重庆大学有限元考试题目

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。

这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。

2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。

首先,根据单元的形函数和材料属性,计算单元的应变和应力。

然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。

三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。

请使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。

然后,为每个单元定义形函数,通常是线性形函数。

接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。

将所有单元的局部刚度矩阵组装成全局刚度矩阵。

由于杆两端固定,边界条件为位移为零。

最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。

应力可以通过位移和形函数计算得到。

(完整版)有限元考试试题——第一组

(完整版)有限元考试试题——第一组

有限元考试试题一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)3.轴对称单元与平面单元有哪些区别?(5分)4.有限元空间问题有哪些特征?(5分)5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分)3.在薄板弯曲理论中做了哪些假设?薄板单元和厚板单元的基本假设有什么不同?(10分)三、计算题(3道,共计45分)。

ν=;1.如图所示等腰直角三角形单元,其厚度为t,弹性模量为E,泊松比0单元的边长及结点编号见图中所示。

求(1)形函数矩阵N(2)应变矩阵B和应力矩阵S(3)单元刚度矩阵e K(12分)2.如图所示的四结点矩形单元,求出节点3的位移。

设厚度t=1m,μ=0,E 为常量。

(13分)注:对于四节点矩形单元有:()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-=++=-+=--=ηξηξηξηξ1141114111411141.14321N N N N →)4,3,2,1()1)(1(41=++=i N i i i ηηξξ()[][][][]eT Aek k k k k k k k k k k k k k k k y x t B D B k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎰⎰44434241343332312423222114131211d d .2,[][][][][][][]()()()()())4,3,2,1,( 3111311a 212123111311218d d d d 21111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-===⎰⎰⎰⎰--j i b a b b a a b Et B D B abt y x t B D B k j i j i j i j i j i j i j i j i j i j i j i j i jTijTAiijηηξξμξξηηηξμξμηηξμξμηξξηημηηξξμηξ3.有一如图3(a)所示的剪力墙,墙顶作用竖向荷载P 。

重庆大学有限元第一次作业

重庆大学有限元第一次作业

有限元分析技术课程大作业科 目:有限元分析技术 教 师:姓 名: 学 号: 专 业: 机械设计及理论 类 别: 学 术 上课时间: 2016 年 11 月至 2017 年 1 月 考 生 成 绩:阅卷评语:阅卷教师 (签名)重庆大学研究生院第一章 问题提出1.1工程介绍某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x 方向尺寸为1m ,y 方向尺寸为1m ;分格的列数(x 向分格)=学生序号的百位数值×10+十位数值+5,分格的行数(y 向分格)=学生序号的个位数值+4,如序号为041的同学分格的列数为9,行数为5,111号同学分格的列数为16,行数为5。

钢结构的主梁(图1中黄色标记单元)为高160宽100厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X 方向正中间,偏X 坐标小处布置)的次梁的两端,如图2中标记为UxyzRxyz 处。

玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷,如图4所示);试对在垂直于玻璃平面方向的22/KN m 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析.(每分格面载荷对于每一支撑点的载荷可等效于0.5KN 的点载荷)。

1.2 作业内容(1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图1-2;(2)该结构每个支座的支座反力;(3)该结构节点的最大位移及其所在位置;(4)对该结构中最危险单元(杆件)进行强度校核。

图1-1图1-2图1-3图1-41.3分格计算学生序号:096x向分格:9+5=14,即列数为13列;y向分格:6+4=10,即行数为10行;因此,学生作业任务是计算13×10分格的钢结构玻璃平面舞台。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。

下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。

答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。

答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。

答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。

假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。

结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。

分析载荷为2000 N,施加在结构的中心节点上。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

重庆大学有限元分析技术大作业

重庆大学有限元分析技术大作业
相邻处有两个格子的支撑点等效集中载荷为1KN,相邻处只有一个格子的支撑点等效集中载荷为0.5KN。
8求解:首先执行MainMenu→Solution→Solve→CurrentLS→OK进行求解。然后分别求出支座反力,最大结点位移及所在位置,最大应力单元,最后进行强度校核。
8.1支座反力求解
执行MainMenu→GeneralPostproc→ListResults→ReactionSolu→All struct forceF→OK
5为实体模型分配单元属性并划分网格
首先,设置单元长度(设置为50mm),然后,对梁进行单元属性分配并划分网格,最后,合并节点。
6定义分析类型并施加约束
有限元分析类型默认为static。对模型施加约束
7施加载荷
对模型施加载荷时,因模型的一个格子内载荷为2KN/ ,可等效为4这个格子的四个支撑点的集中载荷各0.5KN。相邻处有四个格子的支撑点等效集中载荷为2KN,
表1支座反力
NODE
FX
FY
FZ
1
≈0
0
42769
222
0
0
42769
423
0
0
46849
803
0
0
46849
1143
0
0
60382
3061
0
0
60382
8.2最大位移及其所在位置。
首先将结果排序,执行Main Menu→General Postproc→List Results→Sorted Listing→Sort Nodes,然后执行Main Menu→General Postproc→List Results→Nodal Solution,弹出ListNodal Solution,点OK之后弹出结点位移按顺序排列的结果,由输出结果可知,结点最大位移位于1973结点上,且其最大位移值为221.42mm。

有限元期末考试题及答案

有限元期末考试题及答案

有限元期末考试题及答案一、选择题1. 有限元方法是一种数值分析方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 代数方程答案:B2. 在有限元分析中,单元的划分是基于什么原则?A. 单元数量B. 单元形状C. 问题域的几何特性D. 计算资源答案:C3. 下列哪项不是有限元分析中常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D二、填空题4. 有限元方法中,______是指将连续的物理域离散成有限数量的小区域,这些小区域称为单元。

答案:离散化5. 在进行有限元分析时,通常需要定义材料属性,包括______、密度和弹性模量等。

答案:泊松比三、简答题6. 简述有限元方法的基本步骤。

答案:有限元方法的基本步骤包括:定义问题域、离散化问题域、选择单元类型、定义材料属性、构建全局刚度矩阵、施加边界条件、求解线性代数方程、提取结果。

7. 解释什么是有限元分析中的收敛性,并说明影响收敛性的因素。

答案:收敛性是指随着单元数量的增加,有限元分析结果逐渐接近真实解的性质。

影响收敛性的因素包括单元的类型、形状、大小以及网格的布局等。

四、计算题8. 假设有一个长度为2米的杆,两端固定,中间施加了一个向下的力F=1000N。

如果杆的材料是钢,其弹性模量E=210 GPa,泊松比ν=0.3,请计算杆的弯曲位移。

答案:首先,根据Euler-Bernoulli梁理论,可以写出弯曲位移的方程为:\[ w(x) = \frac{F}{384EI} L^3 \]其中,\( w(x) \) 是位移,\( F \) 是施加的力,\( L \) 是杆的长度,\( E \) 是弹性模量,\( I \) 是截面惯性矩。

对于一个矩形截面,\( I \) 可以表示为:\[ I = \frac{bh^3}{12} \]假设杆的截面宽度为b,高度为h,代入上述公式,可以计算出位移。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。

答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。

答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。

答案:边界条件三、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。

2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。

答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。

每种单元都有其特定的形状函数和刚度矩阵。

四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。

使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆离散化为一个单元。

使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。

然后,施加边界条件,即杆的两端位移为零。

最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。

应力可以通过位移和杆的截面特性计算得出。

重庆大学有限元第二次作业(刘静老师)

重庆大学有限元第二次作业(刘静老师)

【有限元分析技术】第二次作业科 目: 有限元分析技术教 师: 姓 名: 学 号: 班级: 类 别:学术型上课时间:2016 年 11 月至 2017 年 1 月 考 生 成 绩:卷面成绩 平时成绩 课程综合成绩阅卷评语:阅卷教师 (签名)大学研究生院第一章 题目概况1.1 原始数据矩形板尺寸如下列图,板厚为5mm ,弹性模量为522.010/E N mm =⨯,泊松比为0.27μ=图1.1 原始计算简图1.2工况选择〔1〕试按下表的载荷约束组合,任选2种进展计算,并分析其位移、应力分布的异同。

表1 两种不同工况的载荷及约束序号 载荷 约束 备注1 向下均布载荷P=5N/mm,作用于ab 边 c ,d 点固定2 向下均布载荷P=5N/mm,作用于ab 边 a ,b 点固定3 向下均布载荷P=5N/mm,作用于ab 边 a ,c 边固定 还可讨论a ,c 点固定4 向下均布载荷P=5N/mm,作用于cd 边 c ,d 点简支5 向下均布载荷P=5N/mm,作用于cd 边 a ,b 点简支6 向下均布载荷P=5N/mm,作用于cd 边 a ,c 边固定 还可讨论a ,c 点固定7 向下集中载荷F=1000N,作用于ab 边中点 c ,d 点简支 8 向下集中载荷F=1000N,作用于ab 边中点 a ,b 点简支9 向下集中载荷F=1000N,作用于ab 边中点 a ,c 边固定 还可讨论a ,c 点固定10 向下集中载荷F=1000N,作用于cd 边中点 c ,d 点简支 11 向下集中载荷F=1000N,作用于cd 边中点 a ,b 点简支12向下集中载荷F=1000N,作用于cd 边中点a ,c 边固定还可讨论a ,c 点固定1.3 工况选择结果及分析任务(1)工况选择结果根据表1的工况,选取工况1,2,8进展比照分析,选取结果如表2所示,为了方便下文中分别将序号1、2、8的工况称为工况一、工况二、工况三。

有限元基础考试试题

有限元基础考试试题

有限元基础考试试题work Information Technology Company.2020YEAR一、名词解释1、单元---任何连续体都可以假想的分割成有限个简单形状单元体的组合,将这些简单形状的单元体称为单元2、节点---把单元与单元之间设置的相互连接点称为节点3、静力等效原则----对于刚体来说,所谓静力等效原则就是单元上原有的外力系和将外力系向各节点移置所得的等效节点力,二者向同一点简化应具有相同的主矢和主矩;对于弹性体来说,所谓静力等效原则就是指单元上的外力系和将该力系向各节点移置后的等效节点力在单元上引起的变形能相等,在一定的位移模式下这种移置是唯一的。

4、虚功等效-----就一个单元来说,把作用在单元上的外力系移置到节点上后,应当与原来的实际外力所作虚功等效。

5、等参元-----如果子单元的位移函数插值节点数与其位置坐标变换节点数相等,其位移函数插值公式与位置坐标变换式都用相同的形函数与节点参数进行插值,则称其为等参元6、超参数单元-----如果单元坐标变换所用的形函数的阶次高于位移模式所用的形函数的阶次,即用于规定单元形状的节点数多于用于规定单元位移的节点数,这种单元就称为超参数单元。

7、低阶元-----把有线性位移函数的单元称为低阶元。

8、高阶元----把有非线性位移函数的单元称为高阶元。

二、填空1、等效节点移植方法基于(虚功原理)和(力系等效)。

2、处理位移有(代入法)和(乘大数法)。

3、三角形单元是一阶单元,四边形单元是二阶单元,四面体单元是一阶单元,六面体单元是二阶单元。

4、平面问题包括(平面应力)、(平面应变)和(轴对称)。

5、弹性问题解决方法有(位移法)和(应力法)。

三、简答1、圣维南原理 p9答:如果把物体的一小部分边界的面力,变换为分布不同但静力等效的面力,那么近处的应力分布将有显著地改变,但是远处所受的影响可以不计。

2、系统能量极值原理 p9答:在所有满足内部连续条件和运动学边界条件的位移中,满足平衡方程的位移使系统的总势能取驻值。

重庆大学研究生有限元复习题及答案(2022)

重庆大学研究生有限元复习题及答案(2022)

重庆大学研究生有限元复习题及答案(2022)1.结点的位置依赖于形态,而并不依赖于载荷的位置(某)2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元。

√3.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(某)4.用有限元法不可以对运动的物体的结构进行静力分析(某)5.一般应力变化大的地方单元尺寸要划的小才好(√)6.四结点四边形等参单元的位移插值函数是坐标某、y的一次函数√7.在三角形单元中其面积坐标的值与三结点三角形单元的结点形函数值相等。

√8.等参单元中Jacobi行列式的值不能等于零。

√9.四边形单元的Jacobi行列式是常数。

某10.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。

√11.有限元位移模式中,广义坐标的个数应与单元结点自由度数相等√12.为了保证有限单元法解答的收敛性,位移函数应具备的条件是位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。

√13.在平面三结点三角形单元中,位移、应变和应力具有位移呈线形变化,应力和应变为常量特征。

√1.梁单元和杆单元的区别?(自己分析:自由度不同)杆单元只能承受拉压荷载,梁单元则可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承担的,通常用于网架、桁架的分析;而梁单元则基本上适用于各种情况(除了楼板之类),且经过适当的处理(如释放自由度、耦合等),梁单元也可以当作杆单元使用。

2.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

3.有限单元法的收敛性准则?完备性要求,协调性要求。

位移模式要满足以下三个条件包含单元的刚体位移。

当结点位移由体位移引起时,弹性体内不会产生应变。

包含单元的常应变。

与位置坐标无关的应变。

《有限元》期末考题

《有限元》期末考题

一、填空(共10个空,每空2分,共20分)11、有限元法是近似求解连续场问题的数值方法。

2、有限元法将连续的求解域离散,得到有限个单元,单元和单元之间用节点相连。

3、直梁在外力作用下,横截面上的内力有剪力和弯矩两个。

4、平面刚架结构在外力作用下,横截面上的内力有剪力、弯矩和轴力。

5、进行直梁的有限元分析,梁单元上每个节点的节点位移为挠度和转角。

、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及局部坐标系x´O´y ´下的单元刚度矩阵[K´]e,则单元在整体坐标系xOy下的单元刚度矩阵为 P31 。

7、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及整体坐标系xOy下的单元节点力矩阵{p}e,则单元在局部坐标系x´O´y´下的单元节点力矩阵为 P30 。

8、在弹性范围和小变形的前提下,节点力和节点位移之间是线性系。

9、弹性力学问题的方程个数有 15个,未知量个数有 15 个。

10、弹性力学平面问题的方程个数有个,未知量个数有个。

11、把经过物体内任意一点各个截面的应力状况叫做一点的应力状态。

12、形函数在单元节点上的值,具有本点为 1 、它点为零的性质,并且在三角形单元的任一节点上,三个形函数之和为 1 。

13、形函数是定义于元内部坐标连续函数。

14、在进行节点编号时,要尽量使同一单元的相邻节点的号码差尽可能小,以便最大限度地缩小刚度矩阵带宽,节省存储、提高计算效率。

15、三角形单元的位移模式为。

16、矩形单元的位移模式为。

17、在选择多项式位移模式的阶次时,要求所选的位移模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。

18、单元刚度矩阵描述了节点力和节点位移之间的关系。

19、在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的完备性和协调性的要求。

20、三节点三角形单元内的应力和应变是常数,四节点矩形单元内的应力和应变是线性变化的。

有限元期末考试试题

有限元期末考试试题

有限元期末考试试题有限元期末考试试题有限元分析是一种数值计算方法,广泛应用于工程领域中的结构分析、热传导、流体力学等问题。

作为有限元分析的基础,期末考试试题将涵盖有限元的基本原理、方法和应用。

本文将以期末考试试题为主线,深入探讨有限元分析的相关知识。

一、选择题1. 有限元分析的基本思想是什么?A. 将连续体划分为有限个单元B. 将连续体划分为无限个单元C. 将连续体划分为两个单元D. 将连续体划分为三个单元2. 有限元分析中,单元是指什么?A. 物理实体B. 离散区域C. 数学模型D. 计算节点3. 有限元分析的目的是什么?A. 求解连续体的精确解B. 求解连续体的近似解C. 求解连续体的数值解D. 求解连续体的解析解二、填空题1. 有限元分析中,单元的划分应满足什么条件?单元的划分应满足连续性和完整性的条件。

2. 有限元分析中,刚度矩阵的维度是多少?刚度矩阵的维度与单元自由度的个数相关。

三、简答题1. 有限元分析的步骤是什么?有限元分析的步骤包括建立有限元模型、确定边界条件、求解方程、后处理结果。

2. 有限元分析中,如何选择适当的单元类型?选择适当的单元类型需要考虑问题的特点、几何形状和边界条件等因素。

四、计算题1. 对于一个矩形截面的梁,长度为L,宽度为b,高度为h,杨氏模量为E,应力为σ,根据弹性力学理论,梁的弯曲刚度EI与梁的几何尺寸和材料性质有关。

请推导出梁的弯曲刚度的表达式。

解:根据弹性力学理论,梁的弯曲刚度EI与梁的几何尺寸和材料性质有关。

对于矩形截面的梁,弯曲刚度的表达式为:EI = (E * b * h^3) / 12其中,E为杨氏模量,b为梁的宽度,h为梁的高度。

通过以上计算题,我们可以看出有限元分析的应用范围广泛,可以用于解决各种工程问题。

通过对试题的分析和解答,我们对有限元分析的基本原理、方法和应用有了更深入的了解。

总结:本文以有限元期末考试试题为主线,辅以相关知识的解析和讨论,深入探讨了有限元分析的基本原理、方法和应用。

有限元期末考试试题

有限元期末考试试题

有限元期末考试试题一、选择题(每题2分,共20分)1. 在有限元分析中,单元的刚度矩阵通常通过以下哪种方式计算?A. 直接积分B. 线性插值C. 经验公式D. 试验数据2. 以下哪个选项不是有限元分析中的边界条件?A. 固定边界B. 自由边界C. 周期边界D. 热边界3. 有限元方法中,节点的自由度数量取决于什么?A. 单元类型B. 材料属性C. 几何形状D. 载荷类型4. 在进行热传导问题的有限元分析时,以下哪个方程是正确的?A. 牛顿第二定律B. 热平衡方程C. 动量守恒定律D. 质量守恒定律5. 以下哪个不是有限元分析中常用的单元类型?A. 四节点矩形单元B. 三角形单元C. 六面体单元D. 八节点等参单元二、简答题(每题10分,共30分)1. 简述有限元方法的基本步骤,并举例说明其在工程中的应用。

2. 解释什么是等参单元,并说明它在有限元分析中的重要性。

3. 描述在有限元分析中如何处理非线性问题,并给出一个具体的例子。

三、计算题(每题25分,共50分)1. 给定一个由四个节点构成的二维平面应力问题,节点坐标如下:节点1: (0, 0)节点2: (1, 0)节点3: (1, 1)节点4: (0, 1)已知材料的弹性模量E=210 GPa,泊松比ν=0.3。

若在节点1和节点3上施加单位力(1 N),试求该结构的位移场和应力场。

2. 考虑一个长方体热传导问题,其尺寸为Lx=0.5m,Ly=0.3m,Lz=0.2m。

该长方体的热导率为k=50 W/m·K,初始温度分布为T(x, y, z, 0) = 300 K。

若在x=0和x=Lx的面上施加恒定的边界温度T=400 K,试求经过时间t=10s后长方体内部的温度分布。

四、论述题(共30分)1. 论述有限元分析在结构优化设计中的作用,并讨论其在现代工程设计中的重要性。

有限元考试试题

有限元考试试题

有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。

8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。

9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。

10、在有限元分析中,我们通常使用______来描述物理场的性质。

三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。

12、请说明在有限元分析中,如何处理边界条件,并举例说明。

13、请简述有限元分析的优点和局限性。

有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。

在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。

2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。

在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。

3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。

重庆大学研究生有限元课程考核之平面梁单元的应力分析

重庆大学研究生有限元课程考核之平面梁单元的应力分析

平面梁单元的应力分析一悬臂梁受力如图所示,已知材料参数25泊松比=νE,⨯Pa.0210=,10要求如下:1.分别用梁单元和平面单元求解。

2.比较精度以及列举提高精度的措施。

3.提高力F,打开几何非线性选项,分析现象。

4.改变尺寸,讨论剪切变形的影响。

5.梁中间挖小孔,讨论应力集中的现象。

本题采用ABAQUS进行分析求解。

1.分别用梁单元和平面单元求解。

1.1. 采用梁单元求解1.1.1.步骤简述:进入部件模块,选择2D,可变形模型,线,图形大约范围12(长度单位按m)。

进入草图,选用折线,从(-5,0)→(5,0)绘出梁的轴线。

进入属性模块,创建截面几何形状,命名为Profile-1,选矩形截面,按图输入数据,a=0.25,b=0.5。

定义截面力学性质,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=2e10(程序默认单位为N/m2),ν=0.25,关闭。

定义梁方向,关闭。

将截面的几何、力学性质附加到部件上。

进入组装模块,生成实体。

进入分析步模块,创建分析步,全部默认,非线性开关:关。

进入载荷模块,施加位移边界条件,约束u1、u2、u R3各自由度。

创建载荷,性质:力学,选择集中力,选中梁的另一端,施加F y(CF2)=-120000(程序默认单位为N)。

进入网格模块,对实体部件进行:撒种子,种子间距0.125。

划网格。

进入作业模块,建立job-1选择完整分析,其余不变,提交计算。

进入可视化模块,查看结果。

1.1.2.结果分析:梁单元应力云图如图1.1图1.1点击右上角的键查询可得:梁端部最大竖向位移(即81节点处):-0.769404m;梁中间节点竖向位移(即41节点处):-0.24072m。

进入创建XY数据,场变量输出,选择空间位移U2,单元编号添加81(端结点)、41号(梁中结点)两节点,绘制出位移时间曲线如图 1.2;图1.2 图1.3 同理,查询得:固定端处最大正应力(1节点处):1.1448e8 pa梁中间节点上表面正应力(41节点处):5.688e8 pa同样绘制出的应力时间曲线如图1.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、简答题
1、弹性力学和材料力学在研究对象上的区别?
答:材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件。

弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等。

因此,弹性力学的研究对象要广泛得多。

2、理想弹性体的五点假设?
答:连续性假定、完全弹性假定、均匀性假定、各向同性假定、小位移和小变形的假定。

3、什么叫轴对称问题,采用什么坐标系分析?为什么?
答:如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴,那么弹性体所有的位移、应变和应力也都对称于这根轴,这类问题称为轴对称问题。

对于轴对称问题,采用圆柱坐标比采用直角坐标方便得多。

当以弹性体的对称轴为Z 轴时,则所有的应力分量,应变分量和位移分量都只与坐标r、z有关,而与θ无关。

4、梁单元和杆单元的区别?
答:梁单元和杆单元在形状上没有多大区别,其截面可以是任何形状,有一方向的长度远远大于另外两个方向。

主要区别是受力不同,梁单元主要承受弯矩,杆单元主要承受轴向力。

杆单元通常用于网架、桁架的分析;而梁单元则基本上可以适用于各种情况。

5、薄板弯曲问题与平面应力问题的区别?
答:平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷,变形发生在板面内;后者受力特点是当承受垂直于板面的载荷时,板在弯曲应力和扭转应力作用下将变成曲面板。

6、有限单元法结构刚度矩阵的特点?
答:主对称元素总是正的;对称性;稀疏性;奇异性;非零元素呈带状分布。

7、有限单元法的收敛性准则?
答:完备性要求,协调性要求。

完备性要求。

如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式。

或者说试探函数中必须包括本身和直至m阶导数为常数的项。

单元的插值函数满足上述要求时,我们称单元是完备的。

协调性要求。

如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上应有函数直至m-1阶的连续导数。

当单元的插值函数满足上述要求时,我们称单元是协调的。

8、简述圣维南原理在工程实际中的应用?
答:在工程实际中物体所受的外载荷往往比较复杂,一般很难完全满足边界条件。

当所关心的并不是载荷作用区域内的局部应力分布时,可以利用圣维南原理加以简化。

圣维南原理在钢管混凝土拱桥分析中的应用,能够得到合理的结果,优化了结构性能。

圣维南原理在材料力学中也有应用,在工程实际中经常要计算连接件,如铆钉,螺栓,键等,由于构件本身尺寸较小,变形比较复杂,采用计算其名义应力,然后根据直接的试验结果,确定其相应的许用应力,来进行强度计算。

二、论述题
1、任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空间梁问题?为什么
答:当物体具有特殊形状,受特殊的外力,特殊的位移约束时,空间问题就可以简化近似的典型问题进行求解,所得到的结果能满足工程上的精度要求,而分析计算工作量大大减少。

平面问题分为平面应力问题和平面应变问题,当研究对象一个方向的尺寸远小于另两个方向,外力和约束仅平行于板面作用而沿Z向不变,且仅有的三个应力分量是x、y的函数时,这样的空间问题就可以转换成平面应力问题;当研究对象一个方向的尺寸远大于另外两个方向的尺寸且沿长度方向几何形状和尺寸不变,外力平行于横截面作用而沿长度z方向不变,任意一横截面均可视为对称面,这样的空间问题就可以转换成平面应变问题,如挡土墙、重力坝。

如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴(过该轴的任意平面都是对称平面),那么弹性体的所有应力、应变和位移也就对称与这根轴,这样的问题就可以转换为轴对称问题。

当构件的长度远大于其横截面尺寸,如传动轴、梁杆等,这样的问题就可以转换为空间梁问题。

2、阐述有限元的基本思想。

试从有限元程序开发和采用成熟软件两方面进行有限元分析
答:有限元的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个结点相互连接,然后根据变形协调条件综合求解。

由于单元的数目是有限的,接点的数目也是有限的,所以称为有限单元法。

有限元程序开发:力学模型的确定;结构的离散化;计算载荷的等效节点力;计算各单元的刚度矩阵;组集整体刚度矩阵;施加便捷约束条件;求解降阶的有限元基本方程;求解单元应力;计算结果的输出。

成熟软件①前处理器:定义单元类型;定义材料属性;建模;约束,载荷施加等②求解器。

单元刚度矩阵生成;约束处理;线性方程组,单元位移及应力等求解③后处理器:结果查询与显示;验算等。

3、有了本门课程的有限元分析技术基础,如果以后涉足机械方面的有限元分析,你觉得应从哪些方面深化学习和开展工作,具体采用哪些方式?
答:一、学习数学基础知识
(1)矩阵论,由于涉及到多维广义坐标下的运算,有限元多以矩阵的形式表达,力求简化形式,突出重点。

(2)泛函和变分。

泛函是寻找场函数在积分域上的最优值问题,变分是泛函研究的重要手段。

(3)数值方法,有限元本身就是数值方法,在实现有限元分析的过程中,要用到大量的数值方法和算法。

(4)数学分析,其中的多元函数积分,向量函数的积分应用较多。

二、学习程序实现和使用
(1)程序实现,有限元最终是通过程序实现的,有限元的理论研究与编程密不可分,应学习C或C++等语言。

(2)程序使用,熟练掌握大型有限元程序,如ANSYS、SAP等,使用程序使用有限元,要注意观察程序的计算结果,有意识的根据单元的特性分析结果特点。

三、要有一定的力学基础
熟练理论力学,材料力学、结构力学,特别是弹性力学,很多工程中的有限元问题未能很好的解答,并非由于软件的功能所致,而是我们的知识不够。

相关文档
最新文档