高中数学第二讲参数方程2.2圆锥曲线的参数方程课件新人教A版选修44
最新人教版高三数学选修4-4电子课本课件【全册】
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程
【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ
即
(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.
2.2圆锥曲线的参数方程
x
y
3sec tan
(为参数)的渐近线方程
例2、如图,设M
为双曲线
x2 a2
y2 b2
1(a
0, b 0)任意一点,O为原点,
过点M 作双曲线两渐近线的平行线,分别与两渐近线交于A,B两点。
探求平行四边形MAOB的面积,由此可以发现什么结论?
解:双曲线的渐近线方程为:y b x.
①
A
M
O B
x
a
所以MAOB的面积为
S YMAOB
=|OA|•|OB|sin2
=
xA
cos
•
xB
cos
sin2
=
a2(sec2 -tan2 4cos2
)
•
sin2
=
a2 2
•
tan
a2 2
•
b a
ab . 2
由此可见,平行四边形MAOB的面积恒为定值,与点M在双曲线上的位置无关。
(2 pt12 ,2 pt1),(2 pt22 ,2 pt2 )(t1 t2 ,且t1 t2 0)则
OM (x, y),OA (2 pt12 ,2 pt1),OB (2 pt22 ,2 pt2 )
AB (2 p(t22 t12 ),2 p(t2 t1))
已知圆的方程为x2 y2 4x cos 2 y sin 3cos2 0, (为参数),那么圆心的轨迹的普通
方程为 ____________________
解:方程x2 y2 4x cos 2 y sin 3cos2 0 可以化为(x 2 cos )2 ( y sin )2 1 所以圆心的参数方程为{x 2 cos (为参数)
人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程
x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1
α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=
人教A版数学【选修4-4】ppt课件:2-4第二讲-参数方程
3π x= , 2 即得对应的点的坐标. y=3,
【答案】 3
3π ,3 2
变式训练1
半径为2的基圆的渐开线的参数方程为
________,当圆心角φ=π时,曲线上点的直角坐标为________.
解析 半径为2的基圆的渐开线的参数方程为 (φ为参数).
x=2cosφ+φsinφ, y=2sinφ-φcosφ
(φ为参数),求对应圆的摆线的参数方程.
解
首先根据渐开线的参数方程可知圆的半径为6,所以对 (φ为参数).
x=6φ-6sinφ, 应圆的摆线的参数方程为 y=6-6cosφ
x=cosφ+φsinφ, π 【例3】 当φ= ,π时,求出渐开线 (φ为 2 y=sinφ-φcosφ
课堂互动探究
剖析归纳 触类旁通
典例剖析 【例1】
x=3cosφ+3φsinφ, 给出某渐开线的参数方程 y=3sinφ-3φcosφ
(φ
为参数),根据参数方程可以看出该渐开线的基圆半径是 ________,且当参数φ取 ________.
【分析】 根据一般情况下基圆半径为r的渐开线的参数方程 (φ为参数)进行对照可知.
故A,B两点间的距离为 |AB|= 3π π [ 2 +1-2-1]2+1-12
= π+22=π+2.
参数)上的对应点A,B,并求出A,B间的距离.
【解】
x=cosφ+φsinφ, π 将φ=2代入 y=sinφ-φcosφ,
π π π π 得x=cos2+2sin2=2, π π π y=sin - cos =1. 2 2 2
π ∴A(2,1).
x=cosφ+φsinφ, 将φ=π代入 y=sinφ-φcosφ,
高中数学第2章参数方程22.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程学案北师大版选修4_4
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学习目标:1.了解圆锥曲线参数方程的推导过程.2.掌握圆和圆锥曲线的参数方程.(易错易混点)3.能用圆、椭圆参数方程解决有关问题.(难点)教材整理1 圆的参数方程 1.标准圆的参数方程已知一个圆的圆心在原点,半径为r ,设点P (x ,y )是圆周上任意一点,连结OP ,令OP 与x 轴正方向的夹角为α,则α唯一地确定了点P 在圆周上的位置.作PM ⊥Ox ,垂足为M ,显然,∠POM =α(如图).则在Rt△POM 中有OM =OP cos α,MP =OP sin α,即⎩⎪⎨⎪⎧x =r cos α,y =r sin α(α为参数).这就是圆心在原点,半径为r 的圆的参数方程.参数α的几何意义是OP 与x 轴正方向的夹角.2.一般圆的参数方程以(a ,b )为圆心,r 为半径的圆,普通方程为(x -a )2+(y -b )2=r 2,它的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数,a ,b 是常数).填空:(1)圆心为(2,1),半径为2的圆的参数方程是________. (2)在圆⎩⎪⎨⎪⎧x =-1+cos αy =sin α(α为参数)中,圆的圆心是________,半径是________.(3)圆⎩⎪⎨⎪⎧x =1+cos α,y =1+sin α(α为参数)上的点到O (0,0)的距离的最大值是________,最小值是________.[解析] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数).(2)由圆的参数方程知圆心为(-1,0),半径为1. (3)由圆的参数方程知圆心为(1,1),半径为1. ∵圆心到原点的距离为2,∴最大值为2+1, 最小值为2-1.[答案] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数)(2)(-1,0) 1 (3)2+1 2-1教材整理2 椭圆与双曲线的参数方程 1.椭圆的参数方程 (1)椭圆的中心在原点标准方程为x 2a 2+y 2b 2=1,其参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).参数φ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角. (2)椭圆方程不是标准形式其方程也可表示为参数方程的形式,如(x -x 0)2a2+(y -y 0)2b2=1(a >b >0),参数方程可表示为⎩⎪⎨⎪⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数).2.双曲线的参数方程当以F 1,F 2所在的直线为x 轴,以线段F 1F 2的垂直平分线为y 轴建立直角坐标系,双曲线的普通方程为x 2a 2-y 2b2=1(a >0,b >0).此时参数方程为 (φ为参数).其中φ∈[0,2π)且φ≠π2,φ≠3π2.判断(正确的打“√”,错误的打“×”)(1)椭圆参数方程中,参数φ的几何意义是椭圆上任一点的离心角.( ) (2)在椭圆上任一点处,离心角和旋转角数值都相等.( ) (3)在双曲线参数方程中,参数φ的范围为[0,2π).( ) [解析] (1)√ 椭圆中,参数φ的几何意义就是离心角.(2)× 在四个顶点处是相同的,在其他任一点处,离心角和旋转角在数值上都不相等. (3)× 双曲线中,参数φ的范围是φ∈[0,2π)且φ≠π2,φ≠3π2.[答案] (1)√ (2)× (3)×【例1】 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[精彩点拨] 根据圆的特点,结合参数方程概念求解. [尝试解答] 如图所示,设圆心为O ′,连结O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ,∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.1.确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.2.由于选取的参数不同,圆有不同的参数方程.1.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.[解] 设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数),这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.【例2】 如图所示,已知点M 是椭圆a 2+b 2=1(a >b >0)上在第一象限的点,A (a,0)和B (0,b )是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值.[精彩点拨] 本题可利用椭圆的参数方程,把面积的最大值问题转化为三角函数的最值问题求解.[尝试解答] M 是椭圆x 2a 2+y 2b2=1(a >b >0)上在第一象限的点,由椭圆x 2a 2+y 2b2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),故可设M (a cos φ,b sin φ),其中0<φ<π2,因此,S 四边形MAOB =S △MAO +S △MOB=12OA ·y M +12OB ·x M =12ab (sin φ+cos φ)=22ab sin ⎝⎛⎭⎪⎫φ+π4.所以,当φ=π4时,四边形MAOB 面积的最大值为22ab .本题将不规则四边形的面积转化为两个三角形的面积之和,这是解题的突破口和关键,用椭圆的参数方程,将面积表示为参数的三角函数求最大值,思路顺畅,解法简捷,充分体现了椭圆的参数方程在解决与椭圆上点有关最值问题时的优越性.2.(2019·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.[解] (1)因为-1<1-t 21+t 2≤1,且x 2+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.【例312|PF 1|·|PF 2|=|OP |2.[精彩点拨] 将双曲线方程化为参数方程⎩⎪⎨⎪⎧x =1cos φ,y =tan φ,再利用三角运算进行证明.[尝试解答] 因为双曲线的方程为x 2-y 2=1, 所以设P ⎝⎛⎭⎪⎫1cos φ,tan φ.∵F 1(-2,0),F 2(2,0), ∴|PF 1|=⎝ ⎛⎭⎪⎫1cos φ+22+tan 2φ=2cos 2φ+22cos φ+1, |PF 2|=⎝ ⎛⎭⎪⎫1cos φ-22+tan 2φ =2cos 2φ-22cos φ+1, ∴|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫2cos 2φ+12-8cos 2φ=2cos 2φ-1. ∵|OP |2=1cos 2φ+tan 2φ=2cos 2φ-1,∴|PF 1|·|PF 2|=|OP |2.1.与双曲线上点有关的问题,常利用其参数方程转化为三角的计算与证明问题. 2.对由参数方程给出的双曲线确定其几何性质问题,常将其化为普通方程后,再求解.3.求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.[证明] 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).[探究问题1.给定参数方程⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中a ,b 是常数.(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么? (2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?[提示] (1)参数方程表示的曲线是以(a ,b )为圆心,r 为半径的圆(r ≠0). (2)参数方程表示的曲线是过(a ,b )点,且倾斜角为α的直线. 2.圆的参数方程中,参数有什么实际意义?[提示] 在圆的参数方程中,设点M 绕点O 转动的角速度为ω(ω为常数),转动的某一时刻为t ,因此取时刻t 为参数可得圆的参数方程为:⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数),此时参数t 表示时间.若以OM转过的角度θ(∠M 0OM =θ)为参数,可得圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),此时θ具有明显的几何意义.3.利用圆的参数方程表示其上任意点坐标时有什么优越性?[提示] 将其横纵坐标只用一个参数(角)来表示,可将与点的坐标有关的问题转化为三角问题求解.【例4】 设方程⎩⎨⎧x =1+cos θ,y =3+sin θ(θ为参数)表示的曲线为C .(1)判断C 与直线x +3y -2=0的位置关系; (2)求曲线C 上的动点到原点O 的距离的最小值;(3)点P 为曲线C 上的动点,当|OP |最小时(O 为坐标原点),求点P 的坐标; (4)点M 是曲线C 上的动点,求其与点Q (-1,-3)连线中点的轨迹.[精彩点拨] 本题考查圆的参数方程的应用,以及运算和转化与化归能力. (1)利用圆心到直线的距离与半径的关系判断. (2)设P 的坐标表示出|OP |,利用三角函数知识求最值. (3)利用(2)取最小值的条件即可.(4)设出点M 的坐标,进而表示出MQ 中点坐标,即得轨迹的参数方程.[尝试解答] (1)曲线C 是以(1,3)为圆心,半径为1的圆,则圆心(1,3)到直线x +3y -2=0的距离为|1+3×3-2|12+(3)2=1,故直线和圆相切. (2)设圆上的点P (1+cos θ,3+sin θ)(0≤θ<2π). |OP |=(1+cos θ)2+(3+sin θ)2=5+4cos ⎝⎛⎭⎪⎫θ-π3, 当θ=4π3时,|OP |min =1.(3)由(2)知,θ=4π3,∴x =1+cos 4π3=12,y =3+sin4π3=32,P ⎝ ⎛⎭⎪⎫12,32. (4)设MQ 的中点为(x ,y ).∵M (1+cos θ,3+sin θ),Q (-1,-3), ∴⎩⎪⎨⎪⎧x =1+cos θ-12=12cos θ,y =-3+3+sin θ2=12sin θ(θ为参数).所以中点轨迹是以原点为圆心,12为半径的圆.1.与圆的参数方程有关的问题求解时,可直接利用参数方程求解,也可转化为普通方程问题求解.2.与圆上点有关的距离最值问题,需建立目标函数求解时,常利用圆的参数方程,将圆上的点用角表示,从而将待求最值,转化为三角函数的最值问题求解,但要注意参数θ的取值范围.4.如图,设矩形ABCD 的顶点C 的坐标为(4,4),点A 在圆x 2+y 2=9(x ≥0,y ≥0)上移动,且AB ,AD 两边分别平行于x 轴,y 轴.求矩形ABCD 面积的最小值及对应点A 的坐标.[解] 设A (3cos θ,3sin θ)(0<θ<90°),则|AB |=4-3cos θ,|AD |=4-3sin θ, ∴S =|AB |·|AD |=(4-3cos θ)(4-3sin θ) =16-12(cos θ+sin θ)+9cos θsin θ.令t =cos θ+sin θ(1<t ≤2),则2cos θsin θ=t 2-1.∴S =16-12t +92(t 2-1)=92t 2-12t +232=92⎝ ⎛⎭⎪⎫t -432+72,∴t =43时,矩形ABCD 的面积S取得最小值72.此时⎩⎪⎨⎪⎧cos θ+sin θ=43,cos θsin θ=718,解得⎩⎪⎨⎪⎧cos θ=4±26,sin θ=4∓26.∴对应点A 的坐标为⎝ ⎛⎭⎪⎫2+22,2-22或 ⎝⎛⎭⎪⎫2-22,2+22.1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)[解析] 由圆的参数方程知,圆心为(2,0). [答案] D2.圆心在点(-1,2),半径为5的圆的参数方程为( ) A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B .⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D .⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π)[解析] 圆心在点C (a ,b ),半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).[答案] D3.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.[解析] 由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. [答案] 234.双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.[解析] 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0).[答案] (-5,0),(5,0)5.能否在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.[解] 设椭圆的参数方程为⎩⎨⎧x =4cos φ,y =23sin φ(φ是参数,0≤φ<2π).则d =|4cos φ-43sin φ-12|5=455⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫φ+π3-3,当cos ⎝⎛⎭⎪⎫φ+π3=1时, 即φ=53π时,d min =455,此时对应的点为(2,-3).。
第二讲 参数方程知 识归纳 课件(人教A选修4-4)
x=5cos θ, 参数方程 y=5sin θ
π π (- ≤θ≤ )表示的曲线是 2 2
π π 化为普通方程是:x +y =25,∵- ≤θ≤ , 2 2
2 2
∴0≤x≤5,-5≤y≤5. ∴表示以(0,0)为圆心,5 为半径的右半圆.
返回
ห้องสมุดไป่ตู้ [例 2]
3 x= t+1, 将参数方程 5 (t 为参数)化为普通方程. y=t2-1
(t 为 参 数 ) 与 曲 线
(α 为参数)的交点个数为________.
解析:直线的普通方程为 x+y-1=0,圆的普通方程为 2 x +y =3 , 圆心到直线的距离 d= <3, 故直线与圆的 2
2 2 2
交点个数是 2.
答案:2
返回
2.(2012· 湖北高考)在直角坐标系 xOy 中,以原点 O 为极 π 点,x 轴的正半轴为极轴建立极坐标系.已知射线 θ= 与 4
x=t+1, 曲线 y=t-12,
(t 为参数)相交于 A, 两点, B 则线段 AB
的中点的直角坐标为________.
返回
π 解析:记 A(x1,y1),B(x2,y2),将 θ= ,转化为直角坐标 4 方程为 y=x(x≥0),曲线为 y=(x-2)2,联立上述两个方程 得 x2-5x+4=0,所以 x1+x2=5,故线段 AB 的中点坐标 5 5 为( , ). 2 2
返回
考情分析 通过对近几年新课标区高考试题的分析可见,高考对 本讲知识的考查,主要是以参数方程为工具,考查直线与 圆或与圆锥曲线的有关的问题.
返回
真题体验
x=2+t, 1 . (2012· 京 高 考 ) 直 线 北 y=-1-t x=3cos α, y=3sin α
高中数学 第二讲 参数方程章末归纳提升 新人教A版选修44
【课堂新坐标】(教师用书)2013-2014学年高中数学 第二讲 参数方程章末归纳提升 新人教A 版选修4-4参数方程—错误!)—圆锥曲线的参数方程—错误!)—直线的参数方程—参数t 的几何意义及应用—渐开线与摆线—错误!)))圆锥曲线的参数方程及应用 对于椭圆的参数方程,要明确a ,b 的几何意义以及离心角φ的意义,要分清椭圆上一点的离心角φ和这点与坐标原点连线倾斜角θ的关系,双曲线和抛物线的参数方程中,要注意参数的取值范围,且它们的参数方程都有多种形式.在平面直角坐标系xOy 中,设P (x ,y )是椭圆x 23+y 2=1上的一个动点,求S =x+y 的最大值和最小值.【解】 ∵椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ(φ为参数).故设动点P (3cos φ,sin φ),其中φ∈[0,2π). 因此S =x +y =3cos φ+sin φ=2(sin π3cos φ+cos π3sin φ)=2sin(φ+π3).∴当φ=π6时,S 取得最大值2.当φ=7π6时,S 取得最小值-2.直线的参数方程及应用 在解决这类问题时,应用直线的参数方程,利用直线参数方程中参数t 的几何意义,可以避免通过解方程组求交点等繁琐运算,使问题得到简化,由于直线的参数方程有多种形式,只有标准形式中的参数才具有明显的几何意义.直线l 过点P 0(-4,0),它的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =12t(t 为参数)与圆x 2+y 2=7相交于A ,B 两点,(1)求弦长|AB |;(2)过P 0作圆的切线,求切线长.【解】 将直线l 的参数方程代入圆的方程,得(-4+32t )2+(12t )2=7,整理得t 2-43t +9=0.(1)设A 和B 两点对应的参数分别为t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1·t 2=9. 故|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3. (2)设圆过P 0的切线为P 0T ,T 在圆上,则|P 0T |2=|P 0A |·|P 0B |=|t 1t 2|=9, ∴切线长|P 0T |=3.参数法及应用 参数方法是一种重要的数学方法,尤其在运动变化型问题中,若能引入参数作桥梁,沟通变量之间的联系,既有利于揭示运动变化的本质规律,还能把多个变量统一体现在一个参变量上.但一定要注意,利用参数表示曲线的方程时,要充分考虑到参数的取值范围.(2013·三门峡质检)如图2-1,已知直线l 过点P (2,0),斜率为43,直线l和抛物线y 2=2x 相交于A 、B 两点,设线段AB 的中点为M ,求:图2-1(1)P 、M 两点间的距离|PM |; (2)线段AB 的长|AB |.【解】 (1)∵直线l 过点P (2,0),斜率为43,设直线的倾斜角为α,tan α=43,sin α=45,cos α=35,∴直线l 的参数方程为⎩⎪⎨⎪⎧x =2+35t y =45t(t 为参数).∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,则Δ=(-15)2-4×8×(-50)>0.设这个二次方程的两个根分别为t 1、t 2,由根与系数的关系,得t 1+t 2=158,t 1t 2=-254,由M 为线段AB 的中点,根据t 的几何意义,得|PM |=|t 1+t 22|=1516.(2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=5873.因此线段AB 的长为5873.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4cos θy =4sin θ(θ为参数,且0≤θ<2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.【解】 (1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0), 设P 的坐标为(x ,y ),则由中点坐标公式得 x =12(0+4cos θ)=2cos θ, y =12(0+4sin θ)=2sin θ, 所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数,且0≤θ<2π),消去参数θ,得点P 轨迹的直角坐标方程为x 2+y 2=4. (2)由直角坐标与极坐标关系得直线l 的直角坐标方程为x -y +1=0.又由(1),知点P 的轨迹为圆心在原点,半径为2的圆, 因为原点(0,0)到直线x -y +1=0的距离为 |0-0+1|12+-12=12=22, 所以点P 到直线l 距离的最大值为2+22.曲线的参数方程与普通方程的互化 求方程4x 2+y 2=16的参数方程 . (1)设y =4sin θ,θ为参数;(2)以过点A (0,4)的直线的斜率k 为参数.【解】 (1)把y =4sin θ代入方程,得到4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ.∴x =±2cos θ.由于参数θ的任意性,可取x =2cos θ.因此4x 2+y 2=16的参数方程是 ⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数). (2)设M (x ,y )是曲线4x 2+y 2=16上异于A 的任一点,则y -4x=k (x ≠0),将y =kx +4代入方程,得x [(4+k 2)x +8k ]=0.∴⎩⎪⎨⎪⎧x =-8k 4+k 2,y =-4k 2+164+k 2,易知A (0,4)也适合此方程.另有一点⎩⎪⎨⎪⎧x =0,y =-4.∴所求的参数方程为⎩⎪⎨⎪⎧x =-8k4+k 2,y =-4k 2-164+k2,(k 为参数)和⎩⎪⎨⎪⎧x =0,y =-4.综合检测(二)第二讲 参数方程(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·周口质检)下列点不在直线⎩⎪⎨⎪⎧x =-1-22t y =2+22t (t 为参数)上的是( )A .(-1,2)B .(2,-1)C .(3,-2)D .(-3,2)【解析】 直线l 的普通方程为x +y -1=0, 因此点(-3,2)的坐标不适合方程x +y -1=0. 【答案】 D2.圆的参数方程为⎩⎪⎨⎪⎧x =4cos θy =4sin θ,(θ为参数,0≤θ<2π),若Q (-2,23)是圆上一点,则对应的参数θ的值是( )A.π3B.23πC.43πD.53π 【解析】 ∵点Q (-2,23)在圆上,∴⎩⎨⎧-2=4cos θ,23=4sin θ且0≤θ<2π,∴θ=23π.【答案】 B3.直线⎩⎪⎨⎪⎧x =3+t ,y =2-2t (t 为参数)的斜率为( )A .2B .-2 C.32 D .-32【解析】 直线的普通方程为2x +y -8=0,∴斜率k =-2. 【答案】 B4.已知O 为原点,当θ=-π6时,参数方程⎩⎪⎨⎪⎧x =3cos θ,y =9sin θ(θ为参数)上的点为A ,则直线OA 的倾斜角为( )A.π6B.π3C.2π3D.5π6【解析】 当θ=-π6时,x =332,y =-92,∴k OA =tan α=y x=-3,且0≤α<π,因此α=23π.【答案】 C5.已知A (4sin θ,6cos θ),B (-4cos θ,6sin θ),当θ为一切实数时,线段AB 的中点轨迹为( )A .直线B .圆C .椭圆D .双曲线 【解析】 设线段AB 的中点为M (x ,y ), 则⎩⎪⎨⎪⎧ x =2sin θ-2cos θ,y =3sin θ+3cos θ(θ为参数), ∴⎩⎪⎨⎪⎧3x +2y =12sin θ,3x -2y =-12cos θ.∴(3x +2y )2+(3x -2y )2=144,整理得x 28+y 218=1,表示椭圆.【答案】 C6.椭圆⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数)的离心率是( )A.74 B.73 C.72 D.75【解析】 椭圆⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ,的标准方程为x 29+y 216=1,∴e =74.故选A. 【答案】 A 7.点P (4,0)到曲线⎩⎪⎨⎪⎧x =t2y =4t (t ∈R )上的点的最短距离为( )A .0B .4C .4 2D .8【解析】 将参数方程化为普通方程y 2=16x ,则点P (4,0)是其焦点.根据抛物线定义,曲线上任一点到焦点的距离最小的点是顶点(0,0),故最小距离为4.【答案】 B8.若直线⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线的倾斜角为( )A.π6或5π6 B.π4或3π4 C.π3或2π3 D .-π6或-5π6【解析】 直线的普通方程为y =tan α·x ,圆的普通方程为(x -4)2+y 2=4,由于直线与圆相切,则|4sin α|sin 2α+cos 2α=2,即|sin α|=12. ∴tan α=±33,∴α=π6或5π6.故选A. 【答案】 A9.若直线y =x -b 与曲线⎩⎪⎨⎪⎧x =2+cos θ,y =sin θθ∈[0,2π)有两个不同的公共点,则实数b 的取值范围是( )A .(2-2,1)B .[2-2,2+2]C .(-∞,2-2)∪(2+2,+∞)D .(2-2,2+2)【解析】 由⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ.消去θ,得(x -2)2+y 2=1.(*)将y =x -b 代入(*),化简得 2x 2-(4+2b )x +b 2+3=0,依题意, Δ=[-(4+2b )]2-4×2(b 2+3)>0. 解之得2-2<b <2+ 2. 【答案】 D10.实数x ,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是( )A .2B .4 C.92 D .5【解析】 由3x 2+2y 2=6x ,得3(x -1)2+2y 2=3,令x =1+cos θ,y =62sin θ,代入x 2+y 2,得x 2+y 2=(1+cos θ)2+32sin 2θ=-12(cos θ-2)2+92∴当cos θ=1时,(x 2+y 2)max =4. 【答案】 B11.(2013·新乡模拟)参数方程⎩⎪⎨⎪⎧x =1+sin θy =cos 2π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分,且过点(-1,12)D .抛物线的一部分,且过点(1,12)【解析】 由y =cos 2(π4-θ2)=1+cosπ2-θ2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ 得x 2-1=sin θ,∴参数方程可化为普通方程x 2=2y . 又x =1+sin θ∈[0,2],故选D. 【答案】 D 12.已知直线l :⎩⎨⎧x =3t ,y =2-t(t 为参数),抛物线C 的方程y 2=2x ,l 与C 交于P 1,P 2,则点A (0,2)到P 1,P 2两点距离之和是( )A .4+ 3B .2(2+3)C .4(2+3)D .8+ 3【解析】 将直线l 参数方程化为⎩⎪⎨⎪⎧x =-32t ′y =2+12t ′(t ′为参数),代入y 2=2x ,得t ′2+4(2+3)t ′+16=0,设其两根为t 1′、t 2′,则t 1′+t 2′=-4(2+3),t 1′t 2′=16>0.由此知在l 上两点P 1,P 2都在A (0,2)的下方,则|AP 1|+|AP 2|=|t 1′|+|t 2′|=|t 1′+t 2′|=4(2+3).【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上)13.双曲线⎩⎪⎨⎪⎧x =tan φ,y =sec φ(φ是参数)的渐近线方程为________.【解析】 化参数方程为普通方程,得y 2-x 2=1.故其渐近线为y =±x ,即x ±y =0.【答案】 x ±y =014.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θy =4+sin θ,(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.【解析】 消参数θ得曲线C 1的标准方程为(x -3)2+(y -4)2=1,将ρ=1化为直角坐标方程为x 2+y 2=1,两圆的圆心距为5,故|AB |的最小值为5-1-1=3.【答案】 315.(2013·焦作调研)直线⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,且0≤α≤π),与圆⎩⎪⎨⎪⎧x =4+2cos φy =2sin φ(φ为参数)相切,则此直线的倾斜角α=________.【解析】将参数方程化为普通方程,直线y =x ·tan α,圆(x -4)2+y 2=4,如右图所示,sin α=24=12,则α=π6或5π6.【答案】 π6或5π616.(2013·湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin(θ+π4)=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.【解析】 由已知可得椭圆标准方程为x 2a 2+y 2b2=1(a >b >0).由ρsin(θ+π4)=22m 可得ρsin θ+ρcos θ=m ,即直线的普通方程为x +y =m .又圆的普通方程为x 2+y 2=b 2,不妨设直线l 经过椭圆C 的右焦点(c,0),则得c =m .又因为直线l 与圆O 相切,所以|m |2=b ,因此c =2b ,即c 2=2(a 2-c 2).整理,得c 2a 2=23,故椭圆C 的离心率为e =63. 【答案】63三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数,0≤θ<2π).(1)求圆心和半径;(2)若圆O 上点M 对应的参数θ=5π3,求点M 的坐标.【解】 (1)由⎩⎪⎨⎪⎧x =2cos θy =2sin θ(0≤θ<2π),平方得x 2+y 2=4,∴圆心O (0,0),半径r =2.(2)当θ=53π时,x =2cos θ=1,y =2sin θ=- 3.∴点M 的坐标为(1,-3).18.(本小题满分12分)已知曲线C :⎩⎪⎨⎪⎧x =4cos φ,y =3sin φ(φ为参数).(1)将C 的方程化为普通方程;(2)若点P (x ,y )是曲线C 上的动点,求2x +y 的取值范围.【解】 (1)由C :⎩⎪⎨⎪⎧x =4cos φy =3sin φ,得∴(x4)2+(y3)2=1即x 216+y 29=1.(2)2x +y =8cos φ+3sin φ=73sin(φ+θ),(θ由tan θ=83确定).∴2x +y ∈[-73,73].∴2x +y 的取值范围是[-73,73].19.(本小题满分12分)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求线段AB 的长.【解】 (1)由曲线C :⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ得x 2+y 2=16.∴曲线C 的普通方程为x 2+y 2=16.(2)将⎩⎪⎨⎪⎧x =3+12t ,y =2+32t 代入x 2+y 2=16,整理,得t 2+33t -9=0.设A ,B 对应的参数为t 1,t 2,则 t 1+t 2=-33,t 1t 2=-9. |AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=37.20.(本小题满分12分)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos φy =sin φ(φ为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2 B 1的面积.【解】 (1)C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0)(a,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x 29+y 2=1.当α=π4时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=31010.当α=-π4时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为2x ′+2x x ′-x2=25.21.(本小题满分12分)(2013·新课标全国卷Ⅱ)已知动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.22.(本小题满分12分)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =t sin α(t 为参数,α为倾斜角,且α≠π2)与曲线x 216+y 212=1交于A ,B 两点.(1)写出直线l 的一般方程及直线l 通过的定点P 的坐标; (2)求|PA |·|PB |的最大值.【解】 (1)∵⎩⎪⎨⎪⎧x =2+t cos αy =t sin α,(t 为参数,α为倾斜角,且α≠π2),∴y x -2=t sin αt cos α=tan α, ∴直线l 的普通方程为x tan α-y -2tan α=0. 直线l 通过的定点P 的坐标为(2,0).(2)∵l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α,椭圆的方程为x 216+y 212=1,右焦点坐标为P (2,0),∴3(2+t cos α)2+4(t sin α)2-48=0,即(3+sin 2α)t 2+12cos α·t -36=0. ∵直线l 过椭圆的右焦点, ∴直线l 恒与椭圆有两个交点,∴t 1·t 2=-363+sin 2α, 由直线参数方程t 的几何意义,∴|PA |·|PB |=|t 1·t 2|=363+sin 2α, ∵0≤α<π,且α≠π2,则0≤sin 2α<1,因此|PA |·|PB |的最大值为12.。
高考数学总复习 第2节 参数方程课件 新人教A版选修44
数的关系 y=g(t)
x=ft ,那么 y=gt 就是曲线的参数方程.
第五页,共70页。
在参数方程与普通(pǔtōng)方程的互化中,x,y的取值范围必 须保持一致.
第六页,共70页。
三、常见曲线的参数方程的一般形式
1.直线的参数方程
经过点 P0(x0,y0),倾斜角为 α 的直线的参数方程为
x= x0+tcos α y= y0+tsin α
第十四页,共70页。
2.若 P(2,-1)为圆xy==15+sin5θcos θ, (θ 为参数且 0≤θ
<2π)的弦的中点,则该弦所在的直线方程为( )
A.x-y-3=0
B.x+2y=0
C.x+y-1=0
D.2x-y-5=0
第十五页,共70页。
解析:由xy= =15+sin5θc,os θ 消去参数 θ,得(x-1)2+y2=25, ∴圆心 C(1,0),∴kCP=-1. ∴弦所在的直线的斜率为 1. ∴弦所在的直线方程为 y-(-1)=1·(x-2), 即 x-y-3=0,故选 A.
第二十页,共70页。
解析:曲线
C1:xy==34++csions
θ θ
(θ 为参数)的直角坐标方
程为(x-3)2+(y-4)2=1,可知曲线 C1 是以(3,4)为圆心,1 为半径的圆;曲线 C2:ρ=1 的直角坐标方程是 x2+y2=1, 故 C2 是以原点为圆心,1 为半径的圆.由题意知|AB|的最小 值即为分别在两个圆上的两点 A,B 间的最短距离.由条件
① ②
①2+②2 得 x2+(y-1)2=1,
即所求普通方程为 x2+(y-1)2=1,
答案(dáàn):x2+(y-1)2=1
第二十六页,共70页。
第二讲 参数方程 章末复习方案 课件(人教A选修4-4)
能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆 锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题. [例 8] AB 的长. 已知点 P(3,2)平分抛物线 y2=4x 的一条弦 AB,求弦
[解]
设弦 AB 所在的直线方程为 (t 为参数),
x=3+tcos α y=2+tsin α
y= 3x+1 联立方程 2 2 x +y =a
消去 y,得:4x2+6x+3-a=0. 设 A(x1,y1)、B(x2,y2)(不妨设 x1<x2),则
Δ=36-16(3-a)>0,① 3 x1+x2=-2,② 3-a x1·2= 4 ,③ x |PA| -1-x1 1 |PB|= x2+1 =2,④ 由①②③④解得 a=3.
x2 y2 x2 y2 平方相减得sin 2θ-cos 2θ=4,即4sin 2θ-4cos 2θ=1, 它表示中心在原点,实轴长为 4|sin θ|,虚轴长为 4|cos θ|, 焦点在 x 轴上的双曲线. 当 θ=kπ(k∈Z)时,x=0,它表示 y 轴; π 1 当 θ=kπ+2(k∈Z)时,y=0,x=± (t+ t ). 1 1 ∵t+ t ≥2(t>0 时)或 t+ t ≤-2(t<0 时), ∴|x|≥2.∴方程为 y=0(|x|≥2),它表示 x 轴上以(-2,0)和 (2,0)为端点的向左、向右的两条射线.
[解] 设 M(x,y),A(x1,y1),B(x2,y2),直线 l 的方程为 x =ty-2 x=ty-2 由 2 2 消去 x 得(1+t2)y2-4ty+3=0 x +y =1
4t 2t ∴y1+y2= ,则 y= . 1+t2 1+t2 -2 2t2 x=ty-2= 2-2= 1+t 1+t2 由 Δ=(4t)2-12(1+t2)>0 得 t2>3. x= -22 1+t ∴M 的轨迹的参数方程为 y= 2t 1+t2
高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-
二 圆锥曲线的参数方程1.理解椭圆的参数方程及其应用.(重点) 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点、易错点)[基础·初探]教材整理1 椭圆的参数方程阅读教材P 27~P 29“思考”及以上部分,完成下列问题.普通方程参数方程x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φy =b sin φ(φ为参数)y 2a 2+x2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数)椭圆⎩⎪⎨⎪⎧x =4cos φy =5sin φ(φ为参数)的离心率为( )A.45 B.35 C.34D.15【解析】 由椭圆方程知a =5,b =4,∴c 2=9,c =3,e =35.【答案】 B教材整理2 双曲线的参数方程 阅读教材P 29~P 32,完成下列问题.普通方程参数方程x 2a 2-y2b 2=1(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φy =b tan φ(φ为参数)下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 【解析】 由x =3sec θ得, x 2=3cos 2θ=3sin 2θ+cos 2θcos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适. 【答案】 B教材整理3 抛物线的参数方程阅读教材P 33~P 34“习题”以上部分,完成下列问题. 1.抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数).2.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t2y =4t (t 为参数)上,则|PF |=________.【解析】 抛物线为y 2=4x ,准线为x =-1, |PF |等于点P (3,m )到准线x =-1的距离,即为4. 【答案】 4[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a ,b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.[再练一题]1.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2, 则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b2sec 2 φ-tan 2 φ|a 2+b 2=a 2b2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.[再练一题]2.如图221,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图221【证明】 设P (sec φ,tan φ), ∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1.∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l于Q ,求QF 与OP 的交点M 的轨迹方程.【导学号:91060021】【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0). 当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.[再练一题]3.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2[构建·体系]圆锥曲线的参数方程—⎪⎪⎪—椭圆的参数方程—双曲线的参数方程—抛物线的参数方程1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x 24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )【导学号:91060022】A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax, 代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0) 4.在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1. 又a >0,∴a =32.【答案】 325.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.【解】 将⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得:516t 4+t 2-1=0,解得t 2=45,∴t =255(y =t ≥0),x =54t 2=54×45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A 2.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125 【解析】 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34,所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.【答案】 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( )A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3) D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α, 所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤3,∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B5.方程⎩⎪⎨⎪⎧x =2t-2-ty =2t +2-t(t 为参数)表示的曲线是( )【导学号:91060023】A .双曲线B .双曲线的上支C .双曲线的下支D .圆【解析】 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,得y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 【答案】 B 二、填空题6.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,得点M 的坐标为(1,23) 直线OM 的斜率k =231=2 3.【答案】 2 37.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=08.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 由⎩⎨⎧x =t ,y =t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 【答案】 (1,1) 三、解答题9.如图222所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图222【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.10.已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,① x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0, 解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),⎝ ⎛⎭⎪⎫85,-35,则|AB |=⎝ ⎛⎭⎪⎫-35-12+⎝ ⎛⎭⎪⎫852=825,故所求的弦长为825.[能力提升]1.P 为双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0) B .9x 2+16y 2=16(y ≠0) C .9x 2-16y 2=1(y ≠0) D .9x 2+16y 2=1(y ≠0)【解析】 由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 【答案】 A2.若曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A .RB .(0,+∞)C .(0,1)D .[0,1)【解析】 将曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2=-(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.【答案】 D3.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θy =4sin θ(0≤θ≤2π),恒有公共点,则b 的取值范围是________.【解析】 将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解.令f (θ)=4sin θ-2cos θ=25sin(θ+φ)⎝ ⎛⎭⎪⎫tan φ=12,∴-25≤f (θ)≤25, ∴-25≤b ≤2 5. 【答案】 [-25,25]4.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。
高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-
第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
2.2《圆锥曲线的参数方程》 课件(人教A版选修4-4)
率e= 3 ,已知点P(0,3 )到这个椭圆上的点的最远距离是
2
2
7 ,求这个椭圆的方程,并求椭圆上到点P的距离等于 7 的
点的坐标.
【解析】
12.(14分)直线l: 3x +2y-6=0与抛物线 y2 =2 3x交于A、B两
点,求∠AOB的值.
【解析】
一、选择题(每小题6分,共36分)
1.椭圆
x=sin
2y=cos
(θ 为参数)的一个焦点坐标为(
(B)(0, 2 )
2
)
(A)( 2 ,0)
2
(C)( 3 ,0)
2
(D)(0, 3 )
2
【解析】
2.曲线C:
x=3cos
y=2sect 答案: x=3tant (t为参数) y=2sect
三、解答题(共40分)
x 2 y2 10.(12分) 若F1,F2是椭圆 + =1的焦点,P为椭圆上不 25 16
在x轴上的点,求△PF1F2的重心G的轨迹方程. 【解析】
11.(14分)设椭圆的中心是坐标原点,长轴在x轴上,离心
x=sec y=tan
(θ为参数)化为普通方程,得 x2-y2=1,
表示焦点在横轴上的双曲线;
将
x=t
(t为参数)化为普通方程,得 y=-3x2,表示焦点在
2
y=-3t
纵轴上的抛物线.
二、填空题(每小题8分,共24分)
x 2 2 上,则x+y的最大值为______. 7.点P(x,y)在椭圆 +y =1 4
点F(1,0),准线方程为x=-1,又点M(3,m)在抛物线上,故
|MF|=3-(-1)=4.
人教A版数学【选修4-4】ppt课件:2-3第二讲-参数方程
称为标准形式,其中参
数t的几何意义是:|t|表示参数t对应的点M到________,t就是有向 → 线段 M0M 的数量.当点M在点M0的上方时,________;当点M在 点M0的下方时________;当点M与点M0重合时,________.
4 x = 1 + 5t, 的方程为 y=3t 5
(t为参数).代入椭圆方程x2+9y2=9,并
整理得:97t2+40t-200=0. 由t的几何意义,知所求的弦长为
|t2-t1|= t2+t12-4t2t1 = -200 60 40 2 - -4 = 22. 97 97 97
3.直线参数方程的应用 直线的标准参数方程主要用来解决过定点的直线与圆锥曲线 相交时的弦长或距离.它可以避免求交点时解方程组的繁琐运 算,但应用直线的参数方程时,需先判别是否是标准形式再考虑t 的几何意义.
课堂互动探究
剖析归纳 触类旁通
【例1】
典例剖析 x=5+3t, 设直线的参数方程为 y=10-4t.
(u为参数).
规律程,只要用代入法消去参
(2)过点M0(x0,y0),倾斜角为α(0≤α<π)的直线的参数方程为
x=x0+tcosα, y=y0+tsinα,
其中参数t有几何意义,t=M0M,即t表示有向线
→ 段 M0M 的数量,其中M(x,y)为直线上任意一点,因为倾斜角α∈ [0,π),所以sinα≥0,再化参数方程的标准形式时应注意这一 点.
(t为参数).
规律技巧
本题可使用直线的普通方程求解.也可以使用参
数方程求解,但是使用普通方程求解,计算量大,如果设出直线 的倾斜角,写出直线的参数方程求解.就可以转化为三角函数求 最值问题,计算简便.
数学新人教A版选修第二讲《参数方程》全部教案
数学新人教A版选修4-4 第二讲《参数方程》全部教案曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动:练习:斜抛运动:2.参数方程的概念(见教科书第22页)说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C的参数方程是 (t 为参数)(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。
A、一个定点B、一个椭圆C、一条抛物线D、一条直线二.圆的参数方程说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?[来源:Z三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
注意,在参数方程和普通方程的互化中,必须使x,y 的取值范围保持一致。
例3.(教科书第25页例3)例4.(教科书第26页例4)2.你能回答教科书第26页的思考吗?四.课堂练习(教科书第26页习题)五.巩固与反思1.本节学习的数学知识2.本节学习的数学方法巩固与提高1.与普通方程xy=1表示相同曲线的参数方程(t为参数)是(D)A. B.C. D.2.下列哪个点在曲线上(C)[来源:]A.(2,7)B.C.D.(1,0)3.曲线的轨迹是(D)A.一条直线B.一条射线C.一个圆D.一条线段4.方程表示的曲线是(D)A.余弦曲线B.与x轴平行的线段C.直线D.与y轴平行的线段5.曲线上的点到两坐标轴的距离之和的最大值是(D)A.B.C.1D.6.方程(t为参数)所表示的一族圆的圆心轨迹是(D)A.一个定点B.一个椭圆C.一条抛物线D.一条直线7.直线与圆相切,那么直线的倾斜角为(A)A.或B.或C.或D.或8.曲线的一个参数方程为。
高中数学第二讲参数方程2.4渐开线与摆线课件新人教A版选修4_4
-6-
四 渐开线与摆线
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画
“×”. (1)只有圆才有渐开线. ( × )
(2)渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以
变式训练 1 已知圆的渐开线的参数方程是
������ ������
= =
csions������������-���+���c���o���ss���i���n������,(φ
为参数),则此渐开线对应的基圆的直径
是
,当参数 φ=π4时对应的曲线上的点的坐标
为
.
答案:2
√2 2
+
√2π 8
,
√2 2
四 渐开线与摆线 探究一
探究二
思维辨析
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
变式训练 若半径为5的圆的摆线上某点的纵坐标为0,则其横坐
标可能是( )
A.π B.5π C.10πD.12π
������ = 5������-5sin������,
π4,则对应
的点的直角坐标分别为 .
答案:
2π 3
-√3,1
,
π 2
-√2,2-√2
-12-
四 渐开线与摆线 探究一
探究二
思维辨析
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
高中数学第二节 参数方程ppt课件
2.参数方程与普通方程的互化 通过消去_参__数__从参数方程得到普通方程,如果知道 变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),把它 代入普通方程,求出另一个变数与参数的关系 y=g(t), 那么xy==gf((tt)),就是曲线的参数方程.
3.常见曲线的参数方程和普通方程
解:(1)由xy==s3icnoαs α,消去参数 α,得x92+y2=1, 即 C 的普通方程为x92+y2=1, 由 ρsinθ-π4= 2,得 ρsin θ-ρcos θ=2,① 将xy==ρρscionsθθ,,代入①得 y=x+2, 所以直线 l 的倾斜角为π4.
选修4-4 坐标系与参数方程
第二节 参数方程
最新考纲
考情索引
2018·全国卷Ⅱ,
1.了解参数方程及 其参数的意义. 2.能选择适当的参 数写出直线、圆和 椭圆的参数方程.
T22 2018·全国
卷Ⅲ,T22 2017·全国卷Ⅰ, T22 2017·全国卷
Ⅲ,T22 2016·全国卷Ⅱ,
T23
核心素养
[变式训练]
(2019·郑州质检)在平面直角坐标系 xOy 中,曲线 C
的参数方程为xy==s3icnoαs
α, (α
为参数),在以原点为极点,
x 轴正半轴为极轴的极坐标系中,直线 l 的极坐标方程为
ρsinθ-π4= 2. (1)求 C 的普通方程和 l 的倾斜角;
(2)设点 P(0,2),l 和 C 交于 A,B 两点,求|PA|+|PB|.
(2)(人A选修4-4·P37例2改编)在平面直角坐标系
xOy中,若直线l:
x=t, y=t-a
(t为参数)过椭圆C:
x=3cos y=2sin