八年级数学积的乘方练习题

合集下载

同底数幂的乘法、幂的乘方、积的乘方(解析版)(重点突围)八年级数学上册重难点专题提优训练(人教版)

同底数幂的乘法、幂的乘方、积的乘方(解析版)(重点突围)八年级数学上册重难点专题提优训练(人教版)

专题11 同底数幂的乘法、幂的乘方、积的乘方考点一 同底数幂相乘 考点二 同底数幂乘法的逆用考点三 幂的乘方运算 考点四 幂的乘方的逆用考点五 幂的混合运算 考点六 积的乘方运算考点七 积的乘方的逆用考点一 同底数幂相乘 例题:(2022·河南平顶山·七年级期末)计算:44a a ⋅=______.【答案】8a【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【详解】解:448a a a ⋅=,故答案为:8a .【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则并熟练计算.【变式训练】 1.(2022·湖南·新化县东方文武学校七年级期中)5a a -⋅=________________.【答案】6a -【分析】根据同底数的乘法进行计算即可求解.【详解】解:56a a a -⋅=-,故答案为:6a -.【点睛】本题考查了同底数幂相乘,掌握运算法则是解题关键.2.(2022·湖南省岳阳开发区长岭中学七年级期中)计算:2323m m ⋅= ____________.【答案】56m【分析】根据同底数幂乘法来进行计算求解.【详解】解:2323523236m m m m +⋅=⨯⨯=.答案为:56m .【点睛】本题主要考查了同底数幂乘法的运算法则,理解同底数幂相乘,底数不变,指点数相加是解答关键.3.(2022·山东·北辛中学七年级阶段练习)()()34--b a a b ⋅=_____.【答案】()7b a -【分析】根据同底数幂乘法的计算法则求解即可.【详解】解:()()34b a a b -⋅- ()()34b a b a =-⋅- ()7b a =-,故答案为:()7b a -.【点睛】本题主要考查了同底数幂乘法,熟知同底数幂乘法底数不变,指数相加减是解题的关键.考点二 同底数幂乘法的逆用例题:(2022·广东·高州市第一中学附属实验中学七年级阶段练习)已知 32m =,35n =,则3m n +=____【答案】10【分析】根据同底数幂的乘法的逆运算可得答案.【详解】解:32m =,35n =,3332510m n m n +∴=⨯=⋅=,故答案为:10.【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则.【变式训练】1.(2022·江苏·江阴市青阳初级中学七年级阶段练习)已知3,4a b x x ==,a b x +的值是_______.【答案】12【分析】根据同底数幂相乘的逆运算,即可求解.【详解】解:∵3,4a b x x ==,∵3412a b a b x x x +=⋅=⨯=.故答案为:12【点睛】本题主要考查了同底数幂相乘的逆运算,熟练掌握m nm n a a a a (其中m ,n 为正整数)是解题的关键.2.(2022·江苏·南师附中新城初中黄山路分校七年级期中)若5m a =,2n a =,则2m n a +=______.【答案】20【分析】根据m n a a a =m n +(m ,n 是正整数)可得22m n m n m n n a a a a a a +==,再代入5m a =,2n a =计算即可.【详解】解:2252220m n m n m n n a a a a a a +===⨯⨯=,故答案为:20.【点睛】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.考点三 幂的乘方运算例题:(2022·湖南永州·七年级期中)计算()42=x ______. 【答案】8x【分析】根据幂的乘方法则求解即可.【详解】解:()42248x x x ⨯==. 故答案为:8x .【点睛】本题考查了幂的运算法则,掌握幂的乘方法则是解本题的关键.【变式训练】 1.(2022·福建·晋江市南侨中学八年级阶段练习)当24m =时,则8m =_____【答案】64【分析】先将8改成32,再用幂的乘方公式将8m 化为()32m ,最后将24m =代入计算即可;也可以利用24m =求出m ,代入8m 计算.【详解】解法一:∵24m =,∵()()33338222464m m m m =====. 解法二:∵2242m ==,∵2m =,∵28864m ==.故答案为:64.【点睛】本题考查幂的乘方公式,掌握幂的乘方公式是解题的关键.由于数字的特殊性导致m 的值可求,但解法一适用范围更广更需掌握.2.(2022·河北·顺平县腰山镇第一初级中学一模)已知2m =8n =4,则m =_____,2m+3n =_____.【答案】 2 16【分析】先求得m ,n 的值,再代入代数式计算即可.【详解】∵()33822nn n ==,242=, ∵32222m n ==,∵32m n ==,∵322422216m n ++===,故答案为:2;16.【点睛】本题考查了同底数幂的乘法和乘方,熟练掌握运算性质是解题的关键. 3.(2022·江西抚州·七年级期中)已知:23m =,325n =,则52m n +=______.【答案】15【分析】利用同底数幂的乘法法则的逆运算及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:∵23m =,53225n n ==,∵552223515m n m n +=⨯=⨯=;故答案为:15.【点睛】本题主要考查幂的乘方,同底数幂的乘法的逆运算,解答的关键是对相应的运算法则的掌握.考点四 幂的乘方的逆用例题:(2022·广东·佛山市顺德区勒流育贤实验学校七年级期中)已知93m =,274n =,则233m n +=( ) A .24B .36C .48D .12【答案】D【分析】利用幂的乘方的法则对已知条件进行整理,再利用同底数幂的乘法的法则对所求的式子进行运算即可.【详解】解:∵93m =,274n =,∵233m =,334n =∵2323333m n m n +=⨯34=⨯ 12=.故选:D .【点睛】本题主要考查同底数幂的乘法,幂的乘方,解答的关键是熟记相应的运算法则并灵活运用.【变式训练】 1.(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)已知5x a =,250xy a ,则y a =( ) A .10B .5C .2D .40 【答案】C【分析】逆向运用同底数幂的乘法法则可得22xy x y a a a ,再根据幂的乘方运算法则求解即可. 【详解】解:∵5x a =,250xy a , ∵22250x y x y x y a a a a a ,∵2550y a ,∵25052y a .故选:C .【点睛】本题考查了同底数幂的乘法以及幂的乘方.掌握幂的运算法则是解答本题的关键.2.(2021·浙江·嵊州市马寅初初级中学七年级期中)已知3181a =,4127b =,619c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>【答案】A【分析】根据幂的乘方是逆运算将各数的底数变为相同的数字,进而比较即可.【详解】解:∵3181a ==962=3124,4127b ==3123,619c ==3122,∵a >b >c ,故选:A .【点睛】此题考查了幂的乘方的运算法则,熟记法则是解题的关键.考点五 幂的混合运算例题:(2022·安徽阜阳·八年级期末)计算:()()4273342a a a a -⋅-÷; 【答案】0【分析】先计算积的乘方与幂的乘方,再计算同底数除法,然后计算整式的减法即可得.【详解】解:原式273121616a a a a ⋅-÷=991616a a -=0=.【点睛】本题考查了积的乘方与幂的乘方,再计算同底数除法,等知识点,熟练掌握各运算法则是解题关键.【变式训练】 1.(2021·上海市民办新复兴初级中学七年级期末)计算:()()23222n n n a a a ⎡⎤-⋅+-⎣⎦. 【答案】0【分析】先根据幂的乘方计算,计算同底数幂,最后合并,即可求解.【详解】解:原式426660n n n n n a a a a a =⋅-=-=.【点睛】本题主要考查了幂的混合运算,熟练掌握相关幂的运算法则是解题的关键.2.(2022·江苏·七年级专题练习)计算:(1)()3242a a a ⋅+-; (2)()()()345222a a a ⋅÷-; (3)432()()()p q q p p q -÷-⋅-.【答案】(1)0(2)4a -(3)3()p q --【分析】(1)根据同底数幂的乘法和幂的乘方以及合并同类项的计算法则求解即可;(2)根据幂的乘方和同底数幂的除法计算法则求解即可;(3)根据同底数幂的乘除法计算法则求解即可.(1)解:()3242a a a ⋅+- ()66a a =+-66a a =-0=;(2)解:()()()345222a a a ⋅÷- ()6810a a a =⋅÷-4a =-;(3)解:432()()()p q q p p q -÷-⋅-432()()()q p q p q p =-÷-⋅-3()q p =-()3p q =--.【点睛】本题主要考查了幂的混合运算,熟知相关计算法则是解题的关键.考点六 积的乘方运算 例题:(2022·湖南·测试·编辑教研五七年级期末)计算()232x y 的结果是( )A .8x 6 y 2B .4 x 6 y 2C .4 x 5 y 2D .8 x 5 y 2【答案】B【分析】根据幂的乘方、积的乘方进行运算即可.【详解】解:()()22323226422x y x y x y ==. 故选B .【点睛】本题主要考查了幂的乘方、积的乘方等知识点,掌握相关运算法则是解答本题的关键.【变式训练】 1.(2022·安徽·合肥新华实验中学七年级期中)计算423(3)a b -的结果是( )A .1269a b -B .7527a b -C .1269a bD .12627a b - 【答案】D【分析】根据积的乘方运算法则,进行计算即可解答.【详解】解:126423(73)2b a a b --=,故选:D .【点睛】本题考查了积的乘方,熟练掌握积的乘方运算法则是解题的关键.2.(2021·黑龙江·哈尔滨顺迈学校八年级阶段练习)下列计算正确的是( )A .3332b b b ⋅=B .()326ab ab = C .()2510a a = D .()2349a a a ⋅= 【答案】C【分析】分别根据同底数幂的乘法法则幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A 、33632b b b b ⋅=≠,故本选项不合题意;B 、()32366ab a b ab =≠,故本选项不合题意; C 、()2510a a =,故本选项符合题意; D 、()234109a a a a ⋅=≠,故本选项不合题意; 故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方与积的乘方运算,熟记幂的运算法则是解答本题的关键.考点七 积的乘方的逆用 例题:(2021·河南·鹤壁市外国语中学八年级开学考试)计算:(1)已知()3240n a =,求6n a 的值; (2)已知n 为正整数,且27n x =,求()()223234nn x x -的值. 【答案】(1)25(2)2891【分析】(1)由积的乘方公式解题;(2)由积的乘方公式解得()()223234n n x x -23229()4()n n x x =-,再利用整体代入法解题.(1)解:()3322n a =3=40n a 3=5n a ∴322()=5n a ∴6=25n a ∴.(2)()()223234n n x x -26434n n x x =-23229()4()n n x x =-27n x =∴原式3229747(634)72891=⨯-⨯=-⨯=.【点睛】本题考查积的乘方、幂的乘方等知识,是重要考点,难度一般,掌握相关知识是解题关键.【变式训练】1.(2021·江苏·南京钟英中学七年级阶段练习)若m n a a =(0a >且1a ≠,m 、n 是正整数),则m n =.利用上面结论解决下面的问题:(1)如果528162x x ÷⋅=,求x 的值;(2)如果212224x x +++=,求x 的值;(3)若53m x =-,425m y =-,用含x 的代数式表示y .【答案】(1)4x =;(2)2x =;(3)265y x x =---【分析】(1)先,将底数都化为2,再利用同底数幂的乘除法法则计算;(2)利用积的乘方逆运算解答;(3)利用等式的性质及幂的乘方逆运算将式子变形为35m x +=,24255m m y -==,即可得到x 与y 的关系式,由此得到答案.【详解】解:(1)∵528162x x ÷⋅=,∵3452222x x ÷⋅=,∵1345x x -+=,解得4x =;(2)∵212224x x +++=,∵2222224x x ⋅+⋅=,2(42)24x +=,2242x ==,2x =;(3)∵53m x =-,425m y =-,∵35m x +=,24255m m y -==,∵243)(x y +-=,∵223)654(x y x x +=--=--.【点睛】此题考查整式的乘法公式:同底数幂相乘、同底数幂相除、积的乘方以及幂的乘方的计算法则,熟记法则及其逆运算是解题的关键.2.(2020·吉林·长春市第十三中学校七年级期中)已知222()ab a b =,333()ab a b =, 444()ab a b =. (1)当1a =,2b =-时,5()ab = ,55a b = .(2)当1a =-,10b =时,6()ab = ,66a b = .(3)观察(1)和(2)的结果,可以得出结论:()n ab = (n 为正整数).一、选择题1.(2022·湖南·新田县云梯学校七年级阶段练习)下列运算正确的是( )A .235x x x +=B .3412a a a ⋅=C .44(2)8x x =D .()2362x y x y -= 【答案】D【分析】根据同底数幂的乘法、积的乘方与幂的乘方、合并同类项法则逐项判断即可得.【详解】解:A 、2x 与3x 不是同类项,无法合并,故错误;n m,即可求解.9,3159,315n m,n m.解得:3,5故选:B【点睛】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.三、解答题9.(2022·福建·晋江市南侨中学八年级阶段练习)计算:(1)322··x x x x + (2)34a a a +()()42242a a +-【答案】(1)2x 4(2)6a 8【分析】(1)先计算同底数幂的乘法,然后合并同类项计算即可;(2)先计算同底数幂的乘法,幂的乘方及积的乘方,然后合并同类项计算即可.(1)解:原式44x x =+42x =; (2)原式8884a a a =++86a =.【点睛】题目主要考查整式的加减运算,同底数幂的乘法,幂的乘方及积的乘方,熟练掌握运算法则是解题关键.10.(2022·重庆市第十一中学校七年级期中)计算:(1)()()3222332x x x x x ⋅⋅+-; (2)()()321422m m a a a +⎡⎤-+⋅⎢⎥⎣⎦. 【答案】(1)0;(2)3321648m m a a ++-+.【分析】(1)利用同底数幂的乘法法则、幂的乘方法则即可求解;(2)利用积的乘方法则、同底数幂的乘法法则即可求解.(1)解:原式=6662x x x +-6622x x =-0=;(2)解:原式=33264(24)m m a a a +-+⨯⋅42x,,()42)a a --()2 33b ⎛-+-⎝)63278b a b -102+≥,(14.(2022·山东济南·七年级期中)我们定义:三角形 =ab •ac ,五角星 =z •(xm •yn );(1)求 的值;(2)若 =4,求 的值.【分析】(1)直接根据新定义的公式,代入即可求解;(2)由条件可得出算式233=4x y ,根据同底数幂的乘法得出+2y 3=4x ,再根据题意得出所求的代数式是2(981)x y ,根据幂的乘方和积的乘方可得242[(3)(3)]x y ,即为+222(3)x y 代入即可求出答案.(1)解:由题意可得,=31×32=33=27;(2)解:∵=4,∵233=4x y∵+2y 3=4x ,∵=2(981)x y=242[(3)(3)]x y=2222[(3)(3)]x y=222[(33)]x y=+222(3)x y=2×24=2×16=32.【点睛】本题属于自定义题,考查了幂的运算法则的运用,解题的关键是正确识别自定义公式,和灵活运用积的乘方法则.15.(2022·江苏·滨海县振东初级中学七年级阶段练习)阅读下列各式:(ab )2=a 2b 2,(ab )3=a 3b 3,(ab )4=a 4b 4…16.(2022·江苏·南外雨花分校七年级阶段练习)算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.【答案】(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可.(1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)∵24m n a a ==,,∵()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)∵2328162x ⨯⨯=,即()34232222x⨯⨯=, ∵352322x +=,∵3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.。

八年级数学积的乘方

八年级数学积的乘方

求 m、n、A的值
课堂小结:
(1)本节课学习了积的乘方的运算性质 积的乘方等于把积的每一个因式 乘方后,再把所得的幂相乘。
(2)学习了一种常见的数学方法: 把某个式子看作一个数或字母。
(3)今后学习中要注意灵活运用积的乘方的 运算性质,注意符号的确定和逆向运用。
; / VR制作 ;;
a b
即:
n n
(ab) a b
n
n
n
积的乘方,等于把积的每一因
式分别乘方,再把所得的幂相乘.
(1)(-3x)2 (2)(–5ab) 2 (3)(xy2)2 (4)(5ab2)3
(6)(-2x2y3)3 (7)(-xy)5 (8)(-3x3y2z)4 ( 9)(2×102)3
(5) (-2xy3z2)4
(2)若 813×274 = x24,则 x =
3
9

若 813×274 = y12,则 y =

(3)比较 813 与 274 大小
讨 论 题:
(1)a b b a
n n
2已知:a
32a
m 3
m n 6,a 2,Fra bibliotekann 2
2m
a
4n
b ab


Aa2 m1b 5 0
(10)(-3×103)2

1 2 2 (2 ) 4 4
12
⑵ 0 25
2
412
5

0 5 2 0 125
2 3
1 3 3 2 ⑷ 2
小组合作题
(1)若 x-y = a,则(3x-3y)3
3 27a = ,

人教版八年级数学上《幂的乘方与积的乘方》拓展练习

人教版八年级数学上《幂的乘方与积的乘方》拓展练习

《幂的乘方与积的乘方》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)计算(﹣2b)3的结果是()A.﹣8b3B.8b3C.﹣6b3D.6b32.(5分)已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab3.(5分)若a m=3,a n=5,则a2m+n=()A.15B.30C.45D.754.(5分)计算(﹣)2018×()2019的结果为()A.B.C.﹣D.﹣5.(5分)下列运算中,正确的是()A.(x2)3=x5 B.x2+2x3=3x5 C.(﹣ab)3=a3b D.x3•x3=x6二、填空题(本大题共5小题,共25.0分)6.(5分)314×(﹣)7=.7.(5分)已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.8.(5分)设m=2100,n=375,为了比较m与n的大小.小明想到了如下方法:m=2100=(24)25=1625,即25个16相乘的积;n=375=(33)25=2725,即25个27相乘的积,显然m<n,现在设x=430,y=340,请你用小明的方法比较x与y的大小.9.(5分)计算:(﹣8)2009•(﹣)2008=.10.(5分)如果2a+b=3,那么4a+2b=;当3m+2n=4时,则8m•4n=.三、解答题(本大题共5小题,共50.0分)11.(10分)阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a2=2,b3=3,比较a、b的大小(4)比较312×510与310×512的大小12.(10分)已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.13.(10分)阅读:已知a、b、c都是正整数,对于同指数,不同底数的两个幂a b与c b,当a>c时,a b>c b.解决下列问题:(1)比较大小:210310;(2)试比较355与533的大小.14.(10分)①已知a m=2,a n=3,求a m+2n的值.②已知(x+y)2=18,(x﹣y)2=6,求xy的值.15.(10分)已知x a•x b=x3,(x a)b=x(x≠0),求下列各式的值.(1)a2+b2;(2)a﹣b.《幂的乘方与积的乘方》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)计算(﹣2b)3的结果是()A.﹣8b3B.8b3C.﹣6b3D.6b3【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(﹣2b)3=﹣8b3.故选:A.【点评】此题主要考查了积的乘方运算,正确将原式变形是解题关键.2.(5分)已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形得出答案.【解答】解:∵2m=a,2n=b,∴22m+2n=(2m)2×(2n)2=a2b2.故选:C.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.3.(5分)若a m=3,a n=5,则a2m+n=()A.15B.30C.45D.75【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形得出答案.【解答】解:∵a m=3,a n=5,∴a2m+n=(a m)2×a n=9×5=45.故选:C.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.4.(5分)计算(﹣)2018×()2019的结果为()A.B.C.﹣D.﹣【分析】直接利用积的乘方运算法则将原式变形得出答案.【解答】解:(﹣)2018×()2019=(﹣)2018×()2018×=.故选:A.【点评】此题主要考查了积的乘方运算,正确将原式变形是解题关键.5.(5分)下列运算中,正确的是()A.(x2)3=x5 B.x2+2x3=3x5 C.(﹣ab)3=a3b D.x3•x3=x6【分析】直接利用幂的乘方运算法则以及合并同类项法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、(x2)3=x6,故此选项错误;B、x2+2x3,无法计算,故此选项错误;C、(﹣ab)3=﹣a3b3,故此选项错误;D、x3•x3=x6,正确.故选:D.【点评】此题主要考查了幂的乘方运算以及合并同类项以及积的乘方运算,正确掌握相关运算法则是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)314×(﹣)7=﹣1.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.7.(5分)已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=﹣.【分析】由6x=192,32y=192,推出6x=192=32×6,32y=192=32×6,推出6x﹣1=32,32y﹣1=6,可得(6x﹣1)y﹣1=6,推出(x﹣1)(y﹣1)=1,由此即可解决问.【解答】解:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣【点评】本题考查幂的乘方与积的乘方,解题的关键是灵活运用知识解决问题,属于中考填空题中的压轴题.8.(5分)设m=2100,n=375,为了比较m与n的大小.小明想到了如下方法:m=2100=(24)25=1625,即25个16相乘的积;n=375=(33)25=2725,即25个27相乘的积,显然m<n,现在设x=430,y=340,请你用小明的方法比较x与y的大小.【分析】根据x=430=(43)10=6410,y=340=(34)10=8110,判断出x、y的大小关系即可.【解答】解:x=430=(43)10=6410,y=340=(34)10=8110,∵64<81,∴6410<8110,∴x<y.【点评】此题主要考查了幂的乘方和积的乘方,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n 是正整数).9.(5分)计算:(﹣8)2009•(﹣)2008=﹣8.【分析】根据积的乘方和﹣1的奇数次方是﹣1,偶数次方是1可以计算出题目中式子的结果.【解答】解:(﹣8)2009•(﹣)2008==(﹣1)2008×(﹣8)=1×(﹣8)=﹣8.故答案为;﹣8.【点评】本题考查幂的乘方与积的乘方,解题的关键是明确幂的乘方与积的乘方的计算方法.10.(5分)如果2a+b=3,那么4a+2b=6;当3m+2n=4时,则8m•4n=16.【分析】根据幂的乘方和积的乘方和同底数幂的乘法法则求解.【解答】解:∵2a+b=3,∴4a+2b=6;8m•4n=23m+2n,∵3m+2n=4,∴23m+2n=16.故答案为:6;16.【点评】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握幂的乘方和积的乘方和同底数幂的乘法法则.三、解答题(本大题共5小题,共50.0分)11.(10分)阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a2=2,b3=3,比较a、b的大小(4)比较312×510与310×512的大小【分析】(1)根据题目中的例子可以解答本题;(2)根据题目中的例子可以解答本题;(3)根据题目中的例子可以解答本题;(4)根据题目中的例子可以解答本题.【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511,∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a2=2,b3=3,∴a6=8,b6=9,∵8<9,∴a6<b6,∴a<b;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.【点评】本题考查幂的乘方与积的乘方、有理数大小比较,解答本题的关键是明确有理数大小的比较方法.12.(10分)已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.【分析】直接利用同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵3a×32b=27,∴3a+2b=33,故a+2b=3,∵(5a)2×(52b)2÷(53a)b=1,∴52a+4b÷53ab=1,∴2a+4b﹣3ab=0,∵a+2b=3,∴6﹣3ab=0,则ab=2,∴a2+4b2=(a+2b)2﹣4ab=32﹣4×2=1.【点评】此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.13.(10分)阅读:已知a、b、c都是正整数,对于同指数,不同底数的两个幂a b与c b,当a>c时,a b>c b.解决下列问题:(1)比较大小:210<310;(2)试比较355与533的大小.【分析】(1)根据同指数的幂底数越大幂越大,可得答案.(2)根据幂的乘方,可得指数相同的幂,根据底数越大幂越大,可得答案.【解答】解:(1)∵2<3,∴210<310,故答案为:<;(2)∵355=(35)11=24311,533=(53)11=12511,又∵243>125,∴355>533.【点评】本题考查了幂的乘方,利用同指数的幂底数越大幂越大是解题关键.14.(10分)①已知a m=2,a n=3,求a m+2n的值.②已知(x+y)2=18,(x﹣y)2=6,求xy的值.【分析】①直接利用同底数幂的乘除运算法则以及利用幂的乘方运算法则将原式变形得出答案;②直接利用完全平方公式将原式变形进而求出答案.【解答】解:①∵a m=2,a n=3,∴a m+2n=a m×(a n)2=2×32=18;②∵(x+y)2=x2+2xy+y2=18(1),(x﹣y)2=x2﹣2xy+y2=6(2),∴(1)﹣(2)得:4xy=18﹣6,则xy=3.【点评】此题主要考查了完全平方公式以及同底数幂的乘除运算以及幂的乘方运算,正确掌握运算法则是解题关键.15.(10分)已知x a•x b=x3,(x a)b=x(x≠0),求下列各式的值.(1)a2+b2;(2)a﹣b.【分析】(1)由x a•x b=x3、(x a)b=x知x a+b=x3,x ab=x,据此知a+b=3、ab=1,根据a2+b2=(a+b)2﹣2ab可得答案;(2)由(a﹣b)2=(a+b)2﹣4ab=5可得答案.【解答】解:(1)∵x a•x b=x3,(x a)b=x,∴x a+b=x3,x ab=x,则a+b=3、ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2×1=7;(2)∵(a﹣b)2=(a+b)2﹣4ab=32﹣4=5,∴a﹣b=±.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方、同底数幂的乘法及完全平方公式.。

初中数学八年级上册 积的乘方 人教版

初中数学八年级上册   积的乘方   人教版

(3) (-xy)5
(4) (5ab2)3 (5) (2×102)2 解:(31×)原10式3)=3a8·b8
(2)原式= 23 ·m3=8m3
(6) (-
(3)原式=(-x)5 ·y5=-x5y5
(4)原式=53 ·a3 ·(b2)3=125 a3 b6
(5)原式=22 ×(102)2=4 ×104
4、计算:
0.75 2003-
42
003
3
m =___ n=_ __ _,_
,那么
课后作业
一.填空: (1)a6y3=( )3; (2)若(a3ym ) 2=any8,则 m=__, _n=__._ (3)32004(-1)200=4_____.___ 3
二 .计算: (1)( - xy 2 z 3 )2; (2)[-4(x - y)2 ]3; (3)(t - s)3 (s - t)4
n个ab
证明:(ab) n= (ab)·(ab)·····(ab)
n个a
n个b
=(a·a·····a)·(b·b·····b)
=anbn
因此可得:(ab)n=anbn (n为正整数)
新知归纳
积的乘方的运算法则: 积的乘方,等于把积的每个因式分别乘方,
再把所得的幂相乘。
(ab)n = anbn (n为正整数)
课后作业
1、填空: -2a5 3=______
-x2y7-2x3 y2y=_________
x 2、选择: 3m1 可以写成_____
A 、 x3 m1 D、
xm 31 B 、 x x3m
xm 2m1 C 、
3、填空:如果 xmyn3=x3y12

八年级数学上册《第十四章 积的乘方》练习题附答案-人教版

八年级数学上册《第十四章 积的乘方》练习题附答案-人教版

八年级数学上册《第十四章积的乘方》练习题附答案-人教版一、选择题1.计算(-2a2)3的结果是( )A.-6a2B.-8a5C.8a5D.-8a62.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b33.下列计算正确的是( )A.(a2)3=a5B.2a﹣a=2C.(2a)2=4aD.a•a3=a44.计算(﹣3x2)3的结果是()A.9x5B.﹣9x5C.27x6D.﹣27x65.计算﹣(﹣3a2b3)4的结果是( )A.81a8b12B.12a6b7C.﹣12a6b7D.﹣81a8b126.如果(a n•b m b)3=a9b15,那么( )A.m=4,n=3B.m=4,n=4C.m=3,n=4D.m=3,n=37.如果(2a m•b m+n)3=8a9b15,则( )A.m=3,n=2B.m=3,n=3C.m=6,n=2D.m=2,n=58.﹣x n与(﹣x)n的正确关系是( )A.相等B.互为相反数C.当n为奇数时它们互为相反数,当n为偶数时相等D.当n为奇数时相等,当n为偶数时互为相反数9.已知a=1.6×109,b=4103,则a2×2b=()A.2×107B.4×1014C.3.2×105D.3.2×101410.已知2a=3,2b=6,2c=12,则a,b,c的关系为:①b=a+1;②c=a+2;③a+c=2b;④b+c=2a+3.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题11.若x n=2,y n=3,则(xy)n=________.12.计算:(﹣2xy2)3= .13.填空:45×(0.25)5= (________×________)5= ________5= ________.14.计算:(-3a2)3= .15.已知2m+5n-3=0,则4m×32n的值为.16.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是 .三、解答题17.计算:[(-3a2b3)3]2;18.计算:(2x2)3-x2·x419.计算:(-2xy2)6+(-3x2y4)3;20.已知273×94=3x,求x的值.21.已知n是正整数,且x3n= 2,求(3x3n)3+(-2x2n)3的值.22.已知x3m=2,y2m=3,求(x2m)3+(y m)6-(x2y)3m·y m的值.23.(1)若2x+5y-3=0,求4x•32y的值.(2)若26=a2=4b,求a+b值.参考答案1.D2.B3.D4.D5.D6.A7.A8.D9.D10.D11.答案为:6.12.答案为:﹣8x3y6.13.答案为:4 0.25 1 114.答案为:-27a6.15.答案为:8.16.答案为:a+b=c.17.解:原式=729a12b18.18.解:原式=7x6;19.解:原式=37x6y12;20.解:因为273×94=(33)3×(32)4=39×38=39+8=317即3x=317,所以x=17.21.解:(3x3n)3+(-2x2n)3= 33×(x3n)3+(-2)3×(x3n)2= 27×8+(-8)×4= 184.22.解:原式=-5.23.解:(1)8;(2)11或-5;。

八年级数学上册分式的乘除混合运算及乘方练习题

八年级数学上册分式的乘除混合运算及乘方练习题

八年级数学上册分式的乘除混合运算及乘方练习题(含答案解析)学校:___________姓名:___________班级:___________一、单选题1.计算1a a a÷⨯的结果是( )A .aB .2aC .1aD .3a2.化简2()b ba a a -÷-的结果是( )A .-a -1B .a -1C .-a +1D .-ab +b3.下列分式运算或化简错误的是( )A .133122x x x x --=--+ B .322242x y x x y y-=-C .()22()x yx xy x y x--÷=- D .42122x x x++=--- 4.计算32n m ⎛⎫⎪⎝⎭的结果是( )A .32n mB .36n mC .35n mD .5n m 5.小马虎在下面的计算中只做对了一道题,他做对的题目是( )A .22a a b b ⎛⎫= ⎪⎝⎭B .1x yx y--=-- C .112a b a b+=+ D .341a a a÷= 6.265ab c ·103cb的计算结果是( ) A .245a c B .4a C .4a c D .1c7.计算222421a a a a --+-的结果是( )A .24a -B .24a -+C .24a --D .24a +8.试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .a a b- B .a ba- C .a a b+ D .224a a b -二、解答题 9.化简下列分式(1)3265224a y ab a b y by⎛⎫⎛⎫--⋅÷ ⎪⎪⎝⎭⎝⎭; (2)2211122x x x -⎛⎫-÷⎪++⎝⎭. 10.阅读下面的解题过程: 已知2212374y y =++,求代数式21461y y +-的值.解:∵2212374y y =++,∵223742y y ++=,∵2231y y +=. ∵()2246122312111y y y y +-=+-=⨯-=,∵211461y y =+-.这种解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目: 已知332x x +=+,求352242x x x x -⎛⎫÷-- ⎪--⎝⎭的值. 11.给定下面一列分式:3x y ,−52x y ,73x y,−94x y ,…,(其中x ≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第2013个分式.12.先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值. 13.一艘船顺流航行km n 用了h m ,如果逆流航速是顺流航速的pq,那么这艘船逆流航行h t 走了多少路程? 14.化简:(1)⨯ (2)(a +2)2-(a +1)(a -1) 15.先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解. 16.先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 17.先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 18.某花卉生产基地举行花卉展览,如图所示是用这两种花卉摆成的图案,白色圆点为盆景,灰色圆点为盆花.图1中盆景数量为2,盆花数量为2;图2中盆景数量为4,盆花数量为6;图3中盆景数量为6,盆花数量为12……按照以上规律,解决下列问题:(1)图6中盆景数量为________,盆花数量为___________;(2)已知该生产基地展出以上两种花卉在某种图案中的数量之和为130盆,分别求出该图案中盆景和盆花的数量;(3)若有n (n 为偶数,且2n ≥)盆盆景需要展出(只摆一种图案),照此组合图案,需要盆花的数量为________.(用含n 的代数式表示) 三、填空题19.已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =,则2012S =_______(用含a 的代数式表示). 20.(2a bc -)3•(2c ab-)2÷(bc a )4=________.21.已知7x y +=且12xy =,则当x y <时,11x y的值等于________.22.若分式21x x -□1x x -运算结果为x ,则在“□”中添加的运算符号为_____.(请从“+、﹣、×、÷”中选择填写)参考答案:1.D【分析】根据分式的乘除运算法则即可计算. 【详解】解:31a a a a a a a÷⨯=⨯⨯=故选D【点睛】本题考查了分式的运算,加减乘除混合运算时,先算乘除再算加减,同名运算按从左往右依次计算,熟练掌握分式的乘除运算是解题的关键.【分析】将除法转换为乘法,然后约分即可.【详解】原式=(1)(1)1(1)b b b a a a a a a a a b -⎛⎫⎛⎫-÷=-⨯=--=- ⎪ ⎪-⎝⎭⎝⎭, 故选B .【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键. 3.C【分析】根据分式的性质,分式的约分,分式的加减以及除法运算进行化简,逐项分析即可 【详解】A .原式(31)31(2)2x x x x ---==-++,正确,不符合题意;B .原式=2xy-,正确,不符合题意; C .原式2()xx x y x x y=-⋅=-,错误,符合题意; D .原式4242(2)12222x x x x x x x +----=-===-----,正确,不符合题意. 故选:C .【点睛】本题考查了分式的计算,掌握分式的性质以及分式的约分,分式的加减是解题的关键. 4.B【分析】根据分式的乘方运算法则解答即可. 【详解】解:()3333262n n n m m m ⎛⎫== ⎪⎝⎭.故选:B .【点睛】本题考查了分式的运算,属于基本题型,熟练掌握分式的乘方运算法则是解答的关键. 5.D【分析】根据分式的运算法则逐一计算即可得答案. 【详解】A.222()a a b b=,故该选项计算错误,不符合题意,B.()1x y x y x y x y---+=≠---,故该选项计算错误,不符合题意, C.11a b a b ab++=,故该选项计算错误,不符合题意, D.3341a a a a a÷=⋅=,故该选项计算正确,符合题意, 故选:D .【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.【分析】分式乘分式,用分子的积作积的分子,分母的积作积的分母,能约分的要约分. 【详解】265ab c ·103c b=226106045315ab c abc ac b bc c ⨯==⨯.故选C.【点睛】本题主要考查了分式的乘除法,做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序. 7.A【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母,然后将各分式的分子、分母因式分解,进而可通过约分、化简得出结果.【详解】222421a a a a --+-=()()()()2122222421a a a a a a a -+-=-=-+-故选A .【点睛】本题考查了分式的乘法运算.如果分子、分母是多项式,那么就应该先分解因式,然后找出它们的公因式,最后进行约分. 8.A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a ba b a b -++÷+-∵=2a b+∵=()()22a ab a b a b ÷+-+=aa b-, 故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键. 9.(1)2a b;(2)21x +.【分析】(1)先算乘方,再算乘除; (2)先算括号里的,再算括号外的除法. 【详解】解:(1)3265224a y ab a b y by ⎛⎫⎛⎫--⋅÷ ⎪⎪⎝⎭⎝⎭63235648a y ab by b y a =⋅⋅2a b=. (2)2211122x x x -⎛⎫-÷⎪++⎝⎭()()()211111x x x x x +-=⋅+-+ 21x =+. 【点睛】本题考查了分式的混合运算,解题的关键是掌握有关运算法则,以及注意分子、分母的因式分解,通分、约分.10.13-【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解后约分得到原式12(3)x -+利用倒数法由已知条件得到332x x +=+然后把左边化为真分式后利用整体代入的方法计算. 【详解】解:原式35(2)(2)3212(2)22(2)(3)(3)2(3)x x x x x x x x x x x --+---=÷=⋅=-----+-+,∵332x x +=+, ∵2311113333x x x x x ++-==-=+++, 12,33x ∴=+ ∵原式1111212(3)23233x x =-=-⋅=-⨯=-++ 【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.11.(1)任意一个分式除以前面那个分式等于2x y -;(2)40272013x y.【分析】(1)利用分式的化简即可发现规律; (2)根据所发现的规律,求需要求的分式.【详解】解:(1)53773225942322;;;;x x x x x x yy x x y y y y y x y y ⎛⎫÷== ⎪⎛⎫-⎝⎭÷=---÷-⎪- ⎝⎭,规律是任意一个分式除以前面那个分式等于2x y-;(2)根据规律:后面一个分式除以前面那个分式等于2x y-,第一个分式是3x y ,所以第2013个分式应该是:20123240272013x x x y y y⎛⎫⨯-= ⎪⎝⎭. 【点睛】本题考查了分式的化简,解题的关键是:利用分式化简的法则计算找规律,然后运用规律求指定项的分式. 12.22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案.【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式∵得:1a >- 解不等式∵得:2a ≤, ∵12a -<≤, ∵a 为整数, ∵a 取0,1,2, ∵0,20a a ≠-≠, ∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型. 13.nptmqkm 【分析】根据题意表示出顺流速度,进而表示出逆流速度,即可得到这艘船逆流航行t h 走的路程. 【详解】解:根据题意得:顺流速度为nmkm/h ,逆流速度为pn qm km/h ,则这艘船逆流航行t h 走了nptmqkm .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 14.(1)2 (2)45a +【分析】(1)利用平方差公式和完全平方公式即可求解;(2)利用平方差公式和完全平方公式进行展开后,进行合并同类项即可. (1)解:原式=22-=75- =2; (2)解:原式=()()22441a a a ++--=22441a a a ++-+ =45a +.【点睛】本题主要考查利用平方差公式进行二次根式的运算以及利用平方差公式和完全平方公式进行整式的运算,掌握乘法公式是解题的关键. 15.22x,当x =2时,原分式的值为12 【分析】由题意先把分式进行化简,求出不等式组的整数解,根据分式有意义的条件选出合适的x 值,进而代入求解即可.【详解】解:原式=()()()()()22211211221111x x x x x x x x x x x x +-⎛⎫--+÷=⨯= ⎪+-+-⎝⎭; 由()211532x x x x ⎧-<+⎨+≥⎩可得该不等式组的解集为:13x -≤<,∵该不等式组的整数解为:-1、0、1、2, 当x =-1,0,1时,分式无意义, ∵x =2,∵把x =2代入得:原式=22122=. 【点睛】本题主要考查分式的运算及一元一次不等式组的解法,要注意分式的分母不能为0.16.11a -,1 【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭ ()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键. 17.a ab +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题.【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭=222a ab a b b b--÷ =()()()a ab bba b a b -+-=a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法. 18.(1)12;42(2)该图案中盆景和盆花的数量分别为20和110 (3)122n n ⎛⎫+ ⎪⎝⎭【分析】(1)由图可知,依次写出图1到图5的盆景的数量,盆花的数量;推导出一般性规律:图n 中盆景的数量为:2n ;盆花的数量为:()1n n +,将6n =代入求解即可;(2)由题意知,()21130n n n ++=,求出满足要求的n 值,进而可得盆景,盆花的数量; (3)根据推导出的一般性规律作答即可. (1)解:由图可知,盆景的数量依次为:12⨯、22⨯、32⨯、42⨯、52⨯······ 盆花的数量依次为:12⨯、23⨯、34⨯、45⨯、56⨯······ ∵可推导出一般性规律:图n 中盆景的数量为:2n ;盆花的数量为:()1n n + ∵图6中盆景的数量为:2612⨯=;盆花的数量为:()66142⨯+= 故答案为:12;42. (2)解:由题意知,()21130n n n ++= 整理得+-=231300n n()()10130n n -+=解得10n =,13n =-(不合题意,舍去)当10n =时,盆景数量为221020n =⨯=,盆花数量为13020110-= ∵该图案中盆景和盆花的数量分别为20和110. (3)解:由一般性规律可知,当有n 盆盆景需要展出时,需要盆花的数量为122n n ⎛⎫+ ⎪⎝⎭故答案为:122n n ⎛⎫+ ⎪⎝⎭.【点睛】本题考查了图形类规律探究,列代数式,解一元二次方程.解题的关键在于推导出一般性规律. 19.1a【分析】先把1S 的值代入2S 的表达式中,求出2S ,以此类推求出3S 、4S ,从而可发现规律:所有的奇次项都等于2a ,所有的偶次项都等于1a. 【详解】∵12S a =,∵212212S S a a ===, 312221S a S a===,∵每2个式子为一个周期循环, ∵20121S a= 故答案为:1a .【点睛】本题主要考查了分式乘除的混合运算与数字的变化规律,解题的关键是根据题意得出序数为奇数时为2a ,序数为偶数时为1a.20.833a b c- 【详解】解:原式=634483224433a b c a a c a b b c b c -⋅⋅=-.故答案为833a b c-. 21.112【分析】利用分式的加减运算法则与完全平方公式把原式化为:222()4x y xy x y +-,再整体代入求值,再利用平方根的含义可得答案.【详解】解:因为7x y +=,12xy =, 所以2222211()y x x y x y xy x y ⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭ 22222()47412112144x y xy x y +--⨯===, 又因为x y <,所以110x y->, 所以11112x y -=, 故答案为:112. 【点睛】本题考查的是由条件式求解分式的值,掌握变形的方法是解题的关键.22.﹣或÷.【分析】分别用计+、﹣、×、÷计算出结果进行验证即可解答.【详解】解:211x x x x +--=21x x x +-, 211x x x x ---=21x x x --=(1)1x x x --=x , 211x x x x --=32(1)x x -, 211x x x x ÷--=211x x x x-⨯-=x , 故答案为﹣或÷.【点睛】本题考查了分式方程的加、减、乘、除运算法则,掌握并灵活运用运算法则是解答本题的关键.。

人教版八年级数学上积的乘方课文练习含答案

人教版八年级数学上积的乘方课文练习含答案

14.1.3 积的乘方课前预习要点感知(ab)n=________(n为正整数).即积的乘方,等于____________________________,再把__________________.预习练习1-1(东莞中考)计算:(-4x)2=( )A.-8x2 B.8x2 C.-16x2 D.16x21-2填空:45×(0.25)5=(________)5=15=1.当堂训练知识点1 直接运用法则计算1.计算:(1)(2ab)3;(2)(-3x)4;(3)(x m y n)2;(4)(-3×102)4.知识点2 灵活运用法则计算2.已知|a-2|+(b+12)2=0,则a2 015b2 015的值为________.3.计算:(-3)2 017·(-13)2 015=________.课后作业4.如果(a m b n)3=a9b12,那么m,n的值分别为( ) A.9,4 B.3,4C.4,3 D.9,65.若2x+1·3x+1=62x-1,则x的值为________.6.计算:(1)[(-3a2b3)3]2;(2)(-2xy2)6+(-3x2y4)3;(3)(-14)2 016×161 008;7.已知n是正整数,且x3n=2,求(3x3n)3+(-2x2n)3的值.参考答案要点感知a n b n把积的每一个因式分别乘方所得的幂相乘预习练习1-1 D 1-24×0.25当堂训练1.(1)原式=23·a3·b3=8a3b3. (2)原式=(-3)4·x4=81x4.(3)原式=(x m)2·(y n)2=x2m y2n. (4)原式=(-3)4×(102)4=81×108=8.1×109. 2.-1 3.9课后作业4.B 5.2 6.(1)原式=[(-3)3×(a2)3×(b3)3]2=(-27a6b9)2=729a12b18. (2)原式=64x6y12-27x6y12=37x6y12. (3)原式=(-14)2 016×42 016=(-14×4)2 016=1. 7.(3x3n)3+(-2x2n)3=33×(x3n)3+(-2)3×(x3n)2=27×8+(-8)×4=184.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

华师大版八年级数学上册积的乘方

华师大版八年级数学上册积的乘方
) b(
观察这几道题的计 算结果,你能发现 什么规律?设n为 正整数_______=_________
)b(
;

n个

n个 n个
知1-导
(ab)n (ab) (ab) (ab) = (a a a) ( b b b ) =a n b n .
可得
(ab)n=anbn(n为正整数).
这就是说,积的乘方,把积的每一个 因式分别乘方, 再把所得的幂相乘.
利用这个法则, 可直接计算积的 乘方.
知1-讲
积的乘方法则:积的乘方,等于把积的每一个因式分别 乘方,再把所得的幂相乘. 即:(ab)n=anbn(n为正整数). 要点精析:底数是乘积的形式,底数中a,b可以是单项
拓展:(abc)n=anbncn(n为正整数).
知2-讲
例3
(1)计算:0.12515×(215)3; (2)若am=3,bm=
1 ,求(ab)2m的值. 6
导引:(1)逆用积的乘方法则,可使乘积出现一些简单的数值,
从而使解题简单;(2)直接求字母a,b的值很困难,本题 可以运用幂的运算性质变形,然后整体代入求解. 15 15 1 1 3 15 8 解:(1)原式= ×(2 ) = =1. 8 8 (2)因为am=3,bm=
1 1 1 2 m m 2 m m 2 所以(ab) =[(ab) ] =(a b ) = 3 . 6 2 4
1 , 6
2 2
知2-练
1
如果5n=a,4n=b,那么20n=________.
2
3
若n为正整数,且x2n=3,则(3x3n)2的值为________.

初二【数学(人教版)】积的乘方

初二【数学(人教版)】积的乘方
(3) 2a2 2 4a4
3xy3 27x3 y3
2a2 2 4a4
练习巩固
练习判断下列计算是否正确,并简要说明理由.
(4)
(5)
an
ab2
2
an a
2b
4
a
n
1n
a
n
an n为偶数
a
n
n为奇数
ab2 2 12 a2 b2 2
a2b4
练习巩固
V太
4 3
π
102 r
3
4 π 102 3 r3 3
4 π 106 r3 3
V地
4 3
πr 3
V太
4 π 106 r3 3
106
V地
4 πr3
3
V太 106V地 1.081012 106
1.081018
例题讲解
例 计算
(1)2a3
(2) 5b3
(3) xy2 2
(4) 2x3 4
练习
(1) 3a3b2c 4
(2)
1 2
a
2
a
b
3
3 4 a3 4 b2 4 c4
1 3
a2
3a b3
81a12b8c4
2
1 a6 a b3
8
例题讲解
例 计算
(1) a3b 4 2 a6b2 2 1 4 a3 4b4 2 a6 2 b2 2
探究新知
思考 你能再举一个例子,不写计算过程直接说出 它的运算结果.
(1) 3 42 32 42
(2) ab2 a2b2 (3) ab3 a3b3
ab5 a5b5
探究新知
思考 你能用符号表示你发现的规律吗?

八年级数学人教版上册同步练习积的乘方(解析版)

八年级数学人教版上册同步练习积的乘方(解析版)

14.1.3积的乘方一、单选题1.下列运算中,正确的是( )A .22()ab ab =B .()325a a =C .23a a a ⋅=D .22()2a a -=-【答案】C【分析】根据幂的运算性质判断即可;【详解】222()ab a b =,故A 错误; ()326a a =,故B 错误; 23a a a ⋅=,故C 正确;22()a a -=,故D 错误;故答案选C .【点评】本题主要考查了幂的运算性质,准确分析判断是解题的关键.2.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- 【答案】A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点评】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.3.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数 【答案】C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点评】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.4.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32【答案】D【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点评】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.5.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9【答案】B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点评】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.6.计算()20192020122⎛⎫-⨯- ⎪⎝⎭等于( ) A .﹣2B .2C .﹣12D .12 【答案】A【分析】逆运用同底数幂的乘法法则,把()20202-写成()()201922-⨯-的形式,再逆运用积的乘方法则得结论.【详解】()20192020122⎛⎫-⨯- ⎪⎝⎭()()201920191222⎛⎫=-⨯-⨯- ⎪⎝⎭()()20191222⎡⎤⎛⎫=--⨯- ⎪⎢⎥⎝⎭⎣⎦()201921?=-⨯2=-.故选:A .【点评】本题考查了同底数幂的乘法、积的乘方等知识点,熟练运用和逆用幂的运算法则是解决本题的关键.二、填空题目7.2007200820092()(1.5)(1)3⨯÷-=_____.【答案】-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可. 【详解】原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5, 故答案为-1.5 .【点评】本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.8.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 【答案】1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点评】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键9.计算:(-0.125)2021×82 020=________. 【答案】18-【分析】先根据同底数幂乘法的逆运算将2021(0.125)-化为20201(1))8(8⨯--,再利用积的乘方逆运算得到20201(8)81()8-⨯⨯-,求值即可. 【详解】20212020(0.1285)-⨯ =202020201())881(8⨯-⨯- =20201(8)81()8-⨯⨯- =18- 故答案为:18-. 【点评】本题考查同底数幂相乘的逆运算,积的乘方的逆运算.熟记公式并灵活运用公式是解题的关键.10.计算201520162332⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭________________. 【答案】32【分析】直接运用积的乘方运算法则进行计算即可.【详解】201520162332⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭ =20152015233322⎛⎫⎛⎫⎛⎫⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =2015233322⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=()2015312⎛⎫-⨯- ⎪⎝⎭=312⎛⎫-⨯-⎪⎝⎭ =32. 故答案为:32. 【点评】本题主要考查了积的乘方运算,熟练掌握运算法则是解答此题的关键.三、解答题11.计算:()()322435x x x -+-⋅. 【答案】62x -【分析】根据幂的运算法则计算即可.【详解】原式6242725x x x =-+⋅,662725x x =-+, 62x =-.【点评】本题考查了幂的运算,解题关键是熟知幂的运算法则,熟练进行计算.12.已知x 2n =4,求(x 3n )2﹣x n 的值.(其中x 为正数,n 为正整数)【答案】62【分析】由积的乘方逆用可得x n =2,然后将(x 3n )2﹣x n 化成只含有x n 的形式,然后将x n =2代入计算即可.【详解】∵x 2n =4(x 为正数,n 为正整数)∴x n =2,∴(x 3n )2﹣x n =(x n )6﹣x n =26﹣2=62.【点评】本题主要考查了幂的乘方和积的乘方,灵活运用幂的乘方和积的乘方运算法则是解答本题的关键. 13.计算:()2323(2)3a b ab a b⋅-+-. 【答案】3a 4b 2.【分析】根据同底数幂乘法及积的乘方的运算法则计算,再合并同类项即可得答案.【详解】()2323(2)3a b ab a b⋅-+-=-6a 4·b 2+9a 4b 2=3a 4b 2.【点评】本题考查整式的运算,熟练掌握同底数幂乘法、积的乘方及合并同类项法则是解题关键. 14.已知21202a b ⎛⎫-++= ⎪⎝⎭,求20202021a b 的值. 【答案】12- 【分析】先根据绝对值和平方的非负性求得2a =,12b =-,再将20202021a b 化为20202020a b b ⋅,再逆运用积的乘方公式适当变形后代入值计算即可.【详解】∵21202a b ⎛⎫-++= ⎪⎝⎭, ∴20a -=,102b +=, 解得2a =,12b =-. ∴2020202120202020a b a b b =⋅=2020()ab b ⋅ 将2a =,12b =-代入, 原式=202011[2()]()22⨯-⨯- =20201(1)()2-⨯- =11()2⨯- =12-.【点评】本题考查积的乘方运算的逆运算,同底数幂的乘法的逆运算,绝对值和平方的非负性.理解几个非负数(式)的和为0,那么这几个非负数(式)都为0.15.计算:32327(3)4a a a a -⋅-⋅【答案】.95a【分析】原式利用幂的乘方与积的乘方,以及同底数幂的乘法运算法则计算,合并即可得到结果.【详解】32327(3)4a a a a -⋅-⋅327694a a a a =⋅-⋅9994a a =-95a =.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法以及合并同类项,熟练掌握运算法则是解本题的关键.16.已知32a =,35b =,3200c =,写出一个a ,b ,c 的等量关系式.【答案】32a b c +=【分析】根据8×25=200进行变形代入,再利用幂的乘方及同底数幂乘法计算即可得到结论.【详解】∵8×25=200,∴3225200⨯=,∵32a =,35b =,3200c =,∴()()32333a b c ⨯=,∴32333a b c ⨯=,∴3233a b c +=,∴32a b c +=.【点评】本题考查了同底数幂乘法及幂的乘方,熟练运用法则是解题的关键.17.计算题(1)若a 2=5,b 4=10,求(ab 2)2;(2)已知a m =4,a n =4,求a m+n 的值.【答案】(1)50;(2)16【分析】(1)根据积的乘方与幂的乘方运算法则进行计算求值即可;(2)逆用同底数幂乘法法则进行计算即可.【详解】(1)∵a 2=5,b 4=10,∴(ab 2)2=a 2•b 4=5×10=50;(2)∵a m =4,a n =4,∴a m+n =a m •a n =4×4=16.【点评】本题考查了同底数幂的乘法,积的乘方与幂的乘方,熟练掌握运算法则是解题的关键. 18.尝试解决下列有关幂的问题:(1)若1632793m m ⨯÷=,求m 的值;(2)已知2,3,x y a a =-=求32x y a -的值;(3)若n 为正整数,且24n x =,求()()223234n nx x -的值 【答案】(1)15;(2)89-;(3)512 【分析】(1)首先利用幂的乘方运算法则化简,再利用同底数幂的乘除法运算法则求出答案; (2)根据同底数幂的除法被幂的乘方法则解答;(3)将()()223234n n x x -利用幂的乘方和积的乘方法则变形为()()222394n n x x -,再代入计算.【详解】(1)∵1632793m m ⨯÷=,∴16323333m m ÷=⨯,∴11633m +=,∴m+1=16,∴m=15;(2)∵2,3x y a a =-=,∴32x y a -=32x y a a ÷=()()32x y a a ÷ =()3223-÷ =89-; (3)∵24n x =,∴()()223234n nx x - =()()222394n n x x -=239444⨯-⨯=512【点评】本题考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 19.如果n x y =,那么我们规定(,)x y n =.例如:因为239=,所以(3,9)2=.(1)(理解)根据上述规定,填空:(2,8)= ,12,4⎛⎫= ⎪⎝⎭;(2)(说理)记(4,12)a =,(4,5)b =,(4,60)c =.试说明:a b c +=;(3)(应用)若(,16)(,5)(,)m m m t +=,求t 的值.【答案】(1)3,-2;(2)见解析;(3)80【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【详解】(1)23=8,(2,8)=3, 2124-=,(2,14)=-2, 故答案为:3;-2;(2)∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴412a =,45b =,460c =,∵12560⨯=,∴444a b c ⨯=,∴44a b c +=,∴a b c +=;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴16p m =,5q m =,r m t =,∵(16)(5)()m m m t +=,,,, ∴p q r +=,∴p q r m m +=,∴p q r m m m ⨯=,即165t ⨯=,∴80t =.【点评】本题考查了幂的乘方和积的乘方以及新定义下的实数运算,掌握幂的乘方和积的乘方法则是解题的关键.20.计算:()20192020122⎛⎫-⨯ ⎪⎝⎭=________.【答案】2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果. 【详解】(-2)202012⨯()2019 =2202012⨯()2019 =2⨯2201912⨯()2019 =2122⨯⨯()2019 =21⨯=2【点评】此题考察整式乘法公式的运用,准确变形是解题的关键.祝福语祝你考试成功!。

人教版数学八年级上册 积的乘方

人教版数学八年级上册   积的乘方
(5)原式=22 ×(102)2=4 ×104;
(6)原式=(–3)3 ×(103)3= –27 ×109= –2.7 ×1010.
课堂检测
能力提升题
计算: (1) 2(x3)2·x3–(3x3)3+(5x)2·x7;
解:原式=2x6·x3–27x9+25x2·x7
= 2x9–27x9+25x9 = 0;
km 3
3
探究新知
1.计算:
106
(1) 10×102× 103 =______





x10
(2) (x5)2=_________.
2. (1)同底数幂的乘法 :am·an=am+n
( m,n
都是正整数).
(2)幂的乘方:(am)n= amn
数).
(m,n都是正整
探究新知
想一想 同底数幂的乘法法则与幂的乘方法则有什么相
(
×
(
×
)
)
课堂检测
5.计算:
(1) (ab)8 ;
(2) (2m)3 ;
(3) (–xy)5;
(4) (5ab2)3 ; (5) (2×102)2 ; (6) (–3×103)3.
解:(1)原式=a8b8;
(2)原式= 23 ·m3=8m3;
(3)原式=(–x)5 ·y5= –x5y5;
(4)原式=53 ·a3 ·(b2)3=125a3b6;
证明:
n个ab
(ab) n= (ab)·(ab)··
·
··
(ab)
n个a
n个b
=(a·
a··
·
··
a)·(b·

人教版八年级数学上册积的乘方

人教版八年级数学上册积的乘方

2、计算:
(1)(-2x2y3)3 (2) (-3a3b2c)4 答案 (1) -8x6y9 答案(2) 81a12b8c4
试一试:
1 计算: a3 ·a4·a+(a2)4+(-2a4)2 解:原式=a3+4+1+a2×4+(-2)2 ·(a4)2
=a8+a8+4a8 =6a8
2 计算: 2(x3)2 ·x3-(3x3)3+(5x)2 ·x7
解:原式=2x6 ·x3-27x9+25x2 ·x7
=2x9-27x9+25x9 =0 注意:运算顺序是先乘方,再乘除, 最后算加减。
一起探讨:(0.04)2004×[(-5)2004]2=? 解法一: (0.04)2004×[(-5)2004]2
=(0.22)2004 × 54008
=(0.2)4008 × 54008 =(0.2 ×5)4008 =14008
=1
解法二: (0.04)2004×[(-5)2004]2
=(0.04)2004 × [(-5)2]2004 = (0.04)2004 ×(25)2004 =(0.04×25)2004 =12004 =1 说明:逆用积的乘方法则 anbn = (ab)n可 以解一些复杂的计算。
小结: 1、本节课的主要内容: 积的乘方
问题;
(m,n都是正整数)
若已知一个正方体的棱长为2×103 cm ,
你能计算出它的体积是多少吗?
2、计算: (2×3)2与22 × 32,你会发现什么? 填空:
∵ (2×3)2= 62 = 36 22 ×32= 4×9 = 36
∴ (2×3)2 = 22 × 32
n个ab

八年级数学上册积的乘方课时测试(含解析)

八年级数学上册积的乘方课时测试(含解析)

积的乘方一、选择题1.计算(2x 3)2的结果是( )A .4x 6B .2x 6C .4x 5D .2x 5【答案】A .【解析】(2x 3)2=4x 6.故选A .2.计算(-2xy 2)3的结果是( )A .-2x 3y 6B .-6x 3y 6C .8x 3y 6D .-8x 3y 6【答案】D .【解析】(-2xy 2)3=-8x 3y 6.故选D .3.计算(xy 3)2的结果是( )A .xy 6B .x 2y 3C .x 2y 6 D.x 2y 5 【答案】C .【解析】原式=(xy 3)2=x 2y 3×2=x 2y 6,故选C .4.计算:32513)()135⨯-(-所得结果为( )A .1B .-1C .513- D .135- 【答案】C . 【解析】32513)()135⨯-(- =25135[(()13513-⨯⨯-)(-)]=1×(-513) =-513.故选C .5.(-3)100×(13-)101等于( )A .-1B .1C .13- D .13 【答案】C .【解析】原式=[(-3)×(-13)]100×(-13) =-13.故选C .6.下列运算中,结果是a 6的式子是( )A .(a 3)3B .a 12-a 6C .a 2•a 3D.(-a )6 【答案】D .【解析】A 、(a 3)3=a 9,故此选项错误;B 、不能合并,故此选项错误;C、a2•a3=a5,故此选项错误;D、(-a)6=a6,故此选项正确;故选D.二、填空题7.已知a m=2,b m=5,则(a2b)m= .【答案】20.【解析】(a2b)m=(a m)2•b m=4×5=20.8.计算:(-4a3b)2= .【答案】16a6b2.【解析】(-4a3b)2=(-4)2•(a3)2•b2=16a6b2.9.计算:若33x+1•53x+1=152x+4,则x= .【答案】3.【解析】∵33x+1•53x+1=(3×5)3x+1═153x+1=152x+4,∴3x+1=2x+4,∴x=3.10.若2a+2×3a+2=363,则a= .【答案】4.【解析】∵363=66,∴2a+2×3a+2=(2×3)6,∴a+2=6,解得:a=4.11.若(a m b n b)3=a9b15,那么m+n= .【答案】7.【解析】∵(a m b n b)3=a9b15,∴3m=9,2(n+1)=15,解得:m=3,n=4,则m+n=7.12.若x n=4,y n=9,则(xy)n= .【答案】36.【解析】:∵x n=4,y n=9,∴(xy)n=x n•y n=4×9=36.三、解答题13.若2x+1×3x+1=36x,求x的值.【答案】1.【解析】∵2x+1×3x+1=2x•2×3•3x=6×2x•3x=36x,∴x=1.14.已知x n=2,y n=3,求(x2y)2n的值.【答案】144.【解析】∵x n=2,y n=3,∴(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=144.15.用简便方法计算下列各题(1)201520164()( 1.25)5⨯-(2)1211318(3)()(2)825⨯⨯-. 【答案】(1)54;(2)-25. 【解析】(1)201520164()( 1.25)5⨯- =20152015455()()()544⨯-⨯- =2015455[()]()544⨯-⨯- =-1×(-54) =54; (2)原式=258×(258)11×(258)11×(-8) =-25×11258[]825⨯ =-25.16.已知(a-2)2+|2b-1|=0,求a 2013•b 2012.【答案】2.【解析】∵(a-2)2+|2b-1|=0,∴a -2=0,2b-1=0,∴a=2,b=12 ∴a2013•b 2012=(ab )2012•a=(2×12)2012×2=2.。

高效课堂宝典训练八年级数学上册14.1.3积的乘方课件(新版)新人教版

高效课堂宝典训练八年级数学上册14.1.3积的乘方课件(新版)新人教版
14.1.3 积的乘方
1.使学生经历探索积的乘方的过程,掌握积的乘方的运 算法则. 2.能利用积的乘方的运算法则进行相应的计算和化简. 3.掌握转化的数学思想,提高应用数学的意识和能力.
1.计算: 10×102× 103 =___1_0_6 _ ,(x5 )2=___x_1_0____.
2.am·an= am+n ( m,n都是正整数). 3.(am)n= amn (m,n都是正整数).
答案:1 逆用积的乘方法则 anbn = (ab)n可以解决一些复杂的计算.
4.计算: (1)(-2x2y3)3
(2) (-3a3b2c)4
【解析】(1)原式=(-2)3 ·(x2)3 ·(y3)3
=-8x6y9 (2)原式=(-3)4 ·(a3)4 ·(b2)4 · c4
= 81 a12b8c4
1.(宁波·中考)下列运算正确的是( ) A.x.x2=x2 B.(xy)2=xy2 C.(x2)3=x6 D.x2+x2=x4 【解析】选C.根据积的乘方的意义知,选项C正确.
2.判断: (1)(ab2)3=ab6 (2)(3xy)3=9x3y3 (3)(-2a2)2=-4a4 (4)-(-ab2)2=a2b4
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
数学——科学不可动摇的基石,促进人类
事业进步的丰富源泉.
——巴罗
=anbn 即:(ab)n=anbn (n为正整数)
积的乘方法则
积的乘方,等于把积的每一个因式分别乘方,再把所 得的幂相乘.
(ab)n = anbn (n为正整数) 推广:三个或三个以上的积的乘方等于什么?
(abc)n = anbncn (n为正整数)

人教版八年级数学上《幂的乘方与积的乘方》基础练习

人教版八年级数学上《幂的乘方与积的乘方》基础练习

《幂的乘方与积的乘方》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)计算(﹣x n﹣1)3等于()A.x3n﹣1B.﹣x3n﹣1C.x3n﹣3D.﹣x3n﹣3 2.(5分)已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.72 3.(5分)下列计算正确的是()A.y2+y2=2y4B.y7+y4=y11C.y2•y2+y4=2y4D.y2•(y4)2=y184.(5分)下列计算正确的是()A.a3a2=a6B.(﹣3a2)3=﹣27a6C.(a﹣b)2=a2﹣b2D.2a+3a=5a25.(5分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x5二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(3ab3)2=.7.(5分)计算﹣32×(﹣)2的结果为.8.(5分)计算:(﹣)5×26=.9.(5分)计算(﹣0.125)2018×82019=.10.(5分)计算a2b3(ab2)﹣2=.三、解答题(本大题共5小题,共50.0分)11.(10分)①已知a=,mn=2,求a2•(a m)n的值.②若2n•4n=64,求n的值.12.(10分)已知:a m=x+2y;a m+1=x2+4y2﹣xy,求a2m+1.13.(10分)已知,关于x,y的方程组的解为x、y.(1)x=,y=(用含a的代数式表示);(2)若x、y互为相反数,求a的值;(3)若2x•8y=2m,用含有a的代数式表示m.14.(10分)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)15.(10分)已知4m+3×8m+1÷24m+7=16,求m的值.《幂的乘方与积的乘方》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)计算(﹣x n﹣1)3等于()A.x3n﹣1B.﹣x3n﹣1C.x3n﹣3D.﹣x3n﹣3【分析】根据幂的乘方的运算法则计算可得.【解答】解:(﹣x n﹣1)3=﹣x3n﹣3,故选:D.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是掌握幂的乘方与积的乘方的运算法则.2.(5分)已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.72【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【解答】解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.3.(5分)下列计算正确的是()A.y2+y2=2y4B.y7+y4=y11C.y2•y2+y4=2y4D.y2•(y4)2=y18【分析】根据幂的乘方与积的乘方、合并同类项、整式的混合计算判断即可.【解答】解:A、y2+y2=2y2,错误;B、y7与y4不能合并,错误;C、y2•y2+y4=2y4,正确;D、y2•(y4)2=y10,错误;故选:C.【点评】此题考查幂的乘方与积的乘方、合并同类项、整式的混合计算,关键是根据法则计算.4.(5分)下列计算正确的是()A.a3a2=a6B.(﹣3a2)3=﹣27a6C.(a﹣b)2=a2﹣b2D.2a+3a=5a2【分析】根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式以及合并同类项的法则判断即可.【解答】解:A、a3a2=a5,错误;B、(﹣3a2)3=﹣27a6,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、2a+3a=5a,错误;故选:B.【点评】此题考查幂的乘方与积的乘方,关键是根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式以及合并同类项的法则计算.5.(5分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x5【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(3ab3)2=9a2b6.【分析】根据积的乘方法则计算,得到答案.【解答】解:(3ab3)2=9a2b6,故答案为:9a2b6.【点评】本题考查的是幂的乘方与积的乘方,掌握积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘是解题的关键.7.(5分)计算﹣32×(﹣)2的结果为﹣1.【分析】根据幂的乘方进行计算解答即可.【解答】解:,故答案为:﹣1.【点评】此题考查幂的乘方与积的乘方,关键是根据幂的乘方法则计算.8.(5分)计算:(﹣)5×26=﹣2.【分析】根据幂的乘方解答即可.【解答】解:,故答案为:﹣2【点评】此题考查幂的乘方,关键是根据幂的乘方的法则解答.9.(5分)计算(﹣0.125)2018×82019=8.【分析】直接利用积的乘方运算法则将原式变形得出答案.【解答】解:(﹣0.125)2018×82019=(﹣0.125×8)2018×8=8.故答案为:8.【点评】此题主要考查了积的乘方运算,正确掌握相关运算法则是解题关键.10.(5分)计算a2b3(ab2)﹣2=.【分析】分别根据幂的乘方与积的乘方、同底数幂的乘法法则及负整数指数幂的运算法则进行计算即可.【解答】解:原式===.【点评】本题综合考查了整式运算的多个考点,同底数幂的乘法、幂的乘方与积的乘方、负整数指数幂,需熟练掌握且区分清楚,才不容易出错.三、解答题(本大题共5小题,共50.0分)11.(10分)①已知a=,mn=2,求a2•(a m)n的值.②若2n•4n=64,求n的值.【分析】①利用同底数幂的乘法,找出原式=a2+mn,再代入a,mn的值即可得出结论;②由2n•4n=64可得出3n=6,进而可求出n的值.【解答】解:①原式=a2•a mn=a2+mn=()4=;②∵2n•4n=2n•22n=23n=64,∴3n=6,∴n=2.【点评】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,解题的关键是:(1)利用同底数幂的乘法,找出原式=a2+mn;(2)利用幂的乘法找出3n=6.12.(10分)已知:a m=x+2y;a m+1=x2+4y2﹣xy,求a2m+1.【分析】根据同底数幂的乘法可得a2m+1=a m•a m+1,再代入利用多项式乘以多项式计算即可.【解答】解:a2m+1=a m•a m+1,=(x+2y)•(x2+4y2﹣xy),=x3+2xy2﹣x2y+x2y+8y3﹣2xy2,=x3+8y3.【点评】此题主要考查了同底数幂的乘法和多项式乘以多项式,关键是掌握计算法则.13.(10分)已知,关于x,y的方程组的解为x、y.(1)x=a﹣2,y=﹣3a+1(用含a的代数式表示);(2)若x、y互为相反数,求a的值;(3)若2x•8y=2m,用含有a的代数式表示m.【分析】(1)利用二元一次方程组的解法解出方程组;(2)根据相反数的概念列出方程,解方程即可;(3)根据幂的乘方法则和同底数幂的乘法法则得到x+3y=m,代入计算.【解答】解:(1),②﹣①得,y=﹣3a+1,把y=﹣3a+1代入①得,x=a﹣2,故答案为:a﹣2;﹣3a+1;(2)由题意得,a﹣2+(﹣3a+1)=0,解得,a=﹣;(3)2x•8y=2x•(23)y=2x•23y=2x+3y,由题意得,x+3y=m,则m=a﹣2+3(﹣3a+1)=﹣8a+1.【点评】本题考查的是积的乘方与幂的乘方,二元一次方程组的解法,相反数的概念,掌握二元一次方程组的解法,幂的乘方法则是解题的关键.14.(10分)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=3,(﹣2,4)=2,(﹣2,﹣8)=3;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算.【解答】解:(1)53=125,(5,125)=3,(﹣2)2=4,(﹣2,4)=2,(﹣2)3=﹣8,(﹣2,﹣8)=3,故答案为:3;2;3;(2)设(4,5)=x,(4,6)=y,(4,30)=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即(4,5)+(4,6)=(4,30).【点评】本题考查的是幂的乘方和积的乘方以及有理数的混合运算,掌握幂的乘方和积的乘方法则是解题的关键.15.(10分)已知4m+3×8m+1÷24m+7=16,求m的值.【分析】直接利用幂的乘方运算法则将原式变形进而结合同底数幂的乘除运算法则计算得出答案.【解答】解:∵4m+3×8m+1÷24m+7=16,∴22m+6×23m+3÷24m+7=24,则2m+6+3m+3﹣(4m+7)=4,解得:m=2.【点评】此题主要考查了幂的乘方运算和同底数幂的乘除运算,正确将原式变形是解题关键.。

人教版2021年八年级数学上册课时作业本 整式的乘除与因式分解-积的乘方与幂的乘方(含答案)

人教版2021年八年级数学上册课时作业本 整式的乘除与因式分解-积的乘方与幂的乘方(含答案)

B.m=4,n=4
C.m=3,n=4
D.m=3,n=3
7.下列 各式中,计算正确的是(

A.3x+5y=8xy
B.x3• x5=x8
C.x6÷ x3=x2
D.(-x3)3=x6
8.已知 32m=8n,则 m、n 满足的关系正确的是( )
A.4m=n
B.5m=3n
C.3m=5n
D.m=4n
9.已知 a=96,b=314,c=275,则 a、b、c 的大小关系是( )
参考答案
B.-2x3;
C.2x4;
D.2x3.
4.计算(-2a2)3 的结果是( )
A.-6a2
B.-8a5
C.8a5
D.-8a6
5.在等式 x2( )=x7 中,括号里的代数式为( )
A.x2
B.x3
C.x4
D.x5
6.如果(an•bmb)3=a9b15ห้องสมุดไป่ตู้那么( )
A.m=4,n=3
17.计算:a3·a5+(-a2)4-3a8
18.计算:a2·a4+(a2)3
19.计算:(﹣2a2)2•a4﹣(5a4)2.
20.计算:
21.规定 a⊙b=2a×2b;(1)求 2⊙3;(2)若 2⊙(x+1)=16,求 x 的值.
22. (1)若 2x+5y-3=0,求 4x•32y 的值.(2)若 26=a2=4b,求 a+b 值.
1.答案为:A. 2.A; 3.A、 4.D. 5.D; 6.A. 7.B 8.B 9.C 10.D 11.答案为:a4. 12.答案为:15. 13.答案为:12; 14.答案为:﹣8a3. 15.答案为:32; 16.答案为:a+b=c. 17.原式=-a8; 18.原式=2a6; 19.原式=﹣21a8. 20.原式=10a6; 21. (1)32;(2)x=1; 22. (1)8;(2)11 或-5;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.13积的乘方
、选择题
” 3 2 y A. m=3,n=2 B . m=n=3 i (-1 nip 订等于()
m=6 ,n=2 D . m=3 ,n=5
, 2n f 2n
A. p B . -p C .
A. 15 B . I C . a 2 D .以上都不对 若 a m d b n 2 a 2nJ b 2m 二a 3b 5,则 m+n 的
值为(
A. 1 B . 2 C . 3 D . -3
10 .如果单项式-3x 4a “y 2与丄x 3y a b 是同类项,那么这两个单项式的积进
3
2.
4 5 (X y B .
-9x y F 列计算错误的个数是( 2 3 2 6 5 5 〜
10 10
① 3x i ; =6x ;②-s a b 八25a b ;③- A. 3. 4 6 f 4 6
.9x y D . _6x y
『2 8 3 金.2 3 4
=-^x ;④ 3x y
A. 2个 B . 3个 C . 4个 D . 5个
3 m m : :n 9 15
若2a b =8a b 成立, 则(
io io
6 7 81x y 5. 计算x 3 y^-xy 3 2的结果是
6. 7. A. x 5 y 10 B . x 5y 8 C . -x 5 y 8 x 6 y 12
4
右N= a a b ,那么N 等于(
A. a 7b 7 B . a 8b 12 C . a%12 已知a x =5,a y =3,则a xy 的值为(
12 a b 7
2
的值是()
4. -p 2 D .无法确定
8. 9. -2x 3y 22 .-1 2003 送x 2
y 3 2的结果等于(
A. 3x 10y 10 B . -3x 10y 10 10 10 C. 9x y D . -9x 10y 10
、填空题(1-13每小题1分,14题4分)
(-3a 2b ^,(-2ab 2 f= _______
(-0.125) 2= ______
3. _________________ {-2[-(a m )2]3}2=
4. 已知(x 3) 4 5=-a 15b 15,则 x=
5. (0.125) 1999 • (-8) 1999=—
1x 10^ =— 2 —
7. 化简(a 2m - a n+1)2 • (-2a 2)3所得的结果为 —。

5 8. ( ) =(8
x 8X 8X 8X 8)(a • a • a • a • a) 2 3 2 2
2 9. (3a ) +(a ) • a = _______ .
10. 如果 a ^b ,且(a p )3 • b p+q =a 9b 5 成立,则 p= ___ ,
q= ____ 。

三、解答题
计算
、-(3x 2 *y)2
1. 1)
2)
3)
4)
5)
6)
7)
(-5ab) -81994X(-0.125) 1995
2. 6. 4 io 5 -(^ab 'c 3)
3
9) 、(-0.125) 3X29
10) 、(-a 2)2 • (-2a 3)2
11) 、(-a 3b 6) 2-(-a 2b 4)3
12) 、-(-x m y)3・(xy n+1)2
13) 、2(a n b°)2+(a 2b) n
14) 、(-2 x 2y )3+8(x 2)2 • (-x 2)

(-y 3)
100 100 1994 1
15) 、-2 X0.5 X(-1) +-
8)、 0.5 32
3
2. 已知2m=3, 2n=2,则22m+的值是多少
4.已知 10〉=5,10:=6,求 10^ 3 :的值
四、提高题
1. 已知x n =5,y n =3,求(x 2y)2n 的值
2. 比较大小:218X310 与 210X315
3. 若有理数 a,b,c 满足(a+2c-2) 2+|4b-3c-4|+| |-4b-1|=0,试求 a 3n+1b 3n+2- c 4n+2
五、实际应用题
1、太阳可以近似的看作是球体,如果用 V 、r 分别代表球的体积和半径,那么 v 」r 3,太阳的
3
半径约为6X1C 5千米,它的体积大约是多少立方千米? (n 取3)
3已知9a 231 =4,求a 3的值
2、先阅读材料:“试判断2000 1999+1999 2000的末位数字”。

解:••20001999的末位数字是零,而1999 2的末位数字是1 ,
则1999 2000 =(1999 2)1000的末位数字是1,
.Zoo。

1999+199 9 2000的末位数字是1。

同学们,根据阅读材料,你能否立即说出“ 20001999+19992000的末位数字”?
有兴趣的同学,判断21999+71999的末位数字是多少?
6 4 3 2 8
3 2 6 4
A. x y B .〜x y C - -y D. -x y。

相关文档
最新文档