8-5 抽屉原理.学生版

合集下载

抽屉原理与最不利原则学生版

抽屉原理与最不利原则学生版

抽屉原理与最不利原则学生版一、抽屉原理:抽屉原理也称为鸽巢原理,是一种用来证明或解决一些问题的方法。

它的基本思想是:如果n+1个物体分到n个盒子中,那么至少有一个盒子中会有两个或更多的物体。

在学生生活中,我们可以用抽屉原理来解决一些有关分类和分组的问题。

比如说,假设我们有7个苹果,要把它们放进5个相同大小的篮子中。

根据抽屉原理,至少有一个篮子中会有两个或更多的苹果。

因为如果每个篮子中最多只能放一个苹果,那么最多只能放进5个苹果,无法满足7个苹果的要求。

除了物体的数目和盒子的数量,抽屉原理还可以用来解决其他类型的问题。

比如说,如果我们有8个球,每个球只能涂成红色或蓝色,并且要求有至少3个球的颜色相同。

根据抽屉原理,我们可以将这8个球分成两组,至少有一组有3个球的颜色相同。

总之,抽屉原理告诉我们,在一些情况下,我们可以利用物体和盒子的数量来判断是否存在其中一种情况或解决一些问题。

二、最不利原则:最不利原则也称为最坏情况原则,是一种在决策或解决问题时常常采用的方法。

它的基本思想是:在做出决策或解决问题时,我们应该假设最坏的情况会发生,然后选择对这种情况最有利的方法或策略。

在学生生活中,最不利原则可以帮助我们制定合理的学习计划。

比如说,假设我们要在一周内准备3门考试,每门考试的内容都很多。

根据最不利原则,我们应该预估最坏的情况是每门考试内容都很难,然后制定学习计划,确保在考试前充分复习每门课程。

除了学习计划,最不利原则还可以应用在其他方面的决策中。

比如说,我们要出去玩,但是天气预报说可能会下雨。

根据最不利原则,我们应该假设最坏的情况是会下雨,然后带上雨伞或选择室内活动,以免被雨水淋湿。

总之,最不利原则教会我们在面对各种决策或问题时,要充分考虑最坏的情况,并选择最有利的方法来解决问题或应对情况。

五年级第12讲抽屉原理

五年级第12讲抽屉原理

抽屉原理是数学中的一种基本原理,也是组合数学的重要概念之一、在数学中,通常用来解决一些问题中存在的矛盾或者重复的情况。

下面我们来详细介绍一下抽屉原理。

抽屉原理最简单的形式可以这样表述:如果有n+1个物体放入n个抽屉中,至少有一个抽屉中会放有多于一个物体。

抽屉原理从直观上来说是很容易理解的,我们可以想象抽屉的个数比物体的个数少,那么总会有至少一个抽屉中会有多个物体。

抽屉原理的形式化表述如下:用S1,S2,...,Sn表示n个集合。

并且满足之间的交集都是空集,即Si∩Sj=Ø。

若这n个集合中的元素的总数大于n,则至少存在一个集合Si中包含至少两个元素。

这个原理的证明是基于反证法,即假设所有集合中的元素的总数不大于n-1,然后推导出与之前的假设矛盾的结论,从而可以得出结论为真。

抽屉原理的应用非常广泛,可以用来解决各种问题。

比如在排列组合问题中,可以用抽屉原理来证明一些集合中必然会出现其中一种排列方式。

在概率论中,也可以用抽屉原理来证明一些事件发生的概率。

下面我们通过一个例子来进一步说明抽屉原理的应用。

例1:有7个梨和6个苹果,他们放在5个抽屉里,请证明至少有一个抽屉里既有苹果也有梨。

假设所有的抽屉都没有同时放有苹果和梨,那么根据抽屉原理,最多只能有5个苹果和5个梨被放入这些抽屉中。

但是实际上有7个梨和6个苹果,所以这个假设是不成立的。

根据反证法,我们可以得出结论,至少有一个抽屉里既有苹果也有梨。

通过这个例子,我们可以看到抽屉原理的应用非常直观和简单。

在解决问题时,只需要假设所有的情况都不满足,然后推导出矛盾的结论,就可以得出结论为真。

除了上述的简单形式,抽屉原理还有很多扩展形式,比如多重抽屉原理、大理数抽屉原理等,用来应对更加复杂的情况。

总的来说,抽屉原理在数学中起着非常重要的作用,不仅能够用于解决各种问题,还能够培养学生的逻辑思维能力和数学思维能力。

在进行数学证明过程中,抽屉原理是一种常见的证明方法之一,因此对于学生来说,掌握抽屉原理是十分必要的。

抽屉原理与最不利原则(4年级培优)学生版

抽屉原理与最不利原则(4年级培优)学生版

原理1 把多于n 个的物体放到n 个抽屉中,则至少有一个抽屉中有2个或2个以上的物体。

原理2 把多于mn (m 乘以n )个的物体放到n 个抽屉中,则至少有一个抽屉中有1+m 个或多于1+m 个的物体。

✧ 构造“抽屉”、找出“物体”及物体的放法是应用抽屉原理解决问题的关键。

常见的构造抽屉的方法有:数的分组法;剩余类法;图形分割法;染色法。

✧ 当问题中出现“保证”二字,就要求我们必须利用“最不利”原则情况分析问题。

最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。

我们可以用如下方法,解决简单抽屉原理的问题:将n 个物品放到m 个抽屉中,如果a m n =÷,那么一定有一个抽屉中至少有a 个物品;如果b a m n =÷(0>b ),那么一定有一个抽屉中至少有1+a 个物品。

四年(1)班一共有42名学生,那么一定有至少几名学生的属相相同?盒子中装有红、白、黑三种颜色的小球各20个,这些小球摸起来手感都一样。

14个小朋友闭着眼睛玩摸球游戏,每个小朋友一次只能摸出一个小球。

那么一次至少有几个小朋友摸出的小球颜色相同?有3个不同的自然数,至少有两个数的和是偶数,为什么?4个连续自然数分别被3除后,必有两个余数相同,为什么?布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块才能保证其中至少有3块颜色相同?一副扑克牌一共有54张,至少从中取出多少张才能保证:(1)至少有4张牌的花色相同;(2)4种花色的牌都有;(3)至少有4张牌是黑桃。

2012名冬令营营员去游览长城、颐和园、天坛,规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?某班组织全班45人进行体育比赛,项目有A、B、C三种,规定每人至少参加一项,最多参加三项,至少有几人参加的项目是相同的?从1、2、3、…,2011这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?从1至2011这2011个自然数中最多能取出多少个数,使得其中任意的两个数都不连续且差不等于4?某班有16名学生,每个月教师把学生分成两个小组。

[小学奥数专题15】8-2-1抽屉原理.题库学生版

[小学奥数专题15】8-2-1抽屉原理.题库学生版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识精讲知识点拨教学目标8-2抽屉原理模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

四年级三大原理抽屉原理学生版

四年级三大原理抽屉原理学生版

抽屉原理知识要点最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。

由此得到充分可靠的结论。

抽屉原理又称鸽巢原理或Dirichlet原理如果把1n+个苹果任意放入n个抽屉,那么必定有一个抽屉里至少有两个苹果。

这个现象就是我们所说的抽屉原理。

抽屉原理在国外又称为鸽巢原理。

(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是由德国数学家狄利克雷(G.Lejeune Dirichlet,18051859~)首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

抽屉原理1:如果把多于n件物品任意放到n个抽屉中,那么必有1个抽屉至少有2件物品。

抽屉原理2:如果把多于m nm+件物品。

⨯件物品任意放到n个抽屉中,那么必有1个抽屉至少有1抽屉原理3:如果把无穷多件物品任意放到n个抽屉中,那么必有1个抽屉至少有无穷多件物品。

最不利原则【例 1】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?【例 2】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证至少有3张牌是红桃?【例 3】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证有5张牌是同一花色的?【例 4】(2004年第九届“华罗庚金杯”少年数学邀请赛小学组初赛第8题)一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?【例 5】(1988年第二届“华罗庚金杯”少年数学邀请赛小学组初赛第11题)一副扑克牌有四种花色,每种花色有13张,从中任意抽牌。

问:最少要抽多少张牌,才能保证有4张牌是同一花色?【例 6】(2006年3月8日第十一届“华罗庚金杯”少年数学邀请赛小学组初赛第13题)自制的一幅玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。

抽屉原理小学数学教案

抽屉原理小学数学教案

抽屉原理小学数学教案
教学内容:抽屉原理
年级:小学四年级
教学目标:
1. 理解抽屉原理的概念和基本原理。

2. 能够应用抽屉原理解决实际问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学准备:
1. 教师准备教材《小学数学》四年级教材相关内容。

2. 准备黑板、彩色粉笔和教具。

3. 预先准备好相关的练习题和考题。

教学过程:
第一步:导入(5分钟)
教师引导学生回顾前几节课所学的内容,提出一个问题:“如果有5只猴子,只有4只马桶,那么至少有一只猴子会用同一只马桶吗?”让学生思考并讨论。

第二步:概念讲解(10分钟)
教师向学生解释抽屉原理的概念:“抽屉原理是指如果有n+1个物品放进n个抽屉里,至少会有一个抽屉里有两个或两个以上的物品。

”让学生理解这个概念。

第三步:例题演练(15分钟)
教师给学生举例:“如果有7个苹果,只有6个篮子,那么至少会有一个篮子里会有两个或两个以上的苹果。

”让学生根据这个例子自己尝试解答其他类似问题。

第四步:练习巩固(10分钟)
教师发放练习题让学生独立完成,并在课堂上讲解答案,让学生自行纠正并加强记忆。

第五步:拓展应用(10分钟)
教师引导学生思考如何在不同的问题中应用抽屉原理来解决,让学生举一些例子并进行讨论。

第六步:课堂总结(5分钟)
教师总结本节课的内容,强调抽屉原理的重要性,并鼓励学生多加练习,加深理解。

教学反思:本节课主要通过例题演练和练习巩固的方式,让学生对抽屉原理有一个初步的理解,并能够灵活运用。

教学中要注重引导学生思考和探索,培养其解决问题的能力。

小学数学《抽屉原理》教案 _2

小学数学《抽屉原理》教案 _2

小学数学《抽屉原理》教案小学数学《抽屉原理》教案 1教材内容义务教育课程标准实验教科书第十二册第五单元第一节教学目标1.基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2.能力训练目标:1)、会用“抽屉原理”解决简单的实际问题;2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。

3.个性品质目标:通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。

教学过程一、创设情景,导入新课师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。

引导学生观察游戏结果——不管怎么坐,总有一个座位上至少坐了2位同学。

师:为什么?(学生回答)师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。

师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。

希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!二、探究新知(一)教学例11、出示题目:把4枝铅笔放进3个文具盒里。

师:刚才我们做游戏,不管怎么坐,总有一把椅子上至少坐了2位同学。

那么,把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家可不可以大胆的猜测一下?(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。

)2、理解“至少”师:“至少”是什么意思?如何理解呢?(最少2枝,也可能比2枝多)师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。

3、自主探究(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。

(2)全班交流,学生汇报。

第一种方法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。

抽屉原理与存在性问题(上)

抽屉原理与存在性问题(上)

第四讲 抽屉原理与存在性问题本讲概述本讲我们将讲述组合数学中一个非常简单却又十分重要,应用十分广泛的一个原理,即抽屉原理.然后我们将给出与抽屉原理内涵相通的几个变形,即平均值原理与图形重叠原理.事实上这几个原理是用来证明存在性问题的有力工具之一,当然我们还可以利用极端原理、反证法、数学归纳法、算两次、计数方法和构造法等等来加以证明.本讲我们主要讲述利用平均值原理(其在整数和图形范围内的形式分别为抽屉原理和图形重叠原理)来证明存在性问题,并略举数例说明其它方法在证明存在性问题中的应用.第一抽屉原理:若将m 个物件放入n 个抽屉中,则必有一个抽屉内至少有1[]1m n-+个物件. 第二抽屉原理:若将m 个物件放入n 个抽屉中,则必有一个抽屉内至多有[]m n 个物件. 事实上这两个原理利用极端性原理与反证法极易证明,此处从略.平均值原理1:设12,,...,n a a a 为实数,且12...n a a a A n +++=,则12,,...,n a a a 中必有一个不小于A ,也必有一个不大于A平均值原理2:设12,,...,n a a a 为正实数,且G =则12,,...,n a a a 中必有一个不小于G ,也必有一个不大于G图形重叠原理:把面积为12,,...,n S S S 的n 个平面图形以任意方式放入一个面积为S 的平面图形A 内,(1) 如果12...n S S S S +++>,则必有两个图形有公共点;(2) 如果12...n S S S S +++<,则必有一点不属于上述n 个图形中任意一个可以发现,上述三组原理都是极端性原则在不同场合的具体表现形式. 极端性法则是处理组合数学中存在性的利器,通过对这三组原理及其解题技巧的深刻把握,我们也可以自己创造一些类似的极端性原理来解决问题.一般来说,适合应用抽屉原理解决的数学问题具有如下特征:新给的元素具有任意性.如1n +个苹果放入n 个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果.用抽屉原理解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律.关键是构造适合的抽屉,抽屉之间可以有公共部分,亦可以没有公共部分。

人教版数学六年级下册第五单元抽屉原理附解析学生版

人教版数学六年级下册第五单元抽屉原理附解析学生版

人教版数学六年级下册第五单元抽屉原理附解析学生版抽屉原理一、选择题(共5题;共10分)1.(2分)下列说法中,有()句说法描述正确。

①给正方体的6个面分别涂上不同的5种颜色,不论怎么涂,至少有3个面颜色相同。

②公交车上有13名乘客,他们中至少有2个人的生日在同一个月内。

③任意找3个人,则至少有2个人的性别相同。

A.0B.1C.2D.32.(2分)盒子里有5个黑球、3个黄球、2个绿球,任意拿出6个,最少有一个()。

A.黑球B.黄球C.绿球D.白球3.(2分)把3个红球、3个白球装袋子里,至少取()个球,可以保证取到两个颜色相同的球。

A.2B.3C.44.(2分)13个人中()有两个人生日在相同的月份。

A.一定B.可能C.不可能5.(2分)把红、黄、蓝、白、绿五种颜色的球各10个放到一个袋子里,要保证取到两个颜色相同的球,至少要取出几个球?()A.6B.5C.4D.3二、判断题(共3题;共6分)6.(2分)把4个桔子放到3个盘子中,至少有1个盘子里有2个或2个以上的桔子。

()7.(2分)学校举行迎新活动,小张等5个同学去搬6张小椅子,小张一个人不可能搬3张椅子。

()8.(2分)六(1)班级有53名学生,同月过生日的至少有5人。

()三、填空题(共4题;共8分)9.(2分)一个布袋中有2个黄球、3个白球、5个红球。

如果每次从布袋中取出一个球,摸到球的可能性最小,至少摸出个球才能保证摸到2个同色球。

10.(2分)有红、黄、蓝三种颜色的小球各5个,放入一个布袋里。

至少取个球,可以保证取到两个颜色相同的球;至少取出个球,可以保证取出的球中一定有黄色的球。

11.(2分)将红、黄、蓝三种颜色的球各5个放入一个盒子里,要保证取出的球有两种颜色,至少应取出个球;要保证取出的球至少有两个是同色的,至少应取出个球。

12.(2分)把大小一样的7个黄球,4个红球放在一个不透明的袋子里,从中任意摸1个球,摸到球的可能性更大;至少要摸出个球,才能确保一定能摸到红球。

抽屉原理在小学阶段的应用

抽屉原理在小学阶段的应用

抽屉原理在小学阶段的应用抽屉原理又稱鸽巢原理,举例来说:已有4个鸽笼,现有5只鸽子都要进去,那么总有一个鸽笼里面进去了至少2只鸽子。

这个原理可以有很多的应用。

标签:抽屉原理集合元素抽屉原理又称鸽巢原理,是组合数学的一个基本原理,由德国数学家狄利克雷(Dirichlet)于19世纪最先提出,因此,也称为狄利克雷原理,用这个原理可以解决很多存在性问题。

这个原理被安排在小学六年级下册的数学广角中,对于小学生来说,有一定的难度,要充分发挥想象力,再结合实际操作,方可理解巩固。

一、抽屉原理的常见形式1.第一抽屉原理原理1:把多于n+1个的物体放到n个抽屉里,则总有一个抽屉里的物体至少有2个。

也可描述为,把n+1个元素分成n类,不管怎么分,一定有一类中有2个或2个以上的元素。

证明(反证法):假设每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而题设中的总数是n+1,互相矛盾,所以假设不成立。

原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则总有一个抽屉里的物体至少有m+1个。

也可描述为,把多于mn(m乘n)个元素放入n个集合中,总有一个集合中至少有m+1个元素。

证明(反证法):假设每个抽屉至多能放进m个物体,那么n个抽屉里至多放进mn个物体,而题设中的总数是多于mn个,互相矛盾,所以假设不成立。

2.第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中总有一个抽屉中至多有(m-1)个物体。

例如:把4×6-1=23个物体放入6个抽屉中,则必定有一个抽屉中的物体数少于等于(4-1=3)个。

证明(反证法):假设每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设的(mn-1)矛盾,所以假设不成立。

二、基本解题步骤1.理解题意分清什么是“物体”(元素),什么是“抽屉”(集合)。

2.建立抽屉这一步就是如何制造抽屉,或者说是建立集合,这是关键的一步,要建立怎样的抽屉,建立几个抽屉,每个抽屉里都要装什么“物体”,这就要运用所学知识,抓住数量关系,找准基本数据,来建立合适的抽屉(集合)。

【小高数学知识点】抽屉原理

【小高数学知识点】抽屉原理

抽屉原理一、知识结构图抽屉原理二、方法讲解抽屉原理有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。

它是组合数学中一个重要而又基本的数学原理,应用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用,因为许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决。

1、抽屉原理将多于n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品不少于2件。

例如:有5个苹果放进4个抽屉,那么一定有一个抽屉至少放了 个苹果;将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

例如:如果把96个苹果放入8个抽屉,那么一定会有抽屉至少放了_______个苹果。

如果把97个苹果放入8个抽屉,那么一定会有抽屉至少放了_______个苹果。

如果把98个苹果放入8个抽屉,那么一定会有抽屉至少放了_______个苹果。

2、最不利原则这是一种从反面思考问题的思想,也是抽屉原理中非常重要的思考方法,就是从最不利的方向出发分析问题。

例如:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。

问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?解析:(1)如果碰巧一次取出的4个小球的颜色都相同,答案是 ,这是从最有利原则考虑的,这是最少摸出几个球就可能有4个球颜色相同,而不是“保证至少有4个小球颜色相同”。

(2)为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。

如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。

“最不利”的情况是什么呢?那就是我们摸出 个红球、 个黄球和 个蓝球,此时三种颜色的球都是 个,却无 个球同色。

这样摸出的 个球是“最不利”的情形。

这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。

所以回答应是最少摸出 个球。

统编版小学数学公开课ppt课件 抽屉原理5

统编版小学数学公开课ppt课件 抽屉原理5

问题,并且常常能得到一些令人惊
异的结果。
综合应用
1、11只鸽子飞回4个鸽舍,至少有( 3 )鸽子要飞进 同一个鸽舍里。 11÷4=2(个)……3(个) 2+1=3(个) 2、我校97个学生是四月生日,至少有( 4 一个天。 97÷30=3(个)……7(个) 3+1=4(个) )人是同
3、从街上人群中任意找来100个人,至少有(9 人属相相同。 8+1=9(个) 100÷12=8……4(个)
小学数学六年级下册
4支笔放进3个笔筒里
总有一个笔筒里至少有2支笔
把5支笔放在3个笔筒里,总有一个笔筒里 至少放进了几 2 支笔? 7支笔呢? 8支笔呢Байду номын сангаас 10支笔呢? 平均分
(1)从纸牌中去掉两张王,任意抽取5张,至 少有2张是同花色。为什么? 5÷4=1(张)… …1 (张) 1+1=2(张)
(2)从纸牌中去掉两张王,任意抽取14张牌, 至少有2张能组成对子。为什么? 14÷13=1(张)… …1(张) 1+1=2(张)
“鸽巢原理”又称“抽屉原理”, 最先是由19世纪的德国数学家狄利 克雷提出来的,所以又称“狄利克 雷原理”。鸽巢原理的应用是千变
万化的,用它可以解决许多有趣的
狄利克雷 (1805~1859)
)个

小学数学知识点例题精讲《抽屉原理》学生版

小学数学知识点例题精讲《抽屉原理》学生版

小学数学知识点例题精讲《抽屉原理》学生版例题一:小明有10个苹果,他想把这些苹果放在4个抽屉里。

请问,至少有多少个苹果会放在同一个抽屉里?解答思路:我们可以将每个抽屉看作一个“容器”,苹果看作要放入容器中的“物品”。

根据抽屉原理,如果我们有n个物品要放入m 个容器中,那么至少有一个容器中会有至少n/m个物品(这里n/m向下取整)。

在这个例子中,n=10(苹果的数量),m=4(抽屉的数量),所以至少有一个抽屉里会有10/4=2.5个苹果。

因为苹果不能分割,所以至少有一个抽屉里会有3个苹果。

例题二:小红有7个玩具,她想把这些玩具放在3个抽屉里。

请问,至少有多少个玩具会放在同一个抽屉里?解答思路:同样地,我们可以将每个抽屉看作一个“容器”,玩具看作要放入容器中的“物品”。

根据抽屉原理,如果我们有n个物品要放入m个容器中,那么至少有一个容器中会有至少n/m个物品(这里n/m向下取整)。

在这个例子中,n=7(玩具的数量),m=3(抽屉的数量),所以至少有一个抽屉里会有7/3=2.33个玩具。

因为玩具不能分割,所以至少有一个抽屉里会有3个玩具。

小学数学知识点例题精讲《抽屉原理》学生版同学们,我们已经了解了抽屉原理的基本概念,并通过两个简单的例题看到了它的应用。

现在,让我们通过一些更复杂的例题来进一步深化我们对抽屉原理的理解。

例题三:班级里有25个学生,他们的生日分布在一年中的12个月里。

请问,至少有多少个学生的生日是在同一个月?解答思路:这个问题实际上是一个经典的抽屉原理问题。

我们可以将一年中的12个月看作12个“抽屉”,25个学生的生日看作25个“物品”。

根据抽屉原理,如果我们有n个物品要放入m个容器中,那么至少有一个容器中会有至少n/m个物品(这里n/m向下取整)。

在这个例子中,n=25(学生的数量),m=12(月份的数量),所以至少有一个月会有25/12=2.08个学生的生日。

因为学生不能分割,所以至少有一个月会有3个学生的生日。

第14讲 抽屉原理进阶(学生版)

第14讲 抽屉原理进阶(学生版)

【例题9】 盒子里有四种不同颜色的卡片,分别有 、 、 和 张.用 张同色的卡片可以换一个
相同颜色的笔袋,用 张同色的卡片可以换一个相同颜色的笔记本,用 张同色的卡片可 以换一个相同颜色的自动铅笔.那么一次至多可能取出 的卡片可以换到三种类别文具各一个,且其颜色互不相同. 张卡片,仍然无法保证取出
【例题10】 盒子里有四种不同颜色的卡片,分别有 、 、 和 张.用 张同色的卡片可以换一个
相同颜色的笔袋,用 张同色的卡片可以换一个相同颜色的笔记本,用 张同色的卡片可 以换一个相同颜色的自动铅笔.那么一次至多可能取出 的卡片可以换到三种类别文具各一个,且其颜色互不相同. 张卡片,仍然无法保证取出
第4页(共8页)
【例题11】 回答下列问题: (1) 有 种颜色的球,每种颜色有 个.至少取出多少个球,才能保证取出的球中有 个 球的颜色相同( ).
第5页(共8页)
【例题13】 圆周上有 个点,两两连线,每条线段染红、黄、蓝、绿四种颜色中的一种,这些线段能 构成若干个三角形.证明:一定有一个三角形三边的颜色相同.
四、课后巩固
【作业1】 在一个盒子里装有形状相同的 种口味的果冻,分别是苹果口味的、草莓口味的和牛奶口味 的,每种果冻都有 个,现在闭着眼睛从盒子里拿果冻.请问: ( )至少要从中拿出多少个,才能保证拿出的果冻中有牛奶口味的? ( )至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味? A. ( ) ( ) B. ( ) ( ) C. ( ) ( ) D. ( ) ( )
【作业7】 在边长为 米的正方形中,任意放入 个点,求证:必定有四个点,以它们为顶点的四边形 的面积不超过 平方米.
第8页(共8页)
第1页(共8页)
【练习1】 从 、 、 、 、 、 、 、 、 、 、 和 中至多选出 每一个数都不是另一个数的 倍. 个数,使得在选出的数中,

抽屉原理题库学生版

抽屉原理题库学生版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3.能够构造抽屉进行解题;4.利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -p p ,结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.模块一、利用抽屉原理公式解题 知识精讲知识点拨教学目标8-2抽屉原理(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

抽屉原理教学教案参考

抽屉原理教学教案参考

抽屉原理教学教案参考一、教学目标:1. 让学生理解抽屉原理的基本概念和含义。

2. 培养学生运用抽屉原理解决实际问题的能力。

3. 培养学生逻辑思维能力和创新思维能力。

二、教学内容:1. 抽屉原理的基本概念和定义。

2. 抽屉原理的基本性质和定理。

3. 抽屉原理在实际问题中的应用。

三、教学重点与难点:1. 教学重点:抽屉原理的基本概念、性质和定理。

2. 教学难点:抽屉原理在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究抽屉原理。

2. 采用案例分析法,让学生通过实际问题体验抽屉原理的应用。

3. 采用小组合作法,培养学生的团队协作能力和沟通能力。

五、教学准备:1. 准备相关的教学PPT和教学素材。

2. 准备一些实际问题,用于引导学生应用抽屉原理。

3. 准备一些练习题,用于巩固学生对抽屉原理的理解。

【教学环节1】1. 导入:通过一个简单的实际问题,引导学生思考抽屉原理的概念。

2. 讲解:详细讲解抽屉原理的基本概念、性质和定理。

3. 互动:学生提问,教师解答。

【教学环节2】1. 案例分析:分析一些实际问题,让学生体验抽屉原理的应用。

2. 小组讨论:学生分组讨论,分享各自的应用实例。

3. 分享:各小组汇报讨论成果,全班交流。

【教学环节3】1. 练习:学生完成一些练习题,巩固对抽屉原理的理解。

2. 解答:教师讲解练习题的答案和思路。

【教学环节4】1. 拓展:引导学生思考抽屉原理在其他领域的应用。

2. 创新:鼓励学生提出新的应用实例,培养创新思维能力。

3. 反思:让学生反思本节课的学习过程,分享收获和不足。

【教学环节5】1. 布置作业:布置一些相关的练习题,让学生课后巩固。

六、教学评估:1. 课堂问答:通过提问了解学生对抽屉原理的理解程度。

2. 练习题:通过课后练习题的完成情况评估学生对知识的掌握。

3. 小组讨论:观察学生在小组合作中的表现,了解其团队协作和沟通能力。

七、教学反思:1. 对教学内容的难易程度进行反思,看是否适合学生的实际水平。

8-2-1抽屉原理.题库学生版 (2)

8-2-1抽屉原理.题库学生版 (2)

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个,要把这十个苹果放到九个里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -p p , 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题 知识精讲知识点拨教学目标8-2抽屉原理(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

小学奥数——抽屉原理(学生版)

小学奥数——抽屉原理(学生版)

抽屉原理
1.箱子中有质地、型号完全相同的红、黄、白三种颜色的袜子各8只。

至少拿出()只,可
以保证凑成两双颜色不相同的袜子。

A.5
B.8
C.10
D.11
2.盒子里有同样大小的黄乒乓球和白兵乓球各6个,要想摸出的乒乓球有2个同色的,至少
要摸出()个乒乓球。

3.把9只红色、5只黄色和4只白色抹子混在一起,如果闭上眼睛,每次最少摸出()只才能
保证有2双不同色的袜子。

(指一双袜子为其中一种颜色,另一双袜子为另一种颜色)
4.56位阿姨在广场上跳舞,她们至少有()个人是同一个月出生的。

5.把10个苹果放进4个盘子里,总有一个盘子里至少放()个苹果。

6.有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才
能保证其中至少有3个小球的颜色相同?
7.从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两
个数,它们的差是12。

8.某班有16名学生,每个月教师把学生分成两个小组。

问最少要经过几个月,才能使该班
的任意两个学生总有某个月份是分在不同的小组里?
9.在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可
以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样。

你能说明这是为什么吗?
10.将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的
书的本数相同?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.(一)、直接利用公式进行解题(1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?知识精讲知识点拨教学目标抽屉原理【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【巩固】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【巩固】试说明400人中至少有两个人的生日相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

【例 3】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 4】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

【巩固】将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请煎药说明理由;如果不一定,请举出一个反例.【巩固】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【例 6】任给11个数,其中必有6个数,它们的和是6的倍数.【巩固】在任意的五个自然数中,是否其中必有三个数的和是3的倍数?【巩固】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【例 7】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【巩固】20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目.【例 8】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【巩固】任意给定一个正整数n,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数. 【例 9】求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()a b c d e f---是105的倍数.【巩固】任给六个数字,一定可以通过加、减、乘、除、括号,将这六个数组成一个算式,使其得数为105的倍数.【巩固】在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【例 10】把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.【巩固】圆周上有2000个点,在其上任意地标上0,1,2,,1999(每一点只标一个数,不同的点标上不同的数).证明必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999【例 11】证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.【巩固】平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.【巩固】假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?【巩固】平面上有17个点,两两连线,每条线段染红、黄、蓝三种颜色中的一种,这些线段能构成若干个三角形.证明:一定有一个三角形三边的颜色相同.【例 12】上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【例 13】8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.【巩固】试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?(2)求抽屉【例 14】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?【巩固】袋中有外形安全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有______个小朋友摸球,才能保证一定有两个人摸的球颜色一样.【例 15】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?【巩固】某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【巩固】100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.【例 16】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?(3)求苹果【例 17】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子?【巩固】三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?【例 18】海天小学五年级学生身高的厘米数都是整数,并且在140厘米到150厘米之间(包括140厘米到150厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?【例 19】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分。

问:要保证至少有4人得分相同,至少需要多少人参加竞赛?【巩固】一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分相同.【例 20】一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?【例 21】自制的一幅玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。

每种牌都有1点、2点、……、13点牌各一张)。

洗好后背面朝上放好。

一次至少抽取____张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色)。

那么至少要取___张牌。

(二)、构造抽屉利用公式进行解题【例 22】在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.【巩固】篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?【巩固】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?【巩固】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【巩固】幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同?【巩固】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【巩固】 篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?【例 23】 红、蓝两种颜色将一个25 方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列 【例 24】 将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?【例 25】 从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?【巩固】 证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【巩固】 从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.【巩固】从1,2,3,,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。

相关文档
最新文档