cm),在Rt△APE中,∵sin∠AEP=,∴AE=≈48(cm),答:眼睛E与显示屏顶端A的水平距离AE约为48cm;(2)如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB•cos∠BAF=30×cos18°≈30×0.95≈28.5(cm),BF=AB•sin∠BAF=30×sin18°≈30×0.31≈9.3(cm),∵BF∥CD,∴∠CBF=∠BCD=30°,∴CF=BF•tan∠CBF=9.3×tan30°=9.3×≈5.36(cm),∴AC=AF+CF=28.5+5.36≈34(cm).答:显示屏顶端A与底座C的距离AC约为34cm.。

九年级数学下册28.2 解直角三角形同步练习4 新人教版 (含答案)

九年级数学下册28.2 解直角三角形同步练习4 新人教版 (含答案)

28.2解直角三角形专题一利用解直角三角形测河宽与山高1.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮助小丽计算小河的宽度.2.在一次暑假旅游中,小亮在仙岛湖的游船上(A处),测得湖西岸的山峰太婆尖(C处)和湖东岸的山峰老君岭(D处)的仰角都是45°,游船向东航行100米后(B处),测得太婆尖、老君岭的仰角分别为30°、60°.试问太婆尖、老君岭的高度为多少米?(3≈1.732,结果精确到1米)专题二利用解直角三角形测坝宽与坡面距离3.如图,一段河坝的横断面为梯形ABCD,试根据图中的数据,求出坝底宽AD.(i=CE:ED,单位:m)专题三利用解直角三角形解决太阳能问题4.某市规划局计划在一坡角为16°的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为28°,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12 m,⊙O的半径为1.5 m,求雕塑最顶端到水平地面的垂直距离.(结果精确到0.01 m)(参考数据:cos28°≈0.9,sin62°≈0.9,sin44°≈0.7,cos46°≈0.7)【知识要点】1.解直角三角形的几种基本图形:图形1:tan30°=33=+a x x , ∠ABD =∠A ,BD =AD =a , tan60°=xx a + , x a x 333=+,2360sin =︒=a x , x a x +=3, 213+=x a . a x 23= . a a x 21313+=-= . 图形2:tan30°=33=-x a x , tan60°=3=-xa x , a a x 21313-=+=. a a x 233133-=+= .图形3:AC =CD =a +x , AC =BE =DE =x , ∠BAD =∠BDA =30°,tan30°=33=+a x x , tan60°=3=+x x a , AB =BD =a ,a a x 21313+=-= . a a x 21313+=-= . x =21BD =21a . 【温馨提示】1.解直角三角形的基本思想是“化斜为直”,在转化过程中,尽量保证已知度数的角的完整性.2.当一个三角形是钝角三角形,且其钝角的补角是30、45、60度时,常常从该钝角顶点向对边作垂线构造“双直角三角形”.【方法技巧】1.双直角三角形中,公共直角边是“桥梁”,通过它建立起两直角三角形的联系.2.如果条件中给出参考数据,结合原始数据,构造直角三角形.当计算过程中用到了参考数据,你的思路一定是正确的.参考答案1.解:示意图如下:连接AC ,B C ,过点C 作CE ⊥AD 于E .由题意得,∠ACB =∠CBE -∠CAD =60°-30°=30°, ∴∠CAD =∠ACB ,∴BC =AB =30.在Rt △BEC 中,CE =BC sin60°=30×23=153(m ). 答:小河的宽度为153m.2.解:设太婆尖高h 1米,老君岭高h 2米,依题意,有1122100tan 30tan 45100.tan 45tan 60h h h h ⎧-=⎪⎪⎨⎪-=⎪⎩,解得11)137h =≈(米),2h 50(3237=≈(米). 答:太婆尖的高度约为137米,老君岭的高度约为237米 .3.解:如图所示,过点B 作BF ⊥AD 于F ,可得矩形BCEF , ∴EF =BC =4,BF =CE =4.在Rt △ABF 中,∠AFB =90°,AB =5,BF =4,由勾股定理可得3AF ==.∵Rt △CED 中,12CE i ED ==, ∴ED =2CE =2×4=8.∴AD =AF +FE +ED =3+4+8=15(m).4.解:过点O 作水平地面的垂线,垂足为E . 在Rt△AOB 中,cos∠OAB =OA AB,即cos28°=OA 12,∴OA =121213.333cos 280.9≈≈︒.∵∠BAE =16°,∴∠OAE =28°+16°=44°.在Rt△AOE 中,sin∠OAE =OA OE,即s in44°333.13OE≈, ∴OE 333.97.0333.13≈⨯≈,9.333+1.5≈10.83(m).∴雕塑最顶端到水平地面的垂直距离约为10.83 m .。

人教版九年级数学下册28.2 解直角三角形同步练习

人教版九年级数学下册28.2 解直角三角形同步练习

28.2 解直角三角形第3课时坡角、方向角与解直角三角形1. 如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50 m,则迎水坡面AB的长度是()A.100 m B.100C.150 m D.502. 小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米 B. 12米 C. (4-米 D. 10米3. 如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为米.4. 如图,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起始点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是 cm.5. 如图,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500 m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?参考答案1.A2.A3.4.2105.解:(1)过B点作BE∥AD,如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°,即△ABC为直角三角形.由已知可得:BC=500 m,AB,由勾股定理可得:AC2=BC2+AB2,AC.∴1000(m)(2)在Rt△ABC中,∵BC=500 m,AC=1000 m,∴∠CAB=30°.∵∠DAB=60°,∴∠DAC=30°.即点C在点A的北偏东30°的方向.。

新人教版数学九年级下册同步练习28.2.1 解直角三角形

新人教版数学九年级下册同步练习28.2.1 解直角三角形

28.2 解直角三角形及其应用28.2.1 解直角三角形1.在Rt△ABC中,∠C=90°则AB等于( D )(A)4 (B)6 (C)8 (D)102.如图,在菱形ABCD中,AE⊥BC于点则菱形的周长是( C )(A)10 (B)20 (C)40 (D)283.(2018祁阳县二模)在直角三角形ABC中,已知∠C=90°,∠A= 40°,BC=3,则AC等于( D )(A)3sin 40°(B)3sin 50°(C)3tan 40°(D)3tan 50°4.如图,在△ABC中,AD⊥BC,垂足为点D,若∠C=45°, tan∠ABC=3,则BD等于( A )(A)2 (B)3(C)35.(2018枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°, AB的长为12米,则大厅两层之间的高度为6.2 米(结果精确到0.1).(参考数据:sin 31°≈0.515,cos 31°≈0.857,tan 31°≈0.601)6.如图,在▱ABCD中则▱ABCD的面积是7.在△ABC中则BC边长为7或17 .8.(2018自贡)如图,在△ABC中∠B=30°,求AC和AB的长.解:过点C作CD⊥AB于点D,在Rt△BCD中,因为∠B=30°,BC=12,所以CD=BC·sin 30°=6,BD=BC·cos 30°在Rt△ACD中,因为所以AD=8,所以所以.9.如图,在△ABC中,∠C=90°为AC上一点,∠BDC=60°, DC=2求AD的长.解:在△BDC中,∠C=90°,∠BDC=60°所以tan 60°解得BC=6,在△ABC中所以即解得AC=15,所以AD=AC-CD=15-210.如图所示,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).解:如图,过点C作CD⊥AB于点D,因为∠A=60°,∠B=45°,所以∠ACD=30°,∠BCD=∠B=45°,所以CD=AD·tan A,BD=CD.设AD=x,则CD=xtan 60°因为解得x=4(所以,所以S△ABC·8×11.(核心素养—数学抽象)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD.支架CD 与水平线AE垂直,∠BAC=∠CDE=30°,DE=80 cm,AC=165 cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果均保留根号) 解:(1)在Rt△CDE中,∠CDE=30°,DE=80 cm,所以cos 30°解得 cm.(2)在Rt△OAC中,∠BAC=30°,AC=165 cm,所以tan 30°解得 cm,所以OB=OD=OC-CD所以AB=OA-OB=110故真空热水管AB的长为。

九年级数学下册 28.2 解直角三角形及其应用同步练习1 (新版)新人教版

九年级数学下册 28.2 解直角三角形及其应用同步练习1 (新版)新人教版

解直角三角形及其应用一、双基整合:1.在下面条件中不能解直角三角形的是()A.已知两条边 B.已知两锐角 C.已知一边一锐角 D.已知三边2.在△ABC中,∠C=90°,a=5,c=13,用科学计算器求∠A约等于()A.24°38′ B.65°22′ C.67°23′ D.22°37′3.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,有下列关系式:•①b=ccosB,②b=atanB,③a=csinA,④a=bcotB,其中正确的有()A.1个 B.2个 C.3个 D.4个4.为测一河两岸相对两电线杆A、B间距离,在距A点15m的C处,(AC⊥AB),测得∠ACB=50°,则A、B间的距离应为( )mA.15sin50° B.15cos50° C.15tan50° D.15cot50°5.在△ABC中,∠C=90°,52,则斜边c=_____,∠A的度数是____.6.在直角三角形中,三个内角度数的比为1:2:3,若斜边为a,•则两条直角边的和为________.7.四边形ABCD中,∠C=90°,AB=12,BC=4,CD=3,AD=13,•则四边形ABCD•的面积为________.8.如图,小明想测量电线杆AB•的高度,•发展电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_______米.(结果1.411.73)9.如图所示,在Rt△ABC中,a,b分别是∠A,∠B的对边,c为斜边,如果已知两个元素a,∠B,就可以求出其余三个未知元素b,c,∠A.(1)求解的方法有多种,请你按照下列步骤,完成一种求解过程.第一步:已知:a,∠B,用关系式:_______________,求出:_________________;第二步:已知:_____,用关系式:_______________,求出:_________________;第三步:已知:_____,用关系式:_______________,求出:_________________.(2)请你分别给出a,∠B的一个具体数据,然后按照(1)中的思路,求出b,c,∠A的值.bcaA10.在等腰梯形ABCD中,AB∥CD,CD=3cm,AB=7cm,高为,求底角B的度数.11.如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BCD=α,•求cos α的值.BCD二、探究创新12.国家电力总公司为了改善农村用电量过高的现状,目前正在全面改造各地农村的运行电网,莲花村六组有四个村庄A ,B ,C ,D 正好位于一个正方形的四个顶点,•现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图所示的实线部分,请你帮助计算一下,哪种架设方案最省电线(以下数据可供参考).13.在Rt △ABC 中,∠C=90°,斜边c=5,两直角边的长a ,b 是关于x 的一元二次方程x 2-mx+2m-2=0的两个根,求Rt △ABC 中较小锐角的余弦值.三、智能升级14.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求AD,CD的长.15.(2006·宜昌)如图,•某一时刻太阳光从教室窗户射入室内,•与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5m,窗户的高度AF为2.5m,求窗外遮阳篷外端一点D到窗户上椽的距离AD.(结果精确到0.1m)答案:1.B 2.D 3.C 4.C 5°6.36 8.8.7 9.略10.60° • •11.cosα12.设正方形边长为a,则(1)3a,(2)3a,(3)(a,(4))a ∴第(4)种方案最省电线13.45 14.,15.过点E 作EG ∥AC 交BP 于点G ,∵EF ∥DP ,∴四边形BEFG 是平行四边形. 在Rt △PEG 中,PE=3.5,∠P=30°,tan ∠EPG=EGEP ,∴EG=EP ·tan ∠ADB=3.5×tan30°≈2.02(或).又∵四边形BFEG 是平行四边形,∴BF=EG=2.02,∴AB=AF-BF=2.5-2.02=0.48(或.又∵AD ∥PE ,∠BDA=∠P=30°,在Rt•△BAD 中,tan30°= ,ABADtan 30ABAD ∴=︒=0.48)≈0.8(m ),∴所求的距离AD 约为0.8m .。

九年级数学下册 28.2.1 解直角三角形同步测试 (新版)新人教版 (含答案)

九年级数学下册 28.2.1 解直角三角形同步测试 (新版)新人教版  (含答案)

解直角三角形1.△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( A )A .c sin A =aB .b cos B =cC .a ta n A =bD .c tan B =b2.在Rt △ABC 中,∠C =90°,若tan A =12,c =2,则b 的值等于( D )A.55 B.255 C.355 D.455【解析】 ∵tan A =a b =12,∴a =b 2,又∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫b 22+b 2=4,∴5b 24=4,∴b =45 5.3.如图28-2-1,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于( B ) A .m ·sin α米 B .m ·tan α米 C .m ·cos α米 D.mtan α米图28-2-1图28-2-24.如图28-2-2,△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( A ) A.212B .12C .14D .21 5.已知:在△ABC 中,AB =AC ,∠BAC =120°,AD 为BC 边上的高.则下列结论中,正确的是( B ) A .AD =32AB B .AD =12AB C .AD =BD D .AD =22BD 6.在Rt △ABC 中,∠C =90°,a =6,b =23,则∠B =__30°__.【解析】 本题是已知两直角边解直角三角形,由tan B =b a =236=33,得∠B =30°.7.已知Rt △ABC 中,∠C =90°,c =83,∠A =60°,则a =__12__,b =.【解析】 本题是已知一锐角和斜边解直角三角形,由sin A =a c ,得a =sin A ·c =32×83=12.由∠A =60°,得∠B =30°,所以b =12c =4 3.8.等腰三角形底边长为26,底边上的高为32,则底角为__60°__. 【解析】 底边上的高将等腰三角形分割成两个直角三角形,通过解直角三角形即可求底角. 9.在△ABC 中,∠C =90°,由下列条件解直角三角形. (1)已知∠A =60°,b =4,求a ; (2)已知a =13,c =23,求b ;(3)已知c =282,∠B =30°,求a ;(4)已知a =2,cos B =13,求b .解:(1)∵tan A =a b,∴a =b ·tan A =4·tan60°=4×3=43;(2)∵a 2+b 2=c 2, ∴b =c 2-a 2=⎝ ⎛⎭⎪⎫232-⎝ ⎛⎭⎪⎫132=13; (3)∵cos B =a c, ∴a =c ·cos B =282×32=146; (4)∵cos B =a c ,∴c =a cos B =213=6.又∵b 2=c 2-a 2,∴b =c 2-a 2=62-22=4 2. 10.在Rt △ABC 中,∠C =90°. (1)已知a =4,b =8,求c .(2)已知b =10,∠B =60°,求a ,c . (3)已知c =20,∠A =60°,求a ,b .解:(1)c =a 2+b 2=42+82=45;(2)a =b tan B =10tan60°=103=1033,c =b sin B =10sin60°=1032=2033;(3)a =c ×sin A =20×32=103,b =c ×cos A =20×12=10. 11.根据下列条件,解直角三角形:(1)在Rt △ABC 中,∠C =90°,a =8,∠B =60°; (2)在Rt △ABC 中,∠C =90°,∠A =45°,b = 6.解:(1)∠A =90°-∠B =30°,c =acos B=16,b =a ·tan B =83;(2)∠B =90°-∠A =45°,a =b ·tan A =6,c =bcos A=2 3.图28-2-312.如图28-2-3,在Rt △ABC 中,∠C =90°,AC =2,AB = 22,解这个直角三角形.解:∵∠C =90°,AC =2,AB =22,∴sin B =AC AB =12,∴∠B =30°, ∴∠A =60°.BC =AB 2-AC 2=8-2= 6.13.如图28-2-4,已知△ABC 中,∠C =90°,tan A =12,D 是AC 上一点,∠CBD =∠A ,则sin ∠ABD =( A )图28-2-4A.35B.105C.310D.4914.如图28-2-5,已知在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求△ABC 的周长(结果保留根号). 解:∵△ABD 是等边三角形,∴∠B = 60°. 在Rt △ABC 中,∵cos B =AB BC ,sin B =AC BC,∴BC = AB cos B =2cos60°=4,∴AC =BC ·sin B =4×sin60°=23, ∴△ABC 的周长=AB +AC +BC =6+2 3.图28-2-5图28-2-615.如图28-2-6,△ABC 中,∠C =90°,点D 在AC 上,已知∠BDC =45°,BD =102,AB =20.求∠A 的度数.解:在Rt △BDC 中,因为sin ∠BDC =BC BD, 所以BC =BD ×sin ∠BDC =102×sin45°=102×22=10. 在Rt △ABC 中,因为sin A =BC AB =1020=12,所以∠A =30°. 16.如图28-2-7,在△ABC 中,∠A =30°,∠B =45°,AC =23,求AB 的长.图28-2-7第16题答图解:如图,过点C 作CD ⊥AB 于点D , ∴∠ADC =∠BDC =90°.∵∠B =45°,∴∠BCD =∠B =45°,∴CD =BD . ∵∠A =30°,AC =23,∴CD =12AC =3,∴BD =CD = 3.由勾股定理得:AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.17.某学校的校门是伸缩门(如图①),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图②);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图③).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.087 2,cos5°≈0.996 2,sin10°≈0.173 6,cos10°≈0.984 8).图28-2-8 解:如图,校门关闭时,取其中一个菱形ABC D.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1·A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6-1.0464=4.9536≈5(米).故校门打开了5米.。

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2021-2022学年人教版九年级数学下册《28.2解直角三角形及其应用》同步练习题(附答案)1.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.2.如图,楼顶上有一个广告牌AB,从与楼BC相距15m的D处观测广告牌顶部A的仰角为37°,观测广告牌底部B的仰角为30°,求广告牌AB的高度.(结果保留小数点后一位,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)3.如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.4.图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB与地面DE 平行,踏板CD长为1.5m,CD与地面DE的夹角∠CDE=15°,支架AC长为1m,∠ACD=75°,求跑步机手柄AB所在直线与地面DE之间的距离.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)5.一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)6.2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC长为48米,在点D处测得桥墩最高点A的仰角为35°,CD平行于水平线BM,CD长为16米,求桥墩AB 的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.73)7.今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A处测得国旗D处的仰角为45°,站在同一队列B处的小刚测得国旗C处的仰角为23°,已知小明目高AE=1.4米,距旗杆CG的距离为15.8米,小刚目高BF=1.8米,距小明24.2米,求国旗的宽度CD 是多少米?(最后结果保留一位小数)(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245)8.图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)9.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)10.如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B在同一条直线上).数据收集:通过实地测量:地面上A,B两点的距离为58m,∠CAD=42°,∠CBD=58°.问题解决:求宝塔CD的高度(结果保留一位小数).参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.根据上述方案及数据,请你完成求解过程.11.“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A处测得该建筑物顶端C的俯角为24°,继续向该建筑物方向水平飞行20米到达B处,测得顶端C的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:sin24°≈,cos24°≈,tan24°≈)12.我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)13.拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图2,求手臂端点D离操作台l的高度DE的长(精确到1cm,参考数据:sin53°≈0.8,cos53°≈0.6).(2)物品在操作台l上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.14.资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,基站塔与水平地面垂直,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求D处的竖直高度;(2)求基站塔AB的高.15.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).16.越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)17.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.18.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD 平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)19.小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A处看到B、C处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向,C在北偏东30°方向,他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B、C之间的距离(结果保留根号).20.在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D 处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)21.如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.参考答案1.解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.2.解:在Rt△BCD中,BC=DC•tan30°=15×≈5×1.73=8.65(m),在Rt△ACD中,AC=DC•tan37°≈15×0.75=11.25(m),∴AB=AC﹣BC=11.25﹣8.65=2.6(m).答:广告牌AB的高度为2.6m.3.解:如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==(海里),又∵CA=CH+AH,∴257=+AH,所以AH=(海里),∴AB=≈=168(海里),答:AB的长约为168海里.4.解:如图,过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为15°,∠ACD为75°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+15°﹣75°=30°,∴∠CAF=60°,在Rt△ACF中,CF=AC•sin∠CAF=m,在Rt△CDG中,CG=CD•sin∠CDE=1.5•sin15°m,∴FG=FC+CG=+1.5•sin15°≈1.3m.故跑步机手柄AB所在直线与地面DE之间的距离约为1.3m.5.解:在△ADC中,设AD=xm,∵AD⊥BD,∠ACD=45°,∴CD=AD=xm,在△ADB中,AD⊥BD,∠ABD=30°,∴AD=BD•tan30°,即x=(16+x)m,解得:x=(8+8)m,∴AB=2AD=2×(8)=(16)m,∴钢索AB的长度为(16)m.6.解:过点C作CE⊥BM于点E,过点D作DF⊥BM于点F,延长DC交AB于点G,在Rt△CEB中,∠CBE=30°,BC=48米,∴CE=BC•sin30°=×48=24(米),BE=BC•cos30°=48×≈24×1.73=41.52(米),∴DG=BF=BE+EF=BE+CD=41.52+16≈41.52+27.68=69.2(米),在Rt△ADG中,AG=DG•tan∠ADG=69.2×tan35°≈69.2×0.70=48.44(米),∴AB=AG+BG=AG+CE=48.44+24=72.44≈72.4(米),答:桥墩AB的高约为72.4米.7.解:作EM⊥CG于M,FN⊥CG于N,由题意得GB=AG+AB=15.8+24.2=40(米),则FN=GB=40米,在Rt△EDM中,∠DEM=45°,∴DM=EM=15.8米,∵MG=AE=1.4米,∴DG=DM+MG=15.8+1.4=17.2(米),∵NG=FB=1.8米,∴DN=17.2﹣1.8=15.4(米),在Rt△CNF中,∠CFN=23°,∵tan∠CFN=≈0.4245,∴CN=0.4245×40≈17.0(米),∴CD=CN﹣DN=17.0﹣15.4=1.6(米)故国旗的宽度CD约为1.6米.8.解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK ⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈4.9(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.9.解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75,解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.10.解:设CD=xm,在Rt△ACD中,AD=,在Rt△BCD中,BD=,∵AD+BD=AB,∴,解得,x≈33.4.答:宝塔的高度约为33.4m.11.解:过C作CF⊥AD于F,如图所示:则AF=CE,由题意得:AB=20米,∠AEC=90°,∠CAE=24°,∠CBE=45°,∴△BCE是等腰直角三角形,∴BE=CE,设BE=CE=x米,则AF=x米,在Rt△ACE中,tan∠CAE==tan24°≈,∴AE=x米,∵AE﹣BE=AB,∴x﹣x=20,解得:x≈16.4,∴AF≈16.4(米),∴DF=AD﹣AF=60﹣16.4=43.6(米),即这栋建筑物的高度为43.6米.12.解:(1)∵B为AD′中点,∴AB=AD′,∵AD′=40cm,∴AB=20cm;(2)如图,过点B作BE⊥AD于点E,∵AB=BD,∴AD=2AE,∵AP平分∠BAC,∠BAC=140°,∴∠BAE=BAC=70°,在Rt△ABE中,AB=20cm∴AE=AB•cos70°≈20×0.34=6.8(cm),∴AD=2AE=13.6(cm),∵AD′=40cm,∴40﹣13.6=26.4(cm).∴伞圈D沿着伞柄向下滑动的距离为26.4cm.13.解:(1)过点C作CP⊥AE于点P,过点B作BQ⊥CP于点Q,如图:∵∠ABC=143°,∴∠CBQ=53°,在Rt△BCQ中,CQ=BC•sin53°≈70×0.8=56cm,∵CD∥l,∴DE=CP=CQ+PQ=56+50=106cm.(2)手臂端点D能碰到点M,理由:由题意得,当B,C,D共线时,手臂端点D能碰到最远距离,如图:BD=60+70=130cm,AB=50cm,在Rt△ABD中,AB²+AD²=BD²,∴AD=120cm>110cm.∴手臂端点D能碰到点M.14.解:(1)如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,∵斜坡CB的坡度为i=1:2.4,∴=,即=,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=13米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=132,解得k=1,∴DM=5(米),CM=12(米),答:D处的竖直高度为5米;(2)斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,又∵∠ACF=45°,∴AF=CF=(12+12a)米,∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,在Rt△ADE中,DE=12a米,AE=(7+12a)米,∵tan∠ADE=tan53°≈,∴=,解得a=,∴DE=12a=21(米),AE=7+12a=28(米),BE=5a=(米),∴AB=AE﹣BE=28﹣=(米),答:基站塔AB的高为米.15.解:(1)过点D作DH⊥CE于点H,由题意知CD=2米,∵斜坡CF的坡比为i=1:3,∴,设DH=x米,CH=3x米,∵DH2+CH2=DC2,∴,∴x=2,∴DH=2(米),CH=6(米),答:王刚同学从点C到点D的过程中上升的高度为2米;(2)过点D作DG⊥AB于点G,设BC=a米,∵∠DHB=∠DGB=∠ABC=90°,∴四边形DHBG为矩形,∴DH=BG=2米,DG=BH=(a+6)米,∵∠ACB=45°,∴BC=AB=a(米),∴AG=(a﹣2)米,∵∠ADG=30°,∴,∴,∴a=6+4,∴AB=(6+4)(米).答:大树AB的高度是(6+4)米.16.解:延长BC交MN于点H,AD=BE=3.5,设MH=x米,∵∠MEC=45°,∴EH=x米,在Rt△MHB中,tan∠MBH==≈0.65,解得x=6.5,则MN=1.6+6.5=8.1≈8(米),∴电池板离地面的高度MN的长约为8米.17.解:如图,∵四边形AEFD为矩形,∠BAD=53°,∴AD∥EF,∠E=∠F=90°,∴∠BAD=∠EBA=53°,在Rt△ABE中,∠E=90°,AB=10cm,∠EBA=53°,∴sin∠EBA=≈0.80,cos∠EBA=≈0.60,∴AE=8cm,BE=6cm,∵∠ABC=90°,∴∠FBC=90°﹣∠EBA=37°,∴∠BCF=90°﹣∠FBC=53°,在Rt△BCF中,∠F=90°,BC=6cm,∴sin∠BCF=≈0.80,cos∠BCF=≈0.60,∴BF=4.8cm,FC=3.6cm,∴EF=6+4.8=10.8cm,∴S四边形EFDA=AE•EF=8×10.8=86.4(cm2),S△ABE==×8×6=24(cm2),S△BCF=•BF•CF=×4.8×3.6=8.64(cm2),∴截面的面积=S四边形EFDA﹣S△ABE﹣S△BCF=86.4﹣24﹣8.64=53.76(cm2).18.解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,由cos∠BAE=,∴cos22°=,∴,即AE=4.5m,∴DE=AE﹣AD=4.5﹣0.4=4.1(m),由sin∠BAE=,∴,∴,即BE=1.8m,∴BF=BE+EF=1.8+1.2=3(m),又,∴,即CF=4m,∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;(2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,由cos∠BAM=,∴,∴,即AM=2.88m,∴DM=AM﹣AD=2.88﹣0.4=2.48(m),由sin∠BAM=,∴,∴,即BM=3.84m,∴BN=BM+MN=3.84+1.2=5.04(m),∴=(m),∴OH=ON+HN=ON+DM=4.58(m),即点O到岸边的距离为4.58m.19.解:(1)设AD与BC交于点F,由题意得BE∥AD,∵BE∥AD且∠EBF=60°,∴∠BF A=∠EBF=60°,∵∠BF A=∠C+∠CAD且∠CAD=30°,∴∠C=∠BF A﹣∠CAD=30°;(2)过点B作BG⊥AD于G.∵BG⊥AD,∴∠AGB=∠BGD=90°,在Rt△AGB中,AB=20米,∠BAG=45°,AG=BG=20×sin45°=(米),在Rt△BGF中,∠BFG=60°,∴BF===(米),FG===(米),∵∠C=∠CAD=30°,∴CF=AF=AG+FG=(10+)(米),∴BC=BF+CF=(10+10)米,答:两棵银杏树B、C之间的距离为(10+10)米.20.解:由题意可知AB=24米,∠BDA=53°,∴tan∠BDA==≈1.33,∴AD=≈18.05(米).∵tan∠CAD=tan30°===,∴CD=18.05×≈10.4(米).故办公楼的高度约为10.4米.21.解:(1)如图,过点C作CE⊥AB于点E,根据题意可知:∠ACE=∠CAE=45°,AC=25海里,∴AE=CE=25(海里),∵∠CBE=30°,∴BE=25(海里),∴BC=2CE=50(海里).答:观测点B与C点之间的距离为50海里;(2)如图,作CF⊥DB于点F,∵CF⊥DB,FB⊥EB,CE⊥AB,∴四边形CEBF是矩形,∴FB=CE=25(海里),CF=BE=25(海里),∴DF=BD+BF=30+25=55(海里),在Rt△DCF中,根据勾股定理,得CD===70(海里),∴70÷42=(小时).答:救援船到达C点需要的最少时间是小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档