高中数学必修四导学案:3.2.2三角恒等变换---化简、求值、应用
【新导学案】高中数学人教版必修四:32《简单的三角恒等变换》(2).doc
3. 2《简单的三角恒等变换》导学案【学习目标】会用已学公式进行三角函数式的化简、求值和证明;会推导半角公-式,积化和差、和差化积公式(公式不要求记忆),进一步提高运用转化、换元、方 程等数学思想解决问题的能力。
【重点难点】学习重点:以己有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三 角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。
学习难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上 把握变换过程的能力〜【学法指导】复习倍角公式S2/ C 2a T M 先让学生默写三个倍角公式,注意等号两边角的关系,特别注意.o 既然能用单角,表示倍角,那么能否用倍角表示单角呢?回顾复习两角和与差的正弦、余V 2a弦和正切公式及二倍角公式,预习简单的三角恒等变换。
【知识链接】:1、回顾复习以下公式并填空: cos2 a =2、阅看课本 Pl39—141 例 1、2、3o三、提出疑惑: 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中【学习过程】:探究一:半角公式的推导(例1)请同学们阅看例1,思考以下问题,并进行小组讨论。
1、2。
与a 有什么关系? a 与a/2有什么关系?进一步体会二倍角公式和半角公式的应用。
2、 半角公式中的符号如何确定?3、 二倍角公式和半角公式有什么联系?4、 代数变换与三角变换有什么不同? 探究二:半角公式的推导(例2)请同学们阅看例2,思考以下问题,并进行小组讨论。
1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?Cos( a + P )= sin( a+ B )= tan( a +B )=・ sin2 a =Cos( a - p )= sin( a - 6 )= tan( a ■ B )= tan2 a =2、在例2证明过程中,如果不用(1)的结果,如何证明(2) ?3、在例2证明过程中,体现了什么数学思想方法?探究三:三角函数式的变换(例3),请同学们阅看例1,思考以下问题,并进行小组讨论。
高中数学必修四导学案-简单的三角恒等变换
3. 2 简单的三角恒等变换三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.通过例题的解答,引导对变换对象目标进行对比、分析,形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高推理能力.重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.教学过程引言:三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.应用:例1、 试以cos α表示sin 22a ,cos 22a , tan 22a . 例2、 练习:求证tan 2a =ααααsin cos 1cos 1sin -=+。
例2、证明(1)sin αcos β=21[sin(α+β)+sin(α-β)]; (2)sin θ+sin φ=2sin 2cos 2ϕθϕθ-+. 练习:课后练习2(2)、3(2)、题例3、 求函数x x y cos 3sin +=的周期,最大值和最小值。
练习:求下列函数的最小正周期,递增区间及最大值。
(!)x x y 2cos 2sin = (2)12cos 22+=x y (3)x x y 4sin 4cos 3+= 阅读内容: 函数y=asinx+bcosx 的变形与应用(辅助角公式)函数y=asinx+bcosx=22b a +(2222sin b a b x b a a +++cosx ), ∵(sin ,cos 1)()(2222222222=+=+=+++b a b b a a b a b b a a ϕ从而可令φ, 则有asinx+bcosx=22b a +(sinxcos φ+cosxsin φ) =22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tan φ=ab . 例4、 如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.课堂小结 1、回顾前面学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2、本节课还研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.作业课本习题3.2 A 组1(2) (4)、3、5、题。
人教版高中数学高一A版必修4导学案 3.2简单的三角恒等变换(一)
课堂导学三点剖析1.综合运用所学公式进行化简.求值和证明【例1】已知cos (α+β)=51,cos (α-β)=53,求tanαtanβ的值. 思路分析:要求tanαtanβ,需求sinαsinβ与cosαcosβ,两个整体式子的值,而cos (α+β)与cos (α-β)展开式中正好含有cosαcosβ与sinαsinβ,因此,可构造关于sinαsinβ,cosαcosβ的方程组来求解.解:由条件得:⎪⎪⎩⎪⎪⎨⎧=+=-)2.(53sin sin cos cos )1(,51sin sin cos cos βαβαβαβα ①+②得,2cosαcosβ=54,∴cosαcosβ=52. ②-①得,2sinαsinβ=52,∴sinαsinβ=51. ∴tanαtanβ=215251sin cos sin sin ==βαβα. 温馨提示要抓住公式之间的内在联系,在充分理解的基础上加强记忆,并能做到灵活运用公式本题就是利用方程的思想,构造一个关于sinαsinβ与cosαcosβ的方程组,通过解方程获解.2.辅助角公式的应用【例2】 将下列各式化简为Asin (ωx+φ)的形式:(1)cosx-sinx ;(2)3sinx+3cosx ;(3)asinx+bcosx (ab≠0).思路分析:本题主要考查两角和(差)的正余弦公式的恒等变形.解:(1)cosx-sinx=-(sinx-cosx ) =-2(22sinx-22cosx ) =-2(sinxcos4π-cosxsin 4π) =-2sin (x-4π). 本题化简结果不唯一,也可这样变换: cosx-sinx=2(22cosx-22sinx )=2(sinxcos 43π+cosxsin 43π)=2sin (x+43π).(2)3sinx+3cosx=23(23sinx+21cosx ) =23(sinxcos6π+cosxsin 6π) =23sin (x+6π). (3)asinx+bcosx =)cos sin (222222x b a b x b a ab a ++++ =22b a +(sinxcosφ+cosxsinφ) =22b a +sin (x+φ).其中cosφ=22b a a+,sinφ=22b a b +.3.半角公式的应用及符号选择【例3】 已知cosθ=-53,且180°<θ<270°,求tan 2θ的值. 思路分析:本题有以下两种思路:(1)cosθ=-53→tan 2θ=±θθcos 1cos 1+-→tan 2θ的值; (2)cosθ=-53→tan 2θ=θθsin cos 1-(或tan 2θ=θθcos 1sin +)→tan 2θ的值. 对于(1)的思考要注意符号的选择.解法1:因为180°<θ<270°,所以90°<2θ<135°,即2θ是第二象限的角,所以tan 2θ<0, ∴tan 2θ=.2)53(1)53(1cos 1cos 1-=-+---=+--θθ 解法2:因为180°<θ<270°,即θ是第三象限角,∴sinθ=542591cos 12-=--=--θ. ∴tan 2θ=54)53(1sin cos 1---=-θθ=-2,或tan 2θ=)53(154cos 1sin -+-=+θθ=-2. 各个击破类题演练1已知sin (α+β)=21,sin (α-β)=31,求βαtan tan 的值. 解:由已知可得:sinαcosβ+cosαsinβ=21① sinαcosβ-cosαsinβ=31② ①+②得sinαcosβ=125, ①-②得cosαcosβ=121. ∴βαtan tan =5. 变式提升1求值:tan (6π-θ)+tan (6π+θ)+3tan (6π-θ)·tan (6π+θ). 解:原式=tan [(6π-θ)+(6π+θ)]·[1-tan (6π-θ)·tan (6π+θ)]+3tan (6π-θ)·tan (6π+θ) =tan 3π·[1-tan (6π-θ)·tan (6π+θ)]+3tan (6π-θ)·tan (6π+θ) =3-3·tan (6π-θ)·tan (6π+θ)+3tan (6π-θ)tan (6π+θ)=3. 类题演练2将3sinx-4cosx 化为Asin (ωx+φ)的形式.解:3sinx-4cosx=5(53sinx-54cosx ) 令cosφ=53,φ为第一象限角,则sinφ=54, ∴3sinx-4cosx=5(sinxcosφ-cosxsinφ)=5sin (x-φ).变式提升2(1)求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值 ;并写出该函数在[0,π]上的单调递增区间.解:y=sin 4x+23sinxcosx-cos 4x(sin 2x+cos 2x )(sin 2x-cos 2x )+3sin2x =3sin2x-cos2x=2sin (2x-6π). 故该函数的最小正周期是π;最小值是-2. 单增区间是[0,3π],[π65,π]. (2)当y=2cosx-3sinx 取得最大值时,tanx 的值是( ) A.23 B.-23 C.13 D.4 解析:y=2cosx-3sinx=13sin (x+φ)最大值为13,又sin 2x+cos 2x=1, 解得sinx=133-,cosx=132, ∴tanx=xx cos sin =-23. 答案:B类题演练3已知sinφ·cosφ=16960,且4π<φ<2π,求sinφ,cosφ的值. 解:∵sinφcosφ=16960,∴sin2φ=169120, 又∵4π<φ<2π,2π<2φ<π,cos2φ<0, ∴cos2φ=169119169717)169120(12sin 122-=⨯-=--=--ϕsinφ>0,cosφ>0. ∴sinφ=13122169119122cos 1=+=-ϕ, cosφ=1352169119122cos 1=-=+ϕ. 变式提升3设5π<θ<6π,cos 2θ=a ,那么sin 4θ等于( ) A.21a +- B.21a -- C.21a +- D.-21a -解析:由5π<θ<6π,则52π<2θ<3π,45π<4θ<23π,则sin 4θ=2122cos 1a --=--θ. 答案:B。
人教A版高中数学必修四简单的三角恒等变换学案
1、知识目标:以已有的十一个公式为依据,以求三角函数的周期,最值,三角函数恒等式的证明为基本训练,学习三角变换的内容,思路和方法。
2、能力目标:体会三角变换的特点,提高推理,运算的能力。
能运用化归转化的数学思想方法对三角函数的变换过程进行设计,不断提)B ϕ++的周期,最值,单调区间: 2. 三角函数和差角公式: 3.三角函数二倍角公式: 4.辅助角公式: 二、问题设置: 问题1、求函数22tan tan 2y cos )tan 2tan αααααα=--的周期,最大值和最小值。
问题2、证明:21cos 2tan 1cos 2θθθ-=+三、知识探究: 探究问题1:思考1:求解函数22tan tan 2y cos )tan 2tan αααααα=+--的周期,最值与求函数y sin()A x B ϖϕ=++的周期,最值有什么区别与联系吗?答:问题都是一样的;如果能把函数22tan tan 2y cos )tan 2tan αααααα=--转化为函数y sin()A x B ϖϕ=++,那么,函数22tan tan 2y cos )tan 2tan αααααα=--的周期和最值就可以求解了。
思考2:如何将函数22tan tan 2y cos )tan 2tanαααααα=--转化为y sin()A x B ϖϕ=++的形式呢?思考3:观察函数22tan tan 2y cos )tan 2tan αααααα=+--与函数y sin()A x B ϖϕ=++形式的差别,有哪些?答:函数22tan tan 2y cos )tan 2tan αααααα=--中三角函数的种类多,角也是两种不同的角思考4:在问题3中所找到的差别,我们能否转化消除?如果能,怎样转化消除?答:正切化正弦,可以减少一种三角函数,tan 2α可以通过正切的二倍角公式转化为单角,这样就可以和其它三角函数的角一样了 思考5:当我们把函数22tan tan 2y cos )tan2tan αααααα=--中与y sin()A x B ϖϕ=++不同的地方全部转化消除了,是否意味着我们可以求函数22tan tan 2y cos )tan 2tan αααααα=+--的周期,最大值和最小值?思考6:如何书写此问题的解答过程?请在下面写出来: 解答:反思总结:探究问题2:思考7:这是三角恒等式的证明问题,在学习同角三角函数关系的时候,我们已经接触过三角函数恒等式的证明问题,请问三角恒等式的证明有哪些方法?思考8:若用“从等式的左边推证得出等式的右边”的方法证明此恒等式,你认为其核心思想是什么?与思考1问题解决的核心思想有什么样的关系?思考9:结合思考1的解题思路,给出思考2的解答反思总结:四.知识巩固:1、求下列函数的最小正周期,递增区间及最大值:(1)y sin 2cos 2x x =(2)2y 2cos 12x=+(3)y 4sin 4x x =+2、求证:(1)2(sin 2cos 2)1sin 4x x x -=- (2)12tan 2tan tan2θθθ-=-(3)1sin 2cos sin cos sin θθθθθ+=++ (4)1sin 2cos 2tan 1sin 2cos 2θθθθθ+-=++(5)tan()tan()2tan 2424x x xππ++-=(6)21cos 22sin 2x x ++=)。
2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换
3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
精选人教A版高中数学必修4第三章三角恒等变换3.2简单的三角恒等变换导学案
3.2 简单的三角恒等变换学习目标.1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一.半角公式思考1.我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2α替换α,结果怎样?答案.结果是cos α=2cos2α2-1=1-2sin 2α2=cos 2α2-sin 2α2. 思考2.根据上述结果,试用sin α,cos α表示sin α2,cos α2,tan α2.答案.∵cos2α2=1+cos α2,∴cos α2=± 1+cos α2, 同理sin α2=±1-cos α2,∴tan α2=sinα2cosα2=±1-cos α1+cos α.思考3.利用tan α=sin αcos α和倍角公式又能得到tan α2与sin α,cos α怎样的关系?答案. tan α2=sin α2cos α2=sin α2·2cosα2cos α2·2cosα2=sin α1+cos α,tan α2=sin α2cos α2=sin α2·2sinα2cos α2·2sinα2=1-cos αsin α.梳理知识点二.辅助角公式思考1.a sin x +b cos x 化简的步骤有哪些? 答案.(1)提常数,提出a 2+b 2得到a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2 sin x +b a 2+b 2cos x .(2)定角度,确定一个角θ满足: cos θ=a a 2+b2,sin θ=b a 2+b2(或sin θ=a a 2+b2,cos θ=b a 2+b 2).一般θ为特殊角⎝ ⎛⎭⎪⎫π4,π3等,则得到a 2+b 2(cos θsin x +sin θcos x )(或a 2+b 2(sin θsin x +cosθcos x )).(3)化简、逆用公式得a sin x +b cos x =a 2+b 2sin(x +θ)(或a sin x +b cos x =a 2+b 2cos(x -θ)).思考2.在上述化简过程中,如何确定θ所在的象限? 答案.θ所在的象限由a 和b 的符号确定. 梳理.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).(其中tan θ=ba)类型一.应用半角公式求值例1.已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.解.∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos 2θ2=1+cos θ2=15. ∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思与感悟.(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子;②观察已知条件与所求式子之间的联系(从角和三角函数名称入手). 跟踪训练1.已知sin α=-817,且π<α<3π2,求sin α2,cos α2和tan α2. 解.∵sin α=-817,π<α<3π2,∴cos α=-1517.又∵π<α<3π2,∴π2<α2<3π4,∴sin α2=1-cos α2= 1+15172=41717, cos α2=-1+cos α2=- 1-15172=-1717, tan α2=sinα2cosα2=-4.类型二.三角恒等式的证明例2.求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ. 证明.要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ. ∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ, ∴左边=右边, ∴原式得证.反思与感悟.证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练2.证明:sin α+11+sin α+cos α=12tan α2+12.证明.∵左边=2tanα21+tan2α2+11+2tan α21+tan 2 α2+1-tan2α21+tan2α2=tan2α2+2tan α2+11+tan 2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.类型三.利用辅助角公式研究函数性质例3.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 (x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解.(1)∵f (x )=3sin(2x -π6)+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin[2⎝ ⎛⎭⎪⎫x -π12]+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12 (k ∈Z ),∴所求x 的集合为{x |x =k π+5π12,k ∈Z }.反思与感悟.(1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.跟踪训练3.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 解.(1)f (x )=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π-π8,k ∈Z .类型四.三角函数在实际问题中的应用例4.如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.解.如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ) +8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.反思与感悟.此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次要确定角的范围.跟踪训练4.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解.连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ =-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ=12(sin 2θ+cos 2θ)-12 =22cos(2θ-45°)-12. 当2θ-45°=0°,即θ=22.5°时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12m 2.1.若cos α=13,α∈(0,π),则cos α2的值为(..)A.63 B.-63 C.±63 D.±33答案.A解析.由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.已知tan θ2=3,则cos θ等于(..)A.45B.-45C.415D.-35 答案.B解析.cos θ=cos 2θ2-sin2θ2cos 2θ2+sin2θ2=1-tan2θ21+tan2θ2=1-321+32=-45.3.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是(..)A.1B.2C.32D.3答案.C解析.f (x )=1-cos 2x 2+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,∵sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴f (x )max =1+12=32,故选C.4.函数f (x )=sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值为 .答案.-1解析.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2.∵-π4≤x -π4≤π4,∴f (x )min =2sin ⎝ ⎛⎭⎪⎫-π4=-1.5.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α.(180°<α<360°)解.原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2⎝ ⎛⎭⎪⎫sin 2α2-cos 2α2⎪⎪⎪⎪⎪⎪cos α2=-cos α2cos α⎪⎪⎪⎪⎪⎪cos α2.因为180°<α<360°,所以90°<α2<180°,所以cos α2<0,所以原式=cos α.1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限;②tan φ=b a(或sin φ=b a 2+b2,cos φ=a a 2+b 2).3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握,例如sin x ±cos x =2sin ⎝ ⎛⎭⎪⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎪⎫x ±π3等. 课时作业一、选择题1.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于(..)A.-12B.12 C.2 D.-2答案.A解析.∵α是第三象限角,cos α=-45,∴sin α=-35,∴1+tanα21-tan α2=1+sinα2cos α21-sinα2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sinα2cos α2+sinα2=1+sin αcos α=1-35-45=-12.2.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于(..)A.1B.2C.3D.4 答案.C解析.cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.3.已知180°<α<360°,则cos α2的值等于(..)A.- 1-cos α2 B. 1-cos α2 C.- 1+cos α2D.1+cos α2答案.C4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是(..)A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形答案.B解析.用降幂公式进行求解. 5.设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标是π6,则ω的值为(..) A.12 B.-13 C.-23 D.2π3答案.A解析.f (x )=32cos 2ωx +12sin 2ωx +32+a =sin ⎝⎛⎭⎪⎫2ωx +π3+32+a , 依题意得 2ω·π6+π3=π2⇒ω=12. 6.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c = 1-cos 50°2,则有(..) A.c <b <aB.a <b <cC.a <c <bD.b <c <a 答案.C解析.a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵y =sin x 在[0,π2]上是单调递增的, ∴a <c <b .7.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于(..) A.-13B.5C.-5或13D.-13或5 答案.B解析.由sin 2θ+cos 2θ=1,得(m -3m +5)2+(4-2m m +5)2=1,解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π.∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5.二、填空题8.设5π<θ<6π,cos θ2=a ,则sin θ4的值为 .答案.- 1-a2 解析.sin 2θ4=1-cos θ22,∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=- 1-cos θ22=- 1-a2.9.sin 220°+sin 80°·sin 40°的值为 .答案.34解析.原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°·cos 20°-cos 60°sin 20°)=sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220°=34sin 220°+34cos 220°=34.10.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案.π解析.∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 三、解答题11.已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,求cos α的值. 解.∵sin ⎝⎛⎭⎪⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α =32sin α+32cos α=-435. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎪⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎪⎫α+π6=35. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6 =cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6 =35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 证明.∵左边=tan 3x 2-tan x 2=sin 3x 2cos 3x 2-sin x 2cos x 2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2 =sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin x cos x +cos 2x=右边. ∴原等式得证.13.已知cos 2θ=725,π2<θ<π, (1)求tan θ的值;(2)求2cos 2θ2+sin θ2sin (θ+π4)的值. 解.(1)因为cos 2θ=725, 所以cos 2θ-sin 2θcos 2θ+sin 2θ=725, 所以1-tan 2θ1+tan 2θ=725, 解得tan θ=±34, 因为π2<θ<π,所以tan θ=-34. (2)因为π2<θ<π,tan θ=-34, 所以sin θ=35,cos θ=-45, 所以2cos 2θ2+sin θ2sin (θ+π4)=1+cos θ+sin θcos θ+sin θ =1-45+35-45+35=-4. 四、探究与拓展14.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是 ,最小值是 . 答案.32.12解析.∵A +B =2π3, ∴cos 2A +cos 2B=12(1+cos 2A +1+cos 2B ) =1+12(cos 2A +cos 2B ) =1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B ) =1-12cos(A -B ), ∴当cos(A -B )=-1时,原式取得最大值32; 当cos(A -B )=1时,原式取得最小值12. 15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解.(1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。
数学必修4教学案:3.2 简单的三角恒等变换(教学案)
数学必修4教学案:3.2 简单的三角恒等变换(教学案)数学必修4教学案:3.2简单的三角恒等变换(教、学案)3.2简单三角恒等式变换【教学目标】能够用所学公式简化、评估和证明三角函数公式,引导学生推导半角公式、和差公式和和差积公式(公式不需要记忆),使学生进一步提高运用变换、变换、方程等数学思想解决问题的能力。
【教学重点、难点】教学重点:引导学生学习三角变换的内容、思想和方法,了解三角变换的特点,在现有公式的基础上提高其推理和计算能力,并以半角公式、和差公式和和差积公式的推导为基础训练。
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【教学过程】回顾介绍:回顾角度倍增公式s2?、c2、t2?首先,让学生写下三倍角度的公式,注意等号两侧角度之间的关系,并特别注意C2?。
既然我们可以用单角度来表示双角度,我们可以用双角度来表示单角度吗?半角公式的推导和理解:例1、试以cos?表示sin2?2,cos2?2,tan22?2.分析:我们可以通过双角度cos??2cos角度公式?第二代?,21和cos??1?2sin2?2来做此题.(二倍(一代人?)22解决方案:cos??1.因为什么??2cos2?2.你能得到sin2吗?2.1.余弦?;2.2.1.你能得到Cos2吗?2.1.因为?。
2.你能用两个公式除以Tan 2吗?2.2.1.因为?。
?1.余弦?cos22sin2?Sin评论:⑴ 上述结果也可以表示为:21cos21cos2cos2tan21cos1cos并称之为半角公式(不要求记忆),符号由2角的象限决定。
⑵ 在三角函数公式的简化、求值和证明中,广泛使用了降幂和增幂公式以及降幂和增幂公式。
⑶ 代数变换通常侧重于公式的子结构形式的变换。
三角恒等式变换通常首先寻找公式中包含的角度之间的联系,并在此基础上选择合适的公式来联系它们,这是三角恒等式变换的一个重要特征。
人教A版高中数学必修4第三章三角恒等变换导学案
第三章 三角恒等变换1.三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1.已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析.将π6+α看作一个整体,观察π6+α与5π6-α的关系.解.∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2.设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan2α.解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案.-34三、注意发现互余角、互补角,利用诱导公式转化角 例3.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析.转化为已知角⎝ ⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝ ⎛⎭⎪⎫π4-x 这个角的三角函数. 解.原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4.求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析.观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解.f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°),当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2.三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析.3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案.2点评.常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解.因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评.一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析.cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案.-79点评.正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析.cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案.3点评.解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解.原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin10π1124sinπ11=sinπ1125sinπ11=132.点评.这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3.聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1.求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x的最值.解.原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2.求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解.原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评.形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3.求函数y =2sin x +12sin x -1的值域.解.原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4.求函数y =sin x +3cos x -4的值域.解.原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评.对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5.设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解.y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评.形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6.试求函数y =sin x +cos x +2sin x cos x +2的最值.解.设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评.一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2). 四、利用函数的单调性求解例7.求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解.y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0;当t =3,即sin x =1时,y max =83.例8.在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.解.AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评.一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4.行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1.已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析].由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2.已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解].由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析].由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解].由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3.在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解].由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析].在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解].由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4.判断函数f (x )=1+sin x -cos x 1+sin x +cos x 的奇偶性.[错解].f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析].运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解].事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评.判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5.若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解].∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析].∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解].∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5.平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析.由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案.π点评.解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析.因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案.-17250点评.解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析.由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案.2π3点评.解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析.由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ·b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案.4点评.解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于(..) A.-32 B.-16 C.16D.32解析.由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案.D点评.平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6.单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1.已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解.设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评.借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2.已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析.如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案.-43点评.若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3.如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解.(1)由三角函数定义可知,A ⎝ ⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评.借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7.教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1.求函数y =2sin x (sin x -cos x )的最小值. 解.y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ·22+cos 2x ·22 =1-2⎝ ⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2.求函数y =12cos 2x +32sin x cos x +1的单调区间.解.y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3.函数y =cos 22x +4cos 2x sin 2x 的最小正周期是(..) A.2π B.π C.π2 D.π4答案.C解析.y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为(..)A. 2B.- 2C.1D.-1 答案.D解析.y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。
高中数学人教版必修4导学案:3.2简单的三角恒等变换(无答案)
学案
年级: 高一 科目: 数学 主备: 审核:
课题:3.2简单的三角恒等变换 课型:新授课 课时 : 第1 课时 知识与技能:
能运用和(差)角公式、倍角公式进行简单的恒等变换(包括尝试导出积化和差、和差化积、半角公式,但不要求记忆)。
【导学过程1:】复习回顾
一、复习和、差角公式及二倍角公式:
【导学过程2:】例题讲评
例1、试以cos α表示222sin
,cos ,tan 222ααα
思考:思考怎样推导如下的三个降次公式(半角公式)?它们有什么作用?
例2、求证:
(1).()()1sin cos sin sin 2
αβαβαβ=++-⎡⎤⎣⎦; =-)cos(βα=+)cos(βα=+)sin(βα=-)sin(βα=-)tan(βα=+)tan(βα=α2sin =α2cos =
α2tan
(2).2cos 2sin
2sin sin ϕθϕθϕθ-+=+
思考:在例2证明中用到哪些数学思想?
【导学过程3:】例题讲评
例3、
求函数sin y x x =的周期,最大值和最小值
【导学过程4:】应用题讲评
如图,已知OPQ 是半径为1,圆心角为3
π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值。
【作业】:课本P147复习题A组9 感谢您的阅读,祝您生活愉快。
(新课程)高中数学《3.2简单的三角恒等变换》导学案 新人教a版必修4
3.2 简单的三角恒等变换1、会用已学公式进行三角函数式的化简、求值和证明。
2、会推导半角公式,积化和差、和差化积公式(公式不要求记忆)。
3、进一步提高运用转化、换元、方程等数学思想解决问题的能力。
(预习教材P139—P142)复习:Cos(α+β)=Cos(α-β)=sin(α+β)=sin(α-β)=tan(α+β)=tan(α-β)=sin2α=tan2α=cos2α=二、新课导学※探索新知探究一:半角公式的推导请同学们阅看p139例1..思考1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。
.思考2、半角公式中的符号如何确定?思考3、二倍角公式和半角公式有什么联系?.思考4、代数变换与三角变换有什么不同?变式训练1:求证sin tan 21cos 1cos tan 2sin αααααα=+-=探究二:积化和差、和差化积公式的推导.请同学们阅看p140例2。
.思考 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?.思考2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?.思考3、在例2证明过程中,体现了什么数学思想方法?点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式.变式训练2:课本p142 2(2)、3(3)探究三:三角函数式的变换。
请同学们阅看p140例3。
.思考1、例3的过程中应用了哪些公式?.思考2、如何将形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx 的周期,最大值和最小值.变式3:已知函数x x x x x f 44sin cos sin 2cos )(--=(1)求)(x f 的最小正周期,(2)当]2,0[π∈x 时,求)(x f 的最小值及取得最小值时x 的集合※ 典型例题例1.已知135sin =α,且α在第二象限,求2tan α的值。
《简单的三角恒等变换》 导学案
《简单的三角恒等变换》导学案一、学习目标1、掌握两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。
2、能运用上述公式进行简单的三角恒等变换,包括化简、求值、证明等。
二、学习重难点1、重点(1)两角和与差的正弦、余弦、正切公式的应用。
(2)二倍角公式的应用。
(3)三角恒等变换的基本思路和方法。
2、难点(1)公式的灵活运用和变形使用。
(2)角的合理变换和整体代换思想的运用。
三、知识梳理1、两角和与差的正弦、余弦、正切公式(1)\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)(2)\(\sin(\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta\)(3)\(\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta\)(4)\(\cos(\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta\)(5)\(\tan(\alpha +\beta) =\frac{\tan\alpha +\tan\beta}{1 \tan\alpha\tan\beta}\)(6)\(\tan(\alpha \beta) =\frac{\tan\alpha \tan\beta}{1 +\tan\alpha\tan\beta}\)2、二倍角的正弦、余弦、正切公式(1)\(\sin 2\alpha = 2\sin\alpha\cos\alpha\)(2)\(\cos 2\alpha =\cos^2\alpha \sin^2\alpha =2\cos^2\alpha 1 = 1 2\sin^2\alpha\)(3)\(\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}\)3、辅助角公式\(a\sin\alpha + b\cos\alpha =\sqrt{a^2 + b^2}\sin(\alpha +\varphi)\),其中\(\tan\varphi =\frac{b}{a}\)四、典型例题例 1 化简:\(\sin 15^{\circ}\cos 75^{\circ} +\cos 15^{\circ}\sin 75^{\circ}\)解:\\begin{align}&\sin 15^{\circ}\cos 75^{\circ} +\cos 15^{\circ}\sin 75^{\circ}\\=&\sin(15^{\circ} + 75^{\circ})\\=&\sin 90^{\circ}\\=&1\end{align}\例 2 已知\(\sin\alpha =\frac{3}{5}\),\(\alpha\)为第二象限角,\(\cos\beta =\frac{5}{13}\),\(\beta\)为第三象限角,求\(\cos(\alpha \beta)\)的值。
高中数学必修4公开课教案32简单的三角恒等变换
3.2 简单的三角恒等变换整体设计教学分析本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行比照、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中表达的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.通过例题的解答,引导学生对变换对象目标进行比照、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中表达的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比拟中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 课时安排 2课时教学过程 第1课时导入新课思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个根本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和〔差〕角公式、倍角公式进行更加丰富的三角恒等变换.推进新课 新知探究 提出问题 ①α与2a有什么关系? ②如何建立cosα与sin 22a之间的关系? ③sin 22a =2cos 1a -,cos 22a =2cos 1a +,tan 22a =a a cos 1cos 1+-这三个式子有什么共同特点?④通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?⑤证明(1)sinαcosβ=21[sin(α+β)+sin(α-β)]; (2)sinθ+sinφ=2sin 2cos2ϕθϕθ-+. 并观察这两个式子的左右两边在结构形式上有何不同?活动:教师引导学生联想关于余弦的二倍角公式cosα=1-2sin 22a ,将公式中的α用2a代替,解出sin 22a 即可.教师对学生的讨论进行提问,学生可以发现:α是2a的二倍角.在倍角公式cos2α=1-2sin 2α中,以α代替2α,以2a 代替α,即得cosα=1-2sin 22a,所以sin 22a =2cos 1a-. ①在倍角公式cos2α=2cos 2α-1中,以α代替2α,以2a代替α,即得cosα=2cos 22a-1,所以cos 22a =2cos 1a+. ②将①②两个等式的左右两边分别相除,即得 tan 22a =aa cos 1cos 1+-. ③ 教师引导学生观察上面的①②③式,可让学生总结出以下特点: (1)用单角的三角函数表示它们的一半即是半角的三角函数;(2)由左式的“二次式〞转化为右式的“一次式〞(即用此式可到达“降次〞的目的).教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin2a =±2cos 1a -,cos 2a =±2cos 1a +,tan 2a =±aa cos 1cos 1+-,并称之为半角公式(不要求记忆),符号由2a所在象限决定.对于问题⑤:〔1〕如果从右边出发,仅利用和〔差〕的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sinαcosβ呢?想到sin(α+β)=sinαcosβ+cosαsinβ.从方程角度看这个等式,sinαcosβ,cosαsinβ分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sinαcosβ的公式,列出sin(α-β)=sinαcosβ-cosαsinβ后,解相应的以sinαcosβ,c osαsinβ为未知数的二元一次方程组,就容易得到所需要的结果.〔2〕由〔1〕得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与〔1〕没有什么区别.只需做个变换,令α+β=θ,α-β=φ,那么α=2ϕθ+,β=2ϕθ-,代入(1)式即得(2)式.证明:(1)因为sin(α+β)=sinαcosβ+cosαsinβ, sin(α-β)=sinαcosβ-cosαsinβ,将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sinαcosβ, 即sinαcosβ=21[sin(α+β)+sin(α-β)]. (2)由(1),可得sin(α+β)+sin(α-β)=2sinαcosβ.① 设α+β=θ,α-β=φ,那么α=2ϕθ+,β=2ϕθ-.把α,β的值代入①, 即得sinθ+sinφ=2sin2ϕθ+cos2ϕθ-.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sinαcosβ看作x,cosαsinβ看作y,把等式看作x,y 的方程,通过解方程求得x,这就是方程思想的表达.讨论结果:①α是2a的二倍角. ②sin 22a =1-cos 2cos 1a -.③④⑤略(见活动〕. 应用例如思路1例1 化简:.cos sin 1cos sin 1xx xx ++-+.活动:此题考查公式的应用,利用倍角公式进行化简解题.教师提醒学生注意半角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系.解:原式=)2sin 2(cos 2cos 2)2cos 2(sin 2sin 22cos 2sin 22cos 22cos 2sin 22sin 222x x x x x x x x x x x x ++=++=tan 2x .变式训练化简:sin50°(1+3tan10°).解:原式=sin50°10cos )10sin 2310cos 21(250sin 10cos 10sin 31+•=+ =2sin50°·10cos 10sin 30cos 10cos 30sin + =2cos40°·10cos 10cos 10cos 80sin 10cos 40sin ===1.例2 sinx-cosx=21,求sin 3x-cos 3x 的值. 活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a-b)3=a 3-3a 2b+3ab2-b 3=a 3-b 3-3ab(a-b),∴a 3-b 3=(a-b)3+3ab(a-b).解完此题后,教师引导学生深挖本例的思想方法,由于sinx·cosx 与sinx±cosx 之间的转化.提升学生的运算.化简能力及整体代换思想.此题也可直接应用上述公式求之,即sin 3x-cos 3x=(sinx-cosx)3+3sinxcosx(sinx-cosx)=1611.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx-cosx=21,得(sinx-cosx)2=41, 即1-2sinxcosx=41,∴sinxcosx=83.∴sin 3x-cos 3x=(sinx-cosx)(sin 2x+sinxcosx+cos 2x) =21(1+83)=1611. 点评:此题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法. 变式训练(2007年高考浙江卷,12) sinθ+cosθ=51,且2π≤θ≤43π,那么cos2θ的值是______________. 答案:257-例11sin sin cos cos :1sin sin cos cos 24242424=+=+ABA B B A B A 求证. 活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,条件是a 2+b 2=1的形式,可利用三角代换.证明一:∵1sin sin cos cos 2424=+BAB A , ∴cos 4A·sin 2B+sin 4A·cos 2B=sin 2B·cos+B. ∴cos 4A(1-cos 2B)+sin 4A·cos 2B=(1-cos 2B)cos 2B, 即cos 4A-cos 2B(cos 4A-sin 4A)=cos 2B-cos 4B. ∴cos 4A-2cos 2Acos 2B+cos 4B=0.∴(cos 2A-cos 2B)2=0.∴cos 2A=cos 2B.∴sin 2A=sin 2B.∴=+A BA B 2424sin sin cos cos cos 2B+sin 2B=1. 证明二:令BAa B A sin sin ,cos cos cos 22==sinα,那么cos 2A=cosBcosα,sin 2A=sinBsinα.两式相加,得1=cosBcosα+sinBsinα,即cos(B-α)=1.∴B-α=2kπ(k ∈Z ),即B=2kπ+α(k ∈Z ). ∴cosα=cosB,sinα=sinB.∴cos 2A=cosBcosα=cos 2B,sin 2A=sinBsinα=sin 2B.∴BBB B A B A B 24242424sin sin cos cos sin sin cos cos +=+=cos 2B+sin 2B=1. 点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元. 变式训练在锐角三角形ABC 中,ABC 是它的三个内角,记S=BA tan 11tan 11+++,求证:S<1. 证明:∵S=BA B A BA B A B A tan tan tan tan 1tan tan 1)tan 1)(tan 1(tan 1tan 1+++++=+++++又A+B>90°,∴90°>A>90°-B>0°. ∴tanA>tan(90°-B)=cotB>0, ∴tanA·tanB>1.∴S<1.思路2例1 证明x x cos sin 1+=tan(4π+2x).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x,三角函数的种类为正弦,余弦,右边是半角2x,三角函数的种类为正切.解:方法一:从右边入手,切化弦,得tan(4π+2x )=2sin2cos 2sin2cos 2sin 2sin 2cos 2cos 2sin 4cos 2cos 4sin )24cos()22sin(x x x x x x x x x x -+=-+=++ππππππ,由左右两边的角之间的关系,想到分子分母同乘以cos 2x +sin 2x,得x x x x x x x x cos sin 1)2sin 2)(cos 2sin 2(cos )2sin 2(cos 2+=-++ 方法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得2sin2cos 2sin2cos )2sin 2)(cos 2sin 2(cos )2sin 2(cos cos sin 12x x xx x x x x x x xx -+=-++=+ 由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos2x,得2tan4tan 12tan 4tan 2tan 12tan1x xx x ππ-+=-+=tan(4π+2x ). 点评:此题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法.变式训练α,β∈(0,2π)且满足:3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求α+2β的值. 解法一:3sin 2α+2sin 2β=1⇒3sin 2α=1-2sin 2β,即3sin 2α=cos2β, ① 3sin2α-2sin2β=0⇒3sinαcosα=sin2β, ②①2+②2:9sin 4α+9sin 2αcos 2α=1,即9sin 2α(sin 2α+cos 2α)=1, ∴sin 2α=91.∵α∈(0,2π),∴sinα=31. ∴sin(α+2β)=sinαcos2β+cosαsin2β=sinα·3sin 2α+cosα·3sinαcosα=3sinα(sin 2α+cos 2α)=3×31=1. ∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法二:3sin 2α+2sin 2β=1⇒cos2β=1-2sin 2β=3sin 2α,3sin2α-2sin2β=0⇒sin2β=23sin2α=3sinαcosα,∴cos(α+2β)=cosαcos2β-sinαsin2β =cosα·3sin 2α-sinα·3sinαcosα=0.∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法三:由3sin 2α=cos2β,23sin2α=sin2β,两式相除,得tanα=cot2β,∴tanα=tan(2π-2β).∵α∈(0,2π),∴tanα>0.∴tan(2π-2β)>0.又∵β∈(0,2π),∴2π-<2π-2β<2π.结合tan(2π-2β)>0,得0<2π-2β<2π.∴由tanα=tan(2π-2β),得α=2π-2β,即α+2β=2π.例2 求证:αββαβαβ2222tan tan 1cos sin )sin()sin(-=-+a 活动:证明三角恒等式,一般要遵循“由繁到简〞的原那么,另外“化弦为切〞与“化切为弦〞也是在三角式的变换中经常使用的方法. 证明:证法一:左边=βαβαβαβαβ22cos sin )sin cos cos )(sin sin cos cos (sin -+==-=-=-a a a a 222222222222tan tan 1cos sin sin cos 1cos sin sin cos cos sin ββββββ=右边.∴原式成立. 证法二:右边=1-βββββ2222222222cos sin sin cos cos sin cos sin sin cos a a -= =βββββ22cos sin )sin cos cos )(sin sin cos cos (sin a a a a -+ =βββ22cos sin )sin()sin(++a a =左边.∴原式成立.点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力. 变式训练1.求证:θθθθθθ2tan 14cos 4sin 1sin 24cos 4sin 1-++=-+. 分析:运用比例的根本性质,可以发现原式等价于θθθθθθ2tan 1tan 24cos 4sin 14cos 4sin 1-=++-+,此式右边就是tan2θ. 证明:原等式等价于θθθθθ2tan 4cos 4sin 14cos 4sin 1=++-+.而上式左边θθθθθθθθθθ2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22++=++-+=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 2θθθθθθ++==tan2θ右边.∴上式成立,即原等式得证. 2.sinβ=m·sin(2α+β),求证:tan(α+β)=mm-+11tanα. 分析:仔细观察式与所证式中的角,不要盲目展开,要有的放矢,看到式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理. 证明:由sinβ=msin(2α+β)⇒sin[(α+β)-α]=msin[(α+β)+α]⇒sin(α+β)cosα-cos(α+β)sinα=m 0[sin(α+β)cosα+cos(α+β)sinα]⇒(1-m)·sin(α+β)cosα=(1+m)·c os(α+β)sinα⇒tan(α+β)=mm-+11tanα. 知能训练1.假设sinα=135,α在第二象限,那么tan 2a的值为( )A.5B.-5C.51D.51-2.设5π<θ<6π,cos 2θ=α,那么sin 4θ等于( )A.21a + B.21a - C.21a +- D.21a-- 3.sinθ=53-,3π<θ<27π,那么tan 2θ_________________.解答:1.A2.D3.-3 课堂小结2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的根本手段. 作业课本习题3.2 B 组2.设计感想1.本节主要学习了怎样推导半角公式、积化和差、和差化积公式以及如何利用已有的公式进行简单的恒等变换.在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择适宜公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1〞的代换,逆用公式等.第2课时导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(4π+α)-(4π-α),4π+α=2π-(4π-α)等,你能总结出三角变换的哪些策略?由此探讨展开.推进新课 新知探究 提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少? ②函数y=asinx+bcosx 的变形与应用是怎样的? ③三角变换在几何问题中有什么应用? 活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回忆,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ〔k ∈Z 且k≠0〕,最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ〔k ∈Z 且k≠0〕,且最小正周期是2π,函数y=sin2x 的周期是kπ〔k ∈Z 且k≠0〕,且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1]. 函数y=asinx+bcosx=22b a +〔2222sin ba b x ba a +++cosx 〕,∵(sin ,cos 1)()(2222222222=+=+=+++ba b ba aba b ba a ϕ从而可令φ,那么有asinx+bcosx=22b a +〔sinxcosφ+cosxsinφ〕 =22b a +sin 〔x+φ〕.因此,我们有如下结论:asinx+bcosx=22b a +sin 〔x+φ〕,其中tanφ=ab.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.讨论结果:①y=sinx ,y=cosx 的周期是2kπ〔k ∈Z 且k≠0〕,最小正周期都是2π;最大值都是1,最小值都是-1. ②—③(略)见活动. 应用例如思路1 例1 如图1,OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到: S=AB ·BC=(cosα33-sinα)sinα=sinαcosα-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值. 解:在Rt △OBC 中,BC =cosα,BC=sinα, 在Rt △OAD 中,OADA=tan60°=3, 所以OA=33DA=33BC=33sinα. 所以AB=OB-OA =cosα33-sinα. 设矩形ABCD 的面积为S,那么S=AB ·BC=(cosα33-sinα)sinα=sinαcosα33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63.由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63.因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63.点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP =α〞,结论改成“求矩形ABCD 的最大面积〞,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点. 变式训练(2007年高考辽宁卷,19) 函数f(x)=sin(ωx+6π)+sin(ωx -6π)-2cos 22x ω,x ∈R (其中ω>0).(1)求函数f(x)的值域;(2)假设函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2π,求函数y=f(x)的单调增区间. 解:(1)f(x)=23sinωx+21cosωx+23sinωx -21cosωx -(cosωx+1) =2(23sinωx -21cosωx)-1=2sin(ωx -6π)-1. 由-1≤sin(ωx -6π)≤1,得-3≤2sin(ωx -6π)-1≤1, 可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得ωπ2=π,即得ω=2.于是有f(x)=2sin(2x-6π)-1,再由2kπ-2π≤2x -6π≤2kπ+2π(k ∈Z ),解得 kπ-6π≤x≤kπ+3π(k ∈Z ).所以y=f(x)的单调增区间为[kπ-6π,kπ+3π](k ∈Z ). 点评:此题主要考查三角函数公式,三角函数图象和性质等根底知识,考查综合运用三角函数有关知识的能力.例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,此题主要考查二倍角公式以及三角函数的单调性和周期性等根底知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题. 解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x =3sin2x-cos2x=2sin(2x-6π). 故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,3π],[65π,π]. 点评:此题主要考查二倍角公式以及三角函数的单调性和周期性等根底知识. 变式训练函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期;(2)假设x ∈[0,2π],求f(x)的最大、最小值. 解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π), 所以,f(x)的最小正周期T=22π=π. (2)因为x ∈[0,2π],所以2x+4π∈[4π,45π]. 当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1. 所以,在[0,2π]上的最大值为1,最小值为-2. 思路2例1 函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(43π,0)对称,且在区间[0,2π]上是单调函数,求φ和ω的值. 活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(43π,0)对称〞这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),那么y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练. 解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx 对任意x 都成立.又ω>0,所以,得cosφ=0.依题设0≤φ≤π,所以,解得φ=2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x). 取x=0,得f(43π)=-f(43π),所以f(43π)=0. ∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0. 又ω>0,得43ωπ=2π+kπ,k=0,1,2,…. ∴ω=32(2k+1),k=0,1,2,…. 当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数; 当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数; 当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数. 所以,综合得ω=32或ω=2. 点评:此题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.变式训练如图2的Rt △ABC 中,∠A=90°,a 为斜边,∠B 、∠C 的内角平分线BD 、CE 的长分别为m 、n,且a 2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cosθ-sinθ=4(cos2C B +-cos 2C B -)成立?假设能,找出这样的角θ;假设不能,请说明理由.解:在Rt △BAD 中,m AB =cos 2B ,在Rt △BAC 中,a AB =sinC, ∴mcos 2B =asinC.图2同理,ncos2C =asinB. ∴mncos 2B cos 2C =a 2sinBsinC. 而a 2=2mn,∴cos2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =81. 积化和差,得4(cos 2C B +-cos 2C B -)=-1, 假设存在θ使等式cosθ-sinθ=4(cos 2C B +-cos 2C B -)成立,那么2cos(θ+4π)=-1, ∴cos(θ+4π)=22.而π<θ≤2π, ∴45π<θ+4π≤29π.∴这样的θ不存在. 点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,假设推证出现矛盾,即可否认假设;假设推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例2 tan(α-β)=21,tanβ=71-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=21, ∴tan2(α-β)=)(tan 1)tan(22βαβα---=34. 从而tan(2α-β)=tan [2(α-β)+β]=713417134tan )(2tan 1tan )(2tan ⨯+-=--+-ββαββα=121252125=. 又∵tanα=tan [(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1. 且0<α<π,∴0<α<4π.∴0<2α<2π. 又tanβ=71-<0,且β∈(0,π), ∴2π<β<π,-π<-β<2π-. ∴-π<2α-β<0.∴2α-β=43π-. 点评:此题通过变形转化为三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,假设α∈(0,π),那么求cosα;假设α∈(2π-,2π),那么求sinα等. 变式训练假设α,β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π.证明:两个等式可化为3sin 2α=cos2β, ①3sinαcosα=sin2β, ② ①÷②,得a a cos sin =ββ2sin 2cos ,即cosαcos2β-sinαsin2β=0, ∴cos(α+2β)=0.∵0<α<2π,0<β<2π,∴0<α+2β<23π. ∴α+2β=2π. 知能训练课本本节练习4.解答:4.(1)y=21sin4x.最小正周期为2π,递增区间为[28,28ππππk k ++-](k ∈Z ),最大值为21; (2)y=cosx+2.最小正周期为2π,递增区间为[π+2kπ,2π+2kπ](k ∈Z ),最大值为3; (3)y=2sin(4x+3π).最小正周期为2π,递增区间为[224,2245ππππk k ++-](k ∈Z ),最大值为2. 课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的假设干性质,到达解决问题的目的,充分表达出生活的数学和“活〞的数学.作业课本复习参考题A 组10、11、12.设计感想1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的假设干性质,到达解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个根本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.对三角函数综合应用的考查,估计仍然以三角与数列、不等式、平面向量、解析几何、三角与解三角形的实际应用为主,题型主要是选择题、填空题,也可能以解答题形式出现,难度不会太大.应注意新情景立意下的三角综合应用也是考试的热点.。
高中数学必修四 第三章三角恒等变换 3.2.2三角恒等变换的应用
π 4
= 1 求得a,再将函数 f(x)的解析式化为
f(x)=Asin(ωx+φ)的形式后求出最小值;(2)先利用(1)求出函数 f(x)在
R 上的单调递增区间,再与
0,
π 2
取交集.
题型一 题型二 题型三
解:(1)∵������
π 4
= 1,
∴sin2
π 4
+
������sin
π 4
cos
π 4
即sin 2α= 12,
∵α 是锐角,∴2α=30°或 150°,即 α=15°或 75°.
故所求角为 15°或 75°.
题型一 题型二 题型三
题型三
易错辨析
易错点 记错特殊角的三角函数值致错
【例 3】 当函数 y=sin x+ 3cos ������, ������∈R 取最大值时,求自变量
x 的取值集合 S.
A.sin 2x
B.
2sin
������
+
π 4
C.
2sin
������-
π 4
D. sin
������-
π 4
解析:原式 =
2
2 2
sin������-
2 2
cos������
=
2sin
������-
π 4
.
答案:C
【做一做 2】 函数 y=sin 2xcos 2x 的最小值等于
.
解析:y=
1 2
,
sin
π 6
=
23.
正解:y=sin x+
3cos x=2
1 2
sin������
+
人教A版高中数学必修四 3.2《简单的三角恒等变换》导学案3
高中数学人教版必修4::3.2《简单的三角恒等变换》导学案【学习目标】1.会用三角函数的有关公式进行解题.2.能将前面所掌握的公式应用到三角函数式化简、求值、证明中.【重点难点】1.重点:三角函数有关公式的记忆.2. 难点:公式灵活运用.【学法指导】1. 采用观察、赋值、探究的学习方法,以已有的公式为依据,推导半角公式,提升逻辑推理能力.【知识链接】二倍角公式【学习过程】阅读课本第139页例1的内容,尝试回答以下问题:知识点1:半角公式(A 级)问题1:半角公式也可以理解为倍角公式,可视为α是2α的二倍角,尝试写出下列半角公式: 由2cos 12sin2αα=-得2sin 2α= . 由2cos 2cos 12αα=-得2cos 2α= . 由222sin 2tan 2cos 2ααα=得2tan 2α= . (B 级)问题2:已知3cos 5θ=,且532πθπ<<,求sin ,cos ,tan 222θθθ的值.(B 级)问题3:已知3cos 5θ=-,且180270θ︒<<︒,求tan 2θ.阅读课本第140页例2的内容,尝试回答以下问题:知识点2:积化和差公式与和差化积公式(A 级)问题1:观察例2中这两个式子的左右两边在结构形式上有什么不同?(B 级)问题2:在下列4个积化和差公式中任选一个完成证明.1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+--(B 级)问题3:在下列4个和差化积公式中任选一个完成证明.sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=(B 级)问题4:化简: cos cos(120)cos(120)sin sin(120)sin(120)A B B B A A +︒++︒-+︒+-︒-阅读课本第140页例3、例4的内容的内容,尝试回答以下问题:知识点3:公式的综合运用温馨提示:辅助角公式为sin cos )a x b x x ϕ+=+,即将含有同角的正弦、余弦的两项和化为一个角的一种三角函数形式,这样方便研究三角函数的性质.例1:已知函数2())2sin ()612f x x x ππ=-+-()x R ∈(A 级)问题1:请将函数解析式利用二倍角公式和辅助公式整理化成sin()y A x b ϖϕ=++形式?(B 级)问题2:请尝试求解函数()y f x =的单调区间?(B 级)问题3:求使函数()f x 取得最大值的自变量x 的集合?(C 级)问题4:尝试归纳解这种类型的题的一般方法.【基础达标】A1.化简:sin 4cos 2cos 1cos 41cos 21cos x xxx x x ∙∙+++.B2.求值sin15cos15sin15cos15︒+︒︒-︒.(尝试用多种方法)B3.求值22sin 20cos 50sin 20cos50.︒+︒+︒︒B4.求函数21sin 2sin ,2y x x x R =+∈的值域.C5.已知函数22()sin 2sin cos 3cos ,f x x x x x x R =++∈求: ①函数()f x 的最大值及取得最大值的自变量x 的集合. ②函数()f x 的单调增区间.③函数()f x 的对称轴.【小结】【当堂检测】B1.求函数2()6cos 2f x x x =,[0,]2x π∈的最值.。
高中数学_3.2 简单的三角恒等变换教学设计学情分析教材分析课后反思
简单的三角恒等变换(一)一、教学内容及其解析(1)教学内容:简单的三角恒等变换(2)解析:本节课选自人教版.必修四第三章第二节,是学习了两角和与差的正弦、余弦、正切公式及二倍角公式后的内容,本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、教学目标知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用;过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力;情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力.三、教学重、难点教学重点:利用公式进行简单的恒等变换;教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题.四、教学方法:探究式教学法.五、教学类型:新授课.六、教学内容复习引入(学生组织完成)问题1:和差角的正弦、余弦、正切公式(六个);问题2:二倍角的正弦、余弦、正切公式(三个);问题3:二倍角的变形公式(四个+三个).新课讲解思考1(学生组织完成):如何用cos α表示222sin cos tan 222ααα、、?分析:观察α与2α的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α代替α,即得2cos 12sin 2αα=-, 所以21cos sin 22αα-=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2α代替α,即得2cos 2cos 12αα=-,所以21cos cos 22αα+=. ② 将①②两个等式的左右两边分别相除,即得21cos tan 21cos ααα-=+.思考2:若已知cos α,如何计算sincos tan 222ααα、、?sincos tan 222ααα±=== (半角公式) 强调:“±”号由2α所在象限决定. 思考3:求证sin 1cos tan 21cos sin ααααα-==+ 证明22sin sin2cossin sin 222tan21cos cos cos 2cos 2cos 2222sin sin 2sin 2sin1cos 2222tan2sin sin coscos2sin222αααααααααααααααααααααα⋅====+⋅⋅-====⋅做3道小题:1.已知cos α=-15,π2<α<π,则sin α2等于 ( )A. -105B. 105C. -155D. 1552.已知tan α2=3,则cos α等于 ( )A. 45B. -45C. 415D. -353.若2sinx =1+cosx ,则tan 2x的值等于 ( )A. 12B. 12或不存在C.2D.2或12练一练:4.已知3s 5co α=,且532παπ<<,求sin ,cos ,tan 222ααα的值.解:533cos 2553sin 0,cos 0,tan 0422222sin 225s 2252tan 222παπαπαπαααααααααα<<∴=-<<∴<<>==-==-===因为又由公式sin 由公式cosco sincos小结:根据倍角或半角公式求三角函数的值,别忘判断角的范围。
【优质文档】人教A版数学必修四教案:3.2简单的三角恒等变换(2)
点评: 本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此
题.
变式训练
已知如图 2 的 Rt△ ABC 中 ,∠ A=90°,a 为斜边 ,∠B 、∠C 的内角平分线 BD 、CE 的长分别为 m、n,且 a2=2mn.
问 :是否能在区间 ( π,2]π中找到角 θ恰,使等式 cosθ-sin θ=4(cosB
3
∠ COP=α,求当角 α取何值时 ,矩形 ABCD 的面积最大 ?并求出这个最大面积 .
活动: 要求当角 α取何值时,矩形 ABCD 的面积 S 最大,先找出 S 与 α之间的函数关系,再求函数 的最值 .
找 S 与 α之间的函数关系可以让学生自己解决,得到:
S=AB · BC=(cos α
3
M( 3 ,0)对称 ,且在区间 [0, ] 上
4
2
活动: 提醒学生在解此题时 ,对 f(x) 是偶函数这一条件的运用不在问题上
,而在对 “ f(x的) 图象关于
3
M( ,0)对称 ”这一条件的使用上 ,多数考生都存在一定问题 .一般地 :定义在 R 上的函数 y=f(x) 对定义域内
4
任意 x 满足条件 :f(x+a)=2b-f(a-x), 则 y=f(x) 的图象关于点 (a,b)对称 ,反之亦然 .教师在这类问题的教学时要给
2
3
3
由 f(x) 的图象关于点 M 对称 ,得 f( -x)=-f( +x).
4
4
取 x=0,得 f( 3
3
)=-f(
3
),所以 f(
)=0.
4
4
4
∵ f( 3
3
)=sin(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.2三角恒等变换---化简、求值、应用
【学习目标】
1.能够进行基本的三角函数式的化简、求值,初步掌握三角变换的内容、思路和方法。
并应用三角变换解决某些实际问题。
2.进一步认识三角变换的特点,提高运用转化、换元、方程等数学思想解决问题的能力,提高解题中化简、推理、运算能力。
【新知自学】
知识回顾:
1、三角变换的基本特点:①注意式子的结构特征;②注意角之间的变换。
2、同角三角函数基本关系式,诱导公式,两角和差倍角公式。
新知梳理:
1、化简要求:
(1)能求出值的就求出值;
(2)使三角函数种数尽量少;
(3)使项数尽量少;
(4)尽量使分母不含三角函数;
(5)尽量使被开方数不含三角函数.
2.化简常用方法:
(1)能直接使用公式时就用公式(包括正用、逆用、变形用);
(2)常用切化弦、异名化同名、异角化同角等.
3、化简常用技巧:、
(1)注意特殊角的三角函数与特殊值的互化;
(2)注意利用代数上的一些恒等变形法则和分数的基本性质;
(3)注意利用角与角之间隐含关系;
(4)注意利用“1”的恒等变形.
4.灵活运用角的变形和公式变形,如2α=(α+β)+(α-β),
tanα±tanβ=tan(α±β)(1 tanαtanβ)等.
5.要重视角的范围对三角函数值的影响,因此要注意角的范围的讨论.
6.形如y=asinx+bcosx 的函数转化为形如y=Asin(ϕω+x )的函数,使问题得到简化. 对点练习:
1、已知cos α-cos β=21,sin α-sin β=3
1,则cos(α-β)= . 2、设-3π<α<-2π5,化简2)
πcos(1--α.
【合作探究】
典例精析:
例1、已知sin(απ
-4)=135
,0<α<4π
, 求)
4cos(2cos απα
+的值.
变式练习:已知-2π<x<0,sinx+cosx=51
.
(1)求sinx-cosx 的值;
(2)求x
x x
x x
tan 1tan 1
2cos 2sin 22sin 22+--的值.
例2、.已知函数f (x )=3sin(2x -π6)+2sin 2(x -π12)(x ∈R ).
(1)求函数f (x )的最小正周期;
(2)求使函数f (x )取得最大值的x 的集合.
规律总结:利用asinx+bcosx=Asin(ωx+φ)的变化,将多个三角函数的和差转化为一个三角函数值的形式,方便研究其有关性质.
变式练习:求函数
)24
74(cos sin 4sin 3cos 35)(22ππ
≤≤-+=x x x x x x f 的最小值,并求其单调区间。
例3、课本(例4),对于实际应用问题,适当的选择变量,方便问题的求解。
规律总结:运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【课堂小结】
知识、方法、思想
【当堂达标】
1、已知sin α-cos α=sin αcos α,则sin2α的值为( ). (A)2-l (B)l-2 (c)2-22 (D) 22-2
2、已知α为钝角、β为锐角且sin α=
54,sin β=1312,则2-βα2c o s 的值为____________.
3、已知函数f(x)=2asinxcosx +2bcos 2x ,且f(0)=8,f(
6
π)=12. (1)求实数a ,b 的值; (2)求函数f(x)的最大值及取得最大值时x 的值.
【课时作业】
1、在△ABC 中,若sin A sin B =cos 2
2C
,则△ABC 是( ) A .等边三角形
B .等腰三角形
C .不等边三角形
D .直角三角形
2、已知β为第三象限角,且sin(α-β)cos α-cos(α-β)sin α=
53,则2
tan β的值为( ).
(A)2 (B)2-
(C) 2-或2 (D)1或3
*3、在∆ABC 中,3sinA+4cosB=6,4sinB+3cosA=l ,则C 的大小是( ). (A) 6
π (B) 65π (c)
6π或65π (D) 3π或32π
4、若
25π<α<4
11π,sin2α=-54,求tan α________________ 5、化简
θθθθ2cos 2sin 12cos 2sin 1++-+.
*6、求3tan 12°-3
sin 12° 4cos 212°-2 的值.
7、已知α、β为锐角,tan α=71,sin β=1010,求α+2β的值.
8、已知α、β∈(0,
2
π),且sin β=sin αcos(α+β). (1)求证:tan β=ααα2sin 1cos sin +; (2)将tan β表示成tan α的函数关系式;
(3)求tan β的最大值,并求当tan β取得最大值时tan(α+β)的值.
【延伸探究】
已知sin α=1312
,sin (α+β)=54
,α与β均为锐角,求)cos(βα-.。