有机化合物的波谱分析
第八章有机化合物的波谱分析
第⼋章有机化合物的波谱分析第⼋章有机化合物的波谱分析基本要求:1、掌握核磁共振氢谱1HNMR的化学位移、⾃旋偶合、⾃旋裂分与分⼦结构的⼀般规律。
掌握各种质⼦的化学位移δ,并能利⽤δ值、峰裂分的数⽬和形状、峰⾯积⽐等⼀级谱图的规律推断简单有机物分⼦的结构。
了解13C谱。
2、了解红外光区吸收分⼦的结构特征,掌握⼀些特征官能团及苯环的特征吸收频率,并能根据谱图的吸收峰位置、强度和形状鉴别简单有机物分⼦。
3、了解在4~400 nm紫外光区,价电⼦在分⼦轨道中跃迁的三种类型,掌握紫外光谱与共轭分⼦结构关系的⼀般规律。
4、了解质谱的基本原理,母离⼦峰与分⼦量的关系。
Contents8.1红外光谱⼀、基本原理⼆、有机基团的特征吸收频率及其影响因素三、各类有机物的红外吸收频率8.2 核磁共振氢谱⼀、基本原理⼆、化学位移三、⾃旋偶合和⾃旋裂分四、特征质⼦的化学位移与谱图解析五、碳谱(13C-NMR)简介8.3 紫外光谱8.4 质谱简介8.5 谱图综合解析有机化学是⽤结构式来描述的⼀门学科。
有机化合物、有机反应、反应机理、合成⽅法等都能⽤结构式来描述,从结构式可以推断出该化合物的性质。
化合物的结构式最早是⽤化学法测定。
⽤化学法测定化合物的结构往往是⼗分繁琐复杂的⼯作,⽽且在化学变化中往往会发⽣意想不到的变化,从⽽给结构的测定带来困难。
如吗啡(C15H15O3N)从1803年第⼀次被提纯,⾄1952年弄清楚其结构,其间经过了150年;胆固醇(C27H47O)结构的测定经历了40年,⽽所得结果经X-射线衍射发现还有某些错误。
测定有机物结构的波谱法,是20世纪五、六⼗年代发展起来的现代物理实验⽅法。
波谱法的应⽤使有机物结构测定、纯度分析等既快速准确,⼜⽤量极少,⼀般只需1~100 mg,甚⾄10-9g 也能给出化合物的结构信息。
应⽤波谱法可弥补化学⽅法之不⾜。
现在,化学⽅法基本上被物理实验⽅法所取代,现代的教科书、⽂献、论⽂中化合物的结构均以波谱数据为依据,正如熔点、沸点、折光率等作为每个化合物的重要物理常数⼀样的普遍,⽽且更加重要。
(波普解析)有机化合物波谱解析
根据量子理论,光的能量E与频率 成正比,和波长 成反比。
E =h=hC/=hc
20
第一节 吸收光谱的基础知识
紫外-可见光谱
因真空紫外区(100~200nm)的辐射易为空气中的氧 气和氮气所吸收,对化合物的结构测定并无多大帮助, 所以在有机结构分析上应用不大。普通紫外光区及可见 光区空气无吸收,所以在有机结构分析中最为有用。
• 吸收光谱特征: 吸收峰→λmax 吸收谷→λmin 肩峰→λsh 末端吸收
43
(2)数据表示法
例如λ 溶m剂a2x 37nm(ε104) 或λ 2溶m3剂a7xnm(lgε4.0)
常用术语
生色团(发色团):分子结构中含有π电子的基团 产生π→ π* 跃迁和(或)n→ π*跃迁 跃迁,E较低
例: C=C;C=O;C=N;—N=N— ; —NO2
13
总论
3、核磁共振谱(NMR spectroscopy,NMR)
O
B
AC
O
OO
14
总论
4、质谱(mass spectra:MS) 质谱中不伴随电磁辐射的吸收或发射,因此不属于光谱。 根据分子离子或碎片离子进行结构推导,属于能量谱 给出分子量(M+),计算分子式(HR-MS); MS图一致(同一型号仪器,同一条件)一般为同一化合物; 碎片峰: 给出基团或片段信息; EI-MS: 糖苷不能给出分子离子峰; FD-MS,FAB-MS,ESI-MS 用于糖苷、肽、 核酸类,可 定分子量。
36
(4) 原子上未成键电子对形成的分子轨道
在分子轨道中,未与另一原子轨道相互起作用的原子轨道(即 未成键电子对所占有的轨道),在分子轨道能级图上的能量大 小等同于其在原子轨道中的能量,这种类型的分子轨道称为 非成键(non-bonding)分子轨道,亦称n轨道。n轨道是非成 键的分子轨道,所以没有反键轨道。
有机化合物波谱解析
仪器分析:测定复杂结构的化合物 样品用量少
• 四谱同时用或联用技术 • 四谱比较: • 灵敏度:MS>UV>IR>1HNMR>13CNMR
MS: 微克级
UV: ppb级
IR:毫克级(可微克级,FTIR)
1HNMR:0.5mg }可回收
13CNMR: 0.5mg
四谱的信息量比较:
1HNMR及13CNMR
loge2
max1
max2
/nm
不论纵坐标选用什么单位,同一化合物的最大吸收对应 的波长(λmax)不变。
四、朗伯-比耳定律(Lambert—Beer定律)
样品的吸光度A与浓度之间的关系为:
A= lc=lgI0/I=lgT-1 式中T—透射率(或透射比);
I0——入射光强度, I——透过光强度; c——被测液浓度, l——被测液厚度,亦称样品槽厚度。 ——吸光系数 ε——摩尔吸光系数(L/mol·cm) E1%1cm ——百分吸光系数,亦称比吸光系数
液浓度为1g/100ml(1%),液层厚度为1cm时,溶液的吸光 度。
3.两种表示方法的换算关系
设吸光物质的摩尔质量为M g/mol ,则
1mol/L=M g/1000ml=M/10·1g/100ml
∴ ε=M/10·E1%1cm
通过紫外光谱测定获得吸收度或透光率,使用 Beer-Lambert定律便可计算ε值。
有机化合物波谱解析
• 概论
色谱分析:GC,HPLC,TLC 与裂解---色谱成分分析
波谱分析:UV,IR,NMR,MS(有机)----结构分析
• 色谱分析:具有高效分离能力可以把复杂有机混合物分离 成单一的纯组分
• 波谱分析:纯样品进行结构分析,特点是:微量化、测 量快、结果准确、重复性好。除MS之外,可回收样品
基础有机化学-第八章 有机化合物的波谱分析
表 8.4 取代苯的C―H面外弯曲振动特征吸收
化合物
吸收位置/cm-1
一取代 邻位二取代
间位二取代
对位二取代
730~770 和 690~710
735~770 750~810 和 680~730
790~840
T /%
图lear magnetic resonance spectroscopy]
射 线
X 射 线
远
紫
紫 外
外
线
线
可
近中
远
微
线电 磁波
见 光
红红 外外 线线
红 外波 线
-0.01 0.01-0.1 10-200 200-400 400-800 -2.5 2.5-25 300-500 100 0.1nm nm nm nm nm μm μm μm mm 1000m
激发 能级
内层电子 σ电子 n电子和π电子
极性官能团一般都在高频区有较强的红外吸收特征峰。
8.2.2 有机化合物基团的特征频率 相同的基团或价键在特定的位置区域出
现相同的吸收峰 ——基团的特征吸收峰(特 征峰)。
影响化学键振动频率的因素:
▲ 成键原子质量越小,其化学键的振动频率 越高。
化学键
C―H O―H N―H
伸缩振动频率范围/cm-1
低场
高场
B实 = B0 + B感应
由于去屏蔽效应(顺磁屏 蔽效应),减小磁场强度 就能使质子,共振吸收。
外加磁场 B0
氢周围电子密度越大,屏蔽效应越大,就只有增加磁场强度才 能使氢质子发生共振吸收。所以:
电子密度越高的质子,就越在(右边)高场出现吸收峰。 (去屏 蔽效应效应的相反)
影响化学位移因素有:
有机化合物波谱分析
有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。
其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。
本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。
核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。
它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。
核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。
峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。
峰的形状和强度可以提供有关分子结构和相互作用的信息。
核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。
红外光谱(IR)是一种基于分子振动的波谱分析方法。
它通过测量物质吸收红外辐射的能量来获得信息。
由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。
红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。
峰的强度和形状可以提供关于分子的结构和取向的信息。
红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。
在进行有机化合物波谱分析时,需要先对样品进行样品制备。
核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。
红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。
波谱仪器通常会提供相应的样品制备方法和参数设置。
在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。
首先,对于核磁共振波谱,要正确解读峰的化学位移。
化学位移受到许多因素的影响,如官能团、电子效应、取代基等。
因此,需要结合文献和经验来确定不同类型核的化学位移范围。
其次,对于红外光谱,要正确解读峰的波数。
不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。
最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。
第八章 有机化合物的波谱分析
X电负性
δ
1.8
0
2.1
0.23
2.5
2.16
2.8
2.68
3,1
3.05
3.5
3.40
4.0
4.26
B、磁各向异性效应:构成化学键的电子,在外加磁场作用下,产生 一个各向异性的磁场,使处于化学键不同空间位置上的质子受到不同的屏 蔽作用,即磁各向异性。处于屏蔽区域的质子的δ向高场,处于去屏蔽区 域的质子的δ移向低场。
8.2.2 有机化合物的特征振动频率
红外光谱特征吸收见299页表8-2
IR吸收曲线复杂,IR图划分为两大区域: ①官能团区(3800~1500 cm-1),都是官能团的特征吸收峰; ②指纹区(1500~650 cm-1),位置、强度、形状不同。
2.5
----------------------
20m
(2) 偶合常数: 自旋裂分所产生的谱线的间距称为偶合常数,一般用J表示,单 位为Hz。根据相互偶合质子间相隔键数的多少,可将偶合作用分为 同碳偶合(2J)、邻碳偶合(3J)和远程偶合。偶合常数的大小表示了偶 合作用的强弱。N、O、S等电负性大的原子上的质子不参与偶合。 (3) 核的化学全同(等价)、磁全同(等价): 在NMR谱中,化学环境相同的核具有相同的化学位移,这种化 学位移相同的核称为化学全同核(等价核)。例如,氯乙烷分子。分 子中的一组核,若不但化学位移全同,且对组外任一核的偶合常数 也都相同,则这组核称为磁全同核(等价核)。如CH2F2中的两个质 子为磁全同,因为它们不但化学位移相等,且两个质子对每个F的 偶合常数相等。 (4) 一级谱和n+1规律: 当两组(或几组)质子的化学位移差Δ ν 与其偶合常数之比至少 大于6时,相互之间干扰作用较弱,呈现一级谱图。 一级谱图有如下特征:①峰的裂分符合n+ 1规律,n为相邻碳原 子上磁全同氢核的数目;②各峰强度比符合二项式展开系数之比; ③组峰中心处为该组质子的化学位移;④各裂分峰等距,裂距即为 偶合常数J。
第八章有机化合物的波谱分析
1H核的I=1/2,当它围绕自旋轴转动时就产生了磁场,
因质子带正电荷,根据右手定则可确定磁场方向。
氢核在外磁场中的两种取向示意图 ΔE与外磁场感应强度(B0)成正比,如下图及关系式 所示:
图 8-6 质子在外加磁场中两个能级与外磁场的关系
h E B 0 h 2
B 0 (8-4) 2
式中:γ称为磁旋比,是核的特征常数,对1H而言, 其值为2.675×108A·m2·J-1·s-1;h为Plank常量;ν无线电 波的频率。
因为只有吸收频率为ν的电磁波才能产生核磁共振, 故式(8-4)为产生核磁共振的条件。 ⑵核磁共振仪和核磁共振谱
被测样品溶解在CCl4、CDCl3、D2O等不含质子的溶 剂中,样品管在气流的吹拂下悬浮在磁铁之间并不停的旋 转,使样品均匀受到磁场作用。
化学键类型
伸 缩 振 动
-N-H sp C-H sp2 C-H sp3 C-H sp2 C-O sp3 C-O
化学键类型
特征频率/cm-1(化合物类型) 1680~1620(烯烃) 1750~1710(醛、酮) 1725~1700(羧酸) 1850~1800,1790~1740(酸酐) 1815~1770(酰卤) 1750~1730(酯) 1700~1680(酰胺) 1690~1640(亚胺、肟) 1550~1535,1370~1345(硝基化合物) 2200~2100(不对称炔烃) 2280~2240(腈)
低场
高场
外加磁场 B0
因而,质子核磁共振的条件应为:
B实 B 0(1 ) 2 2
(8-6)
对质子化学位移产生主要影响的屏蔽效应有两种: ①核外成键电子的电子云密度对所研究的质子产生的 屏蔽作用,即局部屏蔽效应。 ②分子中其它质子或基团的核外电子对所研究的质子 产生的屏蔽作用,即远程屏蔽效应(磁各向异性效应)。 综上所述,不同化学环境的质子,受到不同程度的屏 蔽效应,因而在核磁共振谱的不同位置出现吸收峰,这种 峰位置上的差异称为化学位移。
有机化合物波谱分析
化学键伸缩振动频率只与化学键有关,是化学键的一个特征常数;
化学键的伸缩振动是在不停进行的,有三个显著特点:
伸缩振动能是量子化的,不连续的,因此就形成了 不同的能级。
单击此处添加大标题内容
伸缩振动的能级差 ,相当于红外光的能量 因此,用红外光照射有机样品时,化学键就会吸收一份能 量,实现振动能级的要跃迁。即: ν=ν。 即意味着:化学键以多大的频率振动就吸收多大频率的光, 在此频率处就形成一个吸收峰(表现为吸收带)。
4000-1400cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1400-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。(p299页表8-2)
1000 700 500 Y Y O单键 H面内弯曲振动 H弯曲振动
8.1 分子吸收光谱和分子结构
微粒性:可用光量子的能量来描述:
按量子力学,其关系为:
1
与E,v 成反比,即 ↓,v↑(每秒的振动次数↑),E↑。
3
2
在分子光谱中,根据电磁波的波长 ()划分为几个不同的区域,如下图所示:
上式表明:分子吸收电磁波,从低能级跃迁到高能级,其吸收光的频率与吸收能量的关系。
注意:
只有偶极矩(μ)发生变化的,才能有红外吸收。 如:H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收。 化学键极性越强,振动时偶极矩变化越大,吸收峰越强.
分子的振动方式
1
伸缩振动:
2
伸缩振动的特征及规律
吸收峰
有机化学第7章有机化合物的波谱分析
20
相关峰 :每个官能团都有几种振动方式,每种红外活性振动一般产生
一个相应的吸收峰。习惯上把这种相互依存又可相互佐证的吸收峰,
称为相关峰。 例如:—CH3的相关峰为C—H不对称伸缩振动吸收峰(2960 cm-1)、
C—H对称伸缩振动吸收峰(2870 cm-1)、C—H面内弯曲振动吸收峰
(1470 cm-1和1380cm-1)。
6
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的
简谐振动。根据Hooke定律可得其振动频率为:
式中:μ为折合质量;ml和m2分别为化学键所连的两个原子的质量, 单位为g, 是为化学键的力常数,单位为N· -1(牛顿· -1),其含 cm 厘米
③ C3H7NO2 :
27
(2)谱图解析
例1 化合物的分子式为C6H14,红外光谱如下,推导其结构。
28
解: 由分子式C6H14计算不饱和度Ω=0,故为饱和烃。 首先观察4000~1300 cm-1特征区,3000~2800 cm-1处强吸
收为饱和νC—H吸收。
29
1461cm-1和1380 cm-1处强吸收为-CH3和-CH2-的面内弯
用红外光照射试样分子,引起分子中化学键振动能级的跃迁所 测 得 的 吸 收 光 谱 为 红 外 吸 收 光 谱 , 简 称 红 外 光 谱 ( Infrared
Spectroscopy,缩写为IR)。
红外光谱是以波长λ或波数σ为横坐标,表示吸收峰的峰位;以透射比 T(以百分数表示,又称为透光率或透过率)为纵坐标,表示吸收强度。
常用单位nm(1nm=10-7cm),σ代表波数,表示1cm长度中波的数目,
有机化合物波谱分析
记忆方法 取代基 供电基团 o m p 之和
-OH(或-OCH3)
-R 吸电基团 -COR
-0.5
-0.2 +0.6
-0.1
-0.1 +0.1
-0.4
-0.2 +0.3
-1.0
-0.5 +1.0
35
一、1H-NMR(氢核磁共振) 2、峰面积与氢核数目
36
一、1H-NMR(氢核磁共振) 3、峰的裂分与偶合常数
38
化学等价核
通过对成操作(绕对称轴旋转、通过对称面、对称中 心反映,绕更迭对称轴旋转)或快速机制,位置可以互换, 这些核称为化学位移等价核。 1、等位质子; 2、对映异位质子; 3、非对映异位质子;
磁等价(磁等同)核
在化学等价基础上,若它们对偶合系统内其它任何一个 原子以相同大小偶合(空间结构),则为磁等价核。
uC=O 1675cm-1
uOH 3365cm-1
15
影响IR吸收的因素 二、空间效应(steric effect)
(4)环张力
16
影响IR吸收的因素 二、空间效应(steric effect)
(4)环张力
17
影响IR吸收的因素
三、氢键效应(hydrogen bond effect)
形成分子内氢键,谱带变宽,波数降低,但强度基本不增。 ∵形成氢键,使-O—H+键拉长,偶极矩增增加
123.9
117.7 115.7
123.0
65
化合物 3
66
67
68
6.80(1H,d,J=8.4Hz) 7.02(1H,d,J=8.4Hz)
10.13(1H,s)
9.37(1H,s)
(波普解析)有机化合物波谱解析
总论
5、单晶X射线衍射(X-ray diffraction by asingle crystal ) 单晶X射线衍射分析是一种独立的结构分析方法,不需要
借助其它波谱学方法即可独立的完成被测样品的结构分析工作。
优点:定量给出分子立体结构参数,还能够完成化合物分子相 对构型与分子绝对构型的测定,特别是在有机化合物分子立体结 构中的构型确定、构象分析,以及固体化合物样品的晶型与分子 排列规律,有机分子的异构体(如手性化合物)及其含量测定。
• 红外光谱在天然有机产物的结构研究中除了可用于鉴别化合物 的异同和光学异构体(大多数对映体和外消旋体的固相红外光 谱是不同的)外,它在立体化学研究和官能团的确定中发挥着 重要作用。
如:芳香环: ν1600~1480cm-1
OH:ν>3000 cm-1
C=O : ν1700 cm-1
IR相同者为同一化合物
缺点:要求样品本身能获得晶型良好的单晶。
16
总论
5、单晶X射线衍射 (X-ray diffraction by asingle crystal )
17
第一章 紫外光谱 Ultraviolet Spectra
18
第一章 紫外光谱 Ultraviolet Spectra
第一节、吸收光谱的基础知识 第二节、UV的基础知识 第三节、UV与分子结构间的关系 第四节、UV在有机化合物结构研究中的应用
1H-NMR
• 基本参数:化学位移()用于判断H的类型
•
偶合常数(J)
7
化学位移
1H-NMR
谱图提供的信息:
1)质子个数(积分数目)
2)由J值可知质子与质子的相互关系
3)由值可知质子所处的化学环境及磁环境
有机化学-第八章-有机化合物的波谱分析
有机化学 第八章 有机化合物的波谱分析
2
1. 化合物不饱和度的计算公式
(不饱和度)= 1/2(2 + 2n4 + n3 - n1)
n4 、 n3 、 n1分别表示分子中四价、三价和一价元素的原子个数
实例1 分子式 C7H9N =1/2(2+27+1-9)=4 可能的结构
实例2 分子式 C5H8O2 =1/2(2+25-8)=2 可能的结构
29
2,2–二甲基己烷的红外光谱图
有机化学 第八章 有机化合物的波谱分析
30
有机化学 第八章 有机化合物的波谱分析
31
1–己炔的红外光谱图
有机化学 第八章 有机化合物的波谱分析
32
甲苯的红外光谱图
有机化学 第八章 有机化合物的波谱分析
33
4. 核磁共振氢谱 (Nuclear Magnetic Resonance) (8.3)
紫外可见光谱 (ultraviolet-visible
UV 分子中π电子体系
spectroscopy)
质谱 (mass spectrometry)
MS 1. 相对分子质量 2. 分子式 3. 分子中结构单元
有机化学 第八章 有机化合物的波谱分析
5
分子吸收光谱:
分子吸收光谱示意图
E= hν = hc /λ
1. ) 化学位移的由来 化学位移是由核外电子的屏蔽效应引起的。
有机化学 第八章 有机化合物的波谱分析
40
在外加磁场作用下,由于核外电子在垂直于外加磁场 的平面绕核旋转,从而产生与外加磁场方向相反的感 生磁场H’。
H实 H0 H ' H0 H0 H0 (1 )
有机化学 第八章 有机化合物的波谱分析
有机化合物的波谱分析简介
第十章 有机化合物的波谱分析简介
有机化合物不论是天然产物还是经化学反应 生成的,都需要测定其分子的结构。如果对某一 化合物的结构不了解,则对其性质和作用的研究 是很难深入的。因此,测定有机化合物的结构很 自然地变成了研究有机化学的首要任务。
2
我们在基础有机化学中学习了鉴定有机官能团的化 学方法:
R
H
CC
νC-H 3020, 3090
H
H δC-H 910, 990
R
H
C C δC-H 890
R'
H
R
R'
CC
H
H
δC-H 690
R
H
CC
H
R'
δC-H 970
24
1-辛烯
2,3-二甲基-1,3-丁二烯 2-甲基-2-戊烯
25
R
H
CC
H
R'
(E)-2-己烯
R
R'
CC
H
H
(Z)-2-己烯
δ C-H 970 δ C-H 690
26
炔烃 炔烃的特征吸收峰主要是 C C和 CH的特征吸收峰。
C C H νC-H 3300cm-1 尖峰 νC=C 2100~2300cm-1 弱
RCCR ' νC=C 2190~2260cm-1 弱
27
3,3-二甲基-1-丁炔 2-丁炔
28
1-己炔的红外光谱图
29
芳香烃
C=C-H νC-H 3000~3100cm-1
红外光谱法 Raman光谱法
远红外光谱法
0.03~100cm 1~1000m
分子转动,电子自旋
第六章 有机化合物的波谱分析
HO
H
CO
CC
H
HH CC CO
HO
通常 反式异构体 大于顺式异构体的:
。。。。。
。。。。。
反式异构体 max = 273nm(= 21000)
顺式异构体 max = 264nm(= 1400)
6.3 红外光谱 ( I R )Infrared Spectroscopy
物质吸收的电磁辐射如果在红外光区域,用红外光谱仪把产生的红外谱带记录下来,就得到红 外光谱图。 所有有机化合物在红外光谱区内都有吸收,因此,红外光谱的应用广泛,在有机化合物的结构 鉴定与研究工作中,红外光谱是一种重要手段,用它可以确证两个化合物是否相同,也可以确 定一个新化合物中某一特殊键或官能团是否存。 6.2.1 红外光谱图的表示方法 红外光谱图用波长(或波数)为横坐标,以表示吸收带的位置,用透射百分率(T%)为纵坐标 表示吸收强度。 横坐标 --- 波数(cm-1, 下方), 波长(mm,上方) 纵坐标 --- 吸光强度(A)或透过率(T,%) 谱区 --- 4000 – 600 cm-1
化学的迅速发展。
一、 电磁波的一般概念
• 光是电磁波,有波长和频率两个特征。电磁波包括了一个极广阔的区域,从波长只有千万
分之一纳米的宇宙线到波长用米,甚至千米计的无线电波都包括再内,每种波长的光的频
率不一样,但光速都一样:即 3×1010cm/s。
光的频率与波长
波长与频率的关系为: υ= c /λ
υ=频率,单位:赫(HZ);
K 吸收带为 n π * 跃迁引起的吸收带,其特点为吸收峰很强,εmax > 10000。共轭双键增加, λmax 向长波方向移动,εmax 也随之增加。
B 吸收带为苯的 n π * 跃迁引起的特征吸收带,为一宽峰,其波长在 230~270nm 之间,中 心再 254nm,ε 约为 204 左右。
第八章有机化合物的波谱分析
8.3.1 核磁共振的产生 8.3.2 化学位移 8.3.3 自旋偶合与自旋裂分 8.3.4 NMR谱图举例 8.5 质谱
2
课后练习
315页,习题 (二) (三) (四) (五) (六): (1) (2) (6)
362页,习题(十四) (十六) 377页,习题(九) 421页,习题(十四)
3
测定有机化合物结构的主要波谱方法
波谱方法 核磁共振波谱
代号 NMR
吸收 光谱
提供的信息
1. 碳骨架 2. 与碳原子相连的氢
原子的化学环境
红外光谱
IR
主要的官能团
紫外可见光谱 质谱
UV
分子中π电子体系
MS
1. 相对分子质量
2. 分子式
3. 分子中结构单元
4
吸收光谱和分子结构
电磁波的性质: E= hυ = hc/ λ
同类化学键或官能团的吸收频率总是出现在特定的波数范围 类,称为该基团的特征吸收峰。
官能团区3700~1500cm-1 由键的伸缩振动引起许多官能团
在这个频率区都有特征吸收。
指纹区1400~650cm-1
由键的伸缩振动和弯曲振动引起
22
若某一未知物的红外图谱的指纹区与某一标准样品完全相 同,可判断它们是同一化合物。 应用指纹区可以确定双键上、苯上取代基的个数以及构型。 一些基团的吸收带的频率和相对强度见p299 表8-2。
可 见 光
近 红 外 线
中
远
红
红
外
外
线
线
微
无 线电
波
磁波
0.1nm 10nm 200nm 400nm 800nm 2.5μm 25μm 500μm 100cm 1m
08有机化合物的波谱分析-第八章
倍频区
官能团特征区
指纹区
8.3. 有机化合物的红外光谱 烷烃:
~2850
~1370 ~1470
~720
2850~3000 cm-1 1450~1470 -1 1370~1380 –1 720~725 -1
C-H 伸缩振动
-CH3 –CH2-剪式弯曲振动 CH3-平面摇摆弯曲振动 (注意分裂峰) -CH2-平面摇摆弯曲振动(n>=4)
δ =7.27 受屏蔽作用较强,δ =1.7-3
3、氢键的影响 氢键的形成削弱了氢键质子的屏蔽, ——共振吸收 移向低场。
8.6 自旋偶合和自旋裂分:
1.磁等价质子和磁不等价质子
2. 自旋偶合和自旋裂分:
裂分——同一类质子吸收峰增多的现象 自旋偶合——邻近原子核之间的相互干扰 自旋裂分——因自旋偶合而引起的谱线增多
2、磁各向异性效应 分子中某些基团电子云的分布不是球形对称时,
在外加磁场作用下,它对邻近的1H核产生一个各向异 性的磁场,因此使分子中处于不同空间位置的氢核受 到不同程度的屏蔽作用,此为磁各向异性效应。
处于受屏蔽区域的1H其δ 值变小(高场),处于去 屏蔽区域的1H其δ变大(低场) 。
δ =5.25
取代情况
1650~3000 cm-1(泛频)
其它:
C=O:
~1700cm-1
红外光谱应用:
(1)确证两个化合物是否相同。 (2)确定一个化合物中是否存在某一特殊键或官能团
推测结构:
(二) 核磁共振谱 (NMR)
• 核磁共振的原理 • 屏蔽效应和化学位移 • 自旋偶合和自旋裂分 • 有机化合物的核磁共振谱 (1HNMR)
a对b的干扰:a质子自旋产生的磁场有两种取向:一种与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 有机化合物的波谱分析(一) 概述研究或鉴定一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯→物理常数测定→元素分析→确定分子式→确定其可能的构造式(结构表征)。
(参见P11-12)(1) 结构表征的方法传统方法:(化学法)①元素定性、定量分析及相对分子质量测定分子式; ②官能团试验及衍生物制备分子中所含官能团及部分结构片断; ③将部分结构片断拼凑完整结构; ④查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样量为10-100mg ),大量的时间(吗啡碱,1805-1952年),熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;②*C 及-C =C -的构型确定困难。
波谱法:①质谱(最好用元素分析仪验证)分子式; ②各种谱图(UV 、IR 、NMR 、MS )官能团及部分结构片断; ③拼凑完整结构; ④标准谱图确认。
特点:样品用量少(<30mg ),不损坏样品(质谱除外),分析速度快,对*C 及-C =C -的构型确定比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成,相互补充,互为佐证。
(2) 波谱过程波谱过程可表示为:有机分子+电磁波光谱分子运动:平动、振动、转动、核外电子运动等量子化的每个分子中只能存在一定数量的转??(能量变化不连续)动、振动、电子跃迁能级电子跃迁电磁波波长越短,频率越快,能量越高。
200nm400nm800nm红外光微波、电视波200-800nm:引起电子运动能级跃迁,得到紫外及可见光谱;2.5-15μm:引起分子振、转能级跃迁,得到红外光谱;60-600MHz:核在外加磁场中取向能级跃迁,得到核磁共振谱。
(3) 不饱和度(U)不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为:当一个化合物衍变为相应的烃后,与其同碳的饱和开链烃比较,每缺少2个氢为1个不饱和度。
所以:一个双键的不饱和度为1,一个叁键的不饱和度为2,一个环的不饱和度为1,一个苯环的不饱和度为4。
例如:U=2CH2=CH-COOH CH2=CH-CN U=3CCH3OU=5U=2O-P-O-3OU=9U的计算:-O--CH--N--CH2--X-H-S-相当于、;相当于;相当于。
实际上,O、S并不影响化合物的不饱和度。
例:C8H14U=2 C7H8 U=4C 3H 7NO U =1 C 5H 10O U =1 C 4H 5Cl U=2 C 8H 8O 2 U=5(二) 红外光谱(Infrared Spectroscopy,IR )红外光谱就是当红外光照射有机物时,用仪器记录下来的吸收情况(被吸收光的波长及强度等)。
红外线可分为三个区域:l /m m 0.8 2.550100012500400020010ν/cm -1可见光微波近中远分子跃迁类型分子振动和转动晶格振动和纯转动泛频、倍频适用范围有机官能团定量分析有机分子结构分析和样品成分分析无机矿物和金属有机物红外光谱法主要讨论有机物对中红区的吸收。
(1) 基本原理分子是由各种原子以化学键互相连结而生成的。
可以用不同质量的小球代表原子,以不同硬度的弹簧代表各种化学键。
它们以一定的次序互相连结,就成为分子的近似机械模型。
振动分子的振动可用Hooke’s rule 来描述:)11(2121m m k +=πν (1)红外光谱中,频率常用波数表示。
波数每厘米中振动的次数。
波数与波长互为倒数。
41011-⨯=-mcm m l σ (1cm=104μm) 若将频率采用波数表示,Hooke’s rule 则可表示为:)11(2121m m k c +=πσ (2)讨论:①键能↑,k ↑,则ν或σ↑。
例如:键的类型 C ≡C C=C C ―C K/1010N •cm -1 12~18 8~124~6 σ/ cm -12100~22601620~1680700~1200②成键原子的质量m 1或m 2↓,则ν或σ↑。
例如:化学键 H ―N H ―O H ―C σ/ cm -1 3590~3650 3300~3500 2853~2960 化学键 C ―N C ―O C ―C -1(甲) 分子振动的类型分子的振动类型有两大类:伸缩振动(ν):只改变键长,不改变键角;波数较高。
弯曲振动(δ):只改变键角,不改变键长;波数较低。
分子振动伸缩振动弯曲振动剪动煽动波数高波数低())(动扭ν()ννsas (s)(w)(t)摇动(r)面内面外(d)(乙) 红外光谱产生的条件必要条件:辐射光的频率与分子振动的频率相当。
充分条件:振动过程中能够改变分子偶极矩!所以,分子对称性高者,其IR 谱图简单;分子对称性低者,其IR 谱图复杂; 例1:O C O 无红外吸收H H O有红外吸收CH 3 C C CH 3CH 3-CH 2-C C-H-C C-ν有无ν-C C-例2:CS 2、CCl 4等对称分子的IR 谱图特别简单,可用作IR 溶剂。
(2) 红外光谱的一般特征横坐标:波长/λ或波数/cm -1。
41011-⨯=-mcm m l σ (1cm=104μm )红外谱图有等波长及等波数两种,对照标准谱图时应注意。
纵坐标:吸光度A 或透光率T 。
)1log(T A = A 越大或T 越小,吸收峰强度越大。
红外吸收峰的强度和形状常用下列符号表示:很强 Vs (very strong) 宽峰 B (broad) 强 S (strong) 肩峰 Sh (shoulder) 中等 M (midium) 双峰D (double)弱W (weak)红外谱图一般以1300cm -1为界:4000~1300cm -1:官能团区,用于官能团鉴定;1300~650cm -1:指纹区,用于鉴别两化合物是否相同。
官能团区吸收峰大多由成键原子的伸缩振动而产生,与整个分子的关系不大,不同化合物中的相同官能团的出峰位置相对固定,可用于确定分子中含有哪些官能团。
指纹区吸收峰大多与整个分子的结构密切相关,不同分子的指纹区吸收不同,就象不同的人有不同的指纹,可鉴别两个化合物是否相同。
指纹区内的吸收峰不可能一一指认。
例:庚酸和正癸酸的红外光谱。
一张IR谱图一般有5~30个谱带。
原因:①非红外活性振动不出峰;②吸收能量相近时,谱带叠加,吸收峰减少。
(3) 红外图谱的解析(甲) 一般情况下,IR中官能团的吸收位置如下:⑴3700~3200cm-1:νN-H、νO-H、(νN-H波数高于νO-H,氢键缔合波数低于游离波数)例:正丁胺、苄醇的IR谱图⑵ 3100~2800 cm -1:νC-H (以3000 cm -1为界,高于3000 cm -1为νC-H (不饱和),低于3000 cm -1为νC-H 饱和))例:十二烷、1-癸烯、1-己炔、甲苯的IR 谱图⑶ ~2200 cm-1:νC≡N、νC≡C(中等强度,尖峰)例:1-辛炔、2-辛炔、环戊基腈的IR谱图⑷1900~1650 cm-1:νC=O(干扰少,吸收强,重要!酮羰基在~1715cm-1出峰)例:乙酸苯酯、2-戊酮的IR光谱⑸1650~1600 cm-1:νC=C(越不对称,吸收越强)例:环己烯、二氢吡喃的IR谱图。
⑹1600、1500、1580、1460 :ν苯环(苯环呼吸振动)例:甲苯、苯酚的IR谱图。
⑺1500 cm-1以下:单键区。
~1450 cm-1:δCH2、δCH3;~1380 cm-1:δCH3(诊断价值高)例:CH3CH2CH(CH3)CH2CH3的IR谱图。
⑻1000 cm-1以下,苯环及双键上C-H面外弯曲振动:苯环上五氢相连(单取代):700、750 cm-1例:甲苯的IR 四氢相连(邻二取代):750 cm-1例:邻二甲苯的IR三氢相连(间二取代):700、780cm-1例:间二甲苯的IR二氢相连(对二取代):830cm -1 例:对二甲苯的IR 孤立氢:880 cm -1-CH=CH 2990,910cm -1690970910820键上:双C=CH 2HH H H H-1cm -1cm -1cm -1cm C=CC=C C=C例:1-癸烯的IR 谱图讨论:羰基吸收峰的位置对官能团鉴定有特别重要的意义!②-I(乙) 解析IR 谱图的原则解析IR 谱图时,不必对每个吸收峰都进行指认。
重点解析强度大的、特征性强的峰,同时应考虑相关峰原则。
相关峰由于某个官能团的存在而出现的一组相互依存、相互佐证的吸收峰。
例如:若分子中存在-COOH ,则其IR 谱图中应出现下列一组相关峰:~1700cm -1( )νC=O 3335-2500cm -1胖峰( )O-H ν~1250cm-1( )νC-O ~930cm -1d ( )O-H O(例:庚酸的IR 图)(丙) 一般步骤①计算不饱和度。
样品中有无双键、脂环、苯环?②官能团区:峰的位置?强度?样品中有哪些官能团?③指纹区:有无诊断价值高的特征吸收?如:1380cm -1有峰?1000 cm -1以下有峰?形状如何?双键的取代情况及构型?苯环上的取代情况?④其他信息:来源?合成方法?化学特征反应?物理常数? NMR 、MS 、UV 谱图特征?掌握的信息越多,越有利于给出结构式。
⑤查阅、对照标准谱图,确定分子结构。
(丁) 解析实例:例1:C 4H 8O 的IR 谱图。
(袁P70)丁醛 例2:C 5H 10O 的IR 谱图。
(汪P315)2-戊酮 例3:C 7H 8的IR 谱图。
(汪P312)甲苯例4:C 7H 8O 的IR 谱图。
(汪P313)苄醇 例5:C 8H 8O 的IR 谱图。
(汪P315)乙酸苯酯 例6:C 3H 7NO 的IR 谱图。
(汪P314)丙酰胺(三) 核磁共振(Nuclear Magnetic Resonance Spectroscopy)NMR 是由磁性核受幅射而发生跃迁所形成的吸收光谱。
研究最多、应用最广的是1H 核的NMR ,可用PMR 或1H NMR 表示。
NMR 给出的信息:√①化学位移:各种结构的1H 、13C有不同的化学位移,对结构敏感。
(有点像IR 中的特征吸收)√②磁性核附近的取代情况及空间排列:通过偶合常数J 和自旋-自旋裂分来判断。
(IR 谱中没有)核磁共振谱中的每一个峰都有归属! √③峰面积(积分高度):a. 用于结构分析:各种化学环境相同的核(1H )的个数;b. 用于成分分析:由特征峰定量。
④核自旋驰豫时间: ⑤核间相对距离:(1) 1H-NMR 的基本原理(甲) 原子核的自旋1H核带一个正电荷,它可以像电子那样自旋而产生磁矩(就像极小的磁铁)。
在外加磁场(H O )中,质子自旋所产生的磁矩有两种取向:与H O 同向或反向,对应于21+=m 或21-=m 两个自旋态。