资阳市2017高考数学模拟试卷(理科)(4月)(word版含答案)

合集下载

四川省资阳市2017届高三4月模拟考试数学(理)试题 Word版含答案

四川省资阳市2017届高三4月模拟考试数学(理)试题 Word版含答案

资阳市高中2014级高考模拟考试数 学(理工类)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合2{|230} {|10}A x x x B x x =--<=-,≥,则图中阴影部分所表示的集合为 (A){|1x x -≤或3}x ≥ (B){|1x x <或3}x ≥ (C){|1}x x ≤ (D){|1}x x -≤2.已知等差数列{}n a 的前项和为n S ,且530S =,则3a =(A) 6(B) 7(C) 8(D) 93.已知i 为虚数单位,若复数21(1)i z a a =-++(其中a ∈R )为纯虚数,则2iz=- (A)42i 55-(B)24i 55-+(C)42i 55+(D)24i 55-- 4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为(A)2π43+ (B)4+(C)8+(D)8+5.双曲线E :22221x y a b-=(0a >,0b >)的一个焦点F 到E ,则E的离心率是(B)32(C) 2 (D) 36.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是(A) 40 (B) 60 (C) 80 (D) 1007.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i 的值为 (A) 7 (B) 8 (C) 9 (D) 108.已知函数()sin()6f x x ωπ=+,其中0ω>.若()()12f x f π≤对x ∈R 恒成立,则ω的最小值为(A) 2(B) 4(C) 10(D) 169.已知01c <<,1a b >>,下列不等式成立的是(A)a b c c > (B)a ba cb c>-- (C)c c ba ab >(D)log log a b c c >10.正方形ABCD 与等边三角形BCE 有公共边BC ,若∠ABE =120°,则BE 与平面ABCD 所成角的大小为(A)6π(B)3π(C)4π(D)2π 11.过抛物线24y x =的焦点F 作互相垂直的弦AC ,BD ,则点A ,B ,C ,D 所构成四边形的面积的最小值为 (A) 16(B) 32(C) 48(D) 6412.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x y ∈R ,,则4x y -的取值范围是(A)[23, (B)[23+,(C)[33-+(D)[33-第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。

四川省资阳市资阳中学2017届高三上学期入学考试数学(理)试题Word版含答案

四川省资阳市资阳中学2017届高三上学期入学考试数学(理)试题Word版含答案

高2014级第五学期入学考试理科数学试题一、选择题(12560⨯=)1.已知集合{}{}|410,|37P x x Q x x =<<=<<,则PQ =( )A .{}|37x x <<B .{}|310x x <<C .{}|34x x <<D .{}|47x x <<2.已知i 为虚数单位,a R ∈,若2ia i-+为纯虚数,则复数2z a =的模等于( )A BCD3.某几何体的三视图如图所示, 则该几何体的表面积为( )A .72B .80C .86D .924.阅读如图所示的程序框图,运行相应的程序,则输出的结果是( )A .B .0CD .5.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出....时活动结束,则活动恰好在第4人抽完后结束的概率为( ) A .101B .51C .103D .526.若函数)0)(2sin()(<<-+=ϕπϕx x f 为偶函数,则函数)(x f 在区间]4,0[π上的取值范围为( ) A .]0,1[- B .]0,22[-C .]22,0[D .]1,0[7.已知P 是ABC ∆内一点,且满足032=++PC PB PA ,记ABP ∆, BPC ∆,ACP ∆的面积依次为321S S S ,,,则321S S S ::等于( )A .1:2:3B .1:4:9C .6:1:2D . 3:1:28.在等差数列}{n a 中,若1203963=++a a a ,则872a a -的值为( )A .24B .24-C .20D .20-9.若一组数据2,4,6,8的中位数、方差分别为,m n ,且()10,0ma nb a b +=>>,则11a b+的最小值为( )A.6+ B.4+ C.9+ D .2010.设命题()000:0,,x p x e x e ∃∈+∞+=,命题:q 若圆2221:C x y a +=与圆22:()C x b -+22()y c a -=相切, 则2222b c a +=,那么, 下列命题为假命题的是( )A .q ⌝B .p ⌝C .()()p q ⌝∨⌝D .()p q ∧⌝11.若直线:2x l y m =-+与曲线:C y =有且仅有三个交点,则m 的取值范围是( )A.)1 B.( C.()1+D.()112.定义在R 上的函数()f x 满足1(2)()2f x f x +=,当[0,2)x ∈时,231||212,01,2()2,1 2.x x x f x x --⎧-≤<⎪=⎨⎪-≤<⎩函数32()3g x x x m =++.若[4,2)s ∀∈--,[4,2)t ∃∈--,不等式()()0f sg t -≥成立,则实数m 的取值范围是( )A .(,12]-∞-B .(,4]-∞-C .(,8]-∞D .31(,]2-∞ 二、填空题(5420⨯=) 13,y x =,曲线所围封闭图形的面积为 14.已知()()()()()921120121112111x x a a x a x a x +-=+-+-++-,则1211a a a +++的值为 .15.有下列四个命题:①“若xy ≠-1,则x ≠1或y ≠-1”是假命题; ②“∀x ∈R ,x 2+1>1”的否定是“∃x ∈R ,x 2+1≤1”③当a 1,a 2,b 1,b 2,c 1,c 2均不等于0时,“不等式a 1x 2+b 1x +c 1>0与a 2x 2+b 2x +c 2>0解集相同”是“111222a b c a b c ==”的充要条件; ④“全等三角形相似”的否命题是“全等三角形不相似”,其中正确命题的序号是 . (写出你认为正确的所有命题序号)16.如图平面直角坐标系xOy 中,椭圆22221(0)x ya b a b+=>>的离心率e =12,A A 分别是椭圆的左、右两个顶点,圆1A 的半径为a ,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q .则2PQ QA = .三、解答题(17—21题每题12分,选做题10分,共70分)17.已知向量(2sin )a x x =,(sin ,2sin )b x x =-,函数()f x a b =⋅(Ⅰ)求f (x )的单调递增区间;(II )在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c=1,ab =a >b ,求a ,b 的值.18.体育课上,李老师对初三(1)班50名学生进行跳绳测试,现测得他们的成绩(单位:个)全部介于20与70之间,将这些成绩数据进行分组(第一组:(]20,30,第二组:(]30,40,,第五组:(]60,70),并绘制成如右图所示的频率分布直方图.(I )求成绩在第四组的人数和这50名同学跳绳成绩的中位数; (II )从成绩在第一组和第五组的同学中随机取出3名同学进行搭档训练,设取自第一组的人数为ξ,求ξ的分布列及数学期望.19.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,且AC BD =,平面PAD ⊥平面ABCD ,E 为PD 的中点.(I )证明:PB 平面AEC ;(Ⅱ)在PAD ∆中,2,4AP AD PD ===,三棱锥E ACD -,求二面角D AE C --的大小.20.已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆上、下顶点与焦点所组成的四边形为正方形,四个顶点围成的图形面积为.(I )求椭圆的方程;(II )直线l 过点()0,2P 且与椭圆相交于A 、B 两点,当AOB ∆面积取得最大值时,求直线l 的方程.21.设函数x a bx x x f ln )(2+-=.(I )若2=b ,函数)(x f 有两个极值点21,x x ,且21x x <,求实数a 的取值范围; (II )在(1)的条件下,证明:42ln 23)(2+->x f ; (III )若对任意]2,1[∈b ,都存在),1(e x ∈(e 为自然对数的底数),使得0)(<x f 成立,求实数a 的取值范围.(注:22、23、24选做一个题) 22.如图所示,AB 是的直径,G 为AB 延长线上的一点,GCD是的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F .求证:(I )GB GA GE GF ⋅=⋅; (Ⅱ)若1AD GB OA ===,求GE .23.已知曲线C 的极坐标方程为4cos ρθ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,设直线l的参数方程为5,12x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). (I )求曲线C 的直角坐标方程与直线l 的普通方程;(II )设曲线C 与直线l 相交于,P Q 两点,以PQ 为一条边作曲线C 的内接矩形,求该矩形的面积.24.已知函数()2(1,,)2f x x a a R g x a x +=-∈=-.(I )若当()5g x ≤时,恒有()6f x ≤ ,求a 的最大值; (II )若当x R ∈时,恒有()()3,f x g x +≥ 求a 的取值范围.参考答案一、单项选择三、解答题17、(Ⅰ)f (x )的单调增区间是.(Ⅱ)a=2,b=.【解析】解:(Ⅰ)由题意可得:===(3分)由,得.(5分)所以f (x )的单调增区间是.(6分) (Ⅱ)由(Ⅰ)和条件可得(2C+)=1∵C 是三角形内角,∴,即,(7分) ∴cosC==,即a 2+b 2=7. (9分)将代入可得,解之得:a 2=3或4, ∴a=或2,∴b=2或,(11分)∵a >b ,∴a=2,b=. (12分)18、【答案】(1)47.5;(2)分布列见解析,1=ζE . 试题分析:(1)由频率分布直方图可得第四组的频率,即()0.281004.0016.0008.0004.01=⨯+++-,即可得其人数,由图可估算该组数据的中位数落在第三个矩形中,前两个面积和为0.28,第三个矩形的面积为0.4,按其平均分布可得结果;(2)由图可得第二组有2人,第五组有4人,故ζ的可能取值为2,1,0,结合古典概型求得,列出分布列即可.试题解析:(1)第四组的人数为()[]16501004.0016.0008.0004.01=⨯⨯+++-,中位数为()[]5.4704.010016.0004.00.540=÷⨯+-+.(2)据题意,第一组有250100.004=⨯⨯人,第五组有450100.008=⨯⨯人,于是210,,=ζ,()5103634===∴C C P ζ,()531362412===C C C P ζ,()512361422===C C C P ζ, ζ∴的分布列为1512531510=⨯+⨯+⨯=∴ζE .考点:(1)频率分布直方图;(2)离散型随机变量及其分布列. 【解析】19、【答案】(Ⅰ)证明见解析;(Ⅱ)60°.试题分析:(Ⅰ)要证线面平行,就要证线线平行,由于E 是PD 中点,因此只要取BD 中点(BD 与AC 的交点),由中位线定理可得平行线,从而证得线面平行;(Ⅱ)要求二面角,先看题中已知条件,由三线段,,PA AD PD 的长可得PA AD ⊥,从而有PA ⊥底面ABCD ,又由AC BD =知ABCD 是矩形,因此有AB AD ⊥,这样我们可以以,,AB AD AP 为坐标轴建立空间直角坐标系,写出各点坐标,求出两平面DAE 和CAE 的法向量,由法向量夹角求得二面角.试题解析:(Ⅰ)连结BD 交AC 于点O ,连结EO . 因为ABCD 是平行四边形,所以O 为BD 的中点. 又E 为PD 的中点,所以EOPB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB 平面AEC .(Ⅱ)因为在PAD ∆中,2,4AP AD PD ===, 所以222AP AD PD +=,所以90PAD ∠=︒,∴PA AD ⊥.又因为平面PAD ⊥平面ABC ,所以PA ⊥平面ABC ,在平行四边形ABCD 中,AC BD =,所以ABCD 为矩形,所以,,AB AD AP 两两垂直.如图,以A 为坐标原点,AB 的方向为x 轴的正方向,AP 为单位长,建立空间直角坐标系A xyz -,因为E 为PD 的中点,所以三棱锥E ACD -的高为12,设()0AB m m =>,三棱锥E ACD -的体积11132V m =⨯⨯⨯=,解得3m AB ==.则()()()()0,0,0,,,A D E AE =, 设()3,0,0B,则()()3,,3,C AC =.设()1,,x y z =n 为平面ACE 的法向量,则110,0AC AE ⎧⋅=⎪⎨⋅=⎪⎩n n,即111130,0,x z ⎧+=⎪+=可取1=-⎝n 又()21,0,0=n 为平面DAE 的法向量,由题设1212121cos ,2⋅===n n n n n n , 即二面角D AE C --的大小是60︒. 考点:线面平行的判断,二面角.【名师点睛】在求二面角时,如果根据定义要作出二面角的平面角,并证明,然后计算,要求较高,一般是寻找图形中的两两垂直的三条直线,建立空间直角坐标系,用空间向量法来求这个角.设12,n n 分别是平面,αβ的法向量,设二面角l αβ--的大小为θ,则121212cos ,cos n n n n n n θ⋅<>==.【解析】20、【答案】(1)2212x y +=;(2)240y -+=. 试题分析:(1)依题意有b c =,且2ab =222b c a +=,222b c a +=,解得2222,1a b c ===,所以椭圆方程为2212x y +=;(2)直线l 的方程为()()11222,,,,y kx A x y B x y =+,联立直线的方程和椭圆的方程,得()2212860k x kx +++=,利用弦长公式计算AB =,利用点到直线距离公式计算d =,所以12ABCS AB d ∆=⋅==,利用换元法可求得当k =,所求直线方程为240y -+=.试题解析:设椭圆方程为()22221x y a b a b+=>.(1)由已知得b c =,且2ab =222b c a +=,解得2222,1a b c ===,所以椭圆方程为2212x y +=.(2)由题意知直线l 的斜率存在,设直线l 的方程为()()11222,,,,y kx A x y B x y =+,由22212y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得关于x 的方程:()2212860k x kx +++=, 由直线l 与椭圆相交于A 、B 两点,()2206424120k k ∴∆>⇒-+>,解得232k >, 又由韦达定理得122122812612k x x k x x k ⎧+=-⎪⎪+⎨⎪⋅=⎪+⎩,12AB x∴=-==原点O到直线l的距离d=,所以22121212ABCS AB dk k∆=⋅==++,令)0m m=>,则2223k m=+,Smm∴==≤+当且仅当4mm=,即2m=时,maxS=,此时k=,所以,所求直线方程为240y-+=.21、【答案】(1))21,0(;(2)证明见解析;(3)1-<a.试题分析:(1)运用导数及二次函数的判别式等知识求解;(2)借助题设条件构造函数运用导数知识推证;(3)依据题设条件运用导数的有关知识分类分析推证求解.试题解析:(1)由已知,2=b时,xaxxxf ln2)(2+-=,)(xf的定义域为),0(+∞,求导得xaxxxaxxf+-=+-=2222)('2,∵)(xf有两个极值点21,xx,0)('=xf有两个不同的正根21,xx,故0222=+-axx的判别式084>-=∆a,即21<a,且121=+xx,0221>=axx,所以a的取值范围为)21,0(.(2)由(1)得1212<<x且0)('=xf,得22222xxa-=,∴22222222ln)22(2)(xxxxxxf-+-=,令)121(,ln)22(2)(22<<-+-=tttttttF,则tttF ln)21(2)('-=,当)1,21(∈t时,0)('>tF,)(tF在)1,21(上市增函数,∴42ln23)21()(--=>FtF,∴42ln23)()(22+->=xFxf.(3)令]2,1[,ln)(2∈++-=bxaxxbbg,由于),1(ex∈,所以)(bg为关于b的递减的一次函数根据题意,对任意]2,1[∈b ,都存在),1(e x ∈(e 为自然对数的底数),使得0)(<x f 成立,则),1(e x ∈上0ln )1()(2max <++-==x a x x g b g 有解,令x a x x x h ln )(2++-=,则只需存在),1(0e x ∈使得0)(0<x h 即可,由于xa x x x h +-=22)(',令a x x x +-=22)(ϕ,),1(e x ∈,014)('>-=x x ϕ,∴)(x ϕ在),1(e 上单调递增,∴a x +=>1)1()(ϕϕ,①当01≥+a ,即1-≥a 时,0)(,0)(>>x h x ϕ,∴)(x h 在),1(e 上是增函数,∴0)1()(=>h x h ,不符合题意;②当01<+a ,即1-<a 时,a e e e a +-=<+=22)(,01)1(ϕϕ,(i )若0)(≤e ϕ,即122-<-≤e e a 时,在),1(e x ∈上恒成立,即0)('<x h 恒成立,∴)(x h 在),1(e 上单调递减,∴存在),1(0e x ∈使得0)(0<x h ,∴0)1()(0=<h x h ,符合题意; (ii )若0)(>e ϕ,即122-<<-a e e 时,在),1(e 上存在实数m ,使得0)(=m ϕ, ∴在),1(m 上,0)(<x ϕ恒成立,即0)('<x h 恒成立,∴)(x h 在),1(e 上单调递减,∴存在),1(0e x ∈使得0)1()(0=<h x h 符合题意.综上所述,当1-<a 时,对任意]2,1[∈b ,都存在),1(e x ∈(e 为自然对数的底数),使得0)(<x f 成立.22、【答案】试题分析:(Ⅰ)证明线段成比例,一般利用三角形相似或圆中切割线定理.首先由ADBC ,BCEG 四点共圆有GB GA GC GD ⋅=⋅,FDC ABC ∠=∠,ABC AEG ∠=∠,从而FDC AEG ∠=∠,因此CDFE 四点共圆,GE GF GC GD ⋅=⋅,进而GB GA GE GF ⋅=⋅(Ⅱ)23AG GB OA =+=,在直角三角形AFG 中,60OAD ∠=︒,所以FG ==试题解析:(Ⅰ)连接BC ,∵AB 是的直径,∴90ACB ∠=︒,∵AG FG ⊥,∴90AGE ∠=︒,又EAG BAC ∠=∠,∴ABC AEG ∠=∠,又FDC ABC ∠=∠,∴FDC AEG ∠=∠,∴180FDC CEF ∠+∠=︒,∴C 、D 、F 、E 四点共圆,∴GE GF GC GD ⋅=⋅,又A 、B 、C 、D 在上,∴GB GA GC GD ⋅=⋅,∴GB GA GE GF ⋅=⋅.(Ⅱ)∵1AD OA ==,又OD OA =,∴60OAD ∠=︒,又AG FG ⊥,∴30F ∠=︒,∴FG ==∴GB GA GE GF ⋅===. 考点:切割线定理,四点共圆【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.【解析】23.【答案】(1)C :224x y x +=,:50l x -=;(2.试题分析:(1)由公式222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可化极坐标方程为直角坐标方程,通过消参法可化参数方程为普通方程;(2)由(1)可得圆心C 坐标,由圆的性质,题设矩形的一边长为弦长PQ ,另一边长为圆心到PQ 距离的二倍,因此由点到直线距离公式求得弦心距,由勾股定理求得弦长PQ ,面积易得.试题解析:(1)对于C :由4cos ρθ=,得24cos ρρθ=,进而224x y x +=.对于l:由5,12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),得5)y x =-,即50x -=.(2)由(1)可知C为圆,且圆心为(2,0),半径为2,则弦心距32d==,弦长PQ==因此以PQ为边的圆C的内接矩形面积2S d PQ=⋅=考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,直线与圆相交弦长.【解析】23、24、【答案】解:(1)g(x)≤5?|2x-1|≤5?-5≤2x-1≤5?-2≤x≤3;f(x)≤6?|2x-a|≤6-a?a-6≤2x-a≤6-a?a-3≤x≤3.依题意有,a-3≤-2,a≤1.故a的最大值为1.(2)f(x)+g(x)=|2x-a|+|2x-1|+a≥|2x-a-2x+1|+a≥|a-1|+a,当且仅当(2x-a)(2x-1)≥0时等号成立.解不等式|a-1|+a≥3,得a的取值范围是[2,+∞).【解析】。

【数学】四川省资阳市2017届高考模拟试卷(理)(4月份)

【数学】四川省资阳市2017届高考模拟试卷(理)(4月份)

四川省资阳市2017届高考数学模拟试卷(理科)(4月份)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|x2﹣2x﹣3<0},B={x|x﹣1≥0},则图中阴影部分所表示的集合为()A.{x|x≤﹣1或x≥3} B.{x|x<1或x≥3} C.{x|x≤1} D.{x|x≤﹣1} 2.已知等差数列{a n}的前项和为S n,且S5=30,则a3=()A.6 B.7 C.8 D.93.已知i为虚数单位,若复数z=a2﹣1+(1+a)i(其中a∈R)为纯虚数,则=()A.B.C.D.4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为()A.B.C.D.5.双曲线E:﹣=1(a>0,b>0)的一个焦点F到E的渐近线的距离为,则E 的离心率是()A.B.C.2 D.36.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是()A.40 B.60 C.80 D.1007.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.108.已知函数,其中ω>0.若对x∈R恒成立,则ω的最小值为()A.2 B.4 C.10 D.169.已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.C.ba c>ab c D.log a c>log b c 10.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD 所成角的大小为()A.B.C.D.11.过抛物线y2=4x的焦点F作互相垂直的弦AC,BD,则点A,B,C,D所构成四边形的面积的最小值为()A.16 B.32C.48 D.6412.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部分(包括边界)运动.若=x+y,其中x,y∈R,则4x﹣y的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中,常数项是.14.已知随机变量X服从正态分布N(2,σ2),且P(0≤X≤2)=0.3,则P(X>4)=.15.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)16.已知函数f(x)=(x﹣2)e x﹣+kx(k是常数,e是自然对数的底数,e=2.71828…)在区间(0,2)内存在两个极值点,则实数k的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值范围.18.(12分)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B 为正方形,且AA1⊥平面ABC,D为线段AB上的一点.(Ⅰ)若BC1∥平面A1CD,确定D的位置,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.20.(12分)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.21.(12分)已知函数f(x)=ln(x+1)+ax,其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意x2≥e x1>0,存在x∈(﹣1,+∞),使成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)已知在平面直角坐标系中,曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)点A,B分别在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().参考答案一、选择题1.D 2.A 3.B 4.C 5.C 6.A 7.C 8.B 9.D 10.C 11.B 12.B 二、填空题13.28 14.0.2 15.2.6 16.(1,e)∪(e,e2)三、解答题17.解:(Ⅰ)由已知得,化简得,整理得,即,由于0<B+C<π,则,所以.(Ⅱ)根据余弦定理,得=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.(10分)又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值范围是.18.解:(Ⅰ)由(0.005+0.021+0.035+0.030+x)×10=1,解得x=0.009.(Ⅱ)满意度评分值在[90,100]内有100×0.009×10=9人,其中男生6人,女生3人.则X的值可以为0,1,2,3.,,,.则X分布列如下:所以X的期望.19.解:(Ⅰ)D为AB的中点,理由如下:连接AC1,交A1C于点E,可知E为AC1的中点,连接DE,因为BC1∥平面A1CD,平面ABC1∩平面A1CD=DE,所以BC1∥DE,故D为AB的中点.(Ⅱ)不妨设AB=2,分别取BC,B1C1的中点O,O1,连接AO,OO1,可知OB,OO1,OA两两互相垂直,建立如图的空间直角坐标系O﹣xyz.知,则,,设面A1CD的法向量m=(x,y,z),由得令x=1,得A1CD的一个法向量为,又平面BCC1的一个法向量n=(0,0,1),设二面角A1D﹣C﹣BC1的平面角为α,则.即该二面角的余弦值为.20.解:(Ⅰ)由题知b=1,由,所以a2=2,b2=1.故椭圆的方程为.(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),所以.证法二:直线AC的方程为y=k1x+1,由得,解得,同理,因为B,O,C三点共线,则由,整理得(k1+k2)(2k1k2+1)=0,所以.②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,而,所以,△CEF的面积==.由得,则S△CEF=,当且仅当取得等号,所以△CEF的面积的最小值为.21.(Ⅰ)证明:当a=﹣1时,f(x)=ln(x+1)﹣x(x>﹣1),则,令f'(x)=0,得x=0.当﹣1<x<0时,f'(x)>0,f(x)单调递增;当x>0时,f'(x)<0,f(x)单调递减.故当x=0时,函数f(x)取得极大值,也为最大值,所以f(x)max=f(0)=0,所以,f(x)≤0,得证.(Ⅱ)不等式,即为.而=.令.故对任意t≥e,存在x∈(﹣1,+∞),使恒成立,所以,设,则,设u(t)=t﹣1﹣ln t,知对于t≥e恒成立,则u(t)=t﹣1﹣ln t为[e,+∞)上的增函数,于是u(t)=t﹣1﹣ln t≥u(e)=e﹣2>0,即对于t≥e恒成立,所以为[e,+∞)上的增函数,所以;设p(x)=﹣f(x)﹣a,即p(x)=﹣ln(x+1)﹣ax﹣a,当a≥0时,p(x)为(0,+∞)上的减函数,且其值域为R,可知符合题意.当a<0时,,由p'(x)=0可得,由p'(x)>0得,则p(x)在上为增函数,由p'(x)<0得,则p(x)在上为减函数,所以.从而由,解得,综上所述,a的取值范围是.22.解:(Ⅰ)由得则曲线C1的普通方程为(x+1)2+y2=1.又由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y.把两式作差得,y=﹣x,代入x2+y2=2y,可得交点坐标为为(0,0),(﹣1,1).(Ⅱ)由平面几何知识可知,当A,C1,C2,B依次排列且共线时,|AB|最大,此时,直线AB的方程为x﹣y+1=0,则O到AB的距离为,所以△OAB的面积为.23.(Ⅰ)解:原不等式即为|x+9|≥10﹣|x+1|.当x<﹣9时,则﹣x﹣9≥10+x+1,解得x≤﹣10;当﹣9≤x≤﹣1时,则x+9≥10+x+1,此时不成立;当x>﹣1时,则x+9≥10﹣x﹣1,解得x≥0.所以原不等式的解集为{x|x≤﹣10或x≥0}.(Ⅱ)证明:要证,即,只需证明.则有====.因为|x|2>1,|y|2<1,则=,所以,原不等式得证.。

四川省资阳市2017届高三4月模拟考试数学(文)试题(附答案)

四川省资阳市2017届高三4月模拟考试数学(文)试题(附答案)

资阳市高中2014级高考模拟考试数 学(文史类)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合{|(1)(3)0} {|10}A x x x B x x =+-<=-,≥,则图中阴影部分所表示的集合为(A){|1x x -≤或3}x ≥ (B){|1x x <或3}x ≥ (C){|1}x x ≤ (D){|1}x x -≤2.已知等差数列{}n a 中,1510a a +=,则47a =,则数列{}n a 的公差为 (A) 2 (B) 3 (C) 4(D) 53.在集合{|00}x x a a >,≤≤中随机取一个实数m ,若||2m <的概率为13,则实数a 的值为 (A) 5 (B) 6 (C) 9(D) 124.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为 (A)2π43+(B)4+(C)8+(D)8+5.双曲线E :22221x y a b-=(0a >,0b >)的一个焦点F 到E ,则E的离心率是(B)32(C) 2 (D) 36.定义在R 上的函数()f x 满足2log (8)0()(1)0x x f x f x x -⎧=⎨->⎩,,,,≤则(3)f =(A) 3 (B) 2(C)2log 9(D)2log 77.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i 的值为 (A) 7 (B) 8 (C) 9 (D) 108.已知函数()sin()6f x x ωπ=+(其中0ω>)图象的一条对称轴方程为12x π=,则ω的最小值为 (A) 2(B) 4 (C) 10 (D) 169.已知01c <<,1a b >>,下列不等式成立的是 (A)a b c c >(B)c c a b <(C)a ba cb c>-- (D)log log a b c c >10.对于两条不同的直线m ,n 和两个不同的平面αβ,,以下结论正确的是 (A) 若m α⊂,n ∥β,m ,n 是异面直线,则αβ,相交 (B) 若m α⊥,m β⊥,n ∥α,则n ∥β (C) 若m α⊂,n ∥α,m ,n 共面于β,则m ∥n (D) 若m α⊥,n ⊥β,α,β不平行,则m ,n 为异面直线11.抛物线24y x =的焦点为F ,点(53)A ,,M 为抛物线上一点,且M 不在直线AF 上,则M AF ∆周长的最小值为(A) 10 (B) 11 (C) 12(D)6+12.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x y ∈R ,,则4x y -的最大值为(A)3- (B)3(C) 2(D)3+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。

四川省资阳中学2017_2018学年高二数学下学期4月月考试题理-含答案 师生通用

四川省资阳中学2017_2018学年高二数学下学期4月月考试题理-含答案 师生通用

四川省资阳中学2017-2018学年高二数学下学期4月月考试题理一、选择题(本大题共12小题,共60.0分)1.双曲线与双曲线的A. 实轴长相等B. 虚轴长相等C. 焦距相等D. 离心率相等【答案】C【解析】解:由题意,,双曲线与双曲线焦距相等,2.下列值等于1的是A. B. C. D.【答案】D【解析】解:A选项:;B选项:;C选项:;.3.已知,则A. 1B. 2C. 4D. 8【答案】A【解析】【分析】本题考查函数与导数,求导公式的应用及函数值求解本题求出是关键步骤.先求出,令,求出后,导函数即可确定,再求.【解答】解:,令,得,..故选A.4.已知曲线在点处的切线经过点,则的值为A. B. C. e D. 10 【答案】B【解析】解:对求导得:,切点坐标为,所以切线的斜率,则切线方程为:,把点代入切线方程得:,解得,5.双曲线与直的公共点的个数为A. 0B. 1C. 0或1D. 0或1或2【答案】C【解析】解:由双曲线,得到,双曲线的渐近线方程为,当时,直线与双曲线没有公共点;当时,直线与双曲线渐近线平行,与双曲线只有一个公共点,综上,双曲线与直的公共点的个数为0或1,故选:C.由双曲线解析式确定出渐近线方程,分类讨论与,确定出双曲线与直线公共点个数即可.6.若,则a的值是A. 6B. 4C. 3D. 2【答案】D【解析】解:因为,所以,所以;7.已知双曲线上有一点M到左焦点的距离为18,则点M到右焦点的距离是A. 8B. 28C. 12D. 8或28 【答案】D【解析】解:双曲线的,由双曲线的定义可得,即为,解得或28.检验若M在左支上,可得,成立;若M在右支上,可得,成立.故选:D.求得双曲线的,运用双曲线的定义,可得,解方程可得所求值,检验M在两支的情况即可.8.双曲线的两顶点为,虚轴两端点为,两焦点为,若以为直径的圆内切于菱形,则双曲线的离心率是A. B. C. D.【答案】C【解析】解:由题意可得,,且,菱形的边长为,由以为直径的圆内切于菱形,切点分别为.由面积相等,可得,即为,即有,由,可得,解得,可得,或舍去.9.已知函数,则的图象大致为A. B. C. D.【答案】A【解析】解:令,则,由 0'/>,得,即函数在上单调递增,由得,即函数在上单调递减,所以当时,函数有最小值,,于是对任意的,有,故排除B、D,因函数在上单调递减,则函数在上递增,故排除C,故选A.利用函数的定义域与函数的值域排除,通过函数的单调性排除C,推出结果即可.本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.10.已知抛物线的焦点为F,设是抛物线上的两个动点,如满足,则的最大值A. B. C. D.【答案】B【解析】解:如图,,又,.在中,由余弦定理得:.又,.,的最大值为,故选:B.由题意画出图形,利用抛物线定义结合已知可得再由余弦定理,结合基本不等式即可求出的最大值.本题考查抛物线的定义,考查余弦定理、基本不等式的运用,属于中档题.11.已知函数的定义域为,且满足 0(f{{'}}(x)'/>是的导函数,则不等式的解集为A. B. C. D.【答案】B【解析】解:设,则,0,∴g′(x) > 0'/>,即在为增函数,则不等式等价为,即,即,在为增函数,,即,即,故不等式的解集为,故选:B.根据条件构造函数,求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.本题主要考查不等式的求解,根据条件构造函数,利用导数研究函数的单调性是解决本题的关键.12.若函数在上是单调函数,则a的取值范围是A.B.C.D.【答案】B【解析】解:由题意得,,因为在上是单调函数,所以或在上恒成立,当时,则在上恒成立,即,设, 因为,所以,当时,取到最大值是:0,所以, 当时,则在上恒成立,即,设, 因为,所以,当时,取到最大值是:,所以,综上可得,或,所以数a 的取值范围是,故选:B .由求导公式和法则求出,由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数后,利用整体思想和二次函数的性质求出函数的最值,可得a 的取值范围.本题查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于中档题. 二、填空题(本大题共4小题,共20.0分) 13..______)(,2sin )(/==πf x x x f 则已知函数π2-14.已知抛物线的焦点与双曲线的一个焦点重合,则双曲线的渐近线方程是______.【答案】【解析】解:抛物线的焦点为,双曲线的一个焦点为,,,双曲线的渐近线方程是.故答案为:.先根据抛物线方程求得抛物线的焦点,进而可知双曲线的一个焦点,求出a,即可求出双曲线的渐近线方程.本题给出抛物线与已知双曲线有公共的焦点,求双曲线的渐近线方程着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.15.对于三次函数,定义:设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”有同学发现“任何一个三次函数都有拐点;任何一个三次函数都有对称中心;且拐点就是对称中心”请你将这一发现为条件,函数,则它的对称中心为______;计算______.【答案】;2012【解析】解:,,由得,;它的对称中心为;设为曲线上任意一点,曲线的对称中心为;点P关于的对称点也在曲线上,...故答案为:;2012.由于,由可求得;设为曲线上任意一点,由于函数的对称中心为,故点P关于的对称点也在曲线上,于是有从而可求值.本题考查实际问题中导数的意义,难点在于对“对称中心”的理解与应用,特别是:的分析与应用,属于难题.16.从抛物线的准线l上一点P引抛物线的两条切线PA、PB,且A、B为切点,若直线AB的倾斜角为,则P点的横坐标为______.【答案】【解析】解:如图,设,则,又,则.由,得,切线PA的方程为,切线PB的方程为,即切线PA的方程为,即;切线PB的方程为,即.点在切线PA、PB上,,可知是方程的两个根,,得.故答案为:.设,由直线AB的倾斜角为,可得,利用导数分别求出过的切线方程,可得是方程的两个根,利用根与系数的关系可得,即.本题考查抛物线的简单性质,考查利用导数研究过曲线上某点处的切线方程,考查数学转化思想方法,是中档题.三、解答题(本大题共6小题,共72.0分)17.已知函数.求曲线在点处的切线方程;求经过点的曲线的切线方程.【答案】解:函数的导数为,可得曲线在点处的切线斜率为,切点为,即有曲线在点处的切线方程为,即为;设切点为,可得,由的导数,可得切线的斜率为,切线的方程为,由切线经过点,可得,化为,解得或1.则切线的方程为或,即为或.【解析】求出的导数,可得切线的斜率和切点,运用点斜式方程可得所求切线的方程;设切点为,代入,求得切线的斜率和方程,代入点,解m的方程可得或1,即可得到所求切线的方程.本题考查导数的运用:求切线的方程,考查导数的几何意义,注意在某点处的切线和过某点的切线的区别,正确求导是解题的关键,属于基础题和易错题.18.已知分别是椭圆C:其中的左、右焦点,椭圆C过点且与抛物线有一个公共的焦点.求椭圆C的方程;过椭圆C的右焦点且斜率为1的直线l与椭圆交于A、B两点,求线段AB的长度.【答案】解:抛物线的焦点为,椭圆的左焦点为.又,得,解得舍去.故椭圆C的方程为.直线l的方程为.联立方程组,消去y并整理得.设故.则.【解析】由抛物线方程求得焦点坐标,进一步得到椭圆左焦点坐标,把代入椭圆方程,结合隐含条件求得的答案;写出直线l的方程,与椭圆方程联立,利用根与系数的关系得到的横坐标的和与积,代入弦长公式求得线段AB的长度.本题考查椭圆标准方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了利用弦长公式求弦长,体现了“设而不求”的解题思想方法,是中档题.19.已知函数x的极值点为1和2.求实数的值;求函数在定义域上的极大值、极小值.若关于x的方程()kf=有三个零点,求kx的取值范围.【答案】解:,的极值点为1和2,的两根为1和2,,解得.由得:,函数的定义域是,,令,解得:或,令,解得:,故在递增,在递减,在递增,故.()5,2∈k+-ln48-【解析】求出函数的导数,根据的极值点,求出的值即可;求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.20.已知函数是自然对数的底数.求证:;若不等式在上恒成立,求正数a的取值范围.【答案】证明:由题意知,要证,只需证,求导得,当时,,当时,,在是增函数,在时是减函数,即在时取最小值,,即,.不等式在上恒成立,即在上恒成立,亦即在上恒成立,令,以下求在上的最小值,,当时,,当时,,当时,单调递减,当时,单调递增,在处取得最小值为,正数a的取值范围是.【解析】要证,只需证,求导得,利用导数性质能证明.不等式在上恒成立,即在上恒成立,令,利用导数性质求在上的最小值,由此能求出正数a的取值范围.本题考查不等式的证明,考查正数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.21.如图,抛物线C:的焦点为F,抛物线上一定点.求抛物线C的方程及准线l的方程;过焦点F的直线不经过Q点与抛物线交于两点,与准线l交于点M,记的斜率分别为,问是否存在常数,使得成立?若存在,求出的值;若不存在,说明理由.【答案】解:把代入,得,所以抛物线方程为,准线l的方程为.由条件可设直线AB的方程为.由抛物线准线l:,可知,又,所以,把直线AB的方程,代入抛物线方程,并整理,可得,设,则,又,故因为三点共线,所以,即,所以,学海无涯苦作舟一份耕耘,一份收获 即存在常数,使得成立. 【解析】把代入,得,即可求抛物线C 的方程及准线l 的方程;把直线AB 的方程,代入抛物线方程,并整理,求出,即可得出结论.本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.22. 已知函数.若函数在处的切线方程为,求实数a 的值;设,当时,求的最小值;求证:. 【答案】解:函数在处的切线方程为,此时,即切点坐标为, 则切点也在函数上,则, 则,函数的导数, 由得,由得, 即函数在上为增函数,在上为减函数,当,即时,,当,即时,,当时,.令,则, 由知,, 即,当时,取等号, ,则,即,即,. 【解析】求出切点坐标,代入函数进行求解即可.求好的导数,判断函数的单调性进行求解即可.令,利用的结论,构造不等式进行证明即可.本题主要考查导数的综合应用以及利用导数证明不等式,综合性较强,难度较大.。

2017届四川省资阳市高三4月模拟考试数学(理)试题(解析版)

2017届四川省资阳市高三4月模拟考试数学(理)试题(解析版)

2017届四川省资阳市高三4月模拟考试数学(理)试题一、选择题1.设全集U =R ,集合2{|230}{|10}A x x x B x x =--<=-≥,,则图中阴影部分所表示的集合为A. {|1x x ≤-或3}x ≥B. {|1x x <或3}x ≥C. {|1}x x ≤D. {|1}x x ≤- 【答案】D【解析】解:由题意可知: {|13},{|1}A x x B x x =-<<=≥ , 题中阴影部分表示的集合为: (){|1}U C A B x x ⋃=≤- 本题选择D 选项.2.已知等差数列{}n a 的前项和为n S ,且530S =,则3a = A. 6 B. 7 C. 8 D. 9 【答案】A【解析】解:由等差数列的性质结合题意可知: 533530,6S a a ==∴= . 本题选择A 选项.3.已知i 为虚数单位,若复数()211iz a a =-++(其中a R ∈)为纯虚数,则2iz=- A. 42i 55- B. 24i 55-+ C. 42i 55+ D. 24i 55--【答案】B【解析】解:复数z 为纯虚数,则: 210{10a a -=+≠ ,解得: 1a = ,即:2242,2255z i z i i i i ===-+-- . 本题选择B 选项.4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为A. 2π43+B. 43+C. 8D. 8 【答案】C【解析】解:由题意可知:该几何体上半部分为半球,下半部分为正方体,且正方体的面内切于半球的截面,且正方体的棱长为2,333343,28343V R V a ππ==⨯====球正方体 ,该几何体的体积为: 33283V V V a =+===+正方体球 . 本题选择D 选项.5.双曲线E : 22221x y a b-= (0a >, 0b >)的一个焦点F 到E 的渐近线的距离,则E 的离心率是A.B.32C. 2D. 3 【答案】C【解析】解:由双曲线方程的性质可知,双曲线的焦点到渐近线的距离为b ,据此可得: 22222222,3,3,4,2c b b a c a a e e a==∴-==== .本题选择C 选项.6.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是 A. 40 B. 60 C. 80 D. 100【答案】A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.7.已知MOD 函数是一个求余函数,记()MOD m n ,表示m 除以n 的余数,例如()MOD 832=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i的值为A. 7B. 8C. 9D. 10【答案】C【解析】解:由流程图可知,该流程图计算输入值m 除去自身的约数的个数,48 的非自身约数: 1,2,3,4,6,8,12,16,24 ,共9 个,即输出值: 9i = .本题选择C 选项.8.已知函数()sin 6f x x πω⎛⎫=+⎪⎝⎭,其中0ω>.若()12f x f π⎛⎫≤ ⎪⎝⎭对x R ∈恒成立,则ω的最小值为A. 2B. 4C. 10D. 16【答案】B【解析】解:由三角函数的性质可知,当12x π=时:()2,24462x k k k Z ππωπω+=+∴=+∈ ,取0k = 可得ω 的最小值为4ω= .本题选择B 选项.9.已知01c <<, 1a b >>,下列不等式成立的是A. a bc c > B.a ba cb c>-- C. c cba ab > D. log log a b c c > 【答案】D【解析】解:由指数函数()xf x c = 单调递减可得: a b c c < ,选项A 错误;()()()0,c b a a b a ba cbc a c b c a c b c--=<∴<------ ,选项B 错误; 很明显0,0c c ba ab >>,且:11,1,1,01,1,c c c c c c ba a a a a b c ba ab ab b b b --⎛⎫⎛⎫=>>∴><<∴<∴< ⎪ ⎪⎝⎭⎝⎭,选项C 错误.本题选择D 选项. 点睛:利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.10.正方形ABCD 与等边三角形BCE 有公共边BC ,若∠ABE =120°,则B E 与平面ABCD 所成角的大小为 A.6π B. 3π C. 4π D. 2π 【答案】C【解析】解:作EG ⊥ 底面ABCD 于点G ,作GH BC ⊥ 于点H ,设所求的角为θ ,由几何关系可得:2,2,EG sin BG cos GH AG AE θθ==∴=====解得:cos 24πθθ== . 本题选择C 选项.11.过抛物线24y x =的焦点F 作互相垂直的弦A C ,B D ,则点A ,B ,C ,D 所构成四边形的面积的最小值为A. 16B. 32C. 48D. 64【答案】B【解析】解:由抛物线的几何性质可知:222222218,,832sin 2sin 2sin 2p p p AC BD S AC BD p πθθθ==∴=⨯=≥=⎛⎫+ ⎪⎝⎭ , 据此可得,点A ,B ,C ,D 所构成四边形的面积的最小值为32 .本题选择B 选项.12.如图,在直角梯形ABC D 中, AB AD ⊥, AB ∥DC , 2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x y R ∈,,则4x y -的取值范围是A. 234⎡+⎢⎣⎦,B. 23⎡+⎢⎣⎦,C. 334⎡-⎢⎣⎦D.33⎡-⎢⎣⎦【答案】B【解析】解:以A 点为坐标原点, ,AD AB 方向为y 轴, x 轴正方向建立直角坐标系,如图所示,设点P 的坐标为(),P m n ,由意可知: ()()2,01,1AP x y =+-, 据此可得: 2{m x y n y=-= ,则: {2m nx y n+== ,目标函数: 42z x y m n =-=+ ,其中z 为直线系2n m z =-+ 的截距,当直线与圆相切时,目标函数取得最大值3+当直线过点1,12⎛⎫⎪⎝⎭时,目标函数取得最小值2 , 则4x y -的取值范围是2,3⎡+⎢⎣⎦.本题选择B 选项.点睛:本题同时考查平面向量基本定理和线性规划中的最值问题.求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时, z 值最大,在y 轴截距最小时, z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时, z 值最小,在y 轴上截距最小时, z 值最大. 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题13.二项式8x ⎛- ⎝的展开式中,常数项是_____.【答案】28;【解析】解:由二项式展开式的通项公式可知:()48831881rr r r r rr T C x C x --+⎛==- ⎝,常数项满足: 480,63r r -== , 常数项为: ()668128C -= .14.已知随机变量X 服从正态分布N (2,σ²),且P (0≤X ≤2)=0.3,则P (X >4)=_____. 【答案】0.2;【解析】解:由题意结合正态分布的性质可知: ()240.3P x ≤≤= , 则: 10.32(4)0.22P X -⨯>== . 点睛:求解本题关键是明确正态曲线关于x =2对称,且区间[0,4]也关于x =2对称. 关于正态曲线在某个区间内取值的概率求法: ①熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. ②充分利用正态曲线的对称性和曲线与x 轴之间面积为1.15.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为_____日.(结果保留一位小数,参考数据: lg20.30≈, lg30.48≈)【答案】2.6.【解析】解:设蒲(水生植物名)的长度组成等比数列{}n a ,其13a = ,公比为12,其前n 项和为n A .莞(植物名)的长度组成等比数列{}n b ,其11b =,公比为2 ,其前n 项和为n B .则131212,12112n n n n A B ⎛⎫- ⎪-⎝⎭==--, 令n n A B = ,化为: 6272nn +=, 解得26n = 或21n= (舍去). 即: lg6lg31 2.6lg2lg2n ==+≈ . 所需的时间约为2.6 日.16.已知函数()()22e 2xk f x x x kx =--+(k 是常数,e 是自然对数的底数,e =2.71828…)在区间()02,内存在两个极值点,则实数k 的取值范围是________. 【答案】()()21e e e ⋃,,.【解析】解:由函数的解析式可知: ()()()'11xf x e x k x =-+- ,函数的极值点满足: ()()()()()'110,11xx f x ex k x e x k x =-+-=∴-=- ,很明显1x = 是函数的一个极值点,函数的另外一个极值点满足: ()(),0,11,2xk e x =∈⋃ , 函数存在两个极值点,则函数y k = 的图象与函数xy e = 的图象在区间()()0,11,2⋃ 有一个交点,故: ()()21,,k e e e ∈⋃ .三、解答题17.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知21sin sin sin 24B C B C -+=. (Ⅰ) 求角A 的大小;(Ⅱ) 若2b c +=,求a 的取值范围.【答案】(Ⅰ)2π3A =(Ⅱ))2 【解析】试题分析:(1)利用题意结合诱导公式求得B C + 的值,结合三角形 内角和为π 求解角A 的值即可;(2)由余弦定理结合(1)中的结论得到b 的取值范围,据此求解边长a 的取值范围即可.试题解析:(Ⅰ)由已知得()1cos 1sin sin 24B C B C --+=, 化简得1cos cos sin sin 1sin sin 24B C B C B C --+=,整理得1cos cos sin sin 2B C B C -=,即()1cos 2B C +=,由于0πB C <+<,则π3B C +=,所以2π3A =.(Ⅱ)根据余弦定理,得2222π2cos 3a b c bc =+-⋅22b c bc =++ ()()2222b b b b =+-+- 224b b =-+ ()213b =-+.又由2b c +=,知02b <<,可得234a ≤<,所以a 的取值范围是)2. 18.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.(Ⅰ) 求图中x 的值;(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X ,求X 的分布列和数学期望.【答案】(Ⅰ)0.009x =(Ⅱ)43【解析】试题分析:(1)利用频率分布直方图的面积为1得到关于x 的方程,解方程即可求得实数x 的值;(2)首先确定该分布列为超几何分布,然后写出分布列求解均值即可. 试题解析:(Ⅰ)由()0.0050.0210.0350.030101x ++++⨯=,解得0.009x =. (Ⅱ)满意度评分值在[90,100]内有1000.009109⨯⨯=人, 其中男生6人,女生3人. 则X 的值可以为0,1,2,3.()406349150126C C P X C ===, ()316349601126C C P X C ===, ()226349452126C C P X C ===, ()13634963126C C P X C ===. 则分布列如下:所以X 的期望()156********01231261261261261263E X =⨯+⨯+⨯+⨯==.点睛:(1)求解本题的关键在于:①从频率分布直方图中准确提取信息;②明确随机变量X 服从超几何分布.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X 的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.19.如图,在三棱柱111ABC A B C -中,底面△ABC 是等边三角形,侧面11AA B B 为正方形,且1AA ⊥平面ABC , D 为线段AB 上的一点. (Ⅰ) 若1BC ∥平面A 1CD ,确定D 的位置,并说明理由; (Ⅱ) 在(Ⅰ)的条件下,求二面角11A D C BC --的余弦值.【答案】【解析】试题分析:(1)利用线面平行的判断定理由线线平行证明线面平行即可(2)建立空间直角坐标系,利用空间向量求解二面角的余弦值即可. 试题解析:(Ⅰ)D 为AB 的中点,理由如下:连接AC 1,交A 1C 于点E ,可知E 为AC 1的中点,连接DE , 因为1BC ∥平面A 1CD , 平面ABC 1∩平面A 1CD =DE , 所以1BC ∥DE , 故D 为AB 的中点.(Ⅱ)不妨设AB =2,分别取BC ,B 1C 1的中点O ,O 1,连接AO ,OO 1,可知OB ,OO 1, OA 两两互相垂直,建立如图的空间直角坐标系O -xyz .知()(111,0,00,2C D A ⎛- ⎝⎭,,,则32CD ⎛= ⎝⎭ ,(11,CA = , 设面A 1CD 的法向量(),,m x y z =,由10{0m CD m CA ⋅=⋅= ,,得30{2220x z x y +=+=,,令1x =,得A 1CD的一个法向量为(1,1,m =, 又平面BCC 1的一个法向量()0,0,1n =, 设二面角11A D C BC --的平面角为α,则cos cos ,5m n m n m nα⋅===⋅.点睛:推证线面平行时,一定要说明一条直线在平面外,一条直线在平面内.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面 ,αβ的法向量12,n n时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量12,n n的夹角是相等,还是互补.20.如图,在平面直角坐标系xOy 中,椭圆Ω: 22221(0)x y a b a b +=>>的离心率l :y =2上的点和椭圆Ω上的点的距离的最小值为1. (Ⅰ) 求椭圆Ω的方程;(Ⅱ) 已知椭圆Ω的上顶点为A ,点B ,C 是Ω上的不同于A 的两点,且点B ,C 关于原点对称,直线AB ,AC 分别交直线l 于点E ,F .记直线AC 与AB 的斜率分别为1k , 2k .① 求证: 12k k ⋅为定值; ② 求△CEF 的面积的最小值.【答案】(Ⅰ)2212x y +=【解析】试题分析:(1)由题意求得,a b 的值,结合椭圆焦点位于x 轴上写出标准方程即可; (2)①中,分别求得12,k k 的值,然后求解其乘积即可证得结论;②中,联立直线与椭圆的方程,利用面积公式得出三角形面积的解析式,最后利用均值不等式求得面积的最小值即可. 试题解析:(Ⅰ)由题知1b =,由2=, 所以2221a b ==,.故椭圆的方程为2212x y +=.(Ⅱ)① 证法一:设()000(0)B x y y >,,则220012x y +=, 因为点B ,C 关于原点对称,则()00C x y --,,所以20200012220000111122x y y y k k x x x x -++-⋅=⋅===-. 证法二:直线AC 的方程为11y k x =+,由2211{21x y y k x +==+,,得()22111240k x k x ++=,解得121421C k x k =-+,同理222421B k x k =-+, 因为B ,O ,C 三点共线,则由1222124402121C B k k x x k k +=--=++,整理得()()1212210k k k k ++=,所以1212k k ⋅=-.②直线AC 的方程为11y k x =+,直线AB 的方程为21y k x =+,不妨设10k >,则20k <,令y =2,得2111,2,2E F k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,, 而221112211421112121C C k k y k x k k -+=+=-+=++, 所以,△CEF 的面积()122CEF C S EF y ∆=⨯⨯- 212121*********k k k k ⎛⎫⎛⎫-=-+ ⎪⎪+⎝⎭⎝⎭22112121611221k k k k k k -+=⋅⋅+. 由1212k k ⋅=-得2112k k =-,则CEF S ∆2211121112161132212k k k k k k ++=⋅=+≥+1k =取得等号, 所以△CEF点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值.圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.21.已知函数()()ln 1f x x ax =++,其中a R ∈.(Ⅰ) 当a =-1时,求证: ()0f x ≤; (Ⅱ)对任意21e 0x x ≥>,存在()1,x ∈-+∞,使()()()()212212111fx f x a x f x x x x ----->-成立,求a 的取值范围.(其中e 是自然对数的底数,e =2.71828…)【答案】(Ⅰ)详见解析(Ⅱ)1e 1e -⎛⎫-+∞ ⎪⎝⎭, 【解析】试题分析:(1)利用题意证得函数的最大值为0 即可证得结论;(2)首先利用分析法真理要证明的不等式,然后构造函数证明结论即可. 试题解析:(Ⅰ)当 a =-1时, ()()ln 1f x x x =+-(x >-1), 则()1111xf x x x -=-='++,令()0f x '=,得0x =. 当10x -<<时, ()0f x '>, ()f x 单调递增;当0x >时, ()0f x '<, ()f x 单调递减.故当0x =时,函数()f x 取得极大值,也为最大值,所以()()max 00f x f ==, 所以, ()0f x ≤,得证. (Ⅱ)不等式()()()()212212111f x f x a x f x x x x ----->-,即为()()()22122111x f x f x ax f x a x x ⎡⎤---⎣⎦->---.而()()()()222112221222121ln 1ln 111x x a x x a x x f x x f x ax ax x x x x ⎡⎤+-------⎣⎦-=---()222221211212222212111ln ln ln 1x x xx a x x x x x x x ax ax ax x x x x x x ⎡⎤+-⎢⎥⎣⎦=-=+-=⋅---. 令()21e x t t x =≥.故对任意e t ≥,存在()1,x ∈-+∞,使()ln 1t t f x a t >---恒成立,所以()()min minln 1t t f x a t ⎛⎫>--⎪-⎝⎭.设()ln 1t t h t t =-,则()()21ln 1t th t t ---'=, 设()1ln u t t t =--,知()1110t u t t t='-=->对于e t ≥恒成立, 则()1ln u t t t =--为[e +)∞,上的增函数,于是()()1ln e e 20u t t t u =--≥=->, 即()()21ln 01t th t t --=>-'对于e t ≥恒成立,所以()ln 1t th t t =-为[e +)∞,上的增函数. 所以()()min minln e e 1e 1t t h t h t ⎛⎫===⎪--⎝⎭ 设()()p x f x a =--,即()()ln 1p x x ax a =-+--,当a ≥0时, ()p x 为()0+∞,上的减函数,且其值域为R ,可知符合题意. 当a <0时, ()11p x a x '=--+,由()0p x '=可得111x a=-->-, 由()0p x '>得11x a >--,则p (x )在11,a ⎛⎫--+∞ ⎪⎝⎭上为增函数;由()0p x '<得11x a<--,则p (x )在11,1a ⎛⎫--- ⎪⎝⎭上为减函数,所以()()min 11ln 1p x p a a ⎛⎫=--=-+ ⎪⎝⎭.从而由()eln 1e 1a >-+-,解得1e 1e 0a --<<. 综上所述,a 的取值范围是1e 1e -⎛⎫-+∞ ⎪⎝⎭,. 22.选修4-4:坐标系与参数方程已知在平面直角坐标系中,曲线1C 的参数方程是1{x cos y sin θθ=-+=,(θ为参数),以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程是2sin ρθ=.(Ⅰ) 求曲线1C 与2C 交点的平面直角坐标;(Ⅱ) 点A B ,分别在曲线1C , 2C 上,当AB 最大时,求OAB ∆的面积(O 为坐标原点).【答案】(Ⅰ)()()0011-,,,.【解析】试题分析:(1)分别求得两圆的标准方程,然后联立两方程即可求得(2)利用几何性质首先确定三角形面积最大时AB 的方程,然后结合点到直线的距离公式求解三角形的高,据此即可求得三角形面积的最大值. 试题解析:(Ⅰ)由1{x cos y sin θθ=-+=,,得1{x cos y sin θθ+==,,则曲线1C 的普通方程为()2211x y ++=.又由2sin ρθ=,得22sin ρρθ=,得222x y y +=. 把两式作差得, y x =-,代入222x y y +=, 可得交点坐标为为()()0011-,,,. (Ⅱ) 由平面几何知识可知,当12A C C B ,,,依次排列且共线时, AB 最大,此时2AB =+直线AB 的方程为10x y -+=,则O 到AB 的距离为所以OAB ∆的面积为(122S =+=. 23.选修4-5:不等式选讲已知函数()1f x x =+.(Ⅰ) 解不等式()()810f x f x +≥-;(Ⅱ) 若1x >, 1y <,求证: ()2y f y x f x ⎛⎫<⋅ ⎪⎝⎭.【答案】(Ⅰ){|10x x ≤-或0}x ≥.(Ⅱ)详见解析【解析】试题分析:(1)利用不等式的特点对x 的范围分类讨论,取得绝对值符号后求解不等式的解集即可;(2)首先利用分析法将要证明的不等式进行等价变形,然后作差结合不等式的特点和题意证得等价变形后的结论即可证得原不等式成立. 试题解析:(Ⅰ)原不等式即为9101x x +≥-+.当9x <-时,则9101x x --≥++,解得10x ≤-; 当91x -≤≤-时,则9101x x +≥++,此时不成立; 当1x >-时,则9101x x +≥--,解得0x ≥. 所以原不等式的解集为{|10x x ≤-或0}x ≥.(Ⅱ)要证()2y f y x f x ⎛⎫<⋅ ⎪⎝⎭,即211|y y x x ++,只需证明211|y yx x++. 则有()()222241y x y xx++-()()222241xy y xx+-+=()2222224422x y x y x y x y x x ++-++=222244x yx y x x +--=()()22241x x y x --=.因为2|1x , 2||1y <,则()()222241y x y x x ++-()()222410x x y x --=<,所以()()222241y x y xx++<,原不等式得证.。

2017届四川省资阳市高三第一次诊断性考试理科数学试题 及答案

2017届四川省资阳市高三第一次诊断性考试理科数学试题 及答案

四川省资阳市2017届高三一诊数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并收回。

第Ⅰ卷(选择题共50分)注意事项:必须使用2B铅笔在答题卡上将所选答案的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合{|(2)(2)0}=-<<,则M N=N x x=+-≤,{|13}M x x x(A){ x|-1≤x<2} (B){ x|-1<x≤2}(C){ x|-2≤x<3} (D){ x|-2<x≤2}2.在复平面内,复数1-3i,(1+i)(2-i)对应的点分别为A、B,则线段AB的中点C对应的复数为(A)-4+2i(B) 4-2i(C)-2+i(D) 2-i3.已知a ,b ∈R ,下列命题正确的是(A)若a b >,则||||a b > (B)若a b >,则11ab<(C)若||a b >,则22ab > (D)若||a b >,则22ab >4.已知向量3AB =+a b ,53BC =+a b ,33CD =-+a b ,则(A) A 、B 、C 三点共线 (B) A 、B 、D 三点共线(C) A 、C 、D 三点共线 (D) B 、C 、D 三点共线5.已知命题p 0x ∃∈R ,200xax a ++<.若p ⌝是真命题,则实数a的取值范围是(A) [0,4] (B)(0,4) (C)(,0)(4,)-∞+∞(D)(,0][4,)-∞+∞6.将函数sin(2)3y x π=+的图象向右平移ϕ(0ϕ>)个单位,所得图象关于原点O 对称,则ϕ的最小值为(A)23π (B)3π (C)6π (D)12π7. 《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小的一份为(A)53(B)116(C)136(D)1038.若执行右面的程序框图,输出S 的值为3,则判断框中应填入的条件是 (A) k <6? (B) k <7? (C) k <8? (D) k <9? 9.已知函数31()2sin ()31x x f x x x x -=++∈+R ,12()()0f x f x +>,则下列不等式正确的是(A)x 1>x 2 (B) x 1<x 2(C) x 1+x 2<0 (D) x 1+x 2>0 10.已知m ∈R ,函数2|21|,1,()log (1),1,x x f x x x +<⎧=⎨->⎩2()221g x x x m =-+-,若函数(())y f g x m =-有6个零点,则实数m 的取值范围是(A)3(0,)5(B)33(,)54(C)3(,1)4(D)(1,3)第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目指示的答题区域内作答。

2017年四川省资阳市高考数学模拟试卷

2017年四川省资阳市高考数学模拟试卷

2017年四川省资阳市高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}02{2<-=x x x A ,}1{≥=x x B ,则=B A ( )A .),0(+∞ B. ),1[+∞ C .)2,(-∞ D .[1,2)2. 已知i 是虚数单位,则=+ii12 ( ) A .1 B .22 C .2 D .23. 某人午觉醒来,他打开收音机,想听电台整点报时,则他等待的视角不多余10分钟的概率是( ) A .61 B .51 C.31 D .21 4. 等比数列}{n a 的各项均为正数,且4221=+a a ,73244a a a =,则=5a ( )A .161 B .81C. 20D. 40 5. 若某校8个伴参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是( )A .92和92B .91.5和92 C. 91和91.5 D .91.5和91.5 6. 已知正方形ABCD 的边长为6,M 在边BC 上且BM BC 3=,N 为DC 的中点,则=∙ ( )A .-6B .12 C. 6 D .-127. 《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( )A .75B .50 C.37.5 D .25.58. 在如图的程序框图中,若函数⎪⎩⎪⎨⎧≥<-),0(2),0)((log )(21x x x x f x则输出的结果是( )A .16B .8 C.162 D .82 9. 已知函数x x m x f sin 32cos 21)(-=,R x ∈且]3,2[∈m .若函数)(x f 的最大值记为)(m g ,则)(m g 的最小值为( )A .817 B .29 C. 223 D .4910. 三棱锥ABC P -中,PA ,PB ,PC 互相垂直,1==PB PA ,M 是线段BC 上一动点,若直线AM 与平面PBC 所成角的正切的最大值是26,则三棱锥ABC P -的外接球表面积是( )A .π2B .π4 C. π8 D .π1611. 已知F 是双曲线C :)0,0(12222>>=-b a by a x 的右焦点,A ,B 分别为C的左、右顶点.O 为坐标原点,D 为C 上一点,x DF ⊥轴.过点A 的直线l 与线段DF 交于点E ,与y 轴交于点M ,直线BE 与y 轴交于点N ,若ON OM 23=,则双曲线C 的离心率为( )A .3B .4 C.5 D .612. 函数)2()(2b ax x e x f x ++-=),(R b a ∈在区间(-1,1)上单调递增,则1682++b a 最小值是( )A .8B .16 C.24 D .28二、填空题:本大题共4小题,每小题5分,共20分. 13.已知复数z 满足z (1+i )=2,则|z |= .14.某厂在生产某产品的过程中,产量x (吨)与生产能耗y (吨)的对应数据如表所示.根据最小二乘法求得回归直线方程为=0.7x +a .当产量为80吨时,预计需要生产能耗为 吨. 15.设命题p :函数f (x )=lg (ax 2﹣2x +1)的定义域为R ;命题q :当时,恒成立,如果命题“p ∧q”为真命题,则实数a 的取值范围是 .16.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为 日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若a=,△ABC的面积为,求b+c的值.18.(12分)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,且AA1⊥平面ABC,D为AB的中点.(Ⅰ)求证:直线BC1∥平面A1CD;(Ⅱ)若AB=BB1=2,E是BB1的中点,求三棱锥A1﹣CDE的体积.20.(12分)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.21.(12分)已知函数f(x)=lnx+a(x﹣1),其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)已知在平面直角坐标系中,曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)点A,B分别在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().2017年四川省资阳市高考数学模拟试卷(文科)(4月份)参考答案与试题解析一、选择题1-5: ADABD 6-10: ACBCB 11、12:CB二、填空题:本大题共4小题,每小题5分,共20分. 13.已知复数z 满足z (1+i )=2,则|z |= .【考点】复数求模.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的公式求解.【解答】解:∵z (1+i )=2, ∴,则|z |=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础的计算题.14.某厂在生产某产品的过程中,产量x (吨)与生产能耗y (吨)的对应数据如表所示.根据最小二乘法求得回归直线方程为=0.7x +a .当产量为80吨时,预计需要生产能耗为 59.5 吨. 【考点】线性回归方程.【分析】求出x ,y 的平均数,代入y 关于x 的线性回归方程,求出a ,把x=80代入,能求出当产量为80吨时,预计需要生成的能耗.【解答】解:由题意,=45,=35,代入=0.7x+a,可得a=3.5,∴当产量为80吨时,预计需要生成能耗为0.7×80+3.5=59.5,故答案为:59.5.【点评】本题考查了最小二乘法,考查了线性回归方程,解答的关键是知道回归直线一定经过样本中心点,是基础题.15.设命题p:函数f(x)=lg(ax2﹣2x+1)的定义域为R;命题q:当时,恒成立,如果命题“p∧q”为真命题,则实数a的取值范围是(1,2).【考点】复合命题的真假.【分析】对于命题p:a≤0时,函数f(x)=lg(ax2﹣2x+1)的定义域不为R.由函数f(x)=lg(ax2﹣2x+1)的定义域为R,则,解得a范围.对于命题q:当时,利用基本不等式的性质可得:x+≥2,根据恒成立,可得a的求值范围.如果命题“p∧q”为真命题,可得实数a的取值范围.【解答】解:对于命题p:a≤0时,函数f(x)=lg(ax2﹣2x+1)的定义域不为R.由函数f(x)=lg(ax2﹣2x+1)的定义域为R,则,解得a>1.对于命题q:当时,x+≥2,当且仅当x=1时取等号.由当时,恒成立,∴a<2.如果命题“p∧q”为真命题,则实数a的取值范围是1<a<2.故答案为:(1,2).【点评】本题考查了对数函数的定义域、一元二次不等式的解集与判别式的关系、基本不等式的性质、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.16.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为 2.6日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)【考点】数列的应用.【分析】设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.利用等比数列的前n项和公式及其对数的运算性质即可得出.【解答】解:设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则A n=,B n=,由题意可得:=,化为:2n+=7,解得2n=6,2n=1(舍去).∴n==1+≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)(2017•资阳模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若a=,△ABC的面积为,求b+c的值.【考点】三角形中的几何计算.【分析】(Ⅰ)求出,即可求角A的大小;(Ⅱ)若a=,△ABC的面积为,利用余弦定理及三角形的面积公式,求b+c的值.【解答】解:(Ⅰ)由已知得,(2分)化简得,整理得,即,(4分)由于0<B+C<π,则,所以.(6分)(Ⅱ)因为,所以bc=2.(8分)根据余弦定理得,(10分)即7=(b+c)2﹣2,所以b+c=3.(12分)【点评】本题考查三角函数知识的运用,考查三角形面积的计算,考查余弦定理,考查学生分析解决问题的能力,属于中档题.18.(12分)(2017•资阳模拟)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(I)利用频率分布直方图的性质即可得出.(II)根据分层抽样,求出女生和男生得人数,再一一列举出所有得基本事件,找到所抽取的2人中至少有1名女生的基本事件,根据概率公式计算即可.【解答】解:(Ⅰ)由(0.008+0.021+0.035+0.030+x)×10=1,解得x=0.006.(4分)(Ⅱ)满意度评分值在[90,100]内有100×0.006×10=6人,其中女生2人,男生4人.设其中女生为a1,a2,男生为b1,b2,b3,b4,从中任取两人,所有的基本事件为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共15个,至少有1人年龄在[20,30)内的有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4)共9个.所以,抽取的两人中至少有一名女生的概率为,即为.(12分)【点评】本题考查分层抽样,以及古典概型的概率公式,考查数据处理能力和分析问题、解决问题的能力,属于中档题.19.(12分)(2017•资阳模拟)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC 是等边三角形,且AA1⊥平面ABC,D为AB的中点.(Ⅰ)求证:直线BC1∥平面A1CD;(Ⅱ)若AB=BB1=2,E是BB1的中点,求三棱锥A1﹣CDE的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)连接AC1,交A1C于点F,由三角形中位线定理可得BC1∥DF,再由线面平行的判定可得BC1∥平面A1CD;(Ⅱ)直接利用等积法求三棱锥A1﹣CDE的体积.【解答】(Ⅰ)证明:连接AC1,交A1C于点F,则F为AC1的中点,又D为AB的中点,∴BC1∥DF,又BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;(Ⅱ)解:三棱锥A1﹣CDE的体积.其中三棱锥A1﹣CDE的高h等于点C到平面ABB1A1的距离,可知.又.∴.【点评】本题考查直线与平面平行的判定,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.20.(12分)(2017•资阳模拟)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题知b=1,由,b=1,联立解出即可得出.(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),利用斜率计算公式即可得出.证法二:直线AC的方程为y=k1x+1,与椭圆方程联立可得坐标,即可得出.②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,可得△CEF的面积.【解答】解:(Ⅰ)由题知b=1,由,所以a2=2,b2=1.故椭圆的方程为.(3分)(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),所以.(6分)证法二:直线AC的方程为y=k1x+1,由得,解得,同理,因为B,O,C三点共线,则由,整理得(k1+k2)(2k1k2+1)=0,所以.(6分)②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,而,所以,△CEF的面积==.(8分)由得,=,当且仅当取得等号,则S△CEF所以△CEF的面积的最小值为.(12分)【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、项斜率计算公式,考查了推理能力与计算能力,属于难题.21.(12分)(2017•资阳模拟)已知函数f(x)=lnx+a(x﹣1),其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数f(x)的导数,解关于导函数的不等式,求出函数f(x)的最大值,证明结论即可;(Ⅱ)问题转化为证明,设,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)当a=﹣1时,f(x)=lnx﹣x+1(x>0),则,令f'(x)=0,得x=1.当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减.故当x=1时,函数f(x)取得极大值,也为最大值,所以f(x)max=f(1)=0,所以,f(x)≤0,得证.(4分)(II)原题即对任意t≥e,存在x∈(0,+∞),使成立,只需.设,则,令u(t)=t﹣1﹣lnt,则对于t≥e恒成立,所以u(t)=t﹣1﹣lnt为[e,+∞)上的增函数,于是u(t)=t﹣1﹣lnt≥u(e)=e﹣2>0,即对于t≥e恒成立,所以为[e,+∞)上的增函数,则.(8分)令p(x)=﹣f(x)﹣a,则p(x)=﹣lnx﹣a(x﹣1)﹣a=﹣lnx﹣ax,当a≥0时,p(x)=﹣lnx﹣ax为(0,+∞)的减函数,且其值域为R,符合题意.当a<0时,,由p'(x)=0得,由p'(x)>0得,则p(x)在上为增函数;由p'(x)<0得,则p(x)在上为减函数,所以,从而由,解得.综上所述,a的取值范围是.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想,转化思想,是一道综合题.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)(2017•资阳模拟)已知在平面直角坐标系中,曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)点A,B分别在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由消去θ化为普通方程,由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y,联立求出交点的直角坐标,化为极坐标得答案;(Ⅱ)由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大,求出|AB|及O到AB的距离代入三角形的面积公式得答案.【解答】解:(Ⅰ)由得则曲线C1的普通方程为(x+1)2+y2=1.又由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y.把两式作差得,y=﹣x,代入x2+y2=2y,可得交点坐标为为(0,0),(﹣1,1).(Ⅱ)由平面几何知识可知,当A,C1,C2,B依次排列且共线时,|AB|最大,此时,直线AB的方程为x﹣y+1=0,则O到AB的距离为,所以△OAB的面积为.(10分)【点评】本题考查了参数方程化普通方程,极坐标与直角坐标的互化,考查学生的计算能力,是中档题.[选修4-5:不等式选讲](共1小题,满分0分)23.(2017•资阳模拟)已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)分类讨论,解不等式f(x+8)≥10﹣f(x);(Ⅱ)利用分析法证明不等式.【解答】(Ⅰ)解:原不等式即为|x+9|≥10﹣|x+1|.当x<﹣9时,则﹣x﹣9≥10+x+1,解得x≤﹣10;当﹣9≤x≤﹣1时,则x+9≥10+x+1,此时不成立;当x>﹣1时,则x+9≥10﹣x﹣1,解得x≥0.所以原不等式的解集为{x|x≤﹣10或x≥0}.(Ⅱ)证明:要证,即,只需证明.则有====.因为|x|2>1,|y|2<1,则=,所以,原不等式得证.(10分)【点评】本题考查不等式的解法,考查不等式的证明,考查分析法的运用,属于中档题.。

2017高考仿真卷 理科数学四 含答案 精品

2017高考仿真卷 理科数学四 含答案 精品

2017高考仿真卷·理科数学(四)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P={x|2x<16},Q={x|x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P2.下列命题中,真命题的个数是()①经过直线外一点有且只有一条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线垂直;③经过平面外一点有且只有一个平面与已知平面平行;④经过平面外一点有且只有一个平面与已知平面垂直.A.1B.2C.3D.43.执行如图所示的程序框图,若输入x=9,则输出的y的值为()A.-B.1C.D.-4.已知f(x)=2sin,若将它的图象向右平移个单位,得到函数g(x)的图象,则函数g(x)的图象的一个对称中心为()A.(0,0)B.C.D.5.从5名男教师和3名女教师中选出3名教师,派往郊区3所学校支教,每校1人.要求这3名教师中男、女教师都要有,则不同的选派方案共有()A.250种B.450种C.270种D.540种6.已知直线x+y=a与圆O:x2+y2=8交于A,B两点,且=0,则实数a的值为()A.2B.2C.2或-2D.4或-47.已知数列{a n}是公差为的等差数列,S n为{a n}的前n项和,若S8=4S4,则a8=()A.7B.C.10D.8.已知实数x,y满足的最大值为()A. B. C. D.9.(x+1)2的展开式中常数项为()A.21B.19C.9D.-110.已知抛物线y2=8x上的点P到双曲线y2-4x2=4b2的上焦点的距离与到直线x=-2的距离之和的最小值为3,则该双曲线的方程为()A.=1B.y2-=1C.-x2=1D.=111.三棱锥S-ABC及其三视图的正视图和侧视图如图所示,则该三棱锥的外接球的表面积是()A.πB.πC.32πD.64π12.设函数f(x)=x ln x-(k-3)x+k-2,当x>1时,f(x)>0,则整数k的最大值是()A.3B.4C.5D.6第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.复数等于.14.已知向量a,b,|a|=6,|b|=4,a与b的夹角为60°,则(a+2b)·(a-3b)=.15.已知函数f(x)=若方程f(x)=kx+1有三个不同的实数根,则实数k的取值范围是.16.已知双曲线C:=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,且△AOB的面积为,则△AOB的内切圆的半径为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,满足b2-(a-c)2=(2-)ac.(1)求角B的大小;(2)若BC边上的中线AD的长为3,cos∠ADC=-,求a的值.18.(本小题满分12分)如图,在三棱锥P-ABC中,平面P AC⊥平面ABC,△P AC是等边三角形,已知BC=2AC=4,AB=2.(1)求证:平面P AC⊥平面CBP;(2)求二面角A-PB-C的余弦值.19.(本小题满分12分)某公司生产一种产品,有一项质量指标为“长度”(单位:cm),该质量指标X 服从正态分布N(174.5,2.52).该公司已生产了10万件产品,为检验这批产品的质量,先从中随机抽取50件,测量发现全部介于157 cm和187 cm之间,得到如下频数分布表:(1)估计该公司已生产的10万件产品中在[182,187]的件数;(2)从检测的产品在[177,187]中任意取2件,这2件产品在所有已生产的10万件产品“长度”排列中(从长到短),排列在前135的件数记为ξ.求ξ的分布列和均值.参考数据:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5,P(μ-3σ<X≤μ+3σ)=0.997 3.20.(本小题满分12分)已知椭圆C:=1(a>b>0)的离心率为,且椭圆上的点到右焦点F的最大距离为3.(1)求椭圆C的方程;(2)设过点F的直线l交椭圆C于A,B两点,定点G(4,0),求△ABG面积的最大值.21.(本小题满分12分)函数f(x)=(x2-a)e1-x,a∈R,(1)讨论函数f(x)的单调性;(2)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λ[f'(x1)-a(+1)](其中f'(x)为f(x)的导函数),求实数λ的值.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=,(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设点M(0,2),曲线C1与曲线C2交于A,B两点,求|MA|·|MB|的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-3|+|x+4|,(1)求f(x)≥11的解集;(2)设函数g(x)=k(x-3),若f(x)>g(x)对任意的x∈R都成立,求实数k的取值范围.参考答案2017高考仿真卷·理科数学(四)1.B解析∵P={x|2x<16}={x|x<4},Q={x|x2<4}={x|-2<x<2},∴Q⊆P.故选B.2.B解析在①中,由平行公理,得经过直线外一点有且只有一条直线与已知直线平行,故①是真命题;在②中,经过直线外一点有无数条直线与已知直线垂直,故②是假命题;在③中,由面面平行的判定定理得经过平面外一点有且只有一个平面与已知平面平行,故③是真命题;在④中,经过平面外一点有无数个平面与已知平面垂直,故④是假命题.故选B.3.A解析第一次执行循环体后,y=1,不满足退出循环的条件,x=1;第二次执行循环体后,y=-,不满足退出循环的条件,x=-;第三次执行循环体后,y=-,满足退出循环的条件,故输出的y值为-,故选A.4.C解析将函数f(x)=2sin的图象向右平移个单位,得到函数y=2sin=2sin的图象,即g(x)=2sin,令2x-=kπ,k∈Z,解得x=,k∈Z,当k=0时,函数g(x)的图象的对称中心坐标为,故选C.5.C解析(方法一)“这3名教师中男、女教师都要有”,分为两类,有1名女教师,有2名女教师.有1名女教师的选法种数为=30,有2名女教师的选法种数为=15,共有30+15=45种不同的选法,再分配到三个学校,故有45=270种.(方法二)从5名男教师和3名女教师中选出3名教师的不同选法有=56,3名老师全是男教师的选法有=10种,3名教师全是女教师的选法有=1种,所以“这3名教师中男、女教师都要有”,不同的选派方案有56-10-1=45种,再分配到三个学校,故有45=270种,故选C.6.C解析由=0,得,则△OAB为等腰直角三角形,所以圆心到直线的距离d=2.所以由点到直线距离公式,得=2,即a=±2故选C.7.D解析∵数列{a n}是公差为的等差数列,S n为{a n}的前n项和,S8=4S4,∴8a1+d=4又d=,∴a1=∴a8=a1+7d=+7故选D.8.A解析由题意作出其平面区域如图中阴影部分所示,由题意可得,A,B(1,3),则3,则2,由f(t)=t+的单调性可得,故的最大值为,故选A.9.D解析∵(x+1)2=(x2+2x+1),根据二项式定理可知,展开式的通项为(-1)r·x r-5,∴(x+1)2的展开式中常数项由三部分构成,分别是(x2+2x+1)与展开式中各项相乘得到,令r=3,则(-1)3·x-2·x2=1×(-)=-10;令r=4,则(-1)4·x-1·2x=2=10;令r=5,则(-1)5·x0·1=1×(-1)=-1;所以原式展开式中常数项为-10+10-1=-1.故选D.10.C解析抛物线y2=8x的焦点F(2,0),∵点P到双曲线=1的上焦点F1(0,c)的距离与到直线x=-2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,c=∵4b2+b2=c2,∴b2=1.∴双曲线的方程为-x2=1.故选C.11.A解析由题意,可得SC⊥平面ABC,且底面△ABC为等腰三角形.如图,取AC中点F,连接BF,则在Rt△BCF中,BF=2,CF=2,BC=4.在Rt△BCS中,CS=4,所以BS=4设球心到平面ABC的距离为d,则因为△ABC的外接圆的半径为,设三棱锥S-ABC的外接球半径为R,所以由勾股定理可得R2=d2+=(4-d)2+,所以d=2,该三棱锥外接球的半径R=,所以三棱锥外接球的表面积是4πR2=,故选A.12.C解析由已知得,x ln x>(k-3)x-k+2在x>1时恒成立,即k<,令F(x)=,则F'(x)=,令m(x)=x-ln x-2,则m'(x)=1->0在x>1时恒成立.所以m(x)在(1,+∞)上单调递增,且m(3)=1-ln 3<0,m(4)=2-ln 4>0,所以在(1,+∞)上存在唯一实数x0∈(3,4)使m(x)=0,所以F(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.故F(x)min=F(x0)==x0+2∈(5,6).故k<x0+2(k∈Z),所以k的最大值为5.故选C.13.1+i解析=i(1-i)=1+i.14.-72解析由题意,得a2=36,b2=16,a·b=12;∴(a+2b)·(a-3b)=a2-a·b-6b2=36-12-96=-72.15解析作出f(x)与y=kx+1的图象如下,由题意,可知点A(7,0),点B(4,3),点C(0,1);故k AC==-,k BC=, 结合图象可知,方程f(x)=kx+1有三个不同的实数根时,实数k的取值范围是16.2-3解析由e==2,得,即双曲线渐近线为y=±x.联立x=-,解得不妨令点A,点B,所以S△AOB=p,解得p=2,所以A(-1,),B(-1,-),所以△AOB三边长为2, 2,2,设△AOB内切圆半径为r,由(2+2+2)r=,解得r=2-3. 17.解(1)在△ABC中,∵b2-(a-c)2=(2-)ac,∴a2+c2-b2=ac,由余弦定理得cos B=,又B为△ABC的内角,∴B=(2)∵cos∠ADC=-,∴sin∠ADC=∴sin∠BAD=sin△ABD中,由正弦定理,得,即,解得BD=,故a=18.(1)证明在△ABC中,由于BC=4,AC=2,AB=2,∴AC2+BC2=AB2,故AC⊥BC.又平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,BC⊂平面PBC,∴BC⊥平面P AC.∵BC⊂平面PBC,∴平面P AC⊥平面CBP.(2)解(方法一)由(1)知BC⊥平面P AC,所以平面PBC⊥平面P AC,过点A作AE⊥PC交PC于点E,则AE⊥平面PBC,再过点E作EF⊥PB交PB于点F,连接AF,则∠AFE就是二面角A-PB-C的平面角.由题设得AE=,EF=,由勾股定理得AF=,∴cos∠AFE=∴二面角A-PB-C的余弦值为(方法二)以AC的中点O为原点,以OA所在直线为x轴,以过点O与BC平行的直线为y 轴,以OP所在直线为z轴,建立空间直角坐标系O-xyz,如图所示.由题意可得P(0,0,),B(-1,4,0),A(1,0,0),C(-1,0,0),则=(1,0,-),=(-1,4,-),=(-1,0,-).设平面P AB的法向量n1=(x1,y1,z1),则令x1=3,可得y1=,z1=,所以n1=同理可得平面PBC的法向量n2=(-,0,1).所以cos<n1,n2>==-所以二面角A-PB-C的余弦值为19.解(1)由题意100 000=10 000.所以估计该公司已生产的10万件产品中在[182,187]的有1万件.(2)由题意可知P(X≥182)==0.001 35,而0.001 35×100 000=135,所以,已生产的前135件的产品长度在182 cm以上,这50件中182 cm以上的有5件.随机变量ξ可取0,1,2,于是P(ξ=0)=,P(ξ=1)=,P(ξ=2)=所以ξ的分布列如下:所以E(ξ)=0+1+220.解(1)∵椭圆C:=1(a>b>0)的离心率为,且椭圆上的点到右焦点F的最大距离为3,∴由题意得解得c=1,a=2,b=∴椭圆的方程为=1.(2)设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),联立得(3m2+4)y2+6my-9=0,∴y1+y2=,y1y2=S△ABG=3|y2-y1|==18令μ=m2+1(μ≥1),则∵9μ+在[1,+∞)上是增函数,∴9μ+的最小值为10.∴S△ABG∴△ABG面积的最大值为21.解(1)f'(x)=(-x2+2x+a)e1-x,令h(x)=-x2+2x+a,则Δ=4+4a,当Δ=4+4a≤0,即a≤-1时,-x2+2x+a≤0恒成立,即函数f(x)是R上的减函数.当Δ=4+4a>0,即a>-1时,则方程-x2+2x+a=0的两根为x1=1-,x2=1+,可得函数f(x)是(-∞,1-),(1+,+∞)上的减函数,是(1-,1+)上的增函数.(2)根据题意,方程-x2+2x+a=0有两个不同的实根x1,x2(x1<x2),∴Δ=4+4a>0,即a>-1,且x1+x2=2,∵x1<x2,∴x1<1,由x2f(x1)≤λ[f'(x1)-a(+1)],得(2-x1)(-a)[(2x1--a],其中-+2x1+a=0,∴上式化为(2-x1)(2x1)[(2x1-+(2x1-)],整理得x1(2-x1)[2-λ(+1)]≤0,其中2-x1>1,即不等式x1[2-λ(+1)]≤0对任意的x1∈(-∞,1]恒成立.①当x1=0时,不等式x1[2-λ(+1)]≤0恒成立,λ∈R;②当x1∈(0,1)时,2-λ(+1)≤0恒成立,即,令函数g(x)==2-,显然,函数g(x)是R上的减函数,∴当x∈(0,1)时,g(x)<g(0)=,即;③当x1∈(-∞,0)时,2-λ(+1)≥0恒成立,即,由②可知,当x∈(-∞,0)时,g(x)>g(0)=,即综上所述,λ=22.解(1)曲线C1的参数方程为(t为参数),由代入法消去参数t,可得曲线C1的普通方程为y=-x+2;曲线C2的极坐标方程为ρ=,得ρ2=,即为ρ2+3ρ2sin2θ=4,整理可得曲线C2的直角坐标方程为+y2=1;(2)将(t为参数),代入曲线C2的直角坐标方程+y2=1,得13t2+32t+48=0,利用根与系数的关系,可得t1·t2=,所以|MA|·|MB|=23.解(1)∵f(x)=|x-3|+|x+4|=∴f(x)≥11可化为解得{x|x≤-6}或⌀或{x|x≥5}.∴f(x)≥11的解集为{x|x≤-6或x≥5}.(2)作出f(x)=的图象,而g(x)=k(x-3)图象为恒过定点P(3,0)的一条直线.如图,由题意,可得点A(-4,7),k P A==-1,k PB=2.∴实数k的取值范围应该为(-1,2].。

新课标高考理科数学模拟试题含答案

新课标高考理科数学模拟试题含答案

新课标高考理科数学模拟试题含答案The following text is amended on 12 November 2020.2017年普通高等学校招生全国统一考试理科数学模拟试卷(一)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题:p x ∀∈R ,sin x ≤1,则( )A .:p x ⌝∃∈R ,sin x ≥1B .:p x ⌝∀∈R ,sin x ≥1C .:p x ⌝∃∈R ,sin x >1 不能D .:p x ⌝∀∈R ,sin x >12.已知平面向量a =(1,1),b (1,-1),则向量1322-=a b ( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .23-B .13-C .13D .235.如果执行右面的程序框图,那么输出的S=( )A .2450B .2500 y x11-2π-3π-O6ππyx11-2π-3π-O 6ππy x11-2π-3πO 6π-πy xπ2π-6π-1O1-3π A.B.C .D .6.已知抛物线22(0)y px p =>的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3, 则有( )A .123FP FP FP +=B .222123FP FP FP += C .2132FP FP FP =+ D .2213FPFP FP =· 7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd+的最小值是( )A .0B .1C .2D .48.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3 B .38000cm 3C .2000cm 3D .4000cm 3 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A .7.12- C .12D 7 10.曲线12e x y =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .29e 2年B .4e 2, C .2e 2 D .e 2s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩 环数7 8 9 10 频数 5 5 5 5 乙的成绩 环数7 8 9 1频数 6 4 4 6 丙的成绩 环数7 8 9 1频数4 6 6 412.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。

【配套K12】四川省资阳市2017届高三数学4月模拟考试试题 文

【配套K12】四川省资阳市2017届高三数学4月模拟考试试题 文

资阳市高中2014级高考模拟考试数 学(文史类)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合{|(1)(3)0} {|10}A x x x B x x =+-<=-,≥,则图中阴影部分所表示的集合为 (A){|1x x -≤或3}x ≥(B){|1x x <或3}x ≥ (C){|1}x x ≤ (D){|1}x x -≤2.已知等差数列{}n a 中,1510a a +=,则47a =,则数列{}n a 的公差为(A) 2(B) 3 (C) 4(D) 53.在集合{|00}x x a a >,≤≤中随机取一个实数m ,若||2m <的概率为13,则实数a 的值为(A) 5(B) 6 (C) 9(D) 124.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为 (A)2π43+(B)4+(C)83+(D)8+5.双曲线E :22221x y a b-=(0a >,0b >)的一个焦点F 到E ,则E 的离心率是(B)32(C) 2 (D) 36.定义在R 上的函数()f x 满足2log (8)0()(1)0x x f x f x x -⎧=⎨->⎩,,,,≤则(3)f = (A) 3 (B) 2(C)2log 9 (D)2log 77.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i 的值为 (A) 7 (B) 8 (C) 9 (D) 108.已知函数()sin()6f x x ωπ=+(其中0ω>)图象的一条对称轴方程为12x π=,则ω的最小值为 (A) 2(B) 4(C) 10(D) 169.已知01c <<,1a b >>,下列不等式成立的是(A)a b c c >(B)c c a b <(C)a b a c b c>-- (D)log log a b c c >10.对于两条不同的直线m ,n 和两个不同的平面αβ,,以下结论正确的是(A) 若m α⊂,n ∥β,m ,n 是异面直线,则αβ,相交 (B) 若m α⊥,m β⊥,n ∥α,则n ∥β (C) 若m α⊂,n ∥α,m ,n 共面于β,则m ∥n(D) 若m α⊥,n ⊥β,α,β不平行,则m ,n 为异面直线11.抛物线24y x =的焦点为F ,点(53)A ,,M 为抛物线上一点,且M 不在直线AF 上,则MAF ∆周长的最小值为(A) 10(B) 11(C) 12(D)6+12.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP x A B y B C =+,其中x y ∈R ,,则4x y -的最大值为(A)3 (B)3+(C) 2(D)3+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。

四川省资阳市高中2017级高考模拟考试理科数学参考答案

四川省资阳市高中2017级高考模拟考试理科数学参考答案

!"&"'&((")
设0 到准线的距离为=#则%0,%-=#……………………………………………………………………… (分 因为" 到准线的距离为%,#-8#
所以%0"%,%0,%-%0"%,=,8! ………………………………………………………………………… '分
'(!!"解*由&
#''!#
得'!&!'&'.-"!…………………………………………………………………
用乙配送方案的骑手完成外卖订单数的中位数为'6! …………………………………………………… !分 因为用乙配送方案的骑手完成外卖订单数的平均数为'6#且'60%!# ………………………………… '分 所以#甲配送方案的效率更高!……………………………………………………………………………… %分
!!"由茎叶图知 1-!%7%!%,"!%7'6-%"!%!……………………………………………………………… 8分 列联表如下*
则054#-!槡!#&槡!#&#"#054)-!"#槡!#&#"#"54&-!槡!#槡!#""! ……………… $分
设054<-054#-!槡!#&槡!#&"!"--#"#






则)54<-054<&054)-!槡!#&槡!&槡!#&,#"!…………………………………………………………… :分

资阳市高中2017级高考模拟考试理科数学试题(含解析)

资阳市高中2017级高考模拟考试理科数学试题(含解析)

'' 的系数为!)'8,)!8-'%!
$!2!解析本题考查正弦定理的应用与基本不等式的应用考查推理论证能力!
因为$5+9",65+9#-#!5+9"所以$$,6%-#!$又$+"所以$,6%-#!,! 槡6$%则$%-'所以
."#&
的面积的最大值为
# !
7'7
# (
-
! (
!
因为函数3!',#"是定义在 上的奇函数#所以函数3!'"关于点!##""对称#又当'-#时#3!'"单调递增# 所以3!'"在 上单调递增#所以3!!'"的图象关于直线'-#对称#且当',#时#3!'"单调递增!因为
%>4?('&#%->4?(
' (
#%>4?'(&#%->4?'
' (
#%>4?!
(!)!解析本题考查平面向量的平行与垂直的判定以及单位向量的概念考查推理论证能力!
因为$"所以 1 错误因为%#%,%$#所以 2错误因为-&!所以 *错误)正确!
'!1!解析本题考查椭圆的方程与性质考查运算求解能力!
'$#!
,
( '
-#
依题意可得&
槡('!&#%-%>4?' #('&#%->4?'
$ 8
#且>4?(

2017年四川高考数学(理科数学)试题Word版真题试卷含答案

2017年四川高考数学(理科数学)试题Word版真题试卷含答案

2017年四川高考数学(理科数学)试题Word版真题试卷含答案2017年普通高等学校招生全国统一考试(新课标Ⅲ)四川理科数学注意事项:1.考生答卷前必须在答题卡上填写姓名和准考证号。

2.回答选择题时,在答题卡上涂黑对应题目的答案标号。

如需更改,用橡皮擦干净后再涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在试卷上无效。

3.考试结束后,将试卷和答题卡一并交回。

一、选择题(共12小题,每小题5分,共60分)1.已知集合 $A=\{(x,y)|x+y=1\}$,$B=\{(x,y)|y=x\}$,则$A\cap B$ 中元素的个数为A。

3B。

2C。

1D。

02.设复数 $z$ 满足 $(1+i)z=2i$,则 $|z|$ 等于A。

$\frac{1}{2}$B。

$\frac{\sqrt{2}}{2}$___D。

$2\sqrt{2}$3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图。

根据该折线图,下列结论错误的是A。

月接待游客量逐月增加B。

年接待游客量逐年增加C。

各年的月接待游客量高峰期大致在7、8月份D。

各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.$(x+y)(2x-y)5$ 的展开式中 $x^3y^3$ 的系数为A。

$-80$B。

$-40$___D。

$80$5.已知双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的一条渐近线方程为 $y=x$,且与椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 有公共焦点,则$C$ 的方程为A。

$\frac{x^2}{12}-\frac{y^2}{10}=1$B。

$\frac{x^2}{5}-\frac{y^2}{4}=1$C。

$\frac{x^2}{4}-\frac{y^2}{5}=1$D。

资阳市2017届高考数学模拟试卷(理科)(4月)含答案解析

资阳市2017届高考数学模拟试卷(理科)(4月)含答案解析
16.已知函数 f(x)=(x﹣2)ex﹣ +kx(k 是常数,e 是自然对数的底数, e=2.71828…)在区间(0,2)内存在两个极值点,则实数 k 的取值范围是 .
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12 分)在△ ABC 中,内角 A,B,C 的对边分别为 a,b,c,已知
所表示的集合为( )
A.{x|x≤﹣1 或 x≥3} B.{x|x<1 或 x≥3} C.{x|x≤1} D.{x|x≤﹣1} 【考点】Venn 图表达集合的关系及运算. 【分析】由阴影部分表示的集合为∁ (A∪B),然后根据集合的运算即可.
U
【解答】解:由图象可知阴影部分对应的集合为∁ (A∪B),
6
剩下的 3 个盒子的编号与放入的小球编号不相同,假设这 3 个盒子的编号为 4、 5、6, 则 4 号小球可以放进 5、6 号盒子,有 2 种选法, 剩下的 2 个小球放进剩下的 2 个盒子,有 1 种情况, 则不同的放法总数是 20×2×1=40; 故选:A. 【点评】本题考查排列、组合的综合应用,关键是编号与放入的小球编号不相同 的情况数目的分析.
平面 ABCD 所成角的大小为( )
A. B. C. D.
11.过抛物线 y2=4x 的焦点 F 作互相垂直的弦 AC,BD,则点 A,B,C,D 所 构成四边形的面积的最小值为( ) A.16 B.32 C.48 D.64 12.如图,在直角梯形 ABCD 中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图
(Ⅱ) 若|x|>1,|y|<1,求证:f(y)<|x|•f( ).
2017 年四川省资阳市高考数学模拟试卷(理科)(4 月 份)
参考答案与试题解析
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的. 1.设全集 U=R,集合 A={x|x2﹣2x﹣3<0},B={x|x﹣1≥0},则图中阴影部分

四川省资阳市2017届高三4月模拟考试数学(文)试题

四川省资阳市2017届高三4月模拟考试数学(文)试题

资阳市高中2014级高考模拟考试数 学(文史类)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合{|(1)(3)0} {|10}A x x x B x x =+-<=-,≥,则图中阴影部分所表示的集合为 (A){|1x x -≤或3}x ≥ (B){|1x x <或3}x ≥ (C){|1}x x ≤ (D){|1}x x -≤2.已知等差数列{}n a 中,1510a a +=,则47a =,则数列{}n a 的公差为(A) 2 (B) 3 (C) 4(D) 53.在集合{|00}x x a a >,≤≤中随机取一个实数m ,若||2m <的概率为13,则实数a 的值为(A) 5 (B) 6 (C) 9(D) 124.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为(A)2π43+(B)4(C)8(D)8+5.双曲线E :22221x y a b-=(0a >,0b >)的一个焦点F 到E ,则E的离心率是(B)32(C) 2 (D) 36.定义在R 上的函数()f x 满足2log (8)0()(1)0x x f x f x x -⎧=⎨->⎩,,,,≤则(3)f = (A) 3 (B) 2(C)2log 9(D)2log 77.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i 的值为 (A) 7 (B) 8 (C) 9 (D) 108.已知函数()sin()6f x x ωπ=+(其中0ω>)图象的一条对称轴方程为12x π=,则ω的最小值为 (A) 2(B) 4 (C) 10 (D) 169.已知01c <<,1a b >>,下列不等式成立的是(A)a b c c >(B)c c a b <(C)a ba cb c>-- (D)log log a b c c >10.对于两条不同的直线m ,n 和两个不同的平面αβ,,以下结论正确的是(A) 若m α⊂,n ∥β,m ,n 是异面直线,则αβ,相交 (B) 若m α⊥,m β⊥,n ∥α,则n ∥β (C) 若m α⊂,n ∥α,m ,n 共面于β,则m ∥n (D) 若m α⊥,n ⊥β,α,β不平行,则m ,n 为异面直线11.抛物线24y x =的焦点为F ,点(53)A ,,M 为抛物线上一点,且M 不在直线AF 上,则MAF ∆周长的最小值为(A) 10(B) 11(C) 12(D)6+12.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP x AB yBC =+,其中x y ∈R ,,则4x y -的最大值为(A)3 (B)3+(C) 2(D)3+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。

四川省资阳市2017届高考数学模拟试卷文科4月份

四川省资阳市2017届高考数学模拟试卷文科4月份

2017年四川省资阳市高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|(x+1)(x﹣3)<0},B={x|x﹣1≥0},则图中阴影部份所表示的集合为()A.{x|x≤﹣1或x≥3} B.{x|x<1或x≥3} C.{x|x≤1} D.{x|x≤﹣1}2.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.43.在集合{x|0≤x≤a,a>0}中随机取一个实数m,若|m|<2的概率为,则实数a的值为()A.5 B.6 C.9 D.124.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部份是半圆,下部份是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为()A.B.C.D.5.双曲线E:﹣=1(a>0,b>0)的一个核心F到E的渐近线的距离为,则E的离心率是()A.B.C.2 D.36.概念在R上的函数f(x)知足f(x)=则f(3)=()A.3 B.2 C.log29 D.log277.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.108.已知函数(其中ω>0)图象的一条对称轴方程为x=,则ω的最小值为()A.2 B.4 C.10 D.169.已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.a c<b c C.D.log a c>log b c10.关于两条不同的直线m,n和两个不同的平面α,β,以下结论正确的是()A.若m⊂α,n∥β,m,n是异面直线,则α,β相交B.若m⊥α,m⊥β,n∥α,则n∥βC.若m⊂α,n∥α,m,n共面于β,则m∥nD.若m⊥α,n⊥β,α,β不平行,则m,n为异面直线11.抛物线y2=4x的核心为F,点A(5,3),M为抛物线上一点,且M不在直线AF上,则△MAF周长的最小值为()A.10 B.11 C.12 D.6+12.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部份(包括边界)运动.若,其中x,y ∈R,则4x﹣y的最大值为()A.B.C.2 D.二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z知足z(1+i)=2,则|z|=.14.某厂在生产某产品的进程中,产量x(吨)与生产能耗y(吨)的对应数据如表所示.依照最小二乘法求得回归直线方程为=+a.当产量为80吨时,估量需要生产能耗为吨.x30405060y2530404515.设命题p:函数f(x)=lg(ax2﹣2x+1)的概念域为R;命题q:当时,恒成立,若是命题“p∧q”为真命题,则实数a的取值范围是.16.我国古代数学高作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时刻约为日.(结果保留一名小数,参考数据:lg2≈,lg3≈)三、解答题:解许诺写出文字说明、证明进程或演算步骤.17.(12分)在△ABC中,内角A,B,C的对边别离为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若a=,△ABC的面积为,求b+c的值.18.(12分)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已愈来愈多地引发了人们的关注.某部门为了对该城市共享单车增强监管,随机选取了100人就该城市共享单车的推行情形进行问卷调查,并将问卷中的这100人依照其中意度评分值(百分制)依照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知中意度评分值在[90,100]内的男生数与女生数的比为2:1,若在中意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,且AA1⊥平面ABC,D为AB的中点.(Ⅰ)求证:直线BC1∥平面A1CD;(Ⅱ)若AB=BB1=2,E是BB1的中点,求三棱锥A1﹣CDE的体积.20.(12分)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上极点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC别离交直线l于点E,F.记直线AC与AB的斜率别离为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.21.(12分)已知函数f(x)=lnx+a(x﹣1),其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范围.(其中e是自然对数的底数,e=…)请考生在22,23题中任选一题作答,若是多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)已知在平面直角坐标系中,曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,成立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)点A,B别离在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().2017年四川省资阳市高考数学模拟试卷(文科)(4月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|(x+1)(x﹣3)<0},B={x|x﹣1≥0},则图中阴影部份所表示的集合为()A.{x|x≤﹣1或x≥3} B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤﹣1}【考点】Venn图表达集合的关系及运算.【分析】由阴影部份表示的集合为∁U(A∪B),然后依照集合的运算即可.【解答】解:由图象可知阴影部份对应的集合为∁U(A∪B),A={x|(x+1)(x﹣3)<0}=(﹣1,3),∵B={x|x﹣1≥0},∴A∪B=(﹣1,+∞),则∁U(A∪B)=(﹣∞,﹣1],故选D.【点评】本题要紧考查集合的大体运算,利用Venn图确信集合的关系是解决本题的关键.2.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.【解答】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.【点评】本题要紧考查等差数列的通项公式的应用,属于基础题.3.在集合{x|0≤x≤a,a>0}中随机取一个实数m,若|m|<2的概率为,则实数a的值为()A.5 B.6 C.9 D.12【考点】几何概型.【分析】利用几何概型的公式,利用区间长度的比值取得关于a 的等式解之即可.【解答】解:由题意|m|<2的概率为,则=,解得a=6;故选:B.【点评】本题要紧考查几何概型的概率计算,求出对应的区间长度是解决本题的关键,比较基础.4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部份是半圆,下部份是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】第一由几何体还原几何体,是下面是底面为正方体,上面是半径为的半球,由此计算体积.【解答】解:由几何体的三视图取得几何体为组合体,下面是底面为正方体,上面是半径为的半球,因此几何体的体积为2×2×2+=8+故选C.【点评】本题考查了组合体的三视图和体积的计算;关键是明确几何体的形状,由体积公式计算.5.双曲线E:﹣=1(a>0,b>0)的一个核心F到E的渐近线的距离为,则E的离心率是()A.B.C.2 D.3【考点】双曲线的简单性质.【分析】依照题意,求出双曲线的核心坐标和渐近线方程,由点到直线的距离公式计算可得核心F到渐近线ay﹣bx=0的距离为b,结合题意可得b=,由双曲线的几何性质可得c==2a,进而由双曲线离心率公式计算可得答案.【解答】解:依照题意,双曲线E:﹣=1的核心在x轴上,则其渐近线方程为y=±x,即ay±bx=0,设F(c,0),F到渐近线ay﹣bx=0的距离d===b,又由双曲线E:﹣=1的一个核心F到E的渐近线的距离为,则b=,c==2a,故双曲线的离心率e==2;故选:C.【点评】本题考查双曲线的几何性质,注意“双曲线的核心到其渐近线的距离为b”.6.概念在R上的函数f(x)知足f(x)=则f(3)=()A.3 B.2 C.log29 D.log27【考点】分段函数的应用.【分析】由已知中f(x)=,将x=3代入可得答案.【解答】解:∵f(x)=,∴f(3)=f(2)=f(1)=f(0)=log28=3,故选:A【点评】本题考查的知识点是函数求值,分段函数的应用,难度不大,属于基础题.7.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.10【考点】程序框图.【分析】模拟执行程序框图,依照题意,依次计算MOD(m,n)的值,由题意∈N*,从而得解.【解答】解:模拟执行程序框图,可得:n=2,i=0,m=48,知足条件n≤48,知足条件MOD(48,2)=0,i=1,n=3,知足条件n≤48,知足条件MOD(48,3)=0,i=2,n=4,知足条件n≤48,知足条件MOD(48,4)=0,i=3,n=5,知足条件n≤48,不知足条件MOD(48,5)=0,n=6,…∵∈N*,可得:2,3,4,6,8,12,16,24,48,∴共要循环9次,故i=9.故选:C.【点评】本题要紧考查了循环结构的程序框图,依次正确写出每次循环取得的MOD(m,n)的值是解题的关键.8.已知函数(其中ω>0)图象的一条对称轴方程为x=,则ω的最小值为()A.2 B.4 C.10 D.16【考点】正弦函数的图象.【分析】由题意利用正弦函数的图象的对称性可得ω•+=kπ+,k∈Z,由此求得ω的最小值.【解答】解:依照函数(其中ω>0)图象的一条对称轴方程为x=,可得ω•+=kπ+,k∈Z,即ω=12k+4,故ω的最小值为4,故选:B.【点评】本题要紧考查正弦函数的图象的对称性,属于基础题.9.已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.a c<b c C.D.log a c>log b c【考点】不等式比较大小;不等式的大体性质.【分析】依照题意,依次分析选项:关于A、构造函数y=c x,由指数函数的性质分析可得A错误,关于B、构造函数y=x c,由幂函数的性质分析可得B错误,关于C、由作差法比较可得C错误,关于D、由作差法利用对数函数的运算性质分析可得D正确,即可得答案.【解答】解:依照题意,依次分析选项:关于A、构造函数y=c x,由于0<c<1,则函数y=c x是减函数,又由a>b>1,则有c a>c b,故A 错误;关于B、构造函数y=x c,由于0<c<1,则函数y=x c是增函数,又由a>b>1,则有a c>b c,故B 错误;关于C、﹣==,又由0<c<1,a>b>1,则(a﹣c)>0、(b ﹣c)>0、(b﹣a)<0,进而有﹣<0,故有<,故C错误;关于D、log a c﹣log b c=﹣=lgc(),又由0<c<1,a>b>1,则有lgc<0,lga>lgb>0,则有log a c﹣log b c=﹣=lgc()>0,即有log a c>log b c,故D正确;故选:D.【点评】本题考查不等式比较大小,关键是把握不等式的性质并灵活运用.10.关于两条不同的直线m,n和两个不同的平面α,β,以下结论正确的是()A.若m⊂α,n∥β,m,n是异面直线,则α,β相交B.若m⊥α,m⊥β,n∥α,则n∥βC.若m⊂α,n∥α,m,n共面于β,则m∥nD.若m⊥α,n⊥β,α,β不平行,则m,n为异面直线【考点】空间中直线与平面之间的位置关系.【分析】依照空间直线和平面平行或垂直的判定定理和性质定理别离进行判定即可.【解答】解:A.α∥β时,m⊂α,n∥β,m,n是异面直线,能够成立,故A错误,B.若m⊥α,m⊥β,则α∥β,因为n∥α,则n∥β或n⊂β,故B错误,C.利用线面平行的性质定理,可得C正确,D.若m⊥α,n⊥β,α,β不平行,则m,n为异面直线或相交直线,故D不正确,故选:C.【点评】本题要紧考查与空间直线和平面位置关系的判定,要求熟练把握相应的判定定理和性质定理.11.抛物线y2=4x的核心为F,点A(5,3),M为抛物线上一点,且M不在直线AF上,则△MAF周长的最小值为()A.10 B.11 C.12 D.6+【考点】抛物线的简单性质.【分析】求△MAF周长的最小值,即求|MA|+|MF|的最小值.设点M在准线上的射影为D,则依照抛物线的概念,可知|MF|=|MD|,因此问题转化为求|MA|+|MD|的最小值,依照平面几何知识,当D、M、A三点共线时|MA|+|MD|最小,由此即可求出|MA|+|MF|的最小值.【解答】解:求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,依照抛物线的概念,可知|MF|=|MD|因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值依照平面几何知识,可适当D,M,A三点共线时|MA|+|MD|最小,因此最小值为x A﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故选B.【点评】考查椭圆的概念、标准方程,和简单性质的应用,判定当D,M,A三点共线时|MA|+|MD|最小,是解题的关键.12.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部份(包括边界)运动.若,其中x,y ∈R,则4x﹣y的最大值为()A.B.C.2 D.【考点】简单线性计划.【分析】成立直角坐标系,写出点的坐标,求出BD的方程,求出圆的方程;设出P的坐标,求出三个向量的坐标,将P的坐标代入圆内方程求出4x﹣y范围.【解答】解:以A为坐标原点,AB为x轴,AD为y轴成立平面直角坐标系,则A(0,0),D(0,1),C(1,1),B(2,0),直线BD的方程为x+2y﹣2=0,C到BD的距离d=∴圆弧以点C为圆心的圆方程为(x﹣1)2+(y﹣1)2=,设P(m,n)则=(m,n),=(0,1),=(2,0),=(﹣1,1)若,∴(m,n)=(2x﹣y,y)∴m=2x﹣y,n=y∵P在圆内或圆上∴(2x﹣y﹣1)2+(y﹣1)2≤,设4x﹣y=t,则y=4x﹣t,代入上式整理得80x2﹣(48t+32)x+8t2+7≤0,设f(x)=80x2﹣(48t+32)x+8t2+7≤0,x∈[,],则,解得2≤t≤3+,故4x﹣y的最大值为3+,故选:B【点评】本题考通过成立直角坐标系将问题代数化、考查直线与圆相切的条件、考查向量的坐标公式,属于中档题二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z知足z(1+i)=2,则|z|=.【考点】复数求模.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的公式求解.【解答】解:∵z(1+i)=2,∴,则|z|=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础的计算题.14.某厂在生产某产品的进程中,产量x(吨)与生产能耗y(吨)的对应数据如表所示.依照最小二乘法求得回归直线方程为=+a.当产量为80吨时,估量需要生产能耗为吨.x30405060y25304045【考点】线性回归方程.【分析】求出x,y的平均数,代入y关于x的线性回归方程,求出a,把x=80代入,能求出当产量为80吨时,估量需要生成的能耗.【解答】解:由题意,=45,=35,代入=+a,可得a=,∴当产量为80吨时,估量需要生成能耗为×80+=,故答案为:.【点评】本题考查了最小二乘法,考查了线性回归方程,解答的关键是明白回归直线必然通过样本中心点,是基础题.15.设命题p:函数f(x)=lg(ax2﹣2x+1)的概念域为R;命题q:当时,恒成立,若是命题“p∧q”为真命题,则实数a的取值范围是(1,2).【考点】复合命题的真假.【分析】关于命题p:a≤0时,函数f(x)=lg(ax2﹣2x+1)的概念域不为R.由函数f(x)=lg (ax2﹣2x+1)的概念域为R,则,解得a范围.关于命题q:当时,利用大体不等式的性质可得:x+≥2,依照恒成立,可得a的求值范围.若是命题“p∧q”为真命题,可得实数a的取值范围.【解答】解:关于命题p:a≤0时,函数f(x)=lg(ax2﹣2x+1)的概念域不为R.由函数f(x)=lg(ax2﹣2x+1)的概念域为R,则,解得a>1.关于命题q:当时,x+≥2,当且仅当x=1时取等号.由当时,恒成立,∴a<2.若是命题“p∧q”为真命题,则实数a的取值范围是1<a<2.故答案为:(1,2).【点评】本题考查了对数函数的概念域、一元二次不等式的解集与判别式的关系、大体不等式的性质、复合命题真假的判定方式,考查了推理能力与计算能力,属于中档题.16.我国古代数学高作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时刻约为日.(结果保留一名小数,参考数据:lg2≈,lg3≈)【考点】数列的应用.【分析】设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.利用等比数列的前n项和公式及其对数的运算性质即可得出.【解答】解:设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则A n=,B n=,由题意可得:=,化为:2n+=7,解得2n=6,2n=1(舍去).∴n==1+≈.∴估量日蒲、莞长度相等,故答案为:.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.三、解答题:解许诺写出文字说明、证明进程或演算步骤.17.(12分)(2017•资阳模拟)在△ABC中,内角A,B,C的对边别离为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若a=,△ABC的面积为,求b+c的值.【考点】三角形中的几何计算.【分析】(Ⅰ)求出,即可求角A的大小;(Ⅱ)若a=,△ABC的面积为,利用余弦定理及三角形的面积公式,求b+c的值.【解答】解:(Ⅰ)由已知得,(2分)化简得,整理得,即,(4分)由于0<B+C<π,则,因此.(6分)(Ⅱ)因为,因此bc=2.(8分)依照余弦定理得,(10分)即7=(b+c)2﹣2,因此b+c=3.(12分)【点评】本题考查三角函数知识的运用,考查三角形面积的计算,考查余弦定理,考查学生分析解决问题的能力,属于中档题.18.(12分)(2017•资阳模拟)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已愈来愈多地引发了人们的关注.某部门为了对该城市共享单车增强监管,随机选取了100人就该城市共享单车的推行情形进行问卷调查,并将问卷中的这100人依照其中意度评分值(百分制)依照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知中意度评分值在[90,100]内的男生数与女生数的比为2:1,若在中意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.【考点】列举法计算大体事件数及事件发生的概率;频率散布直方图.【分析】(I)利用频率散布直方图的性质即可得出.(II)依照分层抽样,求出女生和男生得人数,再一一列举出所有得大体事件,找到所抽取的2人中至少有1名女生的大体事件,依照概率公式计算即可.【解答】解:(Ⅰ)由(++++x)×10=1,解得x=.(4分)(Ⅱ)中意度评分值在[90,100]内有100××10=6人,其中女生2人,男生4人.设其中女生为a1,a2,男生为b1,b2,b3,b4,从中任取两人,所有的大体事件为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共15个,至少有1人年龄在[20,30)内的有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4)共9个.因此,抽取的两人中至少有一名女生的概率为,即为.(12分)【点评】本题考查分层抽样,和古典概型的概率公式,考查数据处置能力和分析问题、解决问题的能力,属于中档题.19.(12分)(2017•资阳模拟)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,且AA1⊥平面ABC,D为AB的中点.(Ⅰ)求证:直线BC1∥平面A1CD;(Ⅱ)若AB=BB1=2,E是BB1的中点,求三棱锥A1﹣CDE的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)连接AC1,交A1C于点F,由三角形中位线定理可得BC1∥DF,再由线面平行的判定可得BC1∥平面A1CD;(Ⅱ)直接利用等积法求三棱锥A1﹣CDE的体积.【解答】(Ⅰ)证明:连接AC1,交A1C于点F,则F为AC1的中点,又D为AB的中点,∴BC1∥DF,又BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;(Ⅱ)解:三棱锥A1﹣CDE的体积.其中三棱锥A1﹣CDE的高h等于点C到平面ABB1A1的距离,可知.又.∴.【点评】本题考查直线与平面平行的判定,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.20.(12分)(2017•资阳模拟)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上极点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC别离交直线l于点E,F.记直线AC与AB的斜率别离为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题知b=1,由,b=1,联立解出即可得出.(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),利用斜率计算公式即可得出.证法二:直线AC的方程为y=k1x+1,与椭圆方程联立可得坐标,即可得出.②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,可得△CEF的面积.【解答】解:(Ⅰ)由题知b=1,由,因此a2=2,b2=1.故椭圆的方程为.(3分)(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),因此.(6分)证法二:直线AC的方程为y=k1x+1,由得,解得,同理,因为B,O,C三点共线,则由,整理得(k1+k2)(2k1k2+1)=0,因此.(6分)②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,而,因此,△CEF的面积==.(8分)由得,=,当且仅当取得等号,则S△CEF因此△CEF的面积的最小值为.(12分)【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、项斜率计算公式,考查了推理能力与计算能力,属于难题.21.(12分)(2017•资阳模拟)已知函数f(x)=lnx+a(x﹣1),其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范围.(其中e是自然对数的底数,e=…)【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数f(x)的导数,解关于导函数的不等式,求出函数f(x)的最大值,证明结论即可;(Ⅱ)问题转化为证明,设,依照函数的单调性求出a的范围即可.【解答】解:(Ⅰ)当a=﹣1时,f(x)=lnx﹣x+1(x>0),则,令f'(x)=0,得x=1.当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减.故当x=1时,函数f(x)取得极大值,也为最大值,因此f(x)max=f(1)=0,因此,f(x)≤0,得证.(4分)(II)原题即对任意t≥e,存在x∈(0,+∞),使成立,只需.设,则,令u(t)=t﹣1﹣lnt,则关于t≥e恒成立,因此u(t)=t﹣1﹣lnt为[e,+∞)上的增函数,于是u(t)=t﹣1﹣lnt≥u(e)=e﹣2>0,即关于t≥e恒成立,因此为[e,+∞)上的增函数,则.(8分)令p(x)=﹣f(x)﹣a,则p(x)=﹣lnx﹣a(x﹣1)﹣a=﹣lnx﹣ax,当a≥0时,p(x)=﹣lnx﹣ax为(0,+∞)的减函数,且其值域为R,符合题意.当a<0时,,由p'(x)=0得,由p'(x)>0得,则p(x)在上为增函数;由p'(x)<0得,则p(x)在上为减函数,因此,从而由,解得.综上所述,a的取值范围是.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用和不等式的证明,考查分类讨论思想,转化思想,是一道综合题.请考生在22,23题中任选一题作答,若是多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)(2017•资阳模拟)已知在平面直角坐标系中,曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,成立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)点A,B别离在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数方程化成一般方程;简单曲线的极坐标方程.【分析】(Ⅰ)由消去θ化为一般方程,由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y,联立求出交点的直角坐标,化为极坐标得答案;(Ⅱ)由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大,求出|AB|及O到AB 的距离代入三角形的面积公式得答案.【解答】解:(Ⅰ)由得则曲线C1的一般方程为(x+1)2+y2=1.又由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y.把两式作差得,y=﹣x,代入x2+y2=2y,可得交点坐标为为(0,0),(﹣1,1).(Ⅱ)由平面几何知识可知,当A,C1,C2,B依次排列且共线时,|AB|最大,现在,直线AB的方程为x﹣y+1=0,则O到AB的距离为,因此△OAB的面积为.(10分)【点评】本题考查了参数方程化一般方程,极坐标与直角坐标的互化,考查学生的计算能力,是中档题.[选修4-5:不等式选讲](共1小题,满分0分)23.(2017•资阳模拟)已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)分类讨论,解不等式f(x+8)≥10﹣f(x);(Ⅱ)利用分析法证明不等式.【解答】(Ⅰ)解:原不等式即为|x+9|≥10﹣|x+1|.当x<﹣9时,则﹣x﹣9≥10+x+1,解得x≤﹣10;当﹣9≤x≤﹣1时,则x+9≥10+x+1,现在不成立;当x>﹣1时,则x+9≥10﹣x﹣1,解得x≥0.因此原不等式的解集为{x|x≤﹣10或x≥0}.(Ⅱ)证明:要证,即,只需证明.则有====.因为|x|2>1,|y|2<1,则=,因此,原不等式得证.(10分)【点评】本题考查不等式的解法,考查不等式的证明,考查分析法的运用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年四川省资阳市高考数学模拟试卷(理科)(4月份)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|x2﹣2x﹣3<0},B={x|x﹣1≥0},则图中阴影部分所表示的集合为()A.{x|x≤﹣1或x≥3} B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤﹣1} 2.已知等差数列{a n}的前项和为S n,且S5=30,则a3=()A.6 B.7 C.8 D.93.已知i为虚数单位,若复数z=a2﹣1+(1+a)i(其中a∈R)为纯虚数,则=()A.B.C.D.4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为()A.B.C.D.5.双曲线E:﹣=1(a>0,b>0)的一个焦点F到E的渐近线的距离为,则E的离心率是()A.B.C.2 D.36.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是()A.40 B.60 C.80 D.1007.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.108.已知函数,其中ω>0.若对x∈R恒成立,则ω的最小值为()A.2 B.4 C.10 D.169.已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.C.ba c>ab c D.log a c>log b c10.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为()A.B.C.D.11.过抛物线y2=4x的焦点F作互相垂直的弦AC,BD,则点A,B,C,D所构成四边形的面积的最小值为()A.16 B.32 C.48 D.6412.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部分(包括边界)运动.若=x+y,其中x,y∈R,则4x﹣y的取值范围是()A. B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中,常数项是.14.已知随机变量X服从正态分布N(2,σ2),且P(0≤X≤2)=0.3,则P(X >4)=.15.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)16.已知函数f(x)=(x﹣2)e x﹣+kx(k是常数,e是自然对数的底数,e=2.71828…)在区间(0,2)内存在两个极值点,则实数k的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值范围.18.(12分)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.(Ⅰ)若BC1∥平面A1CD,确定D的位置,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.20.(12分)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.21.(12分)已知函数f(x)=ln(x+1)+ax,其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意x2≥ex1>0,存在x∈(﹣1,+∞),使成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)已知在平面直角坐标系中,曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)点A,B分别在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O 为坐标原点).[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().2017年四川省资阳市高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|x2﹣2x﹣3<0},B={x|x﹣1≥0},则图中阴影部分所表示的集合为()A.{x|x≤﹣1或x≥3} B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤﹣1}【考点】Venn图表达集合的关系及运算.【分析】由阴影部分表示的集合为∁U(A∪B),然后根据集合的运算即可.【解答】解:由图象可知阴影部分对应的集合为∁U(A∪B),由x2﹣2x﹣3<0得﹣1<x<3,即A=(﹣1,3),∵B={x|x≥1},∴A∪B=(﹣1,+∞),则∁U(A∪B)=(﹣∞,﹣1],故选D.【点评】本题主要考查集合的基本运算,利用Venn图确定集合的关系是解决本题的关键.2.已知等差数列{a n}的前项和为S n,且S5=30,则a3=()A.6 B.7 C.8 D.9【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式及其性质即可得出.【解答】解:由等差数列的前n项和公式及其性质可得:S5=30==5a3,解得a3=6.故选:A.【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.3.已知i为虚数单位,若复数z=a2﹣1+(1+a)i(其中a∈R)为纯虚数,则=()A.B.C.D.【考点】复数代数形式的乘除运算.【分析】由已知求得a值,代入,再由复数代数形式的乘除运算化简得答案.【解答】解:∵z=a2﹣1+(1+a)i为纯虚数,∴,解得:a=1.∴z=2i,则==.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】首先由几何体还原几何体,是下面是底面为正方体,上面是半径为的半球,由此计算体积.【解答】解:由几何体的三视图得到几何体为组合体,下面是底面为正方体,上面是半径为的半球,所以几何体的体积为2×2×2+=8+故选C.【点评】本题考查了组合体的三视图以及体积的计算;关键是明确几何体的形状,由体积公式计算.5.双曲线E:﹣=1(a>0,b>0)的一个焦点F到E的渐近线的距离为,则E的离心率是()A.B.C.2 D.3【考点】双曲线的简单性质.【分析】根据题意,求出双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得焦点F到渐近线ay﹣bx=0的距离为b,结合题意可得b=,由双曲线的几何性质可得c==2a,进而由双曲线离心率公式计算可得答案.【解答】解:根据题意,双曲线E:﹣=1的焦点在x轴上,则其渐近线方程为y=±x,即ay±bx=0,设F(c,0),F到渐近线ay﹣bx=0的距离d===b,又由双曲线E:﹣=1的一个焦点F到E的渐近线的距离为,则b=,c==2a,故双曲线的离心率e==2;故选:C.【点评】本题考查双曲线的几何性质,注意“双曲线的焦点到其渐近线的距离为b”.6.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是()A.40 B.60 C.80 D.100【考点】排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在六个盒子中任选3个,放入与其编号相同的小球,由组合数公式可得放法数目,②、假设剩下的3个盒子的编号为4、5、6,依次分析4、5、6号小球的放法数目即可;进而由分步计数原理计算可得答案.【解答】解:根据题意,有且只有三个盒子的编号与放入的小球编号相同,在六个盒子中任选3个,放入与其编号相同的小球,有C63=20种选法,剩下的3个盒子的编号与放入的小球编号不相同,假设这3个盒子的编号为4、5、6,则4号小球可以放进5、6号盒子,有2种选法,剩下的2个小球放进剩下的2个盒子,有1种情况,则不同的放法总数是20×2×1=40;故选:A.【点评】本题考查排列、组合的综合应用,关键是编号与放入的小球编号不相同的情况数目的分析.7.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.10【考点】程序框图.【分析】模拟执行程序框图,根据题意,依次计算MOD(m,n)的值,由题意∈N*,从而得解.【解答】解:模拟执行程序框图,可得:n=2,i=0,m=48,满足条件n≤48,满足条件MOD(48,2)=0,i=1,n=3,满足条件n≤48,满足条件MOD(48,3)=0,i=2,n=4,满足条件n≤48,满足条件MOD(48,4)=0,i=3,n=5,满足条件n≤48,不满足条件MOD(48,5)=0,n=6,…∵∈N*,可得:2,3,4,6,8,12,16,24,48,∴共要循环9次,故i=9.故选:C.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的MOD(m,n)的值是解题的关键.8.已知函数,其中ω>0.若对x∈R恒成立,则ω的最小值为()A.2 B.4 C.10 D.16【考点】正弦函数的图象.【分析】由题意根据正弦函数的最大值,正弦函数的图象的对称性,可得ω•+=2kπ+,k∈Z,由此求得ω的最小值.【解答】解:∵函数,其中ω>0.若对x∈R 恒成立,∴ω•+=2kπ+,k∈Z,即ω=24k+4,故ω的最小值为4,故选:B.【点评】本题主要考查正弦函数的最大值,正弦函数的图象的对称性,属于基础题.9.已知0<c<1,a>b>1,下列不等式成立的是()A.c a>c b B.C.ba c>ab c D.log a c>log b c【考点】命题的真假判断与应用;不等式的基本性质.【分析】根据指数函数,对数函数,幂函数的单调性,结合不等式的基本性质,逐一分析四个答案的真假,可得结论.【解答】解:∵0<c<1,a>b>1,故c a<c b,故A不成立;故ac>bc,ab﹣bc>ab﹣ac,即b(a﹣c)>a(b﹣c),即,故B不成立;a c﹣1>b c﹣1,ab>0,故ba c<ab c,故C不成立;log c a<log c b<0,故log a c>log b c,故D成立,故选:D.【点评】本题以命题的真假判断与应用为载体,考查了不等式的基本性质,指数函数,对数函数,幂函数的单调性,难度中档.10.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为()A.B.C.D.【考点】直线与平面所成的角.【分析】如图所示,EO⊥平面ABCD,OF⊥AB,EF⊥AB,则∠EBO为BE与平面ABCD所成角,设EB=2a,求出EO=a,即可求出BE与平面ABCD所成角.【解答】解:如图所示,EO⊥平面ABCD,OF⊥AB,EF⊥AB,则∠EBO为BE与平面ABCD所成角,设EB=2a,则EF=a,OF=a,∴EO=a,∴sin∠EBO=,∵0<∠EBO<,∴∠EBO=.故选C.【点评】本题考查线面角,考查学生的计算能力,正确作出线面角是关键.11.过抛物线y2=4x的焦点F作互相垂直的弦AC,BD,则点A,B,C,D所构成四边形的面积的最小值为()A.16 B.32 C.48 D.64【考点】抛物线的简单性质.【分析】设直线AB的方程为y=k(x﹣1),由,消去y得k2x2﹣(2k2+4)x+k2=0,由弦长公式得|AB|,以﹣换k得|CD|,故所求面积为S=|AB||CD|=8(+2)即可求最值.【解答】解:设直线AB的斜率为k(k≠0),则直线CD的斜率为﹣,直线AB的方程为y=k(x﹣1),由,消去y得k2x2﹣(2k2+4)x+k2=0,,由弦长公式得|AB|==×=,以﹣换k得|CD|=4k2+4,∵AB、CD互相垂直故所求面积为S=|AB||CD|=8(+2)≥8(2)≥32(当k2=1时取等号),即面积的最小值为32.故选:B【点评】题考查抛物线方程的求法,考查四边形面积的最小值的求法,考查弦长的表达式的求法,解题时要认真审题,注意弦长公式的灵活运用,属于中档题.12.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部分(包括边界)运动.若=x+y,其中x,y∈R,则4x﹣y的取值范围是()A. B.C.D.【考点】向量的线性运算性质及几何意义.【分析】建立直角坐标系,写出点的坐标与圆的方程;设出点P的坐标,求出三个向量坐标,将P的坐标代入圆的方程求出4x﹣y的取值范围.【解答】解:以A为坐标原点,AB为x轴,DA为y轴建立平面直角坐标系则A(0,0),D(0,1),C(1,1),B(2,0)直线BD的方程为x+2y﹣2=0,C到BD的距离d=;∴以点C为圆心,以为半径的圆方程为(x﹣1)2+(y﹣1)2=,设P(m,n)则=(m,n),=(2,0),=(﹣1,1);∴(m,n)=(2x﹣y,y)∴m=2x﹣y,n=y,∵P在圆内或圆上∴(2x﹣y﹣1)2+(y﹣1)2≤,设4x﹣y=t,则y=4x﹣t,代入上式整理得80x2﹣(48t+32)x+8t2+7≤0,设f(x)=80x2﹣(48t+32)x+8t2+7,x∈[,],则,解得2≤t≤3+,∴4x﹣y的取值范围是[2,3+].故选:B.【点评】本题考查了直线与圆的应用问题,也考查了数形结合应用问题,是综合题.二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中,常数项是28.【考点】二项式系数的性质.【分析】利用通项公式即可得出.=x8﹣r=(﹣1)r,【解答】解:通项公式T r+1令8﹣=0,解得r=6.∴常数项==28.故答案为:28.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.14.已知随机变量X服从正态分布N(2,σ2),且P(0≤X≤2)=0.3,则P(X >4)=0.2.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(X>4).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(0≤X≤2)=0.3,∴P(X>4)=0.5﹣0.3=0.2,故答案为0.2.【点评】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.15.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为 2.6日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)【考点】数列的应用.【分析】设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.利用等比数列的前n项和公式及其对数的运算性质即可得出.【解答】解:设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则A n=,B n=,由题意可得:=,化为:2n+=7,解得2n=6,2n=1(舍去).∴n==1+≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.已知函数f(x)=(x﹣2)e x﹣+kx(k是常数,e是自然对数的底数,e=2.71828…)在区间(0,2)内存在两个极值点,则实数k的取值范围是(1,e)∪(e,e2).【考点】利用导数研究函数的极值.【分析】求出函数的导数,问题转化为k=e x在(0,2)的交点问题,求出k的范围即可.【解答】解:f′(x)=(x﹣1)e x﹣k(x﹣1)=(x﹣1)(e x﹣k),若f(x)在(0,2)内存在两个极值点,则f′(x)=0在(0,2)有2个解,令f′(x)=0,解得:x=1或k=e x,而y=e x(0<x<2)的值域是(1,e2),故k∈(1,e)∪(e,e2),故答案为:(1,e)∪(e,e2).【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)(2017•资阳模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值范围.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利用三角函数恒等变换的应用化简可得,由0<B+C<π,可求,进而可求A的值.(Ⅱ)根据余弦定理,得a2=(b﹣1)2+3,又b+c=2,可求范围0<b<2,进而可求a的取值范围.【解答】(本小题满分12分)解:(Ⅰ)由已知得,(2分)化简得,整理得,即,(4分)由于0<B+C<π,则,所以.(6分)(Ⅱ)根据余弦定理,得(8分)=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.(10分)又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值范围是.(12分)【点评】本题主要考查了三角函数恒等变换的应用,余弦定理在解三角形中的应用,考查了转化思想和计算能力,属于中档题.18.(12分)(2017•资阳模拟)共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.(Ⅰ)求图中x的值;(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(I)利用频率分布直方图的性质即可得出.(II)利用超几何分布列的概率与数学期望计算公式即可得出.【解答】解:(Ⅰ)由(0.005+0.021+0.035+0.030+x)×10=1,解得x=0.009.(4分)(Ⅱ)满意度评分值在[90,100]内有100×0.009×10=9人,其中男生6人,女生3人.则X的值可以为0,1,2,3.,,,.(9分)则X分布列如下:(10分)所以X的期望.(12分)【点评】本题考查了频率分布直方图的性质、超几何分布列的概率与数学期望计算公式,考查了推理能力与计算能力,属于中档题.19.(12分)(2017•资阳模拟)如图,在三棱柱ABC﹣A1B1C1中,底面△ABC 是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.(Ⅰ)若BC1∥平面A1CD,确定D的位置,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)D为AB的中点,理由如下:连接AC1,交A1C于点E,可知E 为AC1的中点,连接DE,利用线面平行的性质定理、三角形中平行线的性质即可得出.(Ⅱ)不妨设AB=2,分别取BC,B1C1的中点O,O1,连接AO,OO1,可知OB,OO1,OA两两互相垂直,建立如图的空间直角坐标系O﹣xyz.利用线面垂直的性质定理、向量垂直与数量积的关系可得:平面A1CD的法向量,又平面BCC1的一个法向量=(0,0,1),利用向量夹角公式即可得出.【解答】解:(Ⅰ)D为AB的中点,理由如下:连接AC1,交A1C于点E,可知E为AC1的中点,连接DE,因为BC1∥平面A1CD,平面ABC1∩平面A1CD=DE,所以BC1∥DE,故D为AB的中点.(4分)(Ⅱ)不妨设AB=2,分别取BC,B1C1的中点O,O1,连接AO,OO1,可知OB,OO1,OA两两互相垂直,建立如图的空间直角坐标系O﹣xyz.知,则,,设面A1CD的法向量m=(x,y,z),由得令x=1,得A1CD的一个法向量为,又平面BCC1的一个法向量n=(0,0,1),设二面角A1D﹣C﹣BC1的平面角为α,则.即该二面角的余弦值为.(12分)【点评】本题考查了线面垂直与平行的判定与性质定理、向量垂直与数量积的关系、平面法向量的应用、向量夹角公式、三角形中位线定理,考查了推理能力与计算能力,属于中档题.20.(12分)(2017•资阳模拟)如图,在平面直角坐标系xOy中,椭圆Ω:的离心率为,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.(Ⅰ)求椭圆Ω的方程;(Ⅱ)已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2①求证:k1•k2为定值;②求△CEF的面积的最小值.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题知b=1,由,b=1,联立解出即可得出.(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),利用斜率计算公式即可得出.证法二:直线AC的方程为y=k1x+1,与椭圆方程联立可得坐标,即可得出.②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,可得△CEF的面积.【解答】解:(Ⅰ)由题知b=1,由,所以a2=2,b2=1.故椭圆的方程为.(3分)(Ⅱ)①证法一:设B(x0,y0)(y0>0),则,因为点B,C关于原点对称,则C(﹣x0,﹣y0),所以.(6分)证法二:直线AC的方程为y=k1x+1,由得,解得,同理,因为B,O,C三点共线,则由,整理得(k1+k2)(2k1k2+1)=0,所以.(6分)②直线AC的方程为y=k1x+1,直线AB的方程为y=k2x+1,不妨设k1>0,则k2<0,令y=2,得,而,所以,△CEF的面积==.(8分)由得,=,当且仅当取得等号,则S△CEF所以△CEF的面积的最小值为.(12分)【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、项斜率计算公式,考查了推理能力与计算能力,属于难题.21.(12分)(2017•资阳模拟)已知函数f(x)=ln(x+1)+ax,其中a∈R.(Ⅰ)当a=﹣1时,求证:f(x)≤0;(Ⅱ)对任意x2≥ex1>0,存在x∈(﹣1,+∞),使成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而证明结论即可;(Ⅱ)令,问题转化为,设,根据函数的单调性证明即可.【解答】解:(Ⅰ)证明:当a=﹣1时,f(x)=ln(x+1)﹣x(x>﹣1),则,令f'(x)=0,得x=0.当﹣1<x<0时,f'(x)>0,f(x)单调递增;当x>0时,f'(x)<0,f(x)单调递减.故当x=0时,函数f(x)取得极大值,也为最大值,所以f(x)max=f(0)=0,所以,f(x)≤0,得证.(Ⅱ)不等式,即为.而=.令.故对任意t≥e,存在x∈(﹣1,+∞),使恒成立,所以,设,则,设u(t)=t﹣1﹣lnt,知对于t≥e恒成立,则u(t)=t﹣1﹣lnt为[e,+∞)上的增函数,于是u(t)=t﹣1﹣lnt≥u(e)=e﹣2>0,即对于t≥e恒成立,所以为[e,+∞)上的增函数,所以;设p(x)=﹣f(x)﹣a,即p(x)=﹣ln(x+1)﹣ax﹣a,当a≥0时,p(x)为(0,+∞)上的减函数,且其值域为R ,可知符合题意.当a <0时,,由p'(x )=0可得,由p'(x )>0得,则p (x )在上为增函数,由p'(x )<0得,则p (x )在上为减函数,所以.从而由,解得,综上所述,a 的取值范围是. 【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)(2017•资阳模拟)已知在平面直角坐标系中,曲线C 1的参数方程是(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程是ρ=2sinθ.(Ⅰ) 求曲线C 1与C 2交点的平面直角坐标;(Ⅱ) 点A ,B 分别在曲线C 1,C 2上,当|AB |最大时,求△OAB 的面积(O 为坐标原点).【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由消去θ化为普通方程,由ρ=2sinθ,得ρ2=2ρsinθ,得x 2+y 2=2y ,联立求出交点的直角坐标,化为极坐标得答案;(Ⅱ) 由平面几何知识可知,A ,C 1,C 2,B 依次排列且共线时|AB |最大,求出|AB |及O 到AB 的距离代入三角形的面积公式得答案.【解答】解:(Ⅰ)由得则曲线C 1的普通方程为(x +1)2+y 2=1.又由ρ=2sinθ,得ρ2=2ρsinθ,得x 2+y 2=2y .把两式作差得,y=﹣x,代入x2+y2=2y,可得交点坐标为为(0,0),(﹣1,1).(Ⅱ)由平面几何知识可知,当A,C1,C2,B依次排列且共线时,|AB|最大,此时,直线AB的方程为x﹣y+1=0,则O到AB的距离为,所以△OAB的面积为.(10分)【点评】本题考查了参数方程化普通方程,极坐标与直角坐标的互化,考查学生的计算能力,是中档题.[选修4-5:不等式选讲](共1小题,满分0分)23.(2017•资阳模拟)已知函数f(x)=|x+1|.(Ⅰ)解不等式f(x+8)≥10﹣f(x);(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|•f().【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)分类讨论,解不等式f(x+8)≥10﹣f(x);(Ⅱ)利用分析法证明不等式.【解答】(Ⅰ)解:原不等式即为|x+9|≥10﹣|x+1|.当x<﹣9时,则﹣x﹣9≥10+x+1,解得x≤﹣10;当﹣9≤x≤﹣1时,则x+9≥10+x+1,此时不成立;当x>﹣1时,则x+9≥10﹣x﹣1,解得x≥0.所以原不等式的解集为{x|x≤﹣10或x≥0}.(Ⅱ)证明:要证,即,只需证明.则有====.因为|x|2>1,|y|2<1,则=,所以,原不等式得证.(10分)【点评】本题考查不等式的解法,考查不等式的证明,考查分析法的运用,属于中档题.。

相关文档
最新文档