有限元网格分别的基本原则

合集下载

Deform网格划分原则及方法

Deform网格划分原则及方法

[原]Deform网格划分原则及方法2009-04-04 23:48引言:划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍网格划分时的一些基本原则及方法。

关键词: Deform 网格 局部细化一、网格划分的原则1 网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1 位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2 网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

板的四周应力梯度较小,网格分得较稀。

ansys 网格划分原则

ansys 网格划分原则
(1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。理想单元的边长比为1,可接受单元的边长比的范围线性单元长宽比小于3,二次单元小于10。对于同形态的单元,线性单元对边长比的敏感性较高阶单元高,非线性比线性分析更敏感。
(2)扭曲度:单元面内的扭转和面外的翘曲程度。
(3)疏密过渡:网格的疏密主要表现为应力梯度方向和横向过渡情况,应力集中的情况应妥善处理,而对于分析影响较小的局部特征应分析其情况,如外圆角的影响比内圆角的影响小的多。
3.3单元阶次
许多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。选用高阶单元可提高计算精度,因为高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。
3.4网格质量
网格质量是指网格几何形状的合理性。质量好坏将影响计算精度。质量太差的网格甚至会中止计算。直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点附近的网格质量较好。网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。划分网格时一般要求网格质量能达到某些指标要求。在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。而在结构次要部位,网格质量可适当降低。当模型中存在质量很差的网格(称为畸形网格)时,计算过程将无法进行。网格分界面和分界点,结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。

网格划分原则

网格划分原则

有限元分析中的网格划分好坏直接关系到模型计算的准确性。

本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。

1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。

在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。

为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。

利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。

有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。

在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。

第07讲-有限元网格划分的基本原则及技巧

第07讲-有限元网格划分的基本原则及技巧

7-6
网格疏密
• • 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分 布特点。 在计算数据变化梯度较大的部位(如应力集中处、几何形状、材料、厚度变化的 位置),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数 据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整 个结构便表现出疏密不同的网格划分形式。—— 网格数量应增加在结构的关键 部位,在次要部位增加网格是不必要的,也是不经济的。 边界上最好要在8个单元以上,至少不少于4个; 分析结果完成后,需要检查以下各项,误差较大的位置要进行细分: 单元应力的连续性,比较相邻单元应力值的差值; 应力偏差:结点上的单元结点应力和结点平均应力的差值的较大值; 当以上差值与其中的最大应力的比值较大时,该位置的网格需要细分。
精度 计算时间 精确解 1 2 O
7-4


P
网格数量
网格数量(续)
在决定网格数量时应考虑分析数据的类型。 实体单元:
• •
1、在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如 果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。 2、在响应计算中,计算应力响应所取的网格数应比计算位移响应多。 3、在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较 少的网格,如果计算的模态阶次较高,则应选择较多的网格。
左图中(a)、(b)改 变了结构质量的对称分 布,应避免。 (c)是 比较理想的结果。
(a)
7-8
(b)
(c)
单元的形状及评价
• 形状比(长边与短边距离之比) 一般实体单元的长宽比越大,分析误差也越大。 对于板壳单元,评价应力为主时不宜超过1:3,评价位移为主时不宜超过1:5; 对于块体单元,评价应力为主时不宜超过1:2,评价位移为主时不宜超过1:3; 在应力分布几乎没有变化的区域里使用的单元,适当放大也没问题。 倾角(表示单元偏离直角四边形的程度(Angular Deviation)) 四边形的内倾角最好是在45度~135度之间,不要超过15度~165度。 锥度(限于四边形) 用几何偏离(Geometric Deviation)表示四边形单元的变形程度。

Deform网格划分原则及方法

Deform网格划分原则及方法

[原]Deform网格划分原则及方法2009-04-04 23:48引言:划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍网格划分时的一些基本原则及方法。

关键词:Deform 网格局部细化一、网格划分的原则1 网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1 位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2 网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

板的四周应力梯度较小,网格分得较稀。

有限元网格划分

有限元网格划分

有限元网格划分摘要:总结近十年有限元网格划分技术发展状况。

首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。

关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格1 引言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

2 有限元网格划分的基本原则有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。

所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。

为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。

2.1 网格数量网格数量直接影响计算精度和计算时耗,网格数量增加会提高计算精度,但同时计算时耗也会增加。

当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。

所以在确定网格数量时应权衡这两个因素综合考虑。

2.2 网格密度为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。

在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。

网格划分基本原则

网格划分基本原则

有限元网格划分的基本原则杜平安 《机械设计与制造》划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。

答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。

答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。

答案:边界条件三、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。

2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。

答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。

每种单元都有其特定的形状函数和刚度矩阵。

四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。

使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆离散化为一个单元。

使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。

然后,施加边界条件,即杆的两端位移为零。

最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。

应力可以通过位移和杆的截面特性计算得出。

网格划分的原则

网格划分的原则

划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

ANSYS网格划分原则

ANSYS网格划分原则

ANSYS有限元网格划分的基本原则默认分类 2009-05-20 13:56:46 阅读508 评论0 字号:大中小订阅1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。

在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。

为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。

利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。

有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。

在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。

在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。

ansys有限元网格划分技巧与基本原理

ansys有限元网格划分技巧与基本原理

一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值汁算分析结果的精确性。

网格划分涉及单元的形状及英拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平而应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的而内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一泄的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲而混合造型两种方法。

Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。

现有CAD软件对表而形态的表示法已经大大超过了CAE 软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD 模型中苴他表示法的表面形态转换到CAE软件的表示法上,转换精度的髙低取决于接口程序的好坏。

在转换过程中,程序需要解决好几何图形(曲线与曲而的空间位苣)和拓扑关系(各图形数据的逻借关系)两个关键问题。

英中几何图形的传递相对容易实现,而图形间的拓扑关系容易岀现传递失败的情况。

数据传递而临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。

在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲而等。

这些细肖往往不是基于结构的考虑,保留这些细肖,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负而影响。

CAD模型的“完整性”问题是困扰网格剖分的障碍之一。

有限元习题及答案

有限元习题及答案

(a)
(b)
(c)
(a)单元间没有考虑节点相联 (b)网格形状太差,单元边长相差太大 (c)没有考虑对称性,单元边长相差太大
3、分别指出图示平面结构划分为什么 单元?有多少个节点?多少个自由度?
(a)桁架结构模型
• 划分为杆单元, 8个节点,12个自由度
(b)钢架结构模型
划分为平面梁单元,8个 节点,15个自由度
所以
F B B EAl
T
K
(2)

K B B EAl
T
将[B]值代入(2)式得
1 1 1 K 1 l 1 l
1 EAl

完毕
EA l
1 1
1 1
11
(c)混凝土梁结构
平面四节点,四边形单 元,8个节点,13个自由 度
(d)水坝模型
平面三角形单元,29个 节点,38个自由度
4、什么是平面应力问题?什么是平面应变 问题?举例说明
平面应力问题: 若物体的某一方向的尺寸较另外两个方向的小得多, 即为一等厚平板,且在平板的边界有平行于平面切沿 厚度方向均匀分布的面力,则此类问题可简化为平面 应力问题。 y 如一方形薄板边 y 上作用有分 布面力: b z x 连杆 a
2

1
x )
2
u1 )
2
(u 1 u
2
u

1

2
x
2

1 l
(x x
)u 1 )
1 l
( x1 x )u
2
1 (x x l
2

1
u1 ( x1 x ) l u 2

有限元网格划分标准

有限元网格划分标准

有限元网格划分标准有限元法是一种数值分析方法,广泛应用于工程领域中的结构分析、热传导、流体力学等问题的数值模拟。

而有限元网格划分则是有限元法的基础,它直接影响着数值模拟的精度和计算效率。

因此,选择合适的有限元网格划分标准对于数值模拟的准确性和可靠性至关重要。

在进行有限元网格划分时,需要考虑以下几个标准:1. 几何形状的复杂程度,对于简单的几何形状,可以采用规则的网格划分,如正交网格或三角形网格。

而对于复杂的几何形状,需要采用非结构化网格划分,以更好地适应几何形状的变化。

2. 网格密度的选择,网格的密度直接影响着数值模拟的精度,通常情况下,对于需要更精确结果的区域,需要采用更密的网格划分,而对于一些对精度要求不高的区域,可以采用较为疏松的网格划分。

3. 边界条件的考虑,在进行网格划分时,需要考虑到边界条件的影响,确保在边界处能够得到准确的数值解。

通常情况下,需要在边界处采用更密的网格划分,以确保数值解的准确性。

4. 单元形状的选择,在有限元网格划分中,单元的形状对数值模拟的效果有着重要的影响。

通常情况下,应尽量选择形状较好的单元,如四边形单元或三角形单元,以避免出现数值解不稳定的情况。

5. 网格质量的评估,在进行有限元网格划分后,需要对网格质量进行评估,以确保网格的质量满足数值模拟的要求。

通常可以采用网格剖分后的单元形状的变形情况、网格尺寸的均匀性等指标来评估网格的质量。

总而言之,有限元网格划分是有限元法中至关重要的一环,它直接影响着数值模拟的结果。

在进行有限元网格划分时,需要综合考虑几何形状的复杂程度、网格密度的选择、边界条件的考虑、单元形状的选择和网格质量的评估等因素,以选择合适的网格划分标准,确保数值模拟的准确性和可靠性。

有限元网格划分的基本原则

有限元网格划分的基本原则

有限元网格划分的基本原则划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1 网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1 位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2 网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

网格划分

网格划分

网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数目减小。

因此,网格数目应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

网格尺寸过大,不能准确描述应力应变特征,网格尺寸过小,则会增加计算机机时。

面对复杂模型的模拟,这种问题更加突出,网格的疏密的划分与应力梯度、应变梯度等有关。

有限元计算结果的精度也涉及到单元类型、收敛准则、时间步长等因素影响。

有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。

所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。

为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。

在网格划分时,对应力集中采用局部网格加密的办法是十分必要的。

有限元网格划分基本原则有限元方法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。

由此,有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。

网格划分的密度是个重要的问题,太密则会大大增加计算时间,但计算精度却不会成比例地增加。

这样,就存在一个最佳网格密度问题,这个问题往往需要多年工作经验的积累。

如果前置处理程序能够自动确定网格密度,对节省机时的意义非常大。

另外,在网格划分时,对应力集中采用局部网格加密的办法是十分必要的。

归纳起来说,划分网格时必须考虑以下原则:1、网格数量。

网格数量的多少,直接影响着计算规模的大小,在一定程度上也影响着计算结果的精确程度。

网格划分的原则

网格划分的原则

划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

有限元计算单元网格划分

有限元计算单元网格划分
元计算产品适用范围广泛,目前有国内外专业客户300余家,涉及美、加、日、韩、澳、德、 新等国,遍布石油化工、土木建筑、电磁电子、国防军工、装备制造、航空航天……等多个领域。
有限元语言及编译器(Finite Element Language And it’s Compiler,以下简称FELAC) 是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平 台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年—2013 年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前 已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语 言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。 FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程面或体单元过渡
1)从小单元到大单元过渡时,应使同一节点所连接的单元不致相差太大,避免突然过渡现象。 通常用计算结果调整,保证同一节点所连接的单元精度值至少在0.1以下。单元精度值根据单元内节 点应力与节点平均应力的误差计算。
2)难于过度处最好使用过渡单元,过渡单元的使用要比用同一单元勉强过渡的计算结果要好。 例如:对于复杂体结构间的过渡,最好使用“金子塔”单元过渡。 (5)面或体转接部位的单元 几何模型圆角过渡处的单元划分,根据弧长对应的圆心角和半径确定,对于半径为3mm左右、 圆心角大于90度的转接弧长,通常至少要划分3~4个单元。 (6)高应力区的单元 对高应力区,要进行网格细分应力稳定性计算。即采用多次局部网格细分并进行计算,当前、 后两次计算结果满足所需的精度要求时(通常要求小于0.03)确定网格。 总之,几何模型网格划分时,要在单元类型、单元形态、单元大小、单元过渡和局部应力稳定 等方面下功夫,才能满足工程上的精度要求,达到预期的结果。

有限元网格划分的基本原则

有限元网格划分的基本原则

有限元网格划分的基本原则划分网格是建立有限元模型的一个重要环节,它要求考虑的题目较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目。

网格数目的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

2网格疏密。

网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

3单元阶次很多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。

选用高阶单元可进步计算精度,由于高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构外形不规则、应力分布或变形很复杂时可以选用高阶单元。

但高阶单元的节点数较多,在网格数目相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。

4网格质量网格质量是指网格几何外形的公道性。

质量好坏将影响计算精度。

质量太差的网格甚至会中止计算。

直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点四周的网格质量较好。

网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。

划分网格时一般要求网格质量能达到某些指标要求。

在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。

而在结构次要部位,网格质量可适当降低。

5网格分界面和分界点结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元网格划分的基本原则
划分网格是建立有限元模型的一个
重要环节,它要求考虑的题目较多,
需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目
网格数目的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化。

可以看出,网格较少时增加网格数目可以使计算精度明显进步,而计算时间不会有大的增加。

当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加。

所以应留意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数目的变化
在决定网格数目时应考虑分析数据的类型。

在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。

假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密
网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映
数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔四周存在应力集中,采用了比较密的网格。

板的四周应力梯度较小,网格分得较稀。

其中图b中网格疏密相差更大,它比图a中的网格少48个,但
计算出的孔缘最大应力相差1%,而计算时间却减小了36%。

由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数目减小。

因此,网格数目应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

图2带孔方板的四分之一模型
划分疏密不同的网格主要用于应力分析(包括静应力和动应力),而计算固有特
性时则趋于采用较均匀的钢格形式。

这是由于固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差。

同样,在结构温度场计算中也趋于采用均匀网格。

3单元阶次
很多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。

选用高阶单元可进步计算精度,由于高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构外形不规则、应力分布或变形很复杂时可以选用高阶单元。

但高阶单元的节点数较多,在网格数目相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。

图3是一悬臂梁分别用线性和二次三角形单元离散时,其顶端位移随网格数目的收敛情况。

可以看出,但网格数目较少时,两种单元的计算精度相差很大,这时采用低阶单元是分歧适的。

当网格数目较多时,两种单元的精度相差并不很大,这时采用高阶单元并不经济。

例如在离散细节时,由于细节尺寸限制,要求细节四周的网格划分很密,这时采用线性单元更合适。

图3不同阶次单元的收敛情况
增加网格数目和单元阶次都可以进步计算精度。

因此在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数目,太多的网格并不能明显进步计算精度,反而会使计算时间大大增加。

为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。

不同阶次单元之间或采用特殊的过渡单元连接,或采用多点约束等式连接。

4网格质量
网格质量是指网格几何外形的公道性。

质量好坏将影响计算精度。

质量太差的网格甚至会中止计算。

直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点四周的网格质量较好。

网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。

划分网格时一般要求网格质量能达到某些指标要求。

在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。

而在结构次要部位,网格质量可适当降低。

当模型中存在质量很差的网格(称为畸形网格)时,计算过程将无法进行。

图4是三种常见的畸形网格,其中a单元的节点交叉编号,b单元的内角大于180°,c单元的两对节点重合,网格面积为零。

图4几种常见的畸形网格
5网格分界面和分界点
结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。

即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。

常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。

图5是具有上述几种界面的结构及其网格划分形式。

图5特殊界面和特殊点网格划分
6位移协调性
位移协调是指单元上的力和力矩能够通过节点传递相邻单元。

为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。

相邻单元的共有节点具有相同的自由度性质。

否则,单元之间须用多点约束等式或约束单元进行约束处理。

图6是两种位移不协调的网格划分,图a中的节点1仅属于一个单元,变形后会产生材料裂缝或重叠。

图b中的平面单元和梁单元节点的自由度性质不同,粱单元的力矩无法传递到平面单元。

图6位移不协调的网格划分
7网格布局
当结构外形对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性(如集中质矩阵对称)。

不对称布局会引起一定误差,如在图7中,悬臂粱截
面相对y轴对称,在对称载荷作用下,自由端两对称节点1、2的挠度值本应
相等。

但若分图b所示的不对称网格,计算出的y1=0.0346,y2=0.0350。

若改用图c所示的网格,则y1和y2完全相同。

图7网格布局对计算结果的影响
8节点和单元编号
节点和单元的编号影响结构总刚矩阵的带宽和波前数,因而影响计算时间和存
储容量的大小,因此公道的编号有利于进步计算速度。

但对复杂模型和自动分网而言,人为确定公道的编号很困难,目前很多有限元分析软件自带有优化器,网格划分后可进行带宽和波前优化,从而减轻人的劳动强度。

相关文档
最新文档