七年级数学角的度量1-(2)
新人教版初中数学七年级上学期《角》知识点讲解及例题解析
《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。
人教版七年级数学上册第四章4.3《角》例题与讲解
4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。
人教版七年级数学上册4.3.1角角的度量说课稿
课后作业布置如下:
1.完成课后习题:布置一些角度量相关的习题,巩固所学知识。
2.观察生活中的角:让学生观察生活中的角,记录下来并尝试用所学知识进行测量。
3.预习下节课内容:提前预习下节课的知识点,为新课的学习做好准备。
作业的目的是巩固所学知识,培养学生的独立思考能力,以及激发学生对数学学习的兴趣。通过完成作业,学生可以更好地掌握角的度量方法,并学会将所学知识应用于实际生活。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用结构化的布局,主要内容分为三部分:角的度量单位、量角器的使用方法和角的度量应用。板书风格简洁明了,关键词突出,辅以图形和符号加强直观性。
1.板书的布局:左侧列出角的度量单位,中间展示量角器的使用步骤,右侧举例说明角的度量在实际中的应用。
2.板书的作用:通过板书,学生可以直观地看到本节课的知识框架,有助于他们把握知识结构和学习重点。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生回顾本节课所学内容,总结角的度量的关键点。
2.让学生分享自己在巩固练习中的心得体会,以及解决问题的方法。
3.对学生的表现给予肯定和鼓励,针对不足之处提出改进建议。
4.组织学生互相评价,学会欣赏他人的优点,互相学习。
3.反思和改进措施:根据学生的反馈和作业情况,调整教学策略,如增加小组讨论时间,提供更多实际操作的机会,以及强化量角器使用的训练。同时,将鼓励学生在生活中发现角的度量实例,增强学习兴趣和实际应用能力。
2.多媒体资源:PPT、教学视频、动态角图等,通过图文并茂、生动形象的展示,帮助学生理解抽象的概念;
3.技术工具:交互式电子白板、几何画板等,实现动态演示,提高学生的学习兴趣。
2.5 角和角的度量 课件(共27张PPT)冀教版七年级数学上册
角度的换算
角
定义
表示方法
同学们再见!
授课老师:
时间:2024年9月1日
(1) 将 14.28°用度、分、秒表示;
高级单位化低级单位乘 60.
知3-练
感悟新知
解: 先把 18″化成分, 18″= () ′× 18 = 0 .3′,5 7′+ 0 . 3′= 5 7 . 3′.再把 57 . 3′化为度, 57.3′= () °× 57 . 3 = 0 . 955 ° ,所以 45 ° 57′ 18″= 45 . 955 ° .
B
感悟新知
知3-讲
知识点
角的度量与单位换算
3
1. 度量角的方法 度量角的工具是量角器,用量角器(图 2.5-4)量角的步骤:(1) 对中(角的顶点对准量角器的中心);(2) 重合(角的一条边与量角器的零度刻度线重合);(3) 读数(读出角的另一条边所指向的度数) .
感悟新知
知3-讲
2. 角的度量单位 度、分、秒是常用的角的度量单位 . 把一个周角 360 等分,每一份就是 1 度的角,记作 1 ° ;把 1 度的角 60 等分,每一份叫作 1 分的角,记作 1′;把 1 分的角 60等分,每一份叫作 1 秒的角,记作 1″ .
“动”态的观点
角可以看作是一条射线绕着其端点从一个位置旋 转到另一个位置所形成的图形
起始位置的射线叫作角的始边,终止位置的射线叫作角的终边
感悟新知
知1-讲
特别解读1. 构成角的要素是顶点、两边,且两边都是射线 .2. 角的大小与所画边的长短无关,只与构成角的 两边张开的幅度有关.3. 平角的两边成一条直线,但不能说平角就是一条直线;周角的两边重合形成一条射线,但不能说周角就是一条射线 .4. 在不特别说明的情况下,初中阶段我们说的角都是小于平角的角.
湘教版七年级上册数学第4章 图形的认识 角的度量及计算
1
1
60
60
感悟新知
知2-讲
常用的角的度量单位:把一个周角分为360等份,每 一等份叫做1度,记做1°;把1°的角分成60等份, 每一等份叫做1分,记做1';再把1'的角分成60等份, 每一等份叫做1秒,记做1".即1°=60',1'=60",1'= ()°,1"=() '.
感悟新知
2.两个锐角的和() D A.一定是锐角B.一定是直角 C.一定是钝角D.可能是锐角、直角或钝角
知1-练
分析:两个锐角的和有多种情况,如20°+30°=50°, 和为锐角;30°与60°的和为直角;70°与 80°的和为150°是钝角.故选D.
感悟新知
知识点 2 角的度量及换算
知2-导
我们知道,可以用“度”(1度等于周角的)来1度量角.
1
1
60
60
感悟新知
知2-讲
要点精析 常用的角的度量单位为度、分、秒,这种角的度量 制叫做角度制,除角度制外,角的度量制以后还要 学弧度制、密位制等.
感悟新知
例2 用度、分、秒表示54.26°. 解:54.26°=54°+0.26°. 又0.26°=0.26×60'=15.6'=15'+0.6', 而0.6'=0.6×60"=36", 因此,54.26°=54°15'36".
2.如果一个角的度数是另两个角的度敦的差,那么这个角 就叫做另两个角的羞.
七年级角的度量单位知识点
七年级角的度量单位知识点角的度量单位知识点
在数学中,我们经常会碰到角的概念。
角是指由两条线段或者射线或者直线围成的一部分平面,它是平面上一个重要的几何图形。
接下来,我们将详细探讨角的度量单位的知识点。
1. 角度的概念
角度是表示一个角的大小的单位。
通常情况下,我们用度或弧度来表示一个角的大小。
2. 角度的度量方式
我们通过使用量角器来度量角度。
具体步骤如下:
1)将量角器的一条边与射线(或直线)重合。
2)将量角器的另一条边与另一条射线(或直线)重合。
3)读取量角器上的角度数值即为所求角度。
3. 角的度量单位
角可以用角度或者弧度来度量,它们是度量角度大小的两种不
同单位。
3.1 角度
角度是常用的度量角度大小的单位。
通常情况下使用的符号是“°”。
一个圆占据的角度是360度。
3.2 弧度
弧度也是度量角度大小的单位。
它是圆周长的一部分所对应的
角度大小,通常情况下使用符号“rad”来表示。
一个圆的弧度是2π。
4. 应用
角的度量单位在实际应用中存在广泛的应用,比如:
1)在地理学中,角度被用来测量地球上的经纬度。
2)在航海中,角度被用来确定航向。
3)在建筑设计中,角度被用来计算建筑物的倾角和斜度等。
总结
在数学中,角是一个重要的几何图形。
我们可以通过量角器来度量角度,并且角度和弧度是常用的度量角度的两种单位。
在实际应用中,角的度量单位经常被用来测量方向、角度和倾角等。
七年级数学---角的认识
角角:由一点引出两条射线形成的图形叫做角。
这两条射线叫做角的。
这一点叫做角的。
角也可看作是由一条射线绕它端点旋转而成的。
角的表示方法:(1)用三个大写英文字母表示;(2)用一个大写英文字母表示;(3)用阿拉伯数字表示;(4)用小写希腊字母表示。
角的度量单位:1度记作1º,1分记作1¹,1秒记作1¹¹.角的表示方法:①用三个大写字母表示:如∠AOB②用一个大写字母表示:如∠O(只适用单独一个角)③用弧线加数字来表示: 如∠1④用弧线加希腊字母来表示:如∠a角的度量单位的换算:1° = 1′ = 1周角= 1平角=平角的一半叫做直角;小于直角的角叫做锐角;大于直角而小于平角的角叫做钝角.它们之间的关系是:1周角=2平角=4直角=360º1平角=2直角=180º 1直角=90º换算方法:(1)把高级单位转化为低级单位要乘进率;(2)把低级单位转化成高级单位要除以进率;(3)转化时必须逐级进行,越级转化容易出错。
角的平分线:余角和补角:余角:两个角的和等于90°(直角),就说这两个角互为余角,简称互余,即其中一个角是另一个角的余角。
补角:两个角的和等于180°(平角),就说这两个角互为补角,简称互补,即其中一个角是另一个的补角。
余角和补角的性质1、同角或等角的余角相等。
2、同角或等角的补角相等。
例1、把一个周角7等分,每一份是多少(精确到分)例2、19°36′= °56°37′= °38°15′和38.5°一样大吗?例3、⑴150°20′25″+ 11°39′35″⑵90°21′16″-26°10′6″⑶12°5′×6⑷16°18′÷3例4、如图:AOB是一条直线,∠AOC=900,∠D OE=900,写出∠AOD、∠C OD、∠AOC、∠AOB、∠B OD中某些角之间的两个等量关系。
七年级数学角的度量1-(2)(新编201910)
教师演示:把射线OM、ON固定一个位置不动,然后把两个图形中的角大小保持不变, 拉卡如图1-35、1-36(或拉开更远些,多变换几种位置)。
三、教学方法 引导发现、尝试指导相结合。 四、教具准备 投影仪或电脑、三角板、自制胶片
五、教学步骤 (一)创设情境,引出课题
师:上节课,我们学习了角的度量,认识了平角和直角,请同学们在练习本上画出一 个平角和一个直角,并标明度数。
学生画图形的同时,投影显示以下图形(见图1-31及图1-32):
教师演示:在以上两个图形的基础上,利用电脑(或投影),分别过两个角的顶点作 活动射线OM、ON,任意改变射线位置,让学生观察,如下图1-33、1-34:
1.6 角的度理解:互为余角、互为补角的定义。 2.掌握:有关余角和补角的性质。 3.应用:应用以上知识点解决有关计算机和简单推理问题。 (二)能力训练点 1.通过例3的讲解,培养学生用代数方法解几何问题的思路。 2.通过有关余角、补角性质的推导,初步培养学生逻辑思维能力和推理能力。 (三)德育渗透点 通过互余、互补角性质的推导,说明事物之间具有普遍的联系性。 二、教学重点、难点与疑点 (一)重点 互为余角、互为补角的角的概念及有关余角、补角的性质。 (二)难点 有关余角和有关补角性质的导出。 (三)疑点 互余、互补的两个角图形的位置关系。
;彩立方2APP 彩立方2APP
;
康 魏征爱其材也 召将罪之 元振奏请追阙啜入宿卫 一吏不明 即缚曳竹槎上 服不得过高祖也 宜备之 以其出于祖 叫阍弗听 夫安天下者先正其
青岛版数学七年级下册第八章《角的度量》精品课件
当堂反馈 课本15页第1、2题。
=780104/60// - 61048/49// =(78 -61)0(104 -48)/(60-49)// =17056/11// (3)21031/27//×3 解:原式=(21×3)0(31×3)/(27×3)// =63093/81// =63094/21// =64034/21//
(4) 63021/39//÷3 解:原式=(63÷3)0(21÷3)/(39÷3)//
第八章:角
§8.3 角的度量(1)
角的度量
角的度量工具量角器
量角器的外刻度
量角器的90 °刻度线
量角器的中心
量角器的内刻度
量角器的0 °刻度线
1、对“中”—角的顶点对量角器的中心 2、重合—角的一边与量角器的00刻度
线重合
3、读数—读出角的另一边所对的度数
700
B
C E
D
300
F
• 角的度量单位:度、分、秒
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/252021/7/252021/7/252021/7/25
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
七年级数学上册《角的度量》教案、教学设计
注意事项:
1.完成作业时,要求字迹清楚,计算准确,步骤完整。
2.对于选做题,鼓励学生发挥想象力和创造力,结合生活实际进行设计。
3.思考题旨在培养学生的逻辑思维能力和解决问题的方法,可以与家长、同学讨论,形成自己的见解。
4.提醒学生按时完成作业,做好课后复习,为下一节课的学习做好准备。
1.培养学生对数学角的兴趣,激发学生探索角的度量、性质和应用的欲望,树立学习数学的信心。
2.通过对角度的学习,培养学生严谨、细致的学习态度,培养良好的学习习惯。
3.结合生活实际,让学生感受角在生活中的广泛应用,体会数学与现实生活的联系,增强学生学以致用的意识。
在教学过程中,注重激发学生的学习兴趣,引导他们积极参与,培养他们的观察、思考、分析和解决问题的能力。通过本章节的学习,使学生能够熟练掌握角的度量,为后续几何知识的学习打下坚实基础。
2.分层次教学,注重个体差异:针对学生的认知水平和能力差异,设计不同难度的教学活动和练习题。对于基础薄弱的学生,重点辅导角的度量方法和基本性质;对于学有余力的学生,引导他们探索角的计算和应用,提高其解决问题的能力。
3.突破重难点,强化实践操作:在教学过程中,注重引导学生动手操作,如使用量角器测量角度,实际操作中掌握角的度量方法。通过实例分析和问题解决,帮助学生克服角度计算的难点,提高计算能力。
(二)过程与方法
1.通过小组合作、讨论、探究等形式,培养学生主动参与、积极思考的学习习惯,提高学生解决问题的能力。
2.利用实物、模型、多媒体等教学手段,引导学生从直观到抽象,培养空间观念和抽象思维能力。
3.设计丰富多样的练习题,巩固学生对角度概念的理解,提高学生的计算能力和应用能力。
人教版数学七年级上册4.3.1角的度量(教案)
一、教学内容
人教版数学七年级上册4.3.1角的度量:
1.角的概念:角的定义、角的分类(锐角、直角、钝角、周角)。
2.角的度量单位:度、分、秒的换算关系。
3.量角器的使用方法:如何正确使用量角器测量角的度数。
4.举例说明:通过实际例题,让学生学会如何计算角的度数,并运用到实际问题中。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的基本概念。角是由两条射线的公共端点(顶点)所形成的图形部分。它是几何图形中非常重要的元素,决定了图形的形状和大小。
2.案例分析:接下来,我们来看一个具体的案例。通过量角器测量桌面上的三角形角度,展示角的度量在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调角的分类和度量单位这两个重点。对于难点部分,比如度、分、秒的换算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角度量相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。使用量角器测量不同角度的图形,演示角度量的基本原理。
4.数学表达:学会使用规范的数学语言描述角的度量过程和结果,提高学生的数学表达和交流能力。
5.团队合作:通过小组讨论和合作完成练习,培养学生团队协作能力和共同探究的精神。
三、教学难点与重点
1.教学重点
-角的概念及其分类:强调角的定义,让学生理解锐角、直角、钝角、周角的区别。
-角的度量单位及换算:度、分、秒的换算关系是重点,要求学生熟练掌握。
5.练习:布置相关习题,巩固学生对角度量知识的掌握。
二、核心素养目标
七年级数学角的度量1-(2)
[单选,A2型题,A1/A2型题]以下常用有机磷农药中哪种为结晶体,遇碱毒性会增大().A.乐果B.对硫磷C.内吸磷D.敌百虫E.马拉硫磷 [单选,A1型题]预防哺乳期乳腺炎,下列不恰当的是()A.积极哺乳,避免淤乳B.预防性应用抗生素C.纠正乳头内陷D.保护乳头皮肤,避免皮肤破损E.经常清洗乳头 [问答题,简答题]简述二尖瓣狭窄的病理生理。 [单选]对本单位货币资金内部控制的建立健全和有效实施以及货币资金的安全完整负责的是()。A.出纳B.会计机构负责人C.总会计师D.单位负责人 [单选]兽药房专业技术人员调剂处方时必须做到“四查十对”,下列选项哪项不是所查内容?()A、查药品B、查配伍禁忌C、查价格D、查用药合理性 [判断题]有线电视用的是视频线型号是SYV75-5。A.正确B.错误 [单选]()可以使一些不适宜通过劳动力市场调节实现就业的残疾人开辟特殊并且可行的就业领域。A.自主创业B.灵活就业C.集中就业D.按比例就业 [单选]显像剂在脏器组织和病变内达到分布平衡时所进行的显像称为()A.静态显像B.动态显像C.介入显像D.阳性显像E.阴性显像 [单选]使用荧光显微镜检测时应注意的是()A.使用前应预热15minB.标本可以长时间照射C.应用发荧光的镜油封片D.调整激发光源波长与荧光物质发射波长一致E.染色后标本应放置一段时间再镜检 [单选]全球所面临的城市问题有()。A.住房拥挤、交通堵塞、水源短缺B.空气污浊、土地紧张C.住房拥挤、交通堵塞、水源短缺、空气污浊、土地紧张D.住房拥挤、交通堵塞、水源短缺、空气污浊E.以上都不是 [填空题]阴道加特纳菌是引起非淋菌性____的主要病原菌之一。 [单选,A2型题,A1/A2型题]关于上运动神经元瘫和下运动神经元瘫的区别以下表述错误的是()。A.上运动神经元瘫为痉挛性瘫,下运动神经元瘫为弛缓性瘫B.上运动神经元瘫肌张力升高,下运动神经元瘫肌张力减低C.下运动神经元瘫肌萎缩显著,且早期出现D.上运动神经元瘫有肌束颤动E.上运 [单选,A2型题,A1/A2型题]检测人巨噬细胞的吞噬功能,下列说法正确的是()A.用人巨噬细胞和绵羊的红细胞混合后孵育B.用人巨噬细胞和鸡的红细胞混合后孵育C.用人巨噬细胞和金色葡萄球菌混合后孵育D.吞噬指数=(吞噬CRBC的巨噬细胞数/200)×100%E.吞噬率(%)=(吞噬细胞吞 [名词解释](司空图的)“四外”说 [单选]三相异步电动机空载试验的时间应(),可测量铁心是否过热或发热不均匀,并检查轴承的温升是否正常。A、不超过1minB、不超过30minC、不少于30minD、不少于1h [单选]关于上消化道出血不正确的是()A.急性大出血时血象检查为早期诊断和病情观察的依据B.上消化道大量出血后多数可出现低热C.胃内积血250~300ml可引起呕血D.每日出血50~100ml可出现黑粪E.周围血可见晚幼红细胞与嗜多彩红细胞 [名词解释]秩边 [填空题]HIS门诊挂号程序应具备的功能()、()、()。 [问答题,简答题]地方政府的类型 [单选,A1型题]幼儿期的保健要点不包括()A.合理安排饮食B.培养良好的生活习惯C.尽量送幼儿园尝试集体生活D.促进动作和语言的发展E.预防意外事故 [名词解释]列车长 [单选]信息资源的开发利用和信息技术应用的基础是()。A.信息化人才队伍B.国家信息网络C.信息技术与产业D.信息化政策法规和标准规 [单选]配送中心的业务活动以()发出的订货信息作为驱动源。A.生产订单B.客户订单C.采购订单D.内部订单 [单选]以下关于合同分析作用的说法,错误的是()。A.分析合同漏洞,解释争议内容B.分析合同风险,制定风险对策C.分解合同工作并落实合同责任D.进行图纸交底,简化合同管理工作 [单选]选择ERP软件产品时,以下哪种因素不在我们的考虑范围?()A.供应商的实力、信誉B.实施队伍、服务C.产品的已有客户群D.企业和产品的宣传 [单选]含豆豉、神曲等发酵成分的口服制剂,每1g中含需氧菌总数不得超过()A.100000cfuB.30000cfuC.10000cfuD.1000cfuE.100cfu [单选,A型题]关于剂型的分类,下列叙述错误的是A、溶胶剂为液体剂型B、软膏剂为半固体剂型B.C、栓剂为半固体剂型D、气雾剂为气体分散型C.E、气雾剂、吸入粉雾剂为经呼吸道给药剂型 [多选]手术体位不当可引起生理并发症有()A.肺通气不足B.上呼吸道阻塞C.血压下降D.肢体动脉搏动消失E.头面部充血水肿 [单选]在带电作业工器具机械试验中,绝缘托瓶架、钩的试验荷重是其绝缘子串重的()倍。A、2B、2.5C、3D、3.5 [单选]带现金管理员标志的柜员原则上每个网点最多设置()名。A.一B.二C.三D.四 [单选]测深辨位时,测深仪所测得的水深应换算成相应的海图水深,其换算方法为()。A.海图水深=测深值+吃水-潮高B.海图水深=测深值+吃水+潮高C.海图水深=测深值-吃水+潮高D.海图水深=测深值-吃水-潮高 [单选]下列法的形式中,由国家最高权力机关制定,规定周家基本制度和根本任务,具有最高法律效力,属于国家根本大法的是()。A.《中华人民共和国宪法》B.《中华人民共和国民法通则》C.《中华人民共和国刑法》D.《中华人民共和国物权法》 [单选,A1型题]下列哪种碱基只存在于mRNA而不存在于DNA中()A.腺嘌呤B.胞嘧啶C.鸟嘌呤D.尿嘧啶E.胸腺嘧啶 [问答题,简答题]在高处操作时有哪些要求? [判断题]制图综合中的选取分为类别选取和级别选取。A.正确B.错误 [单选]下列情形中,适合采取卖出套期保值策略的是()。A.加工制造企业为了防止日后购进原材料时价格上涨的情况B.供货方已签订供货合同,但尚未购进货源,担心日后购进货源时价格上涨C.需求方仓库已满,不能买入现货,担心日后购进现货时价格上涨D.储运商手头有库存现货尚未出 [单选,A1型题]任何单位或者个人开展诊疗活动,必须依法取得()A.《设置医疗机构批准书》B.《设置医疗机构备案回执》C.《医疗机构执业许可证》D.《医疗机构校验申请书》E.《医疗机构申请变更登记注册书》 [单选]流行病学研究的对象是()A.传染病病人B.非传染病病人C.人群D.疾病的分布E.病因和流行因素 [单选]下列各项中,属于行政责任的是()。A.停止侵害B.罚款C.返还财产D.支付违约金 [单选,A型题]下列哪种肠梗阻一般多为绞窄性梗阻()A.肠套叠B.蛔虫性肠梗阻C.胆石性肠梗阻D.粘连性肠梗阻E.麻痹性肠梗阻
2024年沪科版七年级数学上册4.4.2 角的度量与计算类(课件)
知识点2 方向角
如图,我们如何描述射线OA,射线OB表示
的方向呢? 北
西O
A 30°
东
射线OA表示北偏东30°方向 射线OB表示南偏东40°方向
南 40° B
平面测量时,通常以正北、正南方向为基
准,描述物体运动的方向,这种表示方向的角
叫作方向角. 北
西O
A 30°
东
射线OA表示北偏东30°方向 射线OB表示南偏东40°方向
2.计算:
【教材P155 练习 第2题】
(1′
(2)75°23′12″-46°53′43″;(2)原式=28°29′29″
(3)19°20′24″×4;
(3)原式=77°21′36″
(4)134°22′÷3.
(4)原式=44°47′20″
所以30.26°=30°15′36″.
例 1 计算:
(1)用度、分、秒表示30.26°;
(2)42°18′15″等于多少度?(精确到0.001°)
解:(2)因为15″
=
1 60
'
×15
=
0.25′,
18.25′
=
1 60
''×18.25
≈
0.304°,
所以42°18′15″ ≈ 42.304°.
D 45°
解:射线OA表示北偏东40°方向.
(1)射线OB如图所示.
60° C
(2)射线OC如图所示.
B
(3)射线OD如图所示.
课堂小结
度分秒的换算:1°=60′ 1′=60″ 平面测量时,通常以正北、正
南方向为基准,描述物体运动的方 向,这种表示方向的角叫作方向角.
角的度量 《角的度量》教案(优秀8篇)
角的度量《角的度量》教案(优秀8篇)作为一位杰出的教职工,编写教学设计是必不可少的,教学设计是对学业业绩问题的解决措施进行策划的过程。
那么什么样的教学设计才是好的呢?为了加深您对于角的度量的写作认知,下面作者给大家整理了8篇《角的度量》教案,欢迎您的阅读与参考。
《角的度量》教案篇一教学内容:教材第116页练习二十二第8一12题。
教学目标:使学生进一步掌握量角的方法,能正确、熟练地度量不同方位的角的度数。
教具学具准备:投影仪,量角器。
教学过程:一、复习旧知1、角的量法。
提问:谁来说一说,度量角的方法是怎样的?(板书:两重合一看数)2、量出下面角的度数。
(用投影仪)提问:刚才量角用的是哪一圈的刻度?请你们拿己的量器,沿内圈的0刻度线起,10、20……一起数到180。
再沿外圈,从0刻度线起,10、20……一起数到180。
3、下面的图形都是角吗?为什么?4、揭示课题。
上面量的角,都有一条边是水平方向并且向右的,如果把角方向改变一下,像这里图中的角,我们也可以按照“两重合,一看数”的方法量出它的大小,这就是今天量角的练习内容。
(板书课题)通过练习,要进一步掌握“两重合,一看数”的量角方法,能正确、熟练地量出各种角的度数。
二、量角练习1、量出下面角的大小。
投影出示:老师作榜样量角,强调量角器的中心和角的顶点重合,o刻度线与一条边重合,再让学生读出角的大小的刻度。
在学生读刻度时,提问学生要从量角器哪一边起,看哪一圈的度数。
指出:量上面这些角的度数,还是要按照“两重合,一看数”的方法来量角。
在看刻度数时要特别注意,先弄清要看哪一圈的刻度,再读出是多少度。
2、练习四第4题。
现在请同学们看一看练习四第4题,先想一想,每个角的度数要从量角器哪一边看起,看哪一圈的,再告诉大家,每个角是多少度。
指名学生口答角的。
度数。
请同学们再看一下,这里用量角器量角时,量角器的半圆是对着角的哪个方向的?指出:在把量角器中心和角的顶点重合,o刻度线和角的一条边重合时,量角器的半圆要对着角的“开口”。
七年级(人教版)集体备课教案:4.3.1 《角的度量》(2)
七年级(人教版)集体备课教案:4.3.1 《角的度量》(2)一. 教材分析《角的度量》是人教版七年级数学教材中的重要内容,旨在让学生掌握角的度量方法,理解角的大小与两边叉开的大小有关,与边的长短无关。
本节课的内容是在学生已经掌握了角的概念和分类的基础上进行的,是进一步学习角的计算和几何图形的基础。
二. 学情分析七年级的学生已经具备了一定的观察和思考能力,对角的概念和分类有一定的了解。
但是,对于角的度量方法,他们可能还不太熟悉,需要通过实际操作和练习来掌握。
此外,学生可能对角的度量工具,如量角器,还有些陌生,需要教师进行讲解和示范。
三. 教学目标1.知识与技能:使学生掌握角的度量方法,能正确使用量角器度量角的大小。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度价值观:让学生体验到数学与生活的密切联系,增强对数学的兴趣。
四. 教学重难点1.重点:角的度量方法,量角器的使用。
2.难点:理解并掌握角的度量原理,能灵活运用量角器度量角的大小。
五. 教学方法采用问题驱动法、合作学习法、示范教学法等,引导学生通过观察、操作、思考、交流等活动,掌握角的度量方法。
六. 教学准备1.教具:量角器、三角板、直尺等。
2.学具:每人一套量角器、三角板、直尺等。
七. 教学过程导入(5分钟)教师通过出示一些生活中的图片,如钟表、自行车等,让学生观察其中的角,并提出问题:“你们能对这些角进行分类吗?你们知道角的大小是如何度量的吗?”从而引出本节课的主题——角的度量。
呈现(10分钟)教师通过PPT展示角的度量方法,讲解并示范如何使用量角器度量角的大小。
同时,引导学生思考:“为什么角的大小与两边叉开的大小有关,与边的长短无关?”从而帮助学生理解角的度量原理。
操练(10分钟)教师布置练习题,让学生独立使用量角器度量一些给定角的大小,并填写练习题。
教师巡回指导,解答学生的问题。
巩固(10分钟)教师通过PPT出示一些有关角的度量的综合练习题,让学生独立完成。
人教版初一数学角的度量1(新编201908)
求角的度量度分秒的计算及习题
七年级数学求角的度量度分秒的计算及习题第三节角(二)角的度量与画法一. 教学内容:角的度量与画法【知识点讲解】1. 角的度量:按对线、对中、度数的步骤用量角器量出角的度数2. 角的度数计算:角的单位是度分秒,都是60进制,可以比照时间中的时分秒理解,分别用“°”、“ ’”、“ ””来表示。
3 . 余角、补角的概念与性质:如果两个角的和是90度(或直角)时,叫做两个角互余;4. 如果两个角的和是180度(或平角)时,叫做两个角互补。
(补角同理)性质:同角(或等角)的余角相等;同角(或等角)的补角相等(补角同理)5. 能利用三角板画出15°、30°、45°、60°、75°、90°等11种特殊角6. 会用尺规画一个角等于已知角,角的和、差的画法。
【技能要求】1. 掌握度、分、秒的计算。
2. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语句,能由这些语句准确、整洁地画出图形。
认识学过的图形,会用语句描述这些简单的几何图形。
【典型例题】例1. 将33.72°用度、分、秒表示。
解:33.72°=33°+(0.72×60′)=33°+43.2′=33°+43′+(0.2′×60″)=33°43′12″例2. 用度表示152°13′30″。
解:152°13′30″=152°+(13 )′=152°+13.5′=152°+( )°=152.225°例3. 判断下列计算的对错,对的画“√”,错的说明错在哪里,并改正。
(1)31°56′÷3=10°52′(2)138°29′+44°49′=183°18′(3) 13.5°×3=39.50(4) 21.36°-18°30′=3.14°.解:(1)错,因为用1°=100′计算的。
初一年级数学知识点:角的度量
初一年级数学知识点:角的度量
角的度量与分类
角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360等份,每一份叫做一度的角。
1度=60分;1分=60秒。
角的分类:
(1)锐角:小于直角的角叫做锐角
(2)直角:平角的一半叫做直角
(3)钝角:大于直角而小于平角的角
(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是:l周角=2平角=4直角=360deg;
初中是人生中的关键阶段,大家一定要好好把握初中,编辑老师为大家整理了初一年级数学知识点,希望大家喜欢。
七年级数学角的度量与计算
度、分、秒是角的基本度量单位. 度、分、 秒之间的换算是60进制,这与时间的时、分、秒 之间的换算是一样的.
例1 解
用度、分、秒表示54.26°. 54.26°= 54°+ 0.26°.
又 0.26°= 0.26× 60′ = 15.6′= 15′+0.6′,
而
0.6′= 0.6 × 60″= 36″,
因此,54.26°= 54°15′36″.
例2 解
用度表示 48°25′48″.
' 1 48 =48 =0.8' , 60 1 ' 25.8 = 25.8 =0.43 60 ''
,
因此,48°25′48″= 48.43°
例3 计算:
(1) 37°28′+ 24°35′; (2) 83°20′- 45°38′20″. 解 (1) 37°28′+ 24°35′ = 61°63′ = 62°3′; (2) 83°20′- 45°38′20″ = 82°79′60″- 45°38′20″ = 37°41′40″.
练习
1. 填空:
(1)0.65°=
39
′;
48 ′
″;
(2)32.43°= 32 ° 25
(3)120°38′54〃= 120.65 °; (4)108°40′24″ =________ 108.67 °.
3. 计算:
(1) 72°12′+ 50°40′30″;
122°52′30″
(2) 113°50′40″-57°48′42″.
56°1′58″
3. 10 时整,钟表的时针与分针之间所成的角的度数是 多少?15时整呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。