深圳平湖爱文学校初中部数学全等三角形单元测试与练习(word解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形解答题压轴题(难)
1.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.
(1)求m和n的值.
(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.
(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.
【答案】(1)
4
2
m
n
=-
⎧
⎨
=
⎩
(2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.
【解析】
【分析】
(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;(2)由(1)可知,AD=OA=4,OB=2,并可求出AB=BD=25,利用SAS可证
△DAC≌△AOB,并可得∠AEC=90°,利用三角形面积公式即可求证;
(3)取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,证明
△ABH≌△CAN,即可得到结论.
【详解】
解:(1)由题意()()
2
1
812
2
m n
n m m
--=
⎧
⎪
⎨
++-=
⎪⎩
解得
4
2
m
n
=-
⎧
⎨
=
⎩
;
(2)如图2中,
由(1)可知,A(﹣4,0),B(0,2),D(﹣4,4),
∴AD
=OA =4,OB =2,
∴由勾股定理可得:AB =BD =25,
∵AC =OC =2,
∴AC =OB ,
∵∠DAC =∠AOB =90°,AD =OA ,
∴△DAC ≌△AOB (SAS ),
∴∠ADC =∠BAO ,
∵∠ADC +∠ACD =90°,
∴∠EAC +∠ACE =90°,
∴∠AEC =90°,
∵AF ⊥BD ,DE ⊥AB ,
∴S △ADB =12•AB •AE =12
•BD •AF , ∵AB =BD ,
∴DE =AF .
(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,
∵AG =BG ,
∴∠GAB =∠GBA ,
∵G 为射线AD 上的一点,
∴AG ∥y 轴,
∴∠GAB =∠ABC ,
∴∠ACB =∠EBA ,
∴180°﹣∠GBA =180°﹣∠ACB ,
即∠ABG =∠ACN ,
∵∠GAN =∠GBO ,
∴∠AGB =∠ANC ,
在△ABG 与△ACN 中,
ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△ABH ≌△ACN (AAS ),
∴BF =CN ,
∴NB ﹣HB =NB ﹣CN =BC =2OB ,
∵OB=2
∴NB﹣FB=2×2=4(是定值),
即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.
【点睛】
本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.
2.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,
他的结论是(直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.
(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.
【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.
【解析】
【分析】
(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,
∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.
(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,
∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.
(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到
EF=FG,最后求三角形的周长即可.
【详解】
解答:(1)解:如图1,延长FD到G,使得DG=DC