多元函数微分学及其应用归纳总结

合集下载

多元函数微分学知识点梳理

多元函数微分学知识点梳理

多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。

其中,偏导数和全微分也是重要的概念。

2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。

同时,偏导数存在和函数连续是可微的必要条件。

2)二元函数的极值必须满足必要条件和充分条件。

二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。

2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。

对于复杂的函数,可以使用链式法则,或者隐函数求导法。

3.高阶导数的计算需要注意记号表示和求导顺序。

二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。

2.一阶全微分形式不变性对于自变量和中间变量均成立。

三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。

1.无条件极值可以用必要条件和充分条件来求解。

2.条件极值可以使用Lagrange乘数法来求解。

3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。

多元函数微分法及其应用总结

多元函数微分法及其应用总结

多元函数微分法及其应用总结多元函数微分法及其应用是高等数学中一个重要的内容。

多元函数是指自变量有两个或者多个的函数,如z=f(x,y)。

而微分法是研究函数的变化率的一种方法。

本文将对多元函数微分法及其应用进行总结。

1. 多元函数微分法的基本概念多元函数的微分可以分为偏导数和全微分两种形式。

对于多元函数z=f(x,y),其偏导数表示函数在某一自变量上的变化率,可以记作∂z/∂x,∂z/∂y。

全微分表示函数在所有自变量上的变化率,可以记作dz。

多元函数的微分法有很多性质和定理,如链式法则、高阶偏导数、隐函数定理等。

2. 多元函数的极值与最值利用多元函数微分法,我们可以求多元函数的极值与最值。

对于多元函数z=f(x,y),其极值、最值的求解步骤大致如下:(1)求函数的偏导数,得到所有的偏导数;(2)令所有的偏导数等于零,求解出关于x和y的方程;(3)求解方程组,得到x和y的解;(4)将解代回原函数,求得z的值;(5)比较求得的z值,得到最大值或最小值。

3. 多元函数的泰勒展开多元函数的泰勒展开是利用多元函数在某一点附近进行近似求解的一种方法。

对于多元函数z=f(x,y),其泰勒展开公式为:f(x+Δx,y+Δy) = f(x,y) + (∂f/∂x)Δx + (∂f/∂y)Δy + 1/2(∂²f/∂x²)(Δx)² + 1/2(∂²f/∂y²)(Δy)² + (∂²f/∂x∂y)ΔxΔy + O(Δx²,Δy²)这里的O(Δx²,Δy²)表示高阶无穷小,Δx和Δy表示自变量的增量。

4. 多元函数微分法的应用多元函数微分法广泛应用于物理学、工程学和经济学等领域。

具体应用如下:(1)在物理学中,多元函数微分法可以用于描述粒子在空间中的运动轨迹,求解最优路径等问题。

(2)在工程学中,多元函数微分法可以用于建模和优化设计,如求解最优结构、最优控制等问题。

知识点五(多元函数微分学及其应用)

知识点五(多元函数微分学及其应用)

(3)连续、偏导数存在和可微之间的关系在点处连续、偏导数存在、可微、存在连续的偏导数之间的关系是:在点处存在连续的偏导数在点处可微在点处连续在点处偏导数存在.3、多元复合函数求导法(1)一元函数与多元函数复合的情形如果函数及都在点可导,函数在对应点具有连续偏导数,则复合函数在点可导,且有.(2)多元函数与多元函数复合的情形如果函数及都在点具有对及对的偏导数.函数在对应点具有连续的偏导数,则复合函数在点的两个偏导数存在,且有,.这里有两个自变量和两个中间变量,随着自变量个数与中间变量个数的变化,链导法公式也因之而异,但如果能搞清楚复合函数结构中哪些是自变量,哪些是中间变量以及它们的个数,则就抓住了复合函数求导的关键.如果自变量只有一个,不论中间变量的个数是多少,所求得的导数就是全导数.值得注意的是,对自变量兼作中间变量的情形,求导时往往容易弄混.例如下面的情形:,则复合函数对,的偏导数为,.这里与是不同的,是将复合函数中的看成不变而对的偏导数,是把中的及都看成不变而对的偏导数.与也有类似的区别.读者如能领会此点,就不难正确理解公式中的偏导符号的意义了.4、隐函数的求导公式(1)若是由方程所确定的一元隐函数.则且.(2)若是由方程所确定的二元隐函数.则.求隐函数的一阶导数或偏导数时,首先要认清公式中或中哪个为自变量,哪个为因变量,然后套用公式,值得注意的是,求二阶偏导数不能用上面的公式.5、偏导数的应用(1)偏导数的几何应用①设空间曲线方程为 .则曲线上点处的切线方程为法平面方程为.②空间曲线的方程为.则曲线在点处的切线方程为,法平面方程为.③空间曲线为则曲线在点处切线方程为.法平面方程为.④若曲面方程为.则在点的切平面方程为法线方程为.⑤曲面方程为.则曲面在点处的切平面方程.在点处的的法线方程为.(2)偏导数在经济上的应用主要表现为求边际成本、边际利润和交叉弹性,读者应注意其内在的经济意义.6、方向导数与梯度一般地,方向导数是单侧的,偏导数是双侧的,如函数沿着方向的方向导数存在,但不存在.若在点可微,则在该点它沿任何方向的方向导数均存在,且=(其中,分别为与轴和轴正向的交角,为的方向余弦)且,.梯度是一个向量,梯度的方向是方向导数变化最快的方向,梯度的模为方向导数的最大值.7、多元函数的极值(1)多元函数极值的概念与一元函数完全一样,函数在一点取得极值的含义就是必须大于(或小于)它在的某个邻域上的所有值,只是一元函数中的邻域是一维的区间,而二元函数是二维平面区域.可导函数在取得极值的必要条件是,.由于它们仅仅是必要条件,所以满足,的点不一定是极值点,但是可以肯定,凡不满足这两个条件的点就一定不会是极值点.换句话说,即这两个条件虽然不能用来肯定极值点,但却可起到筛选极值点的作用.因此,我们又引出驻点概念,并给出判定极值点的充分条件.(2)多元函数最值与拉格朗日乘数法在实际问题中,需要我们解决的往往是求函数在特定的有界闭区域上的最大值与最小值.我们知道,在有界闭区域上连续函数必有最大值与最小值,它们既可以在闭域内部取得,也可在边界上取得.与一元函数一样,如果在闭域内取得,则它一定也是极大值或极小值.值得注意的是,函数的最大值或最小值也可在函数不可导的点处取得.例如函数在原点处不可导,但它在原点得最大值1. 因此,求连续函数在有界闭域上的最大值、最小值的方法是:①计算出函数在区域内所有驻点、不可导的点(即所有的临界点)处的值;②将①中的这些值与区域边界上函数的最值一起加以比较,其中最大者就是最大值,最小者就是最小值.③在求最大、最小值的实际问题中,目标函数的各自变量之间往往还有附加的约束条件,这就形成了条件极值的概念.一般说来,条件极值问题可以化为无条件极值问题来处理,方法是利用约束条件将目标函数中多余的自变量消去,使之成为求另一个新的目标函数的无条件极值问题.但这种转化往往有一定的困难,这时我们可引入所谓拉格朗日乘数,它与目标函数及约束条件中的函数构成拉格朗日函数,把其中的乘数也看成是一个变量,然后按无条件极值写出求极值的必要条件,由此即可得到一组求解驻点的联立方程组:拉格朗日乘数法的优点在于引进了拉格朗日乘数后,可以把中的变量都当作自变量,然后按无条件极值写出形式完全对称的必要条件.因此,这个方法还便于推广到有多个约束条件的情形.。

第9章多元函数微分法及其应用课本基础知识

第9章多元函数微分法及其应用课本基础知识

本章目录第一节多元函数的基本概念第二节偏导数第三节全微分第四节多元复合函数的求导法则第五节隐函数的求导公式(第五节掌握的不是很好)第六节多元函数微分学的几何应用第七节方向导数与梯度第八节多元函数的极值及其解法第九节二元函数的泰勒公式几道比较好的题第一节多元函数基本概念1、基本了解∈,是在一条数轴上看定义域那么在二元中,一元函数()y f x=的定义域是x R就是在一个平面上看定义域,有(,)=(其中x,y互相没关系。

如果有关z f x y系,那么y就可以被x表示,那么就成了一元函数了),定义为二元函数2x y R∈(,)2、多元函数的邻域二元邻域三元函数邻域3、内点4、外点5、边界点边界点:点的邻域既存在外点又存在内点边界点可以看成内点,也可以看成外点,看你怎么定义了。

6、聚点邻域内存在内点则称为聚点。

可见,边界点一部分也含内点,因此内点,边界点都是聚点。

7、开集不包括边界点的内点;一元函数的开区间就是开集8包含了边界点的内点;一元函数的闭区间就是闭集9一元中有半开半闭的区间二元也是,如10、连通集连通集就是连在一起的区域。

定义是,在定义域内两点可以用折线连起来连通集与非连通集,如:11、开区域:连通的开集;闭区域:连通的闭集12、有界点集这个圆的半径可以有限充分大。

无界点集:找不到一个有限大的圆包含该区域。

如平面第一象限就是无界的点集13、二元函数的定义域图像二元定义域要有x,y的范围。

解出f1(x)<y<f2(x)(很多时候是y与x复合的函数,所以最好是化成y在一边看大于还是小于)14、二元函数的图像:空间曲面即z=f(x,y)15、多元函数极限的定义注意是去心的,去边界的圆域一元需要左极限等于右极限,二元就各个方向的极限 都要相等了。

趋近的方式有时候甚至是有技巧的,一般先用y=kx 趋近,再试试y=kx^2。

16、多元函数的连续性 设在定义域内,若lim (,)(,)00(,)(,)00f x y f x y x y x y =→则称二元函数(,)f x y 在(,)00x y 点处连续。

多元函数微分知识点总结

多元函数微分知识点总结

多元函数微分知识点总结一、多元函数的梯度在多元函数微分学中,梯度是一个非常重要的概念。

梯度是一个向量,表示函数在某一点的变化率最快的方向。

对于一个二元函数f(x, y),梯度可以表示为:∇f = (∂f/∂x, ∂f/∂y)其中,∂f/∂x和∂f/∂y分别表示函数f对x和y的偏导数。

梯度的方向即为函数在该点变化率最快的方向,而梯度的模即为函数在该点的变化率。

因此,梯度可以帮助我们确定函数在某一点的最大变化率和变化的方向。

在实际应用中,梯度可以帮助我们求解多元函数的最值问题。

通过求解梯度为0的点,可以找到函数的极值点。

梯度的方向还可以告诉我们函数在某一点的最快下降方向,从而帮助我们优化函数的取值。

二、多元函数的链式法则链式法则是多元函数微分学中的一个重要概念。

链式法则是用来计算复合函数的导数的方法。

对于一个复合函数f(g(x)), 链式法则可以表示为:(d(f(g))/dx) = (dg/dx)*(df/dg)链式法则的应用十分广泛。

在实际问题中,我们经常会遇到复合函数,通过链式法则,我们可以求解复合函数的导数,从而解决实际问题。

三、多元函数的偏导数多元函数的偏导数是多元函数微分学中的一个基本概念。

对于一个二元函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x,而关于变量y的偏导数可以表示为∂f/∂y。

偏导数表示了函数在某一点的变化率。

通过偏导数,我们可以确定函数在某一点的变化率和变化的方向,从而帮助我们解决实际问题。

四、多元函数的泰勒展开泰勒展开是多元函数微分学中的一个重要概念。

泰勒展开可以将一个函数在某一点处展开为一个无穷级数。

对于一个n次可导的函数f(x),它在点a处的泰勒展开可以表示为:f(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)^2/2! + ... + f^(n)(a)*(x-a)^n/n!泰勒展开的应用非常广泛。

通过泰勒展开,我们可以将一个函数在某一点处近似为一个多项式,从而方便我们进行数值计算和求解。

多元函数微分学及其应用归纳总结

多元函数微分学及其应用归纳总结

多元函数微分学及其应用归纳总结一、多元函数的微分与偏导数1. 多元函数的微分定义为函数在其中一点上的线性逼近。

对于二元函数,微分为 dz=f_x*dx+f_y*dy,其中 f_x 和 f_y 分别为函数的偏导数。

对于一般的 n 元函数也可类似定义。

2.多元函数的偏导数表示函数沿着其中一个变量的变化率。

对于二元函数f(x,y),其偏导数f_x表示x方向上的变化率,f_y表示y方向上的变化率。

一般而言,当存在偏导数且连续时,函数在该点可微分。

3.偏导数的计算方法与一元函数相似,利用极限的定义求出偏导数表达式,对于高阶偏导数,可以反复求导。

4.混合偏导数表示函数在二个或二个以上变量上求偏导数后再对另外一个或另外几个变量求偏导数,其次序不影响结果。

二、多元函数的求导法则1. 多元函数的和、差、常数倍法则:设函数 f 和 g 在其中一点连续可导,则(f±g)'=f'±g',(kf)'=kf'。

2.多元函数的乘积法则:设函数f和g在其中一点连续可导,则(f·g)'=f'·g+g'·f。

3.多元函数的商法则:设函数f和g在其中一点连续可导且g不为零,则(f/g)'=(f'·g-g'·f)/g^24. 复合函数求导法则:设函数 y=f(u) 和 u=g(x) 在其中一点可导,则复合函数 y=f(g(x)) 的导数为dy/dx=f'(u)·g'(x),其中 x 和 u 为中间变量。

三、多元函数的极值与梯度1.多元函数的极值包括极大值和极小值。

在二元函数中,极值的必要条件为偏导数为零,充分条件为偏导数存在且满足一定条件。

2.多元函数的梯度是一个向量,其方向与函数在其中一点上变化最快的方向一致,大小表示变化率的大小。

梯度为零的点可能为极值点。

多元函数微分学的几何应用

多元函数微分学的几何应用

多元函数微分学的几何应用一、多元函数微分学多元函数微分学是微积分的一个分支,研究的是多个自变量的函数的导数、微分和全微分等概念。

与一元函数微分学不同的是,多元函数在求导时需要通过偏导数来计算,而全微分可以看做多元函数在某一点上的线性近似。

多元函数微分学在实际生活中有着广泛的应用,尤其是在几何学方面。

二、几何应用1. 向量场和梯度向量场是一个函数与向量的映射关系,在几何学中经常用于描述速度场、磁场等。

其中,梯度是向量场的一个重要概念。

梯度表示在某一点上函数变化增加最快的方向。

例如,在平面上的某一点上,一个函数的梯度表示了函数值增加最快的方向及增加的速率。

2. 方向导数和梯度的应用方向导数表示函数在某一点上沿着某一给定方向上的导数。

在平面几何中,方向导数可以用来求解曲面的切平面方程。

具体来说,可以通过梯度和方向向量的点积计算出方向导数,从而得到曲面上某一点的切平面方程。

3. 曲面积分曲面积分是对曲面上的函数进行积分,类似于线积分。

在计算曲面积分时,需要用到曲面的面积元素,这里面积元素的计算需要用到微积分中的偏微分。

具体来说,可以通过将曲面分成小的面元,计算每个面元的面积和函数值,然后将它们累加起来,从而得到曲面上的积分值。

4. 极值和拐点在多元函数中,类似于一元函数中的极值和拐点的概念。

在平面几何中,可以将这些概念应用于曲线的局部特征的分析中。

通过极值和拐点的计算,可以得到曲线上的最大和最小值,以及拐点的位置和拐点的类型等信息。

总之,多元函数微分学在几何学中有着广泛的应用。

通过对向量场、梯度、方向导数、曲面积分、极值和拐点等概念的研究,可以深入分析曲线、曲面的本质特征和局部特征,从而为实际问题的求解提供了精确的数学工具。

第九章多元函数微分学(方向导数在前)总结

第九章多元函数微分学(方向导数在前)总结
设有点集 E 及一点 P :
E
若存在点 P 的某邻域 U(P) E ,
则称 P 为 E 的内点;
若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点 ; 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E 的外点 , 则称 P 为 E 的边界点 . 显然, E 的内点必属于 E , E 的外点必不属于 E , E 的 边界点可能属于 E, 也可能不属于 E .
(2) 聚点
若对任意给定的 , 点P 的去心 邻域
E
内总有E 中的点 , 则
称 P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为 E 的边界点 ) 所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
若点集 E 的点都是内点,则称 E 为开集;
E 的边界点的全体称为 E 的边界, 记作E ;
当函数在此点可微时那末函数在该点沿任意方向l的方向导数都存在且有coscoscos设方向l的方向角为定义设函数内具有一阶连续偏导数则对于每一点最快沿哪一方向增加的速度函数在点问题sincossincos上的单位向量由方向导数公式知函数在某点的梯度是这样一个向量它的方向与取得最大方向导数的方向一致而它的模为方向导数的最大值
x
y
图形为
空间中的超曲面.
三、多元函数的极限
定义2. 设 n 元函数 f ( P), P D R n , P0 是 D 的聚 点 , 若存在常数 A , 对任意正数 , 总存在正数 , 对一 切 P D U ( P0 ,δ ) , 都有

则称 A 为函数
记作
P P0
lim f ( P) A (也称为 n 重极限)

多元函数微分学总结

多元函数微分学总结

多元函数微分学总结第9章一、多元函数的基本概念1.邻域的概念(邻域、去心邻域、方形邻域)✧设是平面直角坐标系下一点,则✧点的邻域✧点的去心邻域✧方形邻域✧圆形邻域与方形邻域之间的关系2.平面上的点和点集之间的关系(1)内点、外点、边界点、聚点、孤立点(2)七条基本关系(结合课件)3.常见的平面点集开集和闭集连通集开区域和闭区域有界集和无界集4.二元函数的基本概念(1)函数的自然定义域(P。

57)(2)二元函数的图形(P。

57)5.多元函数的极限【关键点】正确理解自变量的变化趋势,课本P。

59并结合课件6.多元函数的连续性(1)概念(判断函数连续的三个前提条件缺一不可)(2)运算法则(四则运算法则、复合函数的连续性)(3)多元初等函数的连续性(4)有界闭区域上连续函数的性质(三大定理P。

62)二、多元函数的微分学1.偏导数和全微分的概念(1)函数的偏增量、函数的全增量(2)偏导数,函数的偏增量与自变量增量的比值的极限(偏导数的几何意义P。

66)(3)全微分,利用自变量增量、的线性函数近似表示函数的全增量,即,其中、不依赖于、,.(4)几个重要关系及注意事项1偏导数的记号是一个整体记号,不能看作分子与分母之商.(P。

66)2对一元函数而言,可微可导连续.3对多元函数而言,偏导数连续可微连续当自变量趋于其中一点时函数极限存在偏导数存在函数在其中一点有定义4设是可微函数,则.(5)高阶偏导数(P。

68的定理)(6)全微分的应用,多元函数的线性近似P。

78的公式(9)(7)多元复合函数的求导法则,链式法则(结合课件)✧确定变量之间的因果关系✧注意和的区别(P。

79)✧利用全微分的形式不变性简化计算(正确理解中间变量的微分P79例1、P。

82例6)(8)隐函数的求导公式1一个方程的情形(P。

83定理1、P。

85定理2)2方程组的情形,不必套用雅可比行列式,关键是掌握求隐函数组偏导数的方法(P。

87例4)(9)向量值函数的求导公式、几何意义及物理意义(P。

多元微积分、微分方程小结

多元微积分、微分方程小结

多元函数及多元微分学一 内容1.主要概念及其关系:●主要概念:多元函数,函数的极限,函数在一点连续,偏导数,可微,方向导数,梯度向量 设 2),(),,(R D y x y x f ⊂∈ 二重极限:A y x f y x y x =→),(lim ),(),(00累次极限:),(lim lim 00y x f x x y y →→,),(lim lim 00y x f y y x x →→连续:),(),(l i m00),(),(00y x f y x f y x y x =→偏导数:xy x f y x x f xf x M ∆-∆+=∂∂→∆),(),(lim00000yy x f y y x f yf y M ∆-∆+=∂∂→∆),(),(l i m 000000可微: )(ρo y b x a f +∆+∆=∆,其中 22)()(y x ∆+∆=ρ全微分 bdy adx df +=,其中 x f a ∂∂=,yfb ∂∂= 方向导数:tM f tv M f vft M )()(lim000-+=∂∂→, T v v v ),(21=是单位向量设),,(z y x f 可微,单位向量 T v )cos ,cos ,(cos γβα=γβαcos cos cos zf y f x f v f ∂∂+∂∂+∂∂=∂∂ 梯度向量: 设),(y x f 可微,0),(),(00M Tyf x f y x gradf ∂∂∂∂=●各概念之间的关系:逻辑关系,数量关系。

2.微分法:复合函数微分法,隐函数微分法 3.二元函数的泰勒公式4.曲面的切平面,法向量;曲线的切向量,法平面。

5.极值与条件极值二 典型问题1. 研究某个函数在某点的可微性,连续性等。

2. 求初等函数的导数,微分,方向导数,梯度,泰勒展开3. 抽象函数求导数:复合函数微分法,隐函数微分法的运用。

例如 求 22,dxu d dx du ,其中 0),,(,0),,(),,,(===z y x h z y x g z y x f u4.求曲面的切平面,法向量;曲线的切向量,法平面,以及相关问题。

多元函数微分法及其应用

多元函数微分法及其应用

1、多元函数存在的条件存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数接近某一确定值,我们还不能由此断定函数存在。

反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的不存在。

例如函数:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠02、多元函数的连续性定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。

性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

性质(介值定理)在有界闭区域D上的多元连续函数,如果在D 上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。

3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。

这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。

4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。

5、多元函数可微的充分条件定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。

6.多元函数极值存在的必要、充分条件定理(必要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。

定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A0时有极小值;(2)AC-B27、多元函数极值存在的解法(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。

多元函数微分学及其应用归纳总结

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用一、多元函数的基本概念1平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概 念 2、多元函数的极限lim f(x, y)=A (或 lim f(x,y)=A )的;-' 定义(x,y)「(x °,y o)P「P )掌握判定多元函数极限不存在的方法:(1) 令P(x, y)沿y 二kx 趋向P(x o ,y o ),若极限值与k 有关,则可断言 函数极限不存在;(2) 找两种不同趋近方式,若 lim f (x, y)存在,但两者不相等,(x,y )Tx o ,y o )此时也可断言极限不存在。

多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似:例1•用…定义证明(侧0,0)(x 2+y 2)sin 击=02 + 2例2(03年期末考试三、15 分当X>0,y >0时,函数x2;(;2_y)2的极限是否存在?证明你的结论。

xy 2 2 2 2 , x y = 0x y ,讨论 lim f (x, y)是否存在?(x,y )T(0,0)3卫, x 2+ y 2=0(JiH ,。

)f (X,y )是否存在?例 3 设 f (x, y) =2 例4(07年期末考试 一、2,3分)设f(x, y)=Q2 xy2 .4x y2 2小,x y =0 ,讨论x 2y 2二 0x3、多元函数的连续性台(Jim )f (x, y)= f (X o ,y o )(x,y) --- (X 0,y 0 )一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。

在定义区域内的连续点求极限可用“代入法”点(0,0)不连续,但存在一阶偏导数。

4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数 1、二元函数z = f (x, y)关于x, y 的一阶偏导数的定义(二元以上类似定义)f(X0pX,y 0)— f(X 0,y 0)存在,则有y 看成常数!所以求偏导数本质是求一元函数的导数。

多元函数微分学总结

多元函数微分学总结

多元函数微分学总结多元函数微分学是微积分的一个重要分支,主要研究多元函数的导数和微分。

在实际中,我们经常遇到的函数都是多元函数,如物体的速度、加速度、市场需求曲线等都是多元函数。

因此,研究多元函数微分学对于理解和解决实际问题具有重要意义。

多元函数微分学的基本概念包括偏导数、全微分、总微分和梯度。

偏导数是多元函数对于其中其中一个自变量的导数,表示了函数在该自变量上的变化率。

全微分是多元函数在其中一点上的局部线性逼近,可以准确描述函数在该点附近的变化情况。

总微分是将全微分与自变量的改变量相乘得到的函数值的改变量,表示了函数在其中一点上的整体变化情况。

梯度是偏导数向量,由多个偏导数组成,表示了函数在每个自变量上的变化速率和变化方向,是多元函数微分学中非常重要的概念。

多元函数微分学的重要应用之一是最优化问题的求解。

在实际问题中,我们经常需要求解一个函数在一定约束条件下的最大值或最小值。

通过求解函数的偏导数,并将其等于零得到的一组方程,可以找到函数的驻点。

然后通过二阶偏导数的判定准则判断驻点的性质,从而确定函数的最大值或最小值。

多元函数微分学还涉及到复合函数的求导,链式法则是求解复合函数导数的重要工具。

链式法则告诉我们,复合函数的导数等于外函数对于内函数的导数乘以内函数对于自变量的导数。

通过链式法则,我们可以将复杂的多元函数求导问题转化为简单的一元函数求导问题。

在高维空间中,我们常常需要研究函数在其中一个曲面上的变化情况,这就引出了偏导数的几何意义。

偏导数实际上是函数在其中一变量方向上的变化速率,可以表示曲面在该方向上的斜率。

通过偏导数的几何意义,我们可以得到曲面在各个方向上的切线方程和法线方程,从而更加深入地理解函数在高维空间中的行为。

最后,多元函数微分学还与微分方程的研究相关。

微分方程是描述自然现象中变量之间关系的数学模型,而多元函数微分学是求解微分方程的重要工具之一、通过将微分方程转化为多元函数的问题,并利用多元函数微分学的知识求解,可以得到微分方程的解析解。

多元函数微分法极其应用

多元函数微分法极其应用

多元函数微分法极其应用1.前言多元函数微分法是微积分学重要的一部分,在实际应用中有着广泛的应用。

本文将从多元函数的概念,多元函数微分的定义及性质,多元函数的极值判定和应用等四个方面进行详细讲解。

2.多元函数的概念多元函数是指在正则区域内有定义的由两个或两个以上自变量构成的函数.对于函数y=f(x1,x2,...,xn),其中x1,x2,...,xn是自变量,y是因变量,每个自变量xi都取正则区域Di内值,函数f称为定义在正则区域D上的n元函数,记作f(x1,x2,...,xn)。

3.多元函数微分的定义及性质3.1定义:对于多元函数y=f(x1,x2,...,xn),如果存在一组数(Δx1,Δx2,…,Δxn):使Δy=f(x1+Δx1,x2+Δx2,...,xn+Δxn) -f(x1,x2,...,xn)-(∂f/∂x1)(x1,x2,...,xn)Δx1-(∂f/∂x2)(x1,x2,...,xn)Δx2-...-(∂f/∂xn)(x1,x2,...,xn)Δxn满足lim[Δy/(√(Δx12+Δx22+…+Δx2n)]=0(其中n≥2)那么就称函数f(x1,x2,...,xn)在(x1_0,x2_0,...,xn_0)可微,并称Δy=(∂f/∂x1)(x1,x2,...,xn)Δx1+(∂f/∂x2)(x1,x2,...,xn)Δx2+...+(∂f/∂xn)(x1,x2,...,xn)Δxn为函数f(x1,x2,...,xn)在点(x1_0,x2_0,...,xn_0)的微分,通常记为dy.3.2性质:函数f(x1,x2,...,xn)在一点(x1_0,x2_0,...,xn_0)可微的充分必要条件是:只要(∂f/∂x1)、(∂f/∂x2)、...、(∂f/∂xn)等偏导数存在且连续,函数f(x1,x2,...,xn)就在该点可微。

4.多元函数的极值判定和应用4.1极值判定:求多元函数在定义域内的极值可先求其偏导数,若(1)∂f/∂xi=0(i=1,2,...,n)(2)(∂^2f)/(∂xi^2)<0(i=1,2,...,n)则f取得局部最大值;若(1)∂f/∂xi=0(i=1,2,...,n)(2)(∂^2f)/(∂xi^2)>0(i=1,2,...,n)则f取得局部最小值。

多元函数微分法及其应用常见题型攻略

多元函数微分法及其应用常见题型攻略

多元函数微分法及其应用常见题型攻略以心同学整理1.多元函数连续性、可导性、可微性的判断(1)判断极限不存在常用方法①找两种不同的趋近方式,若极限不相等,则极限不存在;②沿直线)(00x x k y y 趋近于点),(00y x 时,极限值与k 有关,则极限不存在。

注:②中沿直线)(00x x k y y 趋近于点),(00y x ,目的是用特殊路径趋于),(00y x 时,极限值如果与k 有关,则极限不存在。

所以并不一定就是用沿直线直线)(00x x k y y 趋近于点),(00y x 。

如后面的例3。

例1设)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f ,判断极限),(lim )0,0(),(y x f y x 是否存在。

解:当点),(y x 沿直线kx y 趋于)0,0(时,有),(lim)0,0(),(y x f y x 22)0,0(),(limy x xy y x 222)0,0(),(1)(lim k kkx x kx x y x,极限值与k 有关,故极限),(lim)0,0(),(y x f y x 不存在。

若函数改为 )0,0(),(,0)0,0(),(,),(242y x y x y x y x y x f ,那又怎么操作?(2)偏导数定义xy x f y x x f y x f x x ),(),(lim),(0000000★函数在不连续点、分断函数在分界点的偏导数,用偏导数定义。

(3)函数),(y x f z 在点),(00y x 可微的定义)( o y B x A z ,22)()(y x ★判断函数在点),(00y x 是否可微的方法(常用于分断函数的分界点)①若),(00y x f x 或),(00y x f y 不存在,则不可微②若),(00y x f x 或),(00y x f y 存在,则考虑极限)(limy B x A z ,即]),(),([)],(),([lim000000000y y x f x y x f y x f y y x x f y x 是否存在,若存在,则可微;若不存在,则不可微。

第八章 多元函数微分学

第八章 多元函数微分学

例. 设 z = f ( xy, yg ( x)) 其中函数 f 具有二阶连续 偏导数,函数 可导, 偏导数,函数g(x)可导,且在 可导 且在x=1处取得极值 处取得极值 ∂2 z g(1)=1,求 求 x =1, y =1 ∂x∂y 可导且在x=1处取极值所以 g ′(1) = 0 解:由g(x)可导且在 由 可导且在 处取极值所以
′′′ fx′′′ (x, y, z) = f yz x (x, y, z) = fz′′′y (x, y, z) yz x
= fx′′′ y (x, y, z) = f y′′′ (x, y, z) = f z′′′ (x, y, z) z xz yx
4. 微分
∆z = fx′(x, y) ∆x + f y′(x, y) ∆ y
答案: ( 考研题) 答案:B(2012考研题) 考研题
x2 y2 2 2 , x + y ≠0 3 证明: 例. 证明 f (x, y) = (x2 + y2 ) 2 0 , x2 + y2 = 0 在点(0,0) 处连续且偏导数存在 , 但不可微 . 在点 解: 利用 2xy ≤ x2 + y2 , 知 1 1 2 2 2 f (x, y) ≤ (x + y ) 4 ∴ lim f (x, y) = 0 = f (0, 0)
k −1
f ( x, y , z )
同乘以 t, 得
(tx) f1′(u, v, w) + (ty) f 2′(u, v, w) + (tz ) f 3′(u, v, w) = k ⋅ t k f ( x, y, z )
由条件f (tx, ty , tz ) = t k f ( x, y , z ), 及u = tx, v = ty , w = tz , 得

第9章多元函数微分学知识点总结

第9章多元函数微分学知识点总结

第9章多元函数微分学知识点总结1.多元函数的偏导数:-定义:对于多元函数来说,当变量除了要考虑沿着自变量方向变化外,还要考虑其他自变量是否保持不变,用偏导数来表示。

-计算方法:求各个偏微分时,将其他自变量视为常数,只对需要求的变量求导即可。

2.全微分:-定义:全微分是多元函数在其中一点上沿各个偏导数方向的和所对应的微分形式。

-计算方法:使用偏导数对各个自变量求导数,并乘以相应的变化量,再相加得到全微分。

3.方向导数:-定义:方向导数是函数在其中一点上沿着指定方向的变化率,表征了函数沿着该方向上变化的快慢程度。

-计算方法:先对多元函数求偏导数,然后将其与方向向量进行点积运算,再乘以方向向量的模长。

4.梯度:-定义:梯度是一个向量,其方向是函数在其中一点增大最快的方向,大小表示函数在该点变化率的大小。

-计算方法:求多元函数在其中一点的各个偏导数,并写成一个向量,即为该点的梯度。

5.方向导数与梯度的关系:-定理:函数在其中一点上的方向导数等于该点的梯度向量与方向向量的点积。

6.极值点:-定义:多元函数的极值点是指函数取得极大值或极小值的点。

-判定方法:通过求偏导数等于零的点,再利用二阶导数进行判定。

7.拉格朗日乘数法:-定义:拉格朗日乘数法是求解给定条件下多元函数的极值问题的一种方法。

-使用方法:通过构造拉格朗日函数,利用偏导数为零和给定条件进行求解。

8.海森矩阵:-定义:海森矩阵是多元函数的二次导数在其中一点上的矩阵形式。

-计算方法:对多元函数的各个偏导数再次求偏导数,并按照顺序组成矩阵。

9.二次型:-定义:二次型是多元函数二阶偏导数在其中一点上的二次齐次多项式。

-判定方法:通过海森矩阵的特征值进行判别,判断其正负来决定函数在该点上的行为。

以上是第9章多元函数微分学的主要知识点总结。

掌握了这些知识点,我们可以更好地理解多元函数的变化规律,求解问题时也能够更有效地运用微分学的方法进行分析和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。

✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。

例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。

✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。

例2. (06年期末考试 十一,4分)试证2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y 在点(0,0)不连续,但存在一阶偏导数。

例3.求(,)(1,2)limx y x yxy →+ 例4.(,)(0,0)lim x y →4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理二、多元函数的偏导数1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义)如果极限00000(,)(,)limx f x x y f x y x ∆→+∆-∆存在,则有000000000000(,)(,)(,)limx x xx x y y x x x x y y y y f x x y f x y z f z f x y xxx=∆→=====+∆-∂∂====∂∂∆(相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。

)如果极限00000(,)(,)limy f x y y f x y y ∆→+∆-∆存在,则有000000000000(,)(,)(,)limx x yy y y y x x x x y y y y f x y y f x y z f z f x y yyy=∆→=====+∆-∂∂====∂∂∆对于分段函数,在分界点的偏导数要用定义求。

例1(08年期末考试 一、3,4分)已知22222222(),0(,)0,0⎧-+≠⎪+=⎨⎪+=⎩x y xy x y x y f x y x y ,则(0,)=x f y例2 (06年期末考试 十一,4分)试证2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y 在点(0,0)不连续,但存在一阶偏导数。

例3 设222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩,求(,),(,)x y f x y f x y 。

例4 设y x z =,求y x z z ,。

例5(03年期末考试,一、2,3分) 设(1)arcsin x u x y y =+-,则ux∂∂在(1,2)的值为( )。

2、 二元函数(,)z f x y =关于,x y 的高阶偏导数(二元以上类似定义), 22(,)xx z z f x y x x x ∂∂∂⎛⎫== ⎪∂∂∂⎝⎭ 2(,)xy z zf x y y x x y∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭ 22(,)yy z z f x y y y y ⎛⎫∂∂∂== ⎪∂∂∂⎝⎭ 2(,)yx z zf x y x y y x⎛⎫∂∂∂== ⎪∂∂∂∂⎝⎭定理:若两个混合二阶偏导数22,z z x y y x ∂∂∂∂∂∂在区域D 内连续,则有22z zx y y x∂∂=∂∂∂∂。

例1.设,1ru =222)()()(c z b y a x r -+-+-=,其中c b a ,,为常数,求:222222zuy u x u ∂∂+∂∂∂∂+。

例2.设xyarctge y x z -+=)(22,求yx z ∂∂∂2。

3、(,)z f x y =在点(,)P x y偏导数存在⇒(,)z f x y =在点(,)P x y 连续(07年,04年,02年等)4、偏导数的几何意义:00(,)x f x y 表示曲线0(,)z f x y y y =⎧⎨=⎩在点000(,,)P x y z 处的切线与x 轴正向的夹角。

三、全微分1、(,)z f x y =在点00(,)P x y 可微分的判定方法 若(,)(,)(,)lim0x y z f x y x f x y y∆∆→∆-∆-∆=,则可判定(,)z f x y =在点00(,)P x y 可微分。

其中00(,)(,)z f x x y y f x y ∆=+∆+∆-例1.(08年期末考试 十二、6分)证明函数222222()sin 0(,)0,0⎧++≠⎪=⎨⎪+=⎩x y x y f x y x y 在(0,0)处可微,但偏导数(,)x f x y 在(0,0)处不连续。

例2 (07年期末考试 七、6分)22220(,)0,0+≠=+=⎩x y f x y x y ,证明:(1)函数在(0,0)处偏导数存在;(2)函数在(0,0)处不可微。

2、全微分的计算方法若(,)z f x y =在00(,)P x y 可微,则有0000(,)(,)x y dz f x y dx f x y dy =+ 其中0000(,),(,)x y f x y f x y 的求法可以结合复合函数或者隐函数求导。

例1(08年期末考试,一,1,4分) 设432=+z x y x ,则(1,2)=dz 例2(07,04年期末考试,二,1,3分)设arctan(0),=≠yz x x求dz 。

例3 (06年期末考试,二、2,3分)设2=y u x ,则=du例4 (03年期末考试,二、2,3分)函数22ln()=++u x y z 在点(1,0,1)处的全微分为例5.设w uy z arcsin +=,x e u =,22yx x w +=,求函数:对变量y x ,的全微分dz 。

3、多元函数的全微分与连续,可偏导之间的关系(07年,04年,02年等) ✧ 一阶偏导数,x y f f 在00(,)P x y 连续⇒(,)z f x y =在00(,)P x y 可微⇒(,)z f x y =在00(,)P x y 连续⇒(,)z f x y =在00(,)P x y 有极限✧ (,)z f x y =在00(,)P x y 可微⇒在00(,)P x y 的一阶偏导数,x y f f 存在 ✧ (,)z f x y =在00(,)P x y 可微⇒在00(,)P x y 的方向导数,x y f f 存在四、多元复合函数求导法则1、链式求导法则:变量树状图 法则 (1)(,),(),()z f u v u t v t ϕψ=== dz z du z dv dt u dt v dt∂∂=+∂∂dz z du z dv z d dt u dt v dt dtωω∂∂∂=++∂∂∂ (2)(,),(,),(,)z f u v u x y v x y ϕψ===,z z u z v z z u z v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂(3) z f u x y u x y (,,),(,)ϕ==,z f u f z f u fx u x x y u y f∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂例1. (08年期末考试,七,7分)设(,)xz f x y =,f 具有连续二阶偏导数,求2,z z x x y∂∂∂∂∂。

例2. (08年期末考试,十一,6分)设(,)z z x y =是由方程22()x y z x y z ϕ+-=++所确定的函数,其中()x ϕ可导,求dz 。

z u xy x y例3. (07年期末考试,八,7分)设(,)yz xf xy x =,f 具有连续二阶偏导数,求2,z zy y x∂∂∂∂∂。

例4. (06年期末考试,一、1,3分)设()yz xyf x =,()f u 可导,则z z xy x y∂∂+=∂∂( )。

例5. (04年期末考试,三、1,8分)设(,)G u v 可微,方程(,)0G u v =,其中22,u x yz v y xz =+=+确定了z 是,x y 的二元可微隐函数,试证明222(2)(2)4.z zy xz x yz z xy x y∂∂-+-=-∂∂。

例6. (03年期末考试,三、2,5分)设(,)u v φ具有连续偏导数,证明方程(,)0x yz y xz φ--=所确定的函数(,)z f x y =满足2()()1.z zy xz x yz z x y∂∂+++=-∂∂。

例7 记22(,)t u f x t x =+,f 具有连续二阶偏导数,求,u u x t ∂∂∂∂,222,u ux x t ∂∂∂∂∂。

例8 设y x z ln 2=,而v u x =,v u y -=3,求u z ∂∂和vz∂∂。

例9 设22)(b a z y e u ax ++=,而x a y sin =,xb z cos =,则du dx。

例10. 设22(,)xyz f x y e =-,又f 具有连续的二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂。

2.一阶全微分形式不变性:设(,)z f u v =,则不管,u v 是自变量还是中间变量,都有''u v dz f du f dv =+✧ 通过全微分求所有的一阶偏导数,有时比链式求导法则显得灵活。

相关文档
最新文档