2019版高考数学一轮复习第8章平面解析几何8.6双曲线课后作业理

合集下载

2019届高考数学一轮复习第8单元解析几何作业理

2019届高考数学一轮复习第8单元解析几何作业理

第八单元解析几何课时作业(四十六)第46讲直线的倾斜角与斜率、直线的方程基础热身1.已知直线l过点(0,0)和(3,1),则直线l的斜率为()A.3B.C.-D.-32.如果A·B<0,B·C>0,那么直线Ax-By-C=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.[2017·绵阳二诊]直线x-y-3=0的倾斜角α是.4.[2017·郑州一中调研]点(,4)在直线l:ax-y+1=0上,则直线l的倾斜角为.5.已知等边三角形ABC的两个顶点为A(0,0),B(4,0),且第三个顶点在第四象限,则BC边所在的直线方程是.能力提升6.[2017·通化二模]已知角α是第二象限角,直线2x+y tan α+1=0的斜率为,则cos α等于()A.B.-C.D.-7.过点(-10,10)且在x轴上的截距是在y轴上的截距的4倍的直线的方程为()A.x-y=0B.x+4y-30=0C.x+y=0 或x+4y-30=0D.x+y=0或x-4y-30=08.若<α<2π,则直线+=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.直线l:mx-m2y-1=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角的一条直线的方程是()A.x-y-1=0B.2x-y-3=0C.x+y-3=0D.x+2y-4=010.已知点A(1,-2)和B,0在直线l:ax-y-1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是()A.B.C.D.∪11.[2017·黄冈质检]已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是线段AB上的点,则P到AC,BC的距离的乘积的最大值为()A.3B.2C.2D.912.不论k为何实数,直线(2k-1)x-(k+3)y-(k-11)=0恒过一个定点,则这个定点的坐标是.13.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为.14.[2017·绵阳南山中学一诊]在平面直角坐标系xOy中,点A(0,1),B(0,4),若直线2x-y+m=0上存在点P,使得|PA|=|PB|,则实数m的取值范围是.难点突破15.(5分)已知直线l:x-my+m=0上存在点M满足与A(-1,0),B(1,0)两点连线的斜率k MA 与k MB之积为3,则实数m的取值范围是()A.[-,]B.∪C.∪D.16.(5分)[2017·河南安阳调研]直线y=m(m>0)与y=|log a x|(a>0且a≠1)的图像交于A,B 两点,分别过点A,B作垂直于x轴的直线交y=(k>0)的图像于C,D两点,则直线CD的斜率()A.与m有关B.与a有关C.与k有关D.等于-1课时作业(四十七)第47讲两直线的位置关系、距离公式基础热身1.[2017·永州一模]已知直线l1:x+y+1=0,l2:x+y-1=0,则l1与l2之间的距离为()A.1B.C.D.22.[2017·南昌一模]两直线3x+2y-2a=0与2x-3y+3b=0的位置关系是()A.垂直B.平行C.重合D.以上都不对3.[2017·河北武邑中学月考]过点P(1,2),且到原点的距离最大的直线的方程是()A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.3x+y-5=04.[2017·大庆实验中学一模]与直线x+y+2=0垂直的直线的倾斜角为.5.[2017·重庆一中期中]点(-1,-2)关于直线x+y=1对称的点的坐标是.能力提升6.已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m=-2”是“l1∥l2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件7.[2018·南昌二中月考]已知直线l1:mx-y+3=0与l2关于直线y=x对称, l2与l3:y=-x+垂直,则m=()A.-B.C.-2D.28.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0互相垂直,则ab的最小值为()A.1B.2C.2D.29.点P在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为,则点P的坐标为()A.(1,2)B.C.或D.或10.[2017·台州中学月考]设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线的方程分别是x=0,y=x,则直线BC的方程是()A.y=3x+5B.y=2x+3C.y=2x+5D.y=-+11.[2017·莱芜期末]已知直线l:Ax+By+C=0(A,B不全为0),两点P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)(Ax2+By2+C)>0,且|Ax1+By1+C|>|Ax2+By2+C|,则()A.直线l与直线P1P2不相交B.直线l与线段P2P1的延长线相交C.直线l与线段P1P2的延长线相交D.直线l与线段P1P2相交12.已知直线3x+4y-3=0,6x+my+14=0平行,则它们之间的距离是.13.[2017·蚌埠质检]在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a,b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.14.[2017·六安一中月考]已知曲线y=在点P(1,4)处的切线与直线l平行且两直线之间的距离为,则直线l的方程为.难点突破15.(5分)[2017·南昌一模]已知点P在直线x+3y-2=0上,点Q在直线x+3y+6=0上,线段PQ 的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.B.C.D.∪16.(5分)已知x,y为实数,则代数式++的最小值是.课时作业(四十八)第48讲圆的方程基础热身1.方程x2+y2-2x+m=0表示一个圆,则m的取值范围是()A.m<1B.m<2C.m≤D.m≤12.已知点P是圆(x-3)2+y2=1上的动点,则点P到直线y=x+1的距离的最小值是()A.3B.2C.2-1D.2+13.[2017·天津南开区模拟]圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是()A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=04.[2017·武汉三模]若直线2x+y+m=0过圆x2+y2-2x+4y=0的圆心,则m的值为.5.[2017·郑州、平顶山、濮阳二模]以点M(2,0),N(0,4)为直径的圆的标准方程为.能力提升6.[2017·湖南长郡中学、衡阳八中等十三校联考]圆(x-2)2+y2=4关于直线y=x对称的圆的方程是()A.+=4B.+=4C.x2+=4D.+=47.已知两点A(a,0), B(-a,0)(a>0),若曲线x2+y2-2x-2y+3=0上存在点P,使得∠APB=90°,则正实数a的取值范围为()A.(0,3]B.[1,3]C.[2,3]D.[1,2]8.[2017·九江三模]已知直线l经过圆C:x2+y2-2x-4y=0的圆心,且坐标原点O到直线l的距离为,则直线l的方程为()A.x+2y+5=0B.2x+y-5=0C.x+2y-5=0D.x-2y+3=09.[2017·海南中学、文昌中学联考]抛物线y=x2-2x-3与坐标轴的交点在同一个圆上,则该圆的方程为()A.x2+=4B.+=4C.+y2=4D.+=510.[2017·广州一模]已知圆C:x2+y2+2x-4y+1=0的圆心在直线ax-by+1=0上,则ab的取值范围是()A.B.C.D.11.已知直线l1:x+2y-5=0与直线l2:mx-ny+5=0(n∈Z)相互垂直,点(2,5)到圆C:(x-m)2+(y-n)2=1的最短距离为3,则mn= .12.已知圆C:(x-3)2+(y-4)2=25,圆C上的点到直线l:3x+4y+m=0(m<0)的最短距离为1,若点N(a,b)在直线l位于第一象限的部分,则+的最小值为.13.(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求该圆圆心的纵坐标的最小值.14.(15分)已知曲线C1:x2+y2=1,点N是曲线C1上的动点,O为坐标原点.(1)已知定点M(-3,4),动点P满足=+,求动点P的轨迹方程;(2)设点A为曲线C1与x轴正半轴的交点,将A沿逆时针旋转得到点B,若=m+n,求m+n的最大值.难点突破15.(5分)[2018·赣州红色七校联考]已知圆C:x2+y2-2ax-2by+a2+b2-1=0(a<0)的圆心在直线x-y+=0上,且圆C上的点到直线x+y=0的距离的最大值为1+,则a2+b2的值为()A.1B.2C.3D.416.(5分)[2017·北京朝阳区二模]已知过定点P(2,0)的直线l与曲线y=相交于A,B 两点,O为坐标原点,当△AOB的面积最大时,直线l的倾斜角为()A.150°B.135°C.120°D.30°课时作业(四十九)第49讲直线与圆、圆与圆的位置关系基础热身1.直线y=2x+1与圆x2+y2-2x+4y=0的位置关系为()A.相交且经过圆心B.相交但不经过圆心C.相切D.相离2.[2017·惠州调研]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离3.[2017·大连一模]直线4x-3y=0与圆(x-1)2+(y-3)2=10相交所得弦的长为()A.6B.3C.6D.34.圆心为(4,0)且与直线x-y=0相切的圆的方程为.5.[2017·昆明一中模拟]若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是.能力提升6.[2017·洛阳二模]已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l的夹角为45°的直线交l于A,则的最小值为()A.B.1C.-1D.2-7.[2017·天津红桥区八校联考]若直线2ax-by+2=0 (a>0,b>0)经过圆x2+y2+2x-4y+1=0的圆心,则+的最小值是()A.B.4C.D.28.[2017·湖北六校联考]过点P(1,2)的直线与圆x2+y2=1相切,且与直线l:ax+y-1=0垂直,则实数a的值为()A.0B.-C.0或D.9.[2017·广州模拟]已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2-2k+3的公共点,则ab 的最大值为()A.15B.9C.1D.-10.[2017·安阳二模]已知圆C 1:x2+y2+4x-4y-3=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为()A.2B.4C.8D.2011.[2017·宜春二模]已知圆x2+y2=1和圆外一点P(1,2),过点P作圆的切线,则切线方程为.12.[2017·长沙雅礼中学模拟]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线mx-y-2m-1=0(m>0)相切的所有圆中,半径最大的圆的标准方程为.13.(15分)[2017·汕头三模]已知圆C经过点(2,4),(1,3),圆心C在直线x-y+1=0上,过点A(0,1),且斜率为k的直线l与圆相交于M,N两点.(1)求圆C的方程.(2)①请问·是否为定值?若是,请求出该定值;若不是,请说明理由.②若O为坐标原点,且·=12,求直线l的方程.14.(15分)已知圆O:x2+y2=9及点C(2,1).(1)若线段OC的垂直平分线交圆O于A,B两点,试判断四边形OACB的形状,并给出证明;(2)过点C的直线l与圆O交于P,Q两点,当△OPQ的面积最大时,求直线l的方程.难点突破15.(5分)[2017·汉中质检]已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 ()A.2B.2C.3D.316.(5分)[2017·重庆巴蜀中学三模]已知P为函数y=的图像上任一点,过点P作直线PA,PB 分别与圆x2+y2=1相切于A,B两点,直线AB交x轴于M点,交y轴于N点,则△OMN的面积为.课时作业(五十)第50讲椭圆基础热身1.[2017·陕西黄陵中学二模]已知椭圆的标准方程为x2+=1,则椭圆的焦点坐标为()A.(,0),(-,0)B.(0,),(0,-)C.(0,3),(0,-3)D.(3,0),(-3,0)2.[2017·河南息县一中模拟]已知圆O:x2+y2=4经过椭圆C:+=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为 ()A.+=1B.+=1C.+=1D.+=13.[2017·淮北模拟]椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.4.[2017·河南师范大学附属中学模拟]椭圆C: +=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为.5.[2017·南宁期末]定义:椭圆上一点与两焦点构成的三角形为椭圆的焦点三角形.已知椭圆C:+=1(a>b>0)的焦距为4,焦点三角形的周长为4+12,则椭圆C的方程是.能力提升6.[2017·株洲一模]已知椭圆+=1(a>b>0),F1为左焦点,A为右顶点, B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一个圆上,则此椭圆的离心率为()A.B.C.D.7.[2017·韶关二模]在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,点P为椭圆上一点,且△PF1F2的周长为12,那么C的方程为()A.+y2=1B.+=1C.+=1D.+=18.[2017·郑州三模]椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.9.[2017·泉州模拟]已知椭圆C:+=1(a>b>0)的左焦点为F,若点F关于直线y=-x的对称点P在椭圆C上,则椭圆C的离心率为 ()A.B.C.D.10.[2017·沈阳东北育才学校九模]椭圆+=1的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆的周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为 () A.B.C.D.11.[2017·泉州质检]已知椭圆C:+=1的左顶点、上顶点、右焦点分别为A,B,F,则·= .12.[2017·运城二模]已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是.13.(15分)[2018·海南八校联考]如图K50-1,点M(,)在椭圆+=1(a>b>0)上,且点M到两焦点的距离之和为6.(1)求椭圆的方程;(2)设与MO (O为坐标原点)垂直的直线交椭圆于A,B (A,B不重合),求·的取值范围.图K50-114.(15分)[2017·南宁质检]已知椭圆C:+=1(a>b>0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)若圆O:x2+y2=1的切线l与椭圆C相交于A,B两点,线段AB的中点为M,求的最大值.难点突破15.(5分)[2017·长沙模拟]已知F是椭圆+=1的左焦点,设动点P在椭圆上,若直线FP 的斜率大于,则直线OP(O为坐标原点)的斜率的取值范围是()A.B.∪C.∪D.16.(5分)[2017·郑州模拟]某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xOy中,已知椭圆x2+2y2=1的左顶点为A,过点A作两条斜率之积为2的射线与椭圆交于B,C……”②解:“设直线AB的斜率为k……点B,,D-,0……”据此,请你写出直线CD 的斜率为.(用k表示)课时作业(五十一)第51讲双曲线基础热身1.[2017·浙江名校联考]双曲线-=1的渐近线方程是()A.y=±xB.y=±xC.y=±xD.y=±x2.若双曲线C:x2-=1(b>0)的离心率为2,则b=()A.1B.C.D.23.[2017·泉州一模]在平面直角坐标系xOy中,双曲线C的一个焦点为F(2,0),一条渐近线的倾斜角为60°,则C的标准方程为()A.-y2=1B.-x2=1C.x2-=1D.y2-=14.已知双曲线经过点(2,1),其一条渐近线方程为y=x,则该双曲线的标准方程为.5.[2017·柳州模拟]设双曲线-=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|AF2|+|BF2|的最小值为.能力提升6.[2017·洛阳模拟]已知双曲线C:-=1(a>0,b>0)的离心率为2,则C的两条渐近线的方程为()A.y=±xB.y=±xC.y=±2xD.y=±x7.[2017·汉中二模]如图K51-1,F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两个分支分别交于点B,A.若△ABF2为等边三角形,则双曲线的离心率为()图K51-1A.4B.C.D.8.[2017·泸州三诊]已知在Rt△ABC中,|AB|=3,|AC|=1,A=,以B,C为焦点的双曲线-=1(a>0,b>0)经过点A,且与AB边交于点D,则的值为 ()A.B.3C.D.49.已知O为坐标原点,F是双曲线C:-=1(a>0,b>0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线BM与y 轴交于点N,若=2,则C的离心率为()A.3B.2C.D.10.[2017·重庆一中期中]已知A(-2,0),B(2,0),若在斜率为k的直线l上存在不同的两点M,N,满足|MA|-|MB|=2,|NA|-|NB|=2,且线段MN的中点为(6,1),则k的值为 ()A.-2B.-C.D.211.[2017·衡阳联考]双曲线的两条渐近线的方程为x±2y=0,则它的离心率为.12.[2017·石家庄二模]双曲线-=1(a>0,b>0)上一点M(-3,4)关于一条渐近线的对称点恰为右焦点F2,则该双曲线的标准方程为.13.(15分)[2017·海南一模]双曲线C的一条渐近线方程是x-2y=0,且双曲线C过点(2,1).(1)求双曲线C的方程;(2)设双曲线C的左、右顶点分别是A1,A2,P为C上任意一点,直线PA1,PA2分别与直线l:x=1交于M,N,求|MN|的最小值.14.(15分)[2017·菏泽模拟]双曲线C的中心在原点,右焦点为F,0,渐近线方程为y=±x.(1)求双曲线C的方程.(2)设直线l:y=kx+1与双曲线C交于A,B两点,当k为何值时,以线段AB为直径的圆过原点?难点突破15.(5分)[2017·重庆一中月考]已知F2是双曲线E:x2-=1的右焦点,过点F2的直线交E的右支于不同的两点A,B,过点F2且垂直于直线AB的直线交y轴于点P,则的取值范围是()A. B.C. D.16.(5分)[2017·日照三模]在等腰梯形ABCD中,AB∥CD且|AB|=2,|AD|=1,|CD|=2x,其中x ∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1),不等式m<e1+e2恒成立,则m的最大值为()A.B.C.2D.课时作业(五十二)第52讲抛物线基础热身1.[2017·渭南质检]抛物线y=x2的焦点到准线的距离为()A.2B.C.D.42.若抛物线y2=2px(p>0)的焦点在圆C:(x+2)2+y2=16上,则p的值为()A.1B.2C.4D.83.[2017·合肥六校联考]抛物线y=x2的焦点到双曲线y2-=1的渐近线的距离为 ()A.B.C.1D.4.焦点坐标为(-2,0)的抛物线的标准方程为.5.已知抛物线y2=6x上的一点到焦点的距离是到y轴距离的2倍,则该点的横坐标为.能力提升6.已知点A的坐标为(5,2),F为抛物线y2=x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,点P的坐标是 ()A.(1,)B.(,2)C.(,-2)D.(4,2)7.若抛物线y2=2px的焦点到双曲线-=1的渐近线的距离为p,则抛物线的标准方程为()A.y2=16xB.y2=8xC.y2=16x或y2=-16xD.y2=8x或y2=-8x8.[2017·豫南九校联考]设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A,B两点,点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若=4,则直线l的方程为()A.y=2x+1B.y=x+1C.y=x+1D.y=2x+29.[2017·蚌埠三模]设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为-,则|PF|=()A.4B.6C.8D.1610.[2018·长沙模拟]已知F为抛物线C: y2=4x的焦点,过F的直线l与C相交于A,B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若=6,则= ()A.2B.C.2D.11.[2017·漳州八校联考]已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF= .12.[2017·天津河西区二模]已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,+=3,则线段AB的中点到y轴的距离为.13.(15分)[2017·孝感模拟]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=,过F2作垂直于x轴的直线交椭圆C于A,B两点,△F1AB的面积为3,抛物线E:y2=2px(p>0)以椭圆C的右焦点F2为焦点.(1)求抛物线E的方程;(2)若点P-,t(t≠0)为抛物线E的准线上一点,过点P作y轴的垂线交抛物线于点M,连接PO并延长交抛物线于点N,求证: 直线MN过定点.14.(15分)[2017·广东海珠区调研]已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.难点突破15.(5分)[2017·长沙三模]已知抛物线y2=4x,焦点为F,过点F作直线l交抛物线于A,B 两点,则|AF|-的最小值为()A.2-2B.C.3-D.2-216.(5分)[2017·抚州二模]已知直线y=2x-2与抛物线y2=8x交于A,B两点,抛物线的焦点为F,则·的值为.课时作业(五十三)第53讲曲线与方程基础热身1.在平面直角坐标系中,已知定点A(0,-),B(0,),直线PA与直线PB的斜率之积为-2,则动点P的轨迹方程为()A.+x2=1B.+x2=1(x≠0)C.-x2=1D.+y2=1(x≠0)2.过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹方程为()A.x2=12yB.y2=-12xC.y2=12xD.x2=-12y3.设P为双曲线-y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是()A.x2-4y2=1B.4y2-x2=1C.x2-=1D.-y2=14.[2017·沈阳模拟]平面直角坐标系中,已知O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足=λ+μ,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A.x-y=0B.x+y=0C.x+2y-3=0D.+=55.[2017·北京海淀区期中]已知F1(-2,0),F2(2,0),满足||PF1|-|PF2||=2的动点P的轨迹方程为.能力提升6.[2017·上海普陀区二模]动点P在抛物线y=2x2+1上移动,若P与点Q(0,-1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x27.到直线3x-4y-1=0的距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+9=0C.3x-4y+11=0或3x-4y-9=0D.3x-4y-11=0或3x-4y+9=08.[2017·马鞍山质检]已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,则椭圆的另一个焦点F的轨迹方程是()A.y2-=1B.x2-=1C.y2-=1D.x2-=19.[2017·襄阳五中月考]已知||=3,A,B分别在x轴和y轴上运动,O为坐标原点,=+,则动点P的轨迹方程是()A.x2+=1B.+y2=1C.x2+=1D.+y2=110.[2017·黄山二模]在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程.下表给出了一些条件及方程:条件方程①△ABC的周长为C1:y2=2510②△ABC的面积为C2:x2+y2=4(y≠0)10③△ABC中,∠C3:+=1(y≠0)A=90°则分别满足条件①②③的轨迹方程依次为()A.C3,C1,C2B.C1,C2,C3C.C3,C2,C1D.C1,C3,C211.[2017·浙江名校一联]已知两定点A(-2,0),B(2,0)及定直线l:x=,点P是l上一个动点,过B作BP的垂线与AP交于点Q,则点Q的轨迹方程为.12.[2017·哈尔滨三模]已知圆C:x2+y2=25,过点M(-2,3)作直线l交圆C于A,B两点,分别过A,B两点作圆的切线,当两条切线相交于点Q时,点Q的轨迹方程为.13.(15分)[2017·石家庄模拟]已知P,Q为圆x2+y2=4上的动点,A(2,0),B(1,1)为定点.(1)求线段AP的中点M的轨迹方程;(2)若∠PBQ=90°,求线段PQ的中点N的轨迹方程.14.(15分)[2017·合肥二模]如图K53-1,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B 两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.(1)求p的值;(2)求动点M的轨迹方程.图K53-1难点突破15.(5分)[2017·湖南师大附中月考]已知圆O的方程为x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为()A.-=1B.+=1C.-=1D.+=116.(5分)[2017·太原三模]已知过点A(-2,0)的直线与直线x=2相交于点C,过点B(2,0)的直线与x=-2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为.课时作业(五十四)第54讲第1课时直线与圆锥曲线的位置关系基础热身1.[2017·大庆一模]斜率为的直线与双曲线-=1恒有两个公共点,则双曲线离心率的取值范围是()A.B.C.D.2.若直线l:mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点有()A.0个B.至多1个C.1个D.2个3.已知过抛物线y2=4x焦点F的直线l交抛物线于A,B两点(点A在第一象限),若=3,则直线l的斜率为()A.2B.C.D.4.[2017·锦州质检]设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B 两点,且点P恰为AB的中点,则||+||= .5.已知抛物线C:y2=4x,直线l与抛物线C交于A,B两点,若线段AB的中点坐标为(2,2),则直线l的方程为.能力提升6.若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则等于()A.5pB.10pC.11pD.12p7.[2017·太原二模]已知双曲线Γ:-=1(a>0,b>0)的焦距为2c,直线l: y=kx-kc.若k=,则l与Γ的左、右两支各有一个交点;若k=,则l与Γ的右支有两个不同的交点.Γ的离心率的取值范围为()A.B.C.D.8.已知椭圆E:+=1的一个顶点为C(0,-2),直线l与椭圆E交于A,B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x-5y-14=0B.6x-5y+14=0C.6x+5y+14=0D.6x+5y-14=09.[2017·石家庄模拟]已知双曲线C:-=1(a>0,b>0),过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为 ()A.2B.C.D.10.过抛物线y2=2px(p>0)的焦点作一条斜率为1的直线交抛物线于A,B两点,过A,B分别向y轴引垂线交y轴于D,C,若梯形ABCD的面积为3,则p= ()A.1B.2C.3D.411.[2017·洛阳一模]已知椭圆C:+=1的左、右顶点分别为A,B,F为椭圆C的右焦点.圆x2+y2=4上有一动点P,P不同A,B两点,直线PA与椭圆C交于点Q(异于点A),若直线QF 的斜率存在,则的取值范围是.12.[2017·三湘名校联考]已知双曲线-=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差的绝对值为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-,则m的值为.13.(15分)[2017·东北三省二联]已知在平面直角坐标系中,O是坐标原点,动圆P经过点F(0,1),且与直线l:y=-1相切.(1)求动圆圆心P的轨迹C的方程;(2)过F(0,1)的直线m交曲线C于A,B两点,过A,B分别作曲线C的切线l1,l2,直线l1,l2交于点M,求△MAB面积的最小值.14.(15分)已知直线l:y=kx+m与椭圆C:+=1(a>b>0)相交于A,P两点,与x轴、y轴分别相交于点N和点M,且|PM|=|MN|,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别作x轴的垂线,垂足分别为A1,B1.(1) 若椭圆C的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点D1,在椭圆C 上,求椭圆C的方程;(2)当k=时,若点N平分线段A1B1,求椭圆C的离心率.难点突破15.(5分)[2017·武汉三模]已知椭圆E:+=1(a>b>0)内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足=λ,=λ(其中λ>0且λ≠1),若λ变化时直线AB的斜率总为-,则椭圆E的离心率为()A.B.C.D.16.(5分)已知抛物线C1:y2=8x的焦点为F,椭圆C2:+=1(m>n>0)的一个焦点与抛物线C1的焦点重合,若椭圆C2上存在关于直线l:y=x+对称的两个不同的点,则椭圆C2的离心率e的取值范围为.课时作业(五十四)第54讲第2课时最值﹑范围﹑证明问题基础热身1.(12分)[2017·重庆调研]如图K54-1,已知椭圆E:+=1(a>b>0)的左顶点为A,右焦点为F(1,0),过点A且斜率为1的直线交椭圆E于另一点B,交y轴于点C,=6.(1)求椭圆E的方程;(2)过点F作直线l与椭圆E交于M,N两点,连接MO(O为坐标原点)并延长交椭圆E于点Q,求△MNQ面积的最大值及取最大值时直线l的方程.图K54-12.(12分)[2017·临汾模拟]已知动圆C与圆C1:(x-2)2+y2=1相外切,又与直线l:x=-1相切.(1)求动圆圆心轨迹E的方程;(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交于A,B两点,求证:k MA+k MB=2k MP.能力提升3.(12分)[2017·广州模拟]已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.(1)求动圆圆心M的轨迹C的方程;(2)过点F的直线与曲线C相交于A,B两点,分别过点A,B作曲线C的切线l1,l2,两条切线相交于点P,求△PAB外接圆面积的最小值.4.(12分)[2017·永州一模]已知曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.(1)求曲线C的方程;(2)设直线y=kx+m(m>0)与曲线C交于A,B两点,若对任意k∈R,都有·<0,求m的取值范围.5.(12分)[2017·蚌埠二模]已知椭圆+=1(a>b>0)的左、右顶点分别是A(- ,0),B(,0),离心率为.设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点是O.(1)证明:OP⊥BC;(2)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.难点突破6.(12分)[2017·石嘴山三模]经过原点的直线与椭圆C:+=1(a>b>0)交于A,B两点,点P 为椭圆上不同于A,B的一点,直线PA,PB的斜率均存在,且直线PA,PB的斜率之积为-.(1)求椭圆C的离心率;(2)设F1,F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M,N两点,若点F1在以线段MN为直径的圆内部,求k的取值范围.课时作业(五十四)第54讲第3课时定点﹑定值﹑探索性问题基础热身1.(12分)[2017·岳阳一中月考]过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,=2.(1)求抛物线C的方程.(2)若直线l的斜率为2,则抛物线C上是否存在一点M,使得MA⊥MB?并说明理由.2.(12分)[2017·重庆二诊]如图K54-2,已知A,B分别为椭圆C:+=1的左、右顶点,P为椭圆C上异于A,B的任意一点,直线PA,PB的斜率分别记为k1,k2.(1)求k1·k2.(2)过坐标原点O作与直线PA,PB分别平行的两条射线,分别交椭圆C于点M,N,△MON的面积是否为定值?请说明理由.图K54-2能力提升3.(12分)[2017·遂宁三诊]已知点F是拋物线C:y2=2px(p>0)的焦点,若点M(x0,1)在C上,且=.(1)求p的值;(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点, 证明: 直线AM与直线BM的斜率之积为常数.4.(12分)[2017·长沙质检]已知P是抛物线E:y2=2px(p>0)上一点,P到直线x-y+4=0的距离为d1,P到E的准线的距离为d2,且d1+d2的最小值为3.(1)求抛物线E的方程;(2)直线l1:y=k1(x-1)交E于A,B两点,直线l2:y=k2(x-1)交E于C,D两点,线段AB,CD的中点分别为M,N,若k1k2=-2,直线MN的斜率为k,求证:直线l:kx-y-kk1-kk2=0恒过定点.5.(12分)[2017·哈尔滨二模]椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,且离心率为,点M为椭圆上一动点,△F1MF2内切圆面积的最大值为.(1)求椭圆的方程.(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆交于A,B两点,连接A1A,A1B并延长分别交直线x=4于P,Q两点,以线段PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.难点突破6.(12分)[2017·孝义模拟]设椭圆C:+=1(a>b>0)的左顶点为(-2,0),且椭圆C与直线y=x+3相切,(1)求椭圆C的标准方程.(2)过点P(0,1)的动直线与椭圆C交于A,B两点,O为坐标原点,是否存在常数λ,使得·+λ·=-7?请说明理由.课时作业(四十六)1.B[解析] 由斜率公式可得,直线l的斜率k==,故选B.2.A[解析] ∵直线在x轴、y轴上的截距分别为<0,-<0,∴直线Ax-By-C=0不经过的象限是第一象限,故选A.3.60°[解析] 由题意得,直线的斜率k=,即tan α=,所以α=60°.4.60°[解析] ∵点(,4)在直线l:ax-y+1=0上,∴a-4+1=0,∴a=,即直线l的斜率为,∴直线l的倾斜角为60°.5.y=(x-4)[解析] 易知直线BC的倾斜角为,故斜率为,由点斜式得直线方程为y=(x-4).6.D[解析] 由题意,得k=-=,故tan α=-,故cos α=-,故选D.7.C[解析] 由题意,当直线经过原点时,直线的方程为x+y=0;当直线不经过原点时,设直线的方程为+=1,则+=1,解得a=,此时直线的方程为+=1,即x+4y-30=0.故选C. 8.B[解析] 令x=0,得y=sin α<0,令y=0,得x=cos α>0,所以直线过点(0,sin α),(cos α,0)两点,因而直线不过第二象限,故选B.9.C[解析] 将(2,1)代入得2m-m2-1=0,所以m=1,所以直线l的方程为x-y-1=0,所以直线l 的斜率为1,倾斜角为,则所求直线的斜率为-1,故选C.10.D[解析] 设直线l的倾斜角为θ,则θ∈[0,π).易知直线l:ax-y-1=0(a≠0)经过定点P(0,-1),则k PA==-1,k PB==.∵点A(1,-2),B,0在直线l:ax-y-1=0(a≠0)的两侧,∴k PA<a<k PB,∴-1<tan θ<,tan θ≠0,得0<θ<或<θ<π,故选D.11.A[解析] 以C为坐标原点,CB所在直线为x轴建立直角坐标系(如图所示),则A(0,4),B(3,0),直线AB的方程为+=1.设P(x,y)(0≤x≤3),所以P到AC,BC的距离的乘积为xy,因为+≥2,当且仅当==时取等号,所以xy≤3,所以xy的最大值为3.故选A.12.(2,3)[解析] 直线(2k-1)x-(k+3)y-(k-11)=0,即k(2x-y-1)+(-x-3y+11)=0,根据k的任意性可得解得∴不论k取什么实数,直线(2k-1)x-(k+3)y-(k-11)=0都经过定点(2,3).13.x+2y-2=0或2x+y+2=0[解析] 设直线方程为+=1,得+=1.由题意知|ab|=1,即|ab|=2,所以或所以直线方程为x+2y-2=0或2x+y+2=0.14.[-2,2][解析] 设P,y,∵|PA|=|PB|,∴4|PA|2=|PB|2,又∵|PA|2=+(y-1)2,|PB|2=+(y-4)2,∴(y-m)2=16-4y2,其中4-y2≥0,故m=y±2,y∈[-2,2].令y=2sin θ,θ∈-,,则m=2sin θ±4cosθ=2sin(θ±φ),其中tan φ=2,故实数m的取值范围是[-2,2].15.C[解析] 设M(x,y),由k MA·k MB=3,得·=3,即y2=3x2-3.联立得-3x2+x+6=0(m≠0),则Δ=-24-3≥0,即m2≥,解得m≤-或m≥.∴实数m的取值范围是-∞,-∪,+∞.16.C[解析] 由|log a x|=m,得x A=a m,x B=a-m,所以y C=ka-m,y D=ka m,则直线CD的斜率为==-k,所以直线CD的斜率与m无关,与k有关,故选C.课时作业(四十七)1.B[解析] 由平行线间的距离公式可知,l1与l2之间的距离d==.2.A[解析] 直线3x+2y-2a=0的斜率为-,直线2x-3y+3b=0的斜率为,∵两直线斜率的乘积为-1,∴两直线垂直,故选A.。

高考数学一轮复习第八章平面解析几何8-7双曲线课时提升作业理

高考数学一轮复习第八章平面解析几何8-7双曲线课时提升作业理

【2019最新】精选高考数学一轮复习第八章平面解析几何8-7双曲线课时提升作业理(25分钟50分)一、选择题(每小题5分,共35分)1.(2016·铜仁模拟)已知双曲线-=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为( )A.y=±2xB.y=±xC.y=±xD.y=±x【解析】选C.因为e==,故可设a=2k,c=k,则得b=k,所以渐近线方程为y=±x=±x.2.已知0<θ<,则双曲线C1:-=1与C2:-=1的( )A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等【解析】选D.由双曲线C1知:a2=sin2θ,b2=cos2θ⇒c2=1,由双曲线C2知:a2=cos2θ,b2=sin2θ⇒c2=1.3.(2016·新乡模拟)如果双曲线-=1(m>0,n>0)的渐近线方程为y=±x,则双曲线的离心率为( )A. B. C. D.【解析】选D.因为双曲线方程为-=1(m>0,n>0),所以a2=m,b2=n,得a=,b=,因此双曲线的渐近线方程y=±x,即y=±x,所以=,得m=4n,所以c==.故双曲线的离心率e====.【加固训练】(2016·忻州模拟)已知双曲线C:-=1的离心率为,则C的渐近线方程为( )A.y=±2xB.y=±xC.y=±xD.y=±x【解析】选B.由双曲线的方程-=1知,双曲线的焦点在x轴上,所以=()2=3,所以n=,所以a2=,b2=4-=,从而双曲线的渐近线方程是y=±x.4.(2014·全国卷Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m【解析】选A.双曲线C:-=1,则c2=3m+3,c=,设焦点F(,0),一条渐近线方程为y=x,即x-y=0,所以点F到渐近线的距离为d==.5.(2016·开封模拟)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为( )A. B. C. D.【解析】选B.易知|PF2|=|F1F2|=2c,所以由双曲线的定义知|PF1|=2a+2c,因为F2到直线PF1的距离等于双曲线的实轴长,所以(a+c)2+(2a)2=(2c)2,即3c2-2ac-5a2=0,两边同除以a2,得3e2-2e-5=0,解得e=或e=-1(舍去).【加固训练】(2016·唐山模拟)已知双曲线C:-=1(a>0,b>0)的焦点为F1,F2,且C 上点P满足·=0,||=3,||=4,则双曲线C的离心率为( )A. B. C. D.5【解析】选 D.依题意得,2a=|PF2|-|PF1|=1,|F1F2|==5,因此该双曲线的离心率e==5.6.过双曲线C:-=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、4为半径的圆经过A,O两点(O为坐标原点),则双曲线C的方程为( )A.-=1B.-=1C.-=1D.-=1【解析】选A.由得所以A(a,-b).由题意知右焦点与原点的距离为c=4,所以=4,即(a-4)2+b2=16.而a2+b2=16,所以a=2,b=2.所以双曲线C的方程为-=1.7.直线y=x与双曲线C:-=1(a>0,b>0)左右两支分别交于M,N两点,F是双曲线C的右焦点,O是坐标原点,若|FO|=|MO|,则双曲线的离心率等于( )A.+B.+1C.+1D.2【解析】选B.由题意知|MO|=|NO|=|FO|,所以△MFN为直角三角形,且∠MFN= 90°,取左焦点为F0,连接NF0,MF0,由双曲线的对称性知,四边形NFMF0为平行四边形.又因为∠MFN=90°,所以四边形NFMF0为矩形,所以|MN|=|F0F|=2c,又因为直线MN的倾斜角为60°,即∠NOF=60°,所以∠NMF=30°,所以|NF|=|MF0|=c,|MF|=c,由双曲线定义知|MF|-|MF0|=c-c=2a,所以e==+1.二、填空题(每小题5分,共15分)8.在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为.【解析】由-=1,得a=,b=,c=,所以e===,即m2-4m+4=0,解得m=2.答案:29.已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.【解题提示】可利用双曲线的定义,再借助于三角形的图形,即可得出结论.【解析】由-=1,得a=3,b=4,c=5,所以|PQ|=4b=16>2a,又因为A(5,0)在线段PQ上,所以P,Q在双曲线的一支上,且PQ所在直线过双曲线的右焦点,由双曲线定义知:所以|PF|+|QF|=28.即△PQF的周长是|PF|+|QF|+|PQ|=28+16=44.答案:4410.设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【解析】联立双曲线-=1渐近线与直线方程x-3y+m=0可解得:A,B,则kAB=,设AB的中点为E,由|PA|=|PB|,可得AB的中点E与点P两点连线的斜率为-3,化简得4b2=a2,所以e=.答案:(15分钟30分)1.(5分)(2016·新乡模拟)若双曲线-=1(a>0,b>0)的渐近线与圆(x-2)2+y2=2相切,则此双曲线的离心率等于( )A. B. C. D.2【解析】选B.由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x-2)2+y2=2的圆心为(2,0),半径为,双曲线-=1(a>0,b>0)的渐近线与圆(x-2)2+y2=2相切,可得:=,可得a2=b2,c=a,e==.2.(5分)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为( )A.0B.1C.2D.3【解析】选A.关于t的方程t2cosθ+tsinθ=0的两个不等实根为0,-tanθ(tanθ≠0),所以A(0,0),B(-tanθ,tan2θ),则过A,B两点的直线方程为y=-xtanθ,双曲线-=1的渐近线方程为y=±xtanθ,所以直线y=-xtanθ与双曲线没有公共点.【加固训练】P为双曲线x2-=1右支上一点,M,N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,则|PM|-|PN|的最大值为.【解析】已知两圆圆心坐标分别为(-4,0)和(4,0)(记为F1和F2)恰为双曲线x2-=1的两焦点.当|PM|最大,|PN|最小时,|PM|-|PN|最大,|PM|最大值为P到圆心F1的距离|PF1|与圆F1半径之和,同样|PN|min=|PF2|-1,从而|PM|max-|PN|min=|PF1|+2-(|PF2|-1)=|PF1|-|PF2|+3=2a+3=5.答案:53.(5分)(2016·吕梁模拟)设F1和F2是双曲线-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是.【解析】设|PF1|=m,|PF2|=n,(m>n),根据双曲线性质可知m-n=4,因为∠F1PF2= 90°,所以m2+n2=20,所以2mn=m2+n2-(m-n)2=4,所以mn=2,所以△F1PF2的面积为mn=1.答案:14.(15分)(2016·哈尔滨模拟)在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程.(2)若P点到直线y=x的距离为,求圆P的方程.【解析】(1)设圆心P(x,y),由题意得x2+3=y2+2,整理得y2-x2=1,即为圆心P的轨迹方程,此轨迹是等轴双曲线.(2)由P点到直线y=x的距离为,得=,即|x-y|=1,即x=y+1或y=x+1,分别代入y2-x2=1,解得P(0,-1)或P(0,1).若P(0,-1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y-1)2+x2=3.综上,圆P的方程为(y+1)2+x2=3或(y-1)2+x2=3.【加固训练】1.(2016·长沙模拟)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(1)求a,b.(2)设过F2的直线l与C的左、右两支分别相交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.【解析】(1)由题设知=3,即=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=±.由题设知,2=,解得,a2=1.所以a=1,b=2.(2)由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8. ①由题意可设l的方程为y=k(x-3),|k|<2,代入①并化简得,(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=,x1·x2=.于是|AF1|===-(3x1+1),|BF1|===3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=-.故=-,解得k2=,从而x1·x2=-.由于|AF2|===1-3x1,|BF2|===3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.2.直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A,B.(1)求实数k的取值范围.(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.【解析】(1)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0. ①依题意,直线l与双曲线C的右支交于不同两点,故解得k的取值范围是-2<k<-.(2)设A,B两点的坐标分别为(x1,y1),(x2,y2),则由①式得②假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0).则由FA⊥FB得:(x1-c)(x2-c)+y1y2=0.即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0.整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0. ③把②式及c=代入③式化简得5k2+2k-6=0.解得k=-或k=∉(-2,-)(舍去),可知存在k=-使得以线段AB为直径的圆经过双曲线C 的右焦点.。

2019版高考数学一轮复习第8章平面解析几何85椭圆课后作业理.doc

2019版高考数学一轮复习第8章平面解析几何85椭圆课后作业理.doc

8・5椭E课后作业孕谀[重点保分两级优选练]A级一、选择题2 1・(2018 •江西五市八校模拟)已知正数/〃是2和8的等比中项,则圆锥曲线/+~=1 m的焦点坐标为()A.(土0)B. (0, 土羽)C. (±萌,0)或仕0)D. (0, 土羽)或仕0)答案B解析因为正数/〃是2和8的等比中项,所以駢=16,则〃尸4,所以圆锥曲线/+-= m2 _1即为椭圆%+f=l,易知其焦点坐标为(0, 土寸5),故选B.32.(2017 •湖北荆门一模)已知〃是△肋C的一个内角,且sin 〃+cos 0 =-,则方稈/sin 0 —ycos〃 = 1 表示()A.焦点在x轴上的双曲线B.焦点在y轴上的双曲线C.焦点在%轴上的椭圆D.焦点在y轴上的椭圆答案D9 7解析因为(sin 0 +cos 〃)'=l+2sin 〃cos 0 =77,所以sin 〃cos 0 = —~<0,结合3〃w(0, JI ),知sin 〃>0, cos 〃〈0,又sin 〃+cos 〃 =[>(),所以sin 〃>—cos 0>O,] 1 2 2故---- >—-7>0,因为Ain ^-/cos 0 = \可化为V=1,所以方程— cos u sm u ] ]cos & sin 0xsin 〃一ycos 〃 = 1表示焦点在y轴上的椭圆.故选D.3.(2018 •湖北八校联考)设凡用为椭圆1的两个焦点,点戶在椭圆上,若线\PFA 段〃的中点在y轴上,则=的值为(5A•肓)5B-B5D-9答案B解析 由题意知自=3, b=弟,c=2.设线段〃的中点为必则有如〃/雄,V OMA_F^, ・•・%丄F\F?.,E 5/. I PFi I =一=孑又・・•丨朋丨+丨朋I =2^=6,a o・・・|〃|=2日一|处|=¥,扌X^=鲁,故选B.x y _4. (2017 •全国卷III )已知椭圆a -+4=l (a>Z7>0)的左、右顶点分别为几 血 且以a b线段畀/2为直径的圆与直线bx-ay+2ab= 0相切,则C 的离心率为()1 D -3答案A解析 由题意知以昇必2为直径的圆的圆心为(0, 0),半径为日. 又直线bx — ay+2ab=^与圆相切,•••圆心到直线的距离d=~F==a,y/a + b1 D -I 答案# / X V因为椭圆飞+〒=1 (日〉力>0)与双曲线飞一==1 (刃>0, 〃>0)有相同的焦点(一G 0)和 a bm n (c, 0),所以 C=a —li=m +因为c 是日,/〃的等比中项,/是2〃,与d 的等差中项,所以c=am, 2n=2m + c ,所以殳 9 c cc 1 c 1 卜刁所以—+y=c,化为7=了所以尸一=孑故选C.Z d Z d T 3 Z6. (2017 •荔湾区期末)某宇宙飞船运行的轨道是以地球屮心为一焦点的椭圆,测得近地 点距地面刃千米,远地点距地面/7千米,地球半径为厂千米,则该飞船运行轨道的短轴长为解得 a=yfib,b 1 訂乔c J 孑 e=——=a ax y 5.已知椭圆~+y?= 1(臼〉方>0)与双|tt|线厂汗iS>o,讪有相同的焦点(-小和(。

新人教版通用2019高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版

新人教版通用2019高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版

第六节双曲线————————————————————————————————[考纲传真] 1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合的思想.4.了解双曲线的简单应用.1.双曲线的定义(1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a<|F1F2|时,M点的轨迹是双曲线;②当2a=|F1F2|时,M点的轨迹是两条射线;③当2a>|F1F2|时,M点不存在.2.双曲线的标准方程和几何性质实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e= 2.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62C.52D .1D [依题意,e =c a =a 2+3a=2,∴a 2+3=2a ,则a 2=1,a =1.]3.(2017·福州质检)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3B [由题意知a =3,b =4,∴c =5.由双曲线的定义||PF 1|-|PF 2||=|3-|PF 2||=2a =6,∴|PF 2|=9.]4.(2016·全国卷Ⅰ)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)A [∵原方程表示双曲线,且两焦点间的距离为4.∴⎩⎪⎨⎪⎧m 2+n +3m 2-n =4,m 2+n m 2-n ,则⎩⎪⎨⎪⎧m 2=1,-m 2<n <3m 2,因此-1<n <3.]5.(2016·北京高考改编)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则双曲线的方程为__________.x 2-y 24=1 [由于2x +y =0是x 2a 2-y 2b2=1的一条渐近线,∴b a=2,即b =2a ,①又∵双曲线的一个焦点为(5,0),则c =5, 由a 2+b 2=c 2,得a 2+b 2=5,② 联立①②得a 2=1,b 2=4. ∴所求双曲线的方程为x 2-y 24=1.](2017·哈尔滨质检)已知双曲线x 2-24=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6B [由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10,由勾股定理可知三角形PF 1F 2为直角三角形,因此S △PF 1F 2=12|PF 1|×|PF 2|=24.][规律方法] 1.应用双曲线的定义需注意的问题:在双曲线的定义中,要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点间的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时需注意定义的转化应用.2.在焦点三角形中,注意定义、余弦定理的活用,常将||PF 1|-|PF 2||=2a 平方,建立|PF 1|·|PF 2|间的联系.[变式训练1] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.23A [由e =c a=2得c =2a ,如图,由双曲线的定义得|F 1A |-|F 2A |=2a . 又|F 1A |=2|F 2A |,故|F 1A |=4a , |F 2A |=2a , ∴cos ∠AF 2F 1=a2+a 2-a22×4a ×2a=14.](1)(2017·广州模拟)已知双曲线C :a 2-b 2=1的离心率e =4,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) 【导学号:31222317】A.x 24-y 23=1B.x 29-y 216=1 C.x 216-y 29=1 D.x 23-y 24=1 (2)(2016·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y 24=1C.3x 220-3y25=1 D.3x 25-3y220=1 (1)C (2)A [(1)由焦点F 2(5,0)知c =5.又e =c a =54,得a =4,b 2=c 2-a 2=9.∴双曲线C 的标准方程为x 216-y 29=1.(2)由焦距为25得c = 5.因为双曲线的一条渐近线与直线2x +y =0垂直,所以b a =12.又c 2=a 2+b 2,解得a =2,b =1,所以双曲线的方程为x 24-y 2=1.][规律方法] 1.确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件.“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).2.对于共焦点、共渐近线的双曲线方程,可灵活设出恰当的形式求解.若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).[变式训练2] (1)(2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________________.(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为__________.(1)x 24-y 2=1 (2)x 216-y 29=1 [(1)∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知:a =4,b =3.故曲线C 2的标准方程为x 242-y 232=1,即x 216-y 29=1.](1)(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :a 2-b2=1的左、右焦点,点M在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A.2B.32C. 3D .2(2)(2017·石家庄调研)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线为__________. 【导学号:31222318】(1)A (2)x ±y =0 [(1)如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a.在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得tan ∠MF 2F 1=24. 所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24,整理得c 2-22ac -a 2=0, 两边同除以a 2得e 2-22e -1=0. 解得e =2(负值舍去).(2)由题设易知A 1(-a,0),A 2(a,0),B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a . 因为A 1B ⊥A 2C ,所以b 2ac +a ·-b 2ac -a=-1,整理得a =b .因此该双曲线的渐近线为y =±b ax ,即x ±y =0.][规律方法] 1.(1)求双曲线的渐近线,要注意双曲线焦点位置的影响;(2)求离心率的关键是确定含a ,b ,c 的齐次方程,但一定注意e >1这一条件.2.双曲线中c 2=a 2+b 2,可得双曲线渐近线的斜率与离心率的关系b a=e 2-1⎝⎛⎭⎪⎫e =c a.抓住双曲线中“六点”、“四线”、“两三角形”,研究a ,b ,c ,e 间相互关系及转化,简化解题过程.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2D [不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a , 3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.][思想与方法]1.求双曲线标准方程的主要方法:(1)定义法:由条件判定动点的轨迹是双曲线,求出a 2,b 2,得双曲线方程. (2)待定系数法:即“先定位,后定量”,如果不能确定焦点的位置,应注意分类讨论或恰当设置简化讨论.①若已知双曲线过两点,焦点位置不能确定,可设方程为Ax 2+By 2=1(AB <0). ②当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0).③与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).2.已知双曲线的标准方程求双曲线的渐近线方程,只需将双曲线的标准方程中“1”改为“0”即可.[易错与防范]1.区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.2.双曲线的离心率大于1,椭圆的离心率e ∈(0,1).求它们的离心率,不要忽视这一前提条件,否则会产生增解或扩大取值范围.3.直线与双曲线有一个公共点时,不一定相切,也可能直线与渐近线平行.课时分层训练(五十) 双曲线A 组 基础达标 (建议用时:30分钟)一、选择题1.下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24=1C [由于焦点在y 轴上,且渐近线方程为y =±2x . ∴a b=2,则a =2b .C 中a =2,b =1满足.]2.(2015·湖南高考)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53D [由双曲线的渐近线过点(3,-4)知b a =43,∴b 2a 2=169.又b 2=c 2-a 2,∴c 2-a 2a 2=169,即e 2-1=169,∴e 2=259,∴e =53.]3.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1,F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0)B.x 24-y 25=1(x >0)C.y 24-x 25=1(y >0)D.y 24-x 25=1(x >0) B [由题设知点P 的轨迹方程是焦点在x 轴上的双曲线的右支,设其方程为x 2a 2-y 2b2=1(x >0,a >0,b >0),由题设知c =3,a =2,b 2=9-4=5.所以点P 的轨迹方程为x 24-y 25=1(x >0).]4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3 B .3 C.3mD .3mA [由双曲线方程知a 2=3m ,b 2=3, ∴c =a 2+b 2=3m +3.不妨设点F 为右焦点,则F (3m +3,0). 又双曲线的一条渐近线为x -my =0, ∴d =|3·m +1|1+m= 3.]5.(2017·成都调研)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( )A.433B .2 3C .6D .4 3D [由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3.]二、填空题6.(2016·江苏高考)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.210 [由双曲线的标准方程,知a 2=7,b 2=3,所以c 2=a 2+b 2=10,所以c =10,从而焦距2c =210.]7.已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =__________. 【导学号:31222319】33 [双曲线x 2a 2-y 2=1的渐近线为y =±x a,已知一条渐近线为3x +y =0,即y =-3x ,因为a >0,所以1a =3,所以a =33.]8.(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.2 [如图,由题意知|AB |=2b2a,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2,并整理得2e 2-3e -2=0,解得e =2(负值舍去).] 三、解答题9.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.【导学号:31222320】[解] 椭圆D 的两个焦点为F 1(-5,0),F 2(5,0),因而双曲线中心在原点,焦点在x 轴上,且c =5.3分设双曲线G 的方程为x 2a 2-y 2b2=1(a >0,b >0),∴渐近线方程为bx ±ay =0且a 2+b 2=25,8分 又圆心M (0,5)到两条渐近线的距离为r =3. ∴|5a |b 2+a 2=3,得a =3,b =4,10分∴双曲线G 的方程为x 29-y 216=1.12分10.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10),点M (3,m )在双曲线上.(1)求双曲线的方程;(2)求证:MF 1→·MF 2→=0;(3)求△F 1MF 2的面积. 【导学号:31222321】[解] (1)∵e =2,则双曲线的实轴、虚轴相等.∴设双曲线方程为x 2-y 2=λ.2分∵过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6.4分(2)证明:∵MF 1→=(-3-23,-m ), MF 2→=(23-3,-m ).∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2.6分∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.8分(3)△F 1MF 2的底|F 1F 2|=4 3.由(2)知m =± 3.10分∴△F 1MF 2的高h =|m |=3,∴S △F 1MF 2=12×43×3=6.12分 B 组 能力提升(建议用时:15分钟) 1.(2017·河南中原名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点与对称轴垂直的直线与渐近线交于A ,B 两点,若△OAB 的面积为13bc 3,则双曲线的离心率为( ) A.52B.53C.132 D.133 D [由题意可求得|AB |=2bc a ,所以S △OAB =12×2bc a ×c =13bc 3,整理得c a =133.因此e =133.]2.(2017·天津河西区质检)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为__________. x 2-y 23=1 [由双曲线的渐近线y =±b a x ,即bx ±ay =0与圆(x -2)2+y 2=3相切, ∴|2b |a 2+b 2=3,则b 2=3a 2.① 又双曲线的一个焦点为F (2,0),∴a 2+b 2=4,②联立①②,解得a 2=1,b 2=3.故所求双曲线的方程为x 2-y 23=1.] 3.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O为原点),求k 的取值范围. 【导学号:31222322】[解] (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.4分故C 2的方程为x 23-y 2=1.5分 (2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得 ⎩⎨⎧ 1-3k 2≠0,Δ=-62k 2+-3k 2=-k 2,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k2.8分 ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3. ②10分 由①②得13<k 2<1, 故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.12分。

2019版高考数学(文)高分计划一轮课件:第8章 平面解析几何 8-6

2019版高考数学(文)高分计划一轮课件:第8章 平面解析几何 8-6

2.已知双曲线1x62 -y92=1 上有一点 P,F1,F2 是双曲线 的焦点,且∠F1PF2=3π,则△PF1F2 的面积为__9___3___.
解析 由题意,得|F1F2|=2 16+9=10. ||PF1|-|PF2||=8,
因为|PF1|2+|PF2|2-2|PF1|·|PF2|cosπ3=100, 所以|PF1|·|PF2|=36. 所以 S△PF1F2=12|PF1|·|PF2|sinπ3=9 3.
(1)当 a<c 时,P 点的轨迹是双曲线; (2)当 a=c 时,P 点的轨迹是两条 射线 ; (3)当 a>c 时,P 点不存在.
2.双曲线的标准方程和几何性质
标准 方程
ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0,b>0)
图形
3.必记结论 (1)焦点到渐近线的距离为 b. (2)等轴双曲线:实轴长和虚轴长相等的双曲线叫等轴 双曲线,其方程可写作:x2-y2=λ(λ≠0). (3)等轴双曲线⇔离心率 e= 2⇔两条渐近线 y=±x 相 互垂直.
()
A. 3
B.3
C. 3m
D.3m
解析 由题意知,双曲线的标准方程为3xm2 -y32=1,其
中 a2=3m,b2=3,故 c= a2+b2= 3m+3,不妨设 F 为
双曲线的右焦点,故 F( 3m+3,0).其中一条渐近线的方
程为
y=
1 m
x,即 x-
my=0,由点到直线的距离公式可

d=
| 3· m+1| = 1+- m2
解析 设点 A(1,0),因为△PF1F2 的内切圆与 x 轴切于 点(1,0),则|PF1|-|PF2|=|AF1|-|AF2|,所以 2a=(c+1)-(c -1),则 a=1.因为点 P 与点 F1 关于直线 y=-bax对称,所 以∠F1PF2=2π,且||PPFF12||=ba=b,结合|PF1|-|PF2|=2,|PF1|2 +|PF2|2=4c2=4+4b2,可得 b=2.所以双曲线的方程为 x2 -y42=1.

高考数学一轮复习 第八章 平面解析几何 8.6 双曲线课

高考数学一轮复习 第八章 平面解析几何 8.6 双曲线课

小题快做
1.思考辨析 (1)平面内到点 F1(0,4),F2(0,-4)距离之差等于 6 的点的轨迹是双曲线.(× ) (2)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲线.( × ) (3)方程xm2-yn2=1(mn<0)表示焦点在 x 轴上的双曲线.( × )
典例1 (1)[2016·西安模拟]已知 F1,F2 为双曲线 C:x2-y2=2 的左、右焦点,点 P 在 C 上,|PF1|=2|PF2|,
则 cos∠F1PF2=( )
1
3
A.4 B.5
3
4
C.4 D.5
两倍,(2)则已双知曲双线曲的线方xa22程-为yb22=_x_412_-(_a_>y3_02_=,_b.1>0)和椭圆1x62+y92=1 有相同的焦点,且双曲线的离心率是椭圆离心率的
【跟踪训练】 1.[2016·内蒙古模拟]设双曲线 x2-y82=1 的两个焦点为 F1,F2,P 是双曲线上的一点,且|PF1|∶|PF2| =3∶4,则△PF1F2 的面积等于( ) A.10 3 B.8 3 C.8 5 D.16 5
解析 依题意|F1F2|=6,|PF2|-|PF1|=2,因为|PF1|∶|PF2|=3∶4,所以|PF1|=6,|PF2|=8,所以等腰三
角形 PF1F2 的面积 S=12×8×
62-822=8 5.
2.已知 F 是双曲线x42-1y22=1 的左焦点,A(1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为 ______9____________.
解析 如图所示,设双曲线的右焦点为 E,则 E(4,0).由双曲线的定义及标准方程得|PF|-|PE|=4,则 |PF|+|PA|=4+|PE|+|PA|.由图可得,当 A,P,E 三点共线时,(|PE|+|PA|)min=|AE|=5,从而|PF|+|PA|的最 小值为 9.

数学(理)一轮复习 第八章 平面解析几何 第讲 双曲线

数学(理)一轮复习 第八章 平面解析几何 第讲 双曲线

第6讲 双曲线1.双曲线的定义 条件 结论1 结论2 平面内的动点M与平面内的两个定点F 1,F 2M 点的 轨迹为 双曲线 F 1、F 2为双曲线的焦点 ||MF 1|-|MF 2||=2a|F 1F 2|为双曲线的焦距 2a <|F 1F 2|2.双曲线的标准方程和几何性质 标准方程 错误!-错误!=1 (a >0,b >0) 错误!-错误!=1 (a >0,b >0)图形性质 范围x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R 对称性 对称轴:坐标轴,对称中心:原点顶点 A 1(-a ,0),A 2(a ,0) A 1(0,-a ),A 2(0,a )渐近线y=±ba xy=±错误!x离心率e=错误!,e∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2=a2+b2(c>a>0,c>b>0)1.辨明三个易误点(1)双曲线的定义中易忽视2a<|F1F2|这一条件.若2a=|F1F2|,则轨迹是以F1,F2为端点的两条射线,若2a>|F1F2|,则轨迹不存在.(2)区分双曲线中a,b,c的关系与椭圆中a,b,c的关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2。

(3)双曲线的离心率e∈(1,+∞),而椭圆的离心率e∈(0,1).2.求双曲线标准方程的两种方法(1)定义法根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a,b,c,即可求得方程.(2)待定系数法①与双曲线错误!-错误!=1共渐近线的可设为错误!-错误!=λ(λ≠0);②若渐近线方程为y =±b ax ,则可设为错误!-错误!=λ(λ≠0); ③若过两个已知点,则可设为错误!+错误!=1(mn <0).3.双曲线几何性质的三个关注点(1)“六点”:两焦点、两顶点、两虚轴端点;(2)“四线”:两对称轴(实、虚轴)、两渐近线;(3)“两形”:中心、顶点、虚轴端点构成的三角形;双曲线上的一点(不包括顶点)与两焦点构成的三角形.1。

2019年高考数学一轮总复习第八章解析几何8.6双曲线课时跟踪检测理201805194167

2019年高考数学一轮总复习第八章解析几何8.6双曲线课时跟踪检测理201805194167

8.6 双曲线[课 时 跟 踪 检 测][基 础 达 标]1.(2017届合肥质检)若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( )A .2B .4C .6D .8解析:由题意得ba=2⇒b =2a ,C 2的焦距2c =45⇒c =a 2+b 2=25⇒b =4,故选B. 答案:B2.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x 解析:由条件e =c a =3,得c 2a 2=a 2+b 2a 2=1+b 2a 2=3,所以ba=2,所以双曲线的渐近线方程为y =±2x .故选B.答案:B3.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点为F 1,F 2,且C 上点P 满足PF 1→·PF 2→=0,|PF 1→|=3,|PF 2→|=4,则双曲线C 的离心率为( )A.102B . 5 C.52D .5解析:依题意得,2a =|PF 2|-|PF 1|=1,|F 1F 2|=|PF 2|2+|PF 1|2=5,因此该双曲线的离心率e =|F 1F 2||PF 2|-|PF 1|=5.答案:D4.(2017届长春质检)过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y2=4和圆C 2:(x -4)2+y 2=1作切线,切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .19解析:由题可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1)=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.答案:B5.(2018届河南六市第一次联考)已知点F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则双曲线的离心率为( )A .2B .4 C.13D .15解析:由题意,设|AB |=3k ,|BF 2|=4k ,|AF 2|=5k ,则BF 1⊥BF 2.∵|AF 1|=|AF 2|-2a =5k -2a ,|BF 1|-|BF 2|=5k -2a +3k -4k =4k -2a =2a ,∴a =k ,∴|BF 1|=6a ,|BF 2|=4a .又|BF 1|2+|BF 2|2=|F 1F 2|2,即13a 2=c 2,∴e =ca=13.答案:C6.(2018届合肥市第二次质量检测)双曲线M :x 2-y 2b2=1的左、右焦点分别为F 1、F 2,记|F 1F 2|=2c ,以坐标原点O 为圆心,c 为半径的圆与曲线M 在第一象限的交点为P ,若|PF 1|=c +2,则点P 的横坐标为( )A.3+12 B .3+22C.3+32D .332解析:由点P 在双曲线的第一象限可得|PF 1|-|PF 2|=2,则|PF 2|=|PF 1|-2=c ,又|OP |=c ,∠F 1PF 2=90°,由勾股定理可得(c +2)2+c 2=(2c )2,解得c =1+ 3.易知△POF 2为等边三角形,则x P =c2=3+12,选项A 正确. 答案:A7.(2018届湖南十校联考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与直线x =a 2c分别交于A ,B 两点,F 为该双曲线的右焦点.若60°<∠AFB <90°,则该双曲线的离心率的取值范围是________.解析:双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,x =a 2c 时,y =±abc ,不妨设A ⎝ ⎛⎭⎪⎫a 2c ,ab c ,B ⎝ ⎛⎭⎪⎫a 2c,-ab c ,因为60°<∠AFB <90°,所以33<k FB <1,所以33<abc c -a 2c<1,所以33<a b <1,所以13<a 2c 2-a2<1,所以1<e 2-1<3,所以2<e <2. 答案:(2,2)8.若点P 是以A (-3,0),B (3,0)为焦点,实轴长为25的双曲线与圆x 2+y 2=9的一个交点,则|PA |+|PB |=________.解析:不妨设点P 在双曲线的右支上,则|PA |>|PB |. 因为点P 是双曲线与圆的交点,所以由双曲线的定义知,|PA |-|PB |=25,① 又|PA |2+|PB |2=36,②联立①②化简得2|PA |·|PB |=16,所以(|PA |+|PB |)2=|PA |2+|PB |2+2|PA |·|PB |=52, 所以|PA |+|PB |=213. 答案:2139.(2017年全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:∵|AM |=|AN |=b ,∠MAN =60°, ∴△MAN 是等边三角形, ∴在△MAN 中,MN 上的高h =32b . ∵点A (a,0)到渐近线bx -ay =0的距离d =ab a 2+b 2=abc, ∴ab c =32b , ∴e =c a=23=233. 答案:23310.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线的离心率e 的最大值为________.解析:由双曲线定义知|PF 1|-|PF 2|=2a , 又|PF 1|=4|PF 2|,所以|PF 1|=83a ,|PF 2|=23a ,在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值,当F 1、P 、F 2三点共线时,即∠F 1PF 2=π时,cos ∠F 1PF 2有最小值为-1,∴cos ∠F 1PF 2=178-98e 2≥-1,解得1<e ≤53,即e 的最大值为53.答案:5311.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,|AB |=43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解:(1)由题意知a =23,∵一条渐近线为y =b ax ,即bx -ay =0. ∴由焦点到渐近线的距离为3,得|bc |b 2+a2= 3.又∵c 2=a 2+b 2, ∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎪⎨⎪⎧x 0y 0=433,x 212-y 203=1,解得⎩⎨⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).12.已知中心在原点,焦点在坐标轴上的双曲线C 经过A (-7,5),B (-1,-1)两点. (1)求双曲线C 的方程;(2)设直线l :y =x +m 交双曲线C 于M ,N 两点,且线段MN 被圆E :x 2+y 2-12x +n =0(n ∈R )三等分,求实数m ,n 的值.解:(1)设双曲线C 的方程是λx 2+μy 2=1(λμ<0),依题意有⎩⎪⎨⎪⎧49λ+25μ=1,λ+μ=1,解得⎩⎪⎨⎪⎧λ=-1,μ=2,所以双曲线C 的方程是2y 2-x 2=1. (2)将l :y =x +m 代入2y 2-x 2=1, 得x 2+4mx +(2m 2-1)=0,① Δ=(4m )2-4(2m 2-1)=8m 2+4>0.设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0), 则x 1+x 2=-4m , 所以x 0=x 1+x 22=-2m ,y 0=x 0+m =-m ,所以P (-2m ,-m ).又圆心E (6,0),依题意k PE =-1, 故m6+2m=-1,即m =-2. 将m =-2代入①得x 2-8x +7=0, 解得x 1=1,x 2=7,所以|MN |=1+12|x 1-x 2|=6 2. 故直线l 截圆E 所得弦长为13|MN |=2 2.又E (6,0)到直线l 的距离d =22, 所以圆E 的半径R =222+22=10,所以圆E 的方程是x 2+y 2-12x +26=0. 所以m =-2,n =26.[能 力 提 升]1.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求|AB |.解:(1)∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点,∴⎩⎪⎨⎪⎧c a =3,a =3,解得c =3,b =6,∴双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),∴经过双曲线右焦点F 2且倾斜角为30°的直线的方程为y =33(x -3). 联立⎩⎪⎨⎪⎧x 23-y 26=1,y =33x -3,得5x 2+6x -27=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-65,x 1x 2=-275.所以|AB |=1+13×⎝ ⎛⎭⎪⎫-652-4×⎝ ⎛⎭⎪⎫-275=1635. 2.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点,O 为坐标原点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2,求k 的取值范围.解:(1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1, 故双曲线C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+361-3k2=361-k2>0,∴k 2<1且k 2≠13.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA →·OB →>2, 即x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2, 即-3k 2+93k 2-1>0, 解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

2019届高考数学一轮复习 第八篇 平面解析几何 第4节 双曲线训练 理 新人教版

2019届高考数学一轮复习 第八篇 平面解析几何 第4节 双曲线训练 理 新人教版

学习资料专题第4节双曲线【选题明细表】1.双曲线x2-my2=1的实轴长是虚轴长的2倍,则m等于( D )(A) (B) (C)2 (D)4解析:双曲线的方程可化为x2-=1,所以实轴长为2,虚轴长为2,所以2=2(2),解得m=4.故选D.2.已知双曲线C:-y2=1的左、右焦点分别为F1,F2,过点F2的直线与双曲线C的右支相交于P,Q两点,且点P的横坐标为2,则△PF1Q的周长为( D )(A)4 (B) (C)5(D)解析:由双曲线方程得a2=3,b2=1,所以c2=a2+b2=4,所以c=2,所以右焦点F2(2,0),因为x P=2且PQ过点F2,所以PQ⊥x轴,如图,由此得⇒|PF1|+|PF2|=,所以△PF1Q的周长为2(|PF1|+|PF2|)=.故选D.3.(2016·全国Ⅱ卷)已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( A )(A)(B) (C)(D)2解析:由题不妨设|MF1|==1,|MF2|=3,则c=,a=1,得e==.故选A.4.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( A )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:圆心的坐标是(3,0),所以半焦距c==3,圆的半径是2,双曲线的渐近线方程是bx±ay=0,根据已知得=2,即=2,解得b=2,则a2=32-22=5,故所求的双曲线方程是-=1.故选A.5.(2017·佳木斯市三模)椭圆C:+=1与双曲线E:-=1(a,b>0)有相同的焦点,且两曲线的离心率互为倒数,则双曲线渐近线的倾斜角的正弦值为( D )(A) (B)(C)(D)解析:椭圆C:+=1的焦点坐标为(±1,0),离心率为.双曲线E:-=1(a,b>0)的焦点为(±1,0),c=1,双曲线的离心率为椭圆的倒数,所以为2.由e=,即2=,得a=,则b=,双曲线渐近线为y=±x,设渐近线的倾斜角α,则tan α=±,所以α=60°或120°,所以sin α=.故选D.6.已知双曲线-y2=1的左、右焦点为F1,F2,点P为左支上一点,且满足∠F1PF2=60°,则△F1PF2的面积为.解析:设|PF1|=m,|PF2|=n,在△F1PF2中由余弦定理得m2+n2-2mncos 60°=(2c)2,①由双曲线定义得n-m=2a,②联立①②化为所以mn=4,所以=mnsin 60°=.答案:7.已知F1,F2为双曲线-=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P 和Q.且△F1PQ为正三角形,则双曲线的渐近线方程为.解析:法一设F2(c,0)(c>0),P(c,y0),代入双曲线方程得y0=±,因为PQ⊥x轴,所以|PF2|=.在Rt△F1F2P中,∠PF1F2=30°,所以|F1F2|=|PF2|,即2c=·.又因为c2=a2+b2,所以b2=2a2或2a2=-3b2(舍去).因为a>0,b>0,所以=.故所求双曲线的渐近线方程为y=±x.法二设F2(c,0),由题意Rt△PF1F2中,∠PF1F2=30°,所以|PF1|=2|PF2|,由双曲线定义,得|PF1|-|PF2|=2a,即|PF2|=2a,又|F1F2|=2c,所以==,所以c=a,所以c2=3a2,又c2=a2+b2进而得b2=2a2,所以=,所以渐近线方程为y=±x.答案:y=±x能力提升(时间:15分钟)8.如图,已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,|F1F2| =8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为( C )(A)(B)(C)2 (D)3解析:如图记AF1,AF2与△APF1的内切圆相切于N,M,则|AN|=|AM|,|PM|=|PQ|,|NF1|=|QF1|,因为|AF1|=|AF2|,所以|NF1|=|AF1|-|AN|=|AF2|-|AM|=|MF2|,所以|QF1|=|MF2|,所以|PF1|-|PF2|=(|QF1|+|PQ|)-(|MF2|-|PM|)=|PQ|+|PM|=2|PQ|=4,即2a=4,所以a=2.由|F1F2|=8=2c,得c=4,所以e==2.故选C.9.若双曲线C:mx2+y2=1的离心率为2k(k>0),其中k为双曲线C的一条渐近线的斜率,则m的值为( B )(A)- (B)(C)-3 (D)解析:mx2+y2=1,即y2-=1(m<0),所以a2=1,b2=-,所以e2=1+=1-=(2k) 2,又渐近线斜率k=,所以k2==-m,所以1-=-4m.所以4m2+m-1=0,因为m<0,所以m=.故选B.10.(2017·潍坊市三模)已知椭圆C1与双曲线C2有相同的左、右焦点F1,F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1,e2,且=,若∠F1PF2=,则双曲线C2的渐近线方程为( C )(A)x±y=0 (B)x±y=0(C)x±y=0 (D)x±2y=0解析:设椭圆C1的方程为+=1(a1>b1>0),双曲线C2的方程为-=1(a2>0,b2>0),焦点F1(-c,0),F2(c,0).法一由e1=,e2=,=,得=,则a1=3a2.由题意|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2,则|PF1|=a1+a2=4a2,|PF2|=a1-a2=2a2.由余弦定理可知|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos∠F1PF2, 则(2c)2=(4a2)2+(2a2)2-2×4a2×2a2×,c2=3,=c2-=2,则b2=a2,双曲线的渐近线方程y=±x=±x,即x±y=0.故选C.法二因为===,所以a1=3a2,由椭圆及双曲线定义得|PF1|+|PF2|=2a1=6a2,①|PF1|-|PF2|=2a2,②①2-②2化为|PF1|·|PF2|=8,在△PF1F2中,由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos,所以|F1F2|2=(|PF1|-|PF2|)2+|PF1|·|PF2|,所以(2c)2=(2a2)2+8,所以c2=3,(以下同法一).11.F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若△ABF2是等边三角形,则该双曲线的离心率为.解析:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为△ABF2是等边三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且∠F1AF2=120°,在△F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=.答案:12.(2017·邯郸市一模)已知点A(a,0),点P是双曲线C:-y2=1右支上任意一点,若|PA|的最小值为3,则a= .解析:设P(x,y)(x≥2),则|PA|2=(x-a)2+y2=(x-a)2+(-1)= (x-a)2+a2-1.a≥时,取x=a,得|PA|2的最小值为a2-1=9,所以a=5;a<时,这个关于x的二次函数在x∈[2,+∞)单调递增,取x=2,得|PA|最小值为=|2-a|=3,所以a=-1.总之,得a=-1或5.答案:-1或513.已知双曲线C:-=1(a>0,b>0)的左、右焦点为F1,F2,P为双曲线C右支上异于顶点的一点,△PF1F2的内切圆与x轴切于点(1,0),且P与点F1关于直线y=-对称,则双曲线方程为.解析:设点A(1,0),因为△PF1F2的内切圆与x轴切于点(1,0),则|PF1|-|PF2|=|AF1|-|AF2|,所以2a=(c+1)-(c-1),则a=1.因为P与点F1关于直线y=-对称,如图,△F1PF2的一条中位线在直线y=-x上,所以∠F1PF2=且=tan∠PF2F1==b,联立|PF1|-|PF2|=2且|PF1|2+|PF2|2=4c2=4+4b2解得b=2.所以双曲线方程为x2-=1.答案:x2-=114.P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.解:(1)由点P(x0,y0)(x≠±a)在双曲线-=1上,有-=1.①由题意知·=,②联立①②可得a2=5b2,又c2=a2+b2=6b2,则e==.(2)联立得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2),则③设=(x3,y3),=λ+,即又C为双曲线上一点,即-5=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2,化简得λ2(-5)+(-5)+2λ(x1x2-5y1y2)=5b2,④又A(x1,y1),B(x2,y2)在双曲线上,所以-5=5b2,-5=5b2,由③式有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2, 将以上各式代入④式得λ2+4λ=0,解得λ=0或λ=-4.。

高考理数一轮总复习:第8章 8.6 曲线与方程

高考理数一轮总复习:第8章 8.6 曲线与方程

夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
6.平面上有三个不同点 A(-2,y),B0,2y,C(x,y),若A→B⊥B→C, 则动点 C 的轨迹方程为 y2y=2=8x8(xx(≠x≠0)0) .
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
解析 如图,|AD|=|AE|=8,
|BF|=|BE|=2,|CD|=|CF|, ∴|CA|-|CB|=8-2=6<10=|AB|. 根据双曲线定义知,所求轨迹是以 A,B 为焦点,实轴长为 6 的双曲线 的右支(y≠0),方程为x92-1y62 =1(x>3).故选 C.
(1)曲线上点的坐标都是这个 方方程程的的解解 ; (2)以这个方程的解为坐标的点都是 曲线上的点 .. 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
2.求动点轨迹方程的一般步骤 (1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点 P(x,y); (3)列式——列出动点 P 所满足的关系式; (4)代换——根据题中的条件,选用距离公式、斜率公式等将其转化为 x, y 的方程式,并化简; (5)证明——证明所求方程即为符合条件的动点轨迹方程.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“以方程 f(x,y)=0 的解为坐标的点都是曲线 C 上的点”是“曲线 C 的方程是 f(x,y)=0”的充要条件.( × ) 解析 利用曲线的方程和方程的曲线的定义,知由曲线 C 的方程是 f(x, y)=0 可得以方程 f(x,y)=0 的解为坐标的点都是曲线 C 上的点,但反过来, 不成立.

2019年人教版A版高三数学(理)高考一轮复习8.6 双曲线教学设计及答案

2019年人教版A版高三数学(理)高考一轮复习8.6 双曲线教学设计及答案

第六节双曲线1.双曲线的标准方程了解双曲线的定义、几何图形和标准方程.2.双曲线的几何性质知道双曲线的简单几何性质.知识点一双曲线的定义易误提醒双曲线的定义中易忽视2a<|F1F2|这一条件.若2a =|F1F2|,则轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|则轨迹不存在.[自测练习]1.已知F为双曲线C:x29-y216=1的左焦点,P、Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为________.解析:由双曲线方程知,b=4,a=3,c=5,则虚轴长为8,则|PQ|=16,由左焦点F(-5,0)且A(5,0)恰为右焦点,知线段PQ过双曲线的右焦点,则P、Q都在双曲线的右支上,由双曲线的定义可知|PF|-|PA|=2a,|QF|-|QA|=2a,两式相加得|PF|+|QF|-(|PA|+|QA|)=4a,则|PF|+|QF|=4a+|PQ|=4³3+16=28,故△PQF 的周长为28+16=44.答案:44知识点二双曲线的标准方程和几何性质易误提醒 (1)双曲线的标准方程中对a ,b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.(2)注意区分双曲线与椭圆中的a ,b ,c 的大小关系:在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.(3)易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±b a ,当焦点在y 轴上,渐近线斜率为±ab.[自测练习]2.“m <8”是“方程x 2m -10-y 2m -8=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:方程x 2m -10-y 2m -8=1表示双曲线,则(m -8)²(m -10)>0,解得m <8或m >10,故“m <8”是“方程x 2m -10-y 2m -8=1表示双曲线”的充分不必要条件,故选A.答案:A3.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62 C.52D .1解析:因为双曲线的方程为x 2a 2-y 23=1,所以e 2=1+3a 2=4,因此a 2=1,a =1.选D.答案:D4.已知F 是双曲线x 23a 2-y 2a2=1(a >0)的右焦点,O 为坐标原点,设P 是双曲线C 上一点,则∠POF 的大小不可能是( )A .15°B .25°C .60°D .165°解析:∵两条渐近线y =±33x 的倾斜角分别为30°,150°,∴0≤∠POF <30°或150°<∠POF ≤180°,故选C. 答案:C考点一 双曲线的定义及标准方程|1.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且|PF 1|=43|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48解析:由双曲线定义||PF 1|-|PF 2||=2, 又|PF 1|=43|PF 2|,∴|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,∴|PF 1|2+|PF 2|2=|F 1F 2|2,△PF 1F 2为直角三角形.△PF 1F 2的面积S =12³6³8=24.答案:C2.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点作x 轴的垂线与C的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 解析:依题意,A (a ,b ),以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),∴c =4, 4-a 2+b 2=4,∴a =2,b 2=12.故双曲线C 的方程为x 24-y 212=1.答案:A3.已知F 1,F 2为双曲线x 25-y 24=1的左、右焦点,P (3,1)为双曲线内一点,点A 在双曲线上,则|AP |+|AF 2|的最小值为( )A.37+4B.37-4C.37-2 5D.37+2 5解析:由题意知,|AP |+|AF 2|=|AP |+|AF 1|-2a ,要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值,当A ,P ,F 1三点共线时,取得最小值,则|AP |+|AF 1|=|PF 1|=37,∴|AP |+|AF 2|=|AP |+|AF 1|-2a =37-2 5. 答案:C求解双曲线定义及标准方程问题的两个注意点(1)在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常,且该常必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转应用.(2)求双曲线方程时一是标准形式判断;二是注意a ,b ,c 的关系易错易混.考点二 渐近线与离心率问题|双曲线的渐近线与离心率问题是每年各地高考命题的热点.归纳起常见的命题探究角度有:1.已知离心率求渐近线方程. 2.已知渐近线求离心率.3.由离心率或渐近线确定双曲线方程.4.利用渐近线与已知直线位置关系求离心率范围.探究一 已知离心率求渐近线方程1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x解析:因为e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,所以b a =12,所以y =±12x .答案:C探究二 已知渐近线求离心率2.(2016²海淀模拟)已知双曲线x 2a 2-y 2b2=1的一条渐近线为y =2x ,则双曲线的离心率为________.解析:由题意知b a =2,得b =2a ,c =5a ,所以e =ca= 5.答案: 5探究三 由离心率或渐近线求双曲线方程3.(2016²宜春一模)已知双曲线x 2a 2-y 2b 2=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A .5x 2-4y25=1B.x 25-y 24=1C.y 25-x 24=1 D .5x 2-5y24=1解析:∵抛物线的焦点为F (1,0),∴c =1.又c a =5,∴a =15,∴b 2=c 2-a 2=1-15=45. 故所求方程为5x 2-5y24=1,故选D.答案:D探究四 利用渐近线与已知直线位置关系求离心率范围4.已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:∵双曲线的一条渐近线方程为y =b a x ,则由题意得ba >2,∴e =ca=1+⎝ ⎛⎭⎪⎫b a 2>1+4= 5. 答案:C解决有关渐近线与离心率关系问题的方法(1)已知渐近线方程y =mx ,若焦点位置不明确要分|m |=b a或|m |=ab讨论. (2)注意形结合思想在处渐近线夹角、离心率范围求法中的应用.考点三 直线与双曲线的位置关系|(2016²汕头模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),F 1,F 2分别是它的左、右焦点,A (-1,0)是其左顶点,且双曲线的离心率为e =2.设过右焦点F 2的直线l 与双曲线C 的右支交于P ,Q 两点,其中点P 位于第一象限内.(1)求双曲线的方程;(2)若直线AP ,AQ 分别与直线x =12交于M ,N 两点,求证:MF 2⊥NF 2.[解] (1)由题可知a =1.∵e =c a=2.∴c =2.∵a 2+b 2=c 2,∴b =3,∴双曲线C 的方程为x 2-y 23=1.(2)设直线l 的方程为x =ty +2,P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x 2-y 23=1,x =ty +2,得(3t 2-1)y 2+12ty +9=0,则y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1.又直线AP 的方程为y =y 1x 1+1(x +1),将x =12代入,得M ⎝ ⎛⎭⎪⎫12,3y 12 x 1+1 . 同,直线AQ 的方程为y =y 2x 2+1(x +1),将x =12代入,得N ⎝ ⎛⎭⎪⎫12,3y 22 x 2+1 .∴MF 2→=⎝ ⎛⎭⎪⎫32,-3y 12 x 1+1 , NF 2→=⎝ ⎛⎭⎪⎫32,-3y 22 x 2+1 . ∴MF 2→²NF 2→=94+9y 1y 24 x 1+1 x 2+1=94+9y 1y 24 ty 1+3 ty 2+3 =94+9y 1y 24[t 2y 1y 2+3t y 1+y 2 +9]=94+9³93t 2-14⎝ ⎛⎭⎪⎫t 2³93t 2-1+3t ³-12t3t 2-1+9=94-94=0,∴MF 2⊥NF 2.解决直线与双曲线位置关系的两种方法(1)解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转成关于x (或y )的一元二次方程.利用根与系的关系,整体代入.(2)与中点有关的问题常用点差法.注意:根据直线的斜率k 与渐近线的斜率的关系判断直线与双曲线的位置关系.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=t OD →,求t 的值及点D 的坐标.解:(1)由题意知a =23,又∵一条渐近线为y =b ax ,即bx -ay =0. ∴由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3.∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x+84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12.∴⎩⎪⎨⎪⎧x 0y 0=433,x 212-y 203=1.∴⎩⎪⎨⎪⎧x 0=43,y 0=3.∴t=4,点D 的坐标为(43,3).20.忽视直线与双曲线的位置关系中“判别式”致误【典例】 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点?[易错点析] 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判别式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误.[解] 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k 1-k2-k2. 由题意,得k 1-k2-k 2=1,解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.[方法点评] (1)本题是以双曲线为背景,探究是否存在符合条件的直线,题目难度不大,思路也很清晰,但结论却不一定正确.错误原因是忽视对直线与双曲线是否相交的判断,从而导致错误,因为所求的直线是基于假设存在的情况下所得的.(2)本题属探索性问题.若存在,可用点差法求出AB 的斜率,进而求方程;也可以设斜率k ,利用待定系法求方程.(3)求得的方程是否符合要求,一定要注意检验.[跟踪练习] (2015²厦门模拟)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l 与双曲线C 的交点情况是( )A .没有交点B .只有一个交点C .有两个交点且都在左支上D .有两个交点分别在左、右两支上解析:直线l 的方程为y =33(x +13),代入C :x 24-y 29=1整,得23x 2-813x -160=0,Δ=(-813)2+4³23³160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系的关系得两个交点横坐标符号不同,故两个交点分别在左、右支上.答案:DA 组 考点能力演练1.双曲线x 236-m 2-y 2m 2=1(0<m <3)的焦距为( )A .6B .12C .36D .236-2m 2解析:c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 答案:B2.双曲线x 24-y 212=1的焦点到渐近线的距离为( )A .2 3B .2 C. 3D .1解析:双曲线x 24-y 212=1的焦点坐标为(4,0),(-4,0),渐近线方程为y =3x ,y =-3x .由双曲线的对称性可知,任一焦点到任一渐近线的距离相等, d =|43+0|3+1=2 3.答案:A3.P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,F 1,F 2是其左、右焦点,双曲线的离心率是54,且PF 1⊥PF 2,若△F 1PF 2的面积是9,则a +b 的值等于( )A .4B .5C .6D .7解析:由||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=4c 2,12|PF 1|²|PF 2|=9,得c 2-9=a 2.又c a =54,∴a =4,c =5,b =3.∴a +b =7.答案:D4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点F 1(-c,0),F 2(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )A.33B.22C.14D.12解析:依题意,a 2-b 2=m 2+n 2=c 2,c 2=am,2n 2=2m 2+c 2,得a=4m ,c =2m ,∴e =c a =12.答案:D5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线右支上的任意一点,若|PF 1|2|PF 2|的最小值为8a ,则双曲线离心率的取值范围是( )A .(1,+∞)B .(1,2]C .(1,3]D .(1,3]解析:因为P 为双曲线右支上的任意一点,所以|PF 1|=2a +|PF 2|,所以|PF 1|2|PF 2|=|PF 2|+4a 2|PF 2|+4a ≥2|PF 2|²4a 2|PF 2|+4a =8a ,当且仅当|PF 2|=2a ,|PF 1|=4a 时,等号成立,可得2a +4a ≥2c ,解得e ≤3,又因为双曲线离心率大于1,故选D.答案:D6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2作与x 轴垂直的直线,与双曲线的一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________.解析:易知P ⎝ ⎛⎭⎪⎫c ,b 2a ,又∠PF 1F 2=π6,∴tan π6=b 2a 2c ,即33=c 2-a 22ac ,即3e 2-2e -3=0,∴e =3,∴b 2a 2=c 2a 2-1=2.∴b a=2,则双曲线的渐近线方程为y =±2x .答案:y =±2x7.设点P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)与圆x 2+y 2=a 2+b 2在第一象限的交点,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=3|PF 2|,则双曲线的离心率为________.解析:由双曲线的定义|PF 1|-|PF 2|=2a ,又|PF 1|=3|PF 2|,∴|PF 1|=3a ,|PF 2|=a .又点P 在以F 1F 2为直径的圆上,∴|PF 1|2+|PF 2|2=|F 1F 2|2,即(3a )2+a 2=(2c )2,c 2a 2=52,∴e =102.答案:1028.已知双曲线C 的左、右焦点分别为F 1,F 2,其中一条渐近线为y =3x ,点A 在双曲线C 上,若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=________.解析:双曲线的一条渐近线方程为y =3x , 则b =3a ,c =2a .在△AF 2F 1中, 由|F 1A |=2|F 2A |,|F 1A |-|F 2A |=2a , 得|F 1A |=4a ,|F 2A |=2a ,|F 1F 2|=4a , ∴cos ∠AF 2F 1=14.答案:149.直线l :y =3(x -2)和双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且|AB |=3,又l 关于直线l 1:y =bax 对称的直线l 2与x轴平行.(1)求双曲线C 的离心率; (2)求双曲线C 的方程.解:(1)设双曲线C :x 2a 2-y 2b 2=1过一、三象限的渐近线l 1:x a -yb=0的倾斜角为α.因为l 和l 2关于l 1对称,记它们的交点为P ,l 与x 轴的交点为M .而l 2与x 轴平行,记l 2与y 轴的交点为Q . 依题意有∠QPO =∠POM =∠OPM =α.又l :y =3(x -2)的倾斜角为60°,则2α=60°, 所以tan 30°=b a =33. 于是e 2=c 2a 2=1+b 2a 2=1+13=43,所以e =233.(2)由于b a =33,于是设双曲线方程为x 23k 2-y 2k2=1(k ≠0),即x 2-3y 2=3k 2.将y =3(x -2)代入x 2-3y 2=3k 2中,得x 2-3³3(x -2)2=3k 2. 简得到8x 2-36x +36+3k 2=0, 设A (x 1,y 1),B (x 2,y 2),则|AB |=1+3|x 1-x 2|=2 x 1+x 2 2-4x 1x 2=2362-4³8³ 36+3k 2 8= 9-6k 2=3,求得k 2=1. 故所求双曲线方程为x 23-y 2=1.10.如图所示的“8”字形曲线是由两个关于x 轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是x 2+y 2-4y -4=0,双曲线的左、右顶点A ,B 是该圆与x 轴的交点,双曲线与半圆相交于与x 轴平行的直径的两端点.(1)试求双曲线的标准方程;(2)记双曲线的左、右焦点分别为F 1,F 2,试在“8”字形曲线上求一点P ,使得∠F 1PF 2是直角.解:(1)设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),在已知圆的方程中,令y =0,得x 2-4=0,即x =±2,则双曲线左、右顶点为A (-2,0),B (2,0),于是a =2.令y =2,可得x 2-8=0,解得x =±22, 即双曲线过点(±22,2),则822-4b 2=1,∴b =2.所以所求双曲线方程为x 24-y 24=1.(2)由(1)得双曲线的两个焦点F 1(-22,0),F 2(22,0).当∠F 1PF 2=90°时,设点P (x ,y ), ①若点P 在双曲线上,得x 2-y 2=4,由F 1P →²F 2P →=0,得(x +22)(x -22)+y 2=0,即x 2-8+y 2=0.由⎩⎪⎨⎪⎧x 2-y 2=4,x 2-8+y 2=0,解得⎩⎪⎨⎪⎧x =±6,y =±2,所以P 1(6,2),P 2(6,-2),P 3(-6,2),P 4(-6,-2).②若点P 在上半圆上,则x 2+y 2-4y -4=0(y ≥2),由F 1P →²F 2P →=0,得(x +22)(x -22)+y 2=0,即x 2+y 2-8=0,由⎩⎪⎨⎪⎧x 2+y 2-4y -4=0,x 2+y 2-8=0,无解.同,点P 在下半圆也没有符合题意的点.综上,满足条件的点有4个,分别为P 1(6,2),P 2(6,-2),P 3(-6,2),P 4(-6,-2).B 组 高考题型专练1.(2015²高考全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),不妨设点M 在双曲线的右支上,如图,AB =BM =2a ,∠MBA =120°,作MH ⊥x 轴于H ,则∠MBH =60°,BH =a ,MH =3a ,所以M (2a ,3a ).将点M 的坐标代入双曲线方程x 2a 2-y 2b2=1,得a =b ,所以e = 2.故选D.答案:D2.(2015²高考重庆卷)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 2解析:由题意,得A 1(-a,0),A 2(a,0),F (c,0),将x =c 代入双曲线方程,解得y =±b 2a ,不妨设B ⎝⎛⎭⎪⎫c ,b 2a ,C ⎝ ⎛⎭⎪⎫c ,-b 2a ,则kA 1B =b 2ac +a ,kA 2C =-b 2a c -a ,根据题意,有b 2a c +a ²-b 2a c -a =-1,整得ba=1,所以该双曲线的渐近线的斜率为±1,故选C.答案:C3.(2015²高考四川卷)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( )A.433B .2 3C .6D .4 3解析:由双曲线的标准方程x 2-y 23=1得,右焦点F (2,0),两条渐近线方程为y =±3x ,直线AB :x =2,所以不妨取A (2,23),B (2,-23),则|AB |=43,选D.答案:D4.(2015²高考北京卷)已知(2,0)是双曲线x 2-y2b2=1(b >0)的一个焦点,则b =________.解析:因为(2,0)是双曲线x 2-y2b2=1(b >0)的一个焦点,所以1+b 2=4,则b = 3.答案: 35.(2015²高考山东卷)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.解析:由题意,双曲线的渐近线方程为y =±bax ,抛物线的焦点坐标为F ⎝⎛⎭⎪⎫0,p 2.不妨设点A 在第一象限,由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,解得⎩⎪⎨⎪⎧x =2pba,y =2pb 2a 2,或⎩⎪⎨⎪⎧x =0,y =0,故A ⎝ ⎛⎭⎪⎫2pb a,2pb 2a 2.所以k AF =2pb 2a 2-p 22pb a=4b 2-a 24ab . 由已知F 为△OAB 的垂心,所以直线AF 与另一条渐近线垂直,故k AF ²⎝ ⎛⎭⎪⎫-b a =-1,即4b 2-a 24ab ³⎝ ⎛⎭⎪⎫-b a =-1,整得b 2=54a 2,所以c 2=a 2+b 2=94a 2,故c =32a ,即e =c a =32.答案:32。

2019版高考数学(文)第8章 平面解析几何 第6讲双曲线 Word版含答案

2019版高考数学(文)第8章 平面解析几何 第6讲双曲线 Word版含答案

第讲双曲线
板块一知识梳理·自主学习
[必备知识]
考点双曲线的概念
平面内与两个定点,(=>)的距离的差的绝对值为常数(小于且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
集合={-=},=,其中、为常数且>,>:
()当<时,点的轨迹是双曲线;
()当=时,点的轨迹是两条射线;
()当>时,点不存在.
考点双曲线的标准方程和几何性质
[必会结论]
双曲线中的几个常用结论
()焦点到渐近线的距离为.
()实轴长和虚轴长相等的双曲线叫做等轴双曲线.
()双曲线为等轴双曲线⇔双曲线的离心率=⇔双曲线的两条渐近线互相垂直(位置关系).
()过双曲线的一个焦点且与实轴垂直的弦的长为.
()过双曲线焦点的弦与双曲线交在同支上,则与另一个焦点构。

2019版高考数学一轮复习第八章平面解析几何

2019版高考数学一轮复习第八章平面解析几何



双曲线
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点

课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双 基落实
想一想、辨一辨、试一试、全面打牢基础





1.双曲线的定义 平面内与两个定点F1, F2的 距离的差的绝对值等于非零 常数 (小于 |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线 ______
2.双曲线的标准方程和几何性质 标准方程 x2 y2 y2 x2 - =1(a>0,b>0) 2- 2=1(a>0,b>0) a2 b2 a b
图形
性 质
范围 对称性
x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R 对称轴: 坐标轴 对称中心: 原点
标准方程 顶点 渐近线 离心率 性 质 a,b,c 的关系
2 y 即其标准方程为x2- = 1. 2 2 y 答案:x2- =1 2
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 双曲线的标准方程
[题组练透]
x2 y2 1. (2017· 天津高考 )已知双曲线 2- 2 = 1(a>0, b>0)的左焦点 a b 为 F,离心率为 2 .若经过 F和 P(0,4)两点的直线平行于双 ( )
x2 y2 解析:设要求的双曲线方程为 2- 2= 1(a>0, b>0), a b x2 y2 由椭圆 + =1,得椭圆焦点为(± 1,0),顶点为(± 2,0). 4 3 所以双曲线的顶点为(± 1,0),焦点为(± 2,0). 所以a= 1, c= 2,所以b2= c2- a2= 3,

高考数学一轮复习 第八章 平面解析几何 第六节 双曲线学案 理(含解析)新人教A版-新人教A版高三全

高考数学一轮复习 第八章 平面解析几何 第六节 双曲线学案 理(含解析)新人教A版-新人教A版高三全

第六节 双 曲 线2019考纲考题考情1.双曲线的概念平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的轨迹叫做双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离叫焦距。

集合P ={M |||MF 1|-|MF 2||=2a ,|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0}。

(1)当a <c 时,M 点的轨迹是双曲线。

(2)当a =c 时,M 点的轨迹是两条射线。

(3)当a >c 时,M 点不存在。

2.双曲线的标准方程和几何性质1.双曲线定义的四点辨析(1)当0<2a <|F 1F 2|时,动点的轨迹才是双曲线。

(2)当2a =0时,动点的轨迹是线段F 1F 2的中垂线。

(3)当2a =|F 1F 2|时,动点的轨迹是以F 1,F 2为端点的两条射线。

(4)当2a >|F 1F 2|时,动点的轨迹不存在。

2.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线。

(2)当m <0,n <0时,表示焦点在y 轴上的双曲线。

3.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0)。

(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b2=λ(λ≠0)。

一、走进教材1.(选修2-1P 61A 组T 1改编)已知双曲线x 2-y 216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于________。

解析 设双曲线的焦点为F 1,F 2,|PF 1|=4,则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到它的焦点的距离的最小值为c -a =17-1>2,故|PF 2|=6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.6 双曲线[重点保分 两级优选练]一、选择题1.(2018·唐山统考)“k <9”是“方程x 225-k +y 2k -9=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A 解析 ∵方程x 225-k+y 2k -9=1表示双曲线,∴(25-k )(k -9)<0,∴k <9或k >25,∴“k <9”是“方程x 225-k +y 2k -9=1表示双曲线”的充分不必要条件,故选A.2.(2017·湖北黄冈二模)已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .2答案 B解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∵F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|cos ∠PF 2F 1=2×4×14=2.故选B.3.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,则此双曲线的方程是( )A.x 23-y 24=1B.x 24-y 23=1C.x 25-y 22=1 D.x 22-y 25=1 答案 D解析 设双曲线方程x 2a 2-y 2b 2=1,M (x 1,y 1),N (x 2,y 2),∴⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,①x 22a -y 22b =1.②①-②,得y 1-y 2x 1-x 2=b 2a 2·x 1+x 2y 1+y 2.∴1=b 2a 2·-23-53,∴5a 2=2b 2.又a 2+b 2=7,∴a 2=2,b 2=5,故选D.4.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则这样的直线l 有( )A .1条B .2条C .3条D .4条答案 C解析 设A (x 1,y 1),B (x 2,y 2),当直线l 的斜率不存在时,其方程为x =3,由⎩⎪⎨⎪⎧x =3,x 2-y 22=1,得y =±2,∴|AB |=|y 1-y 2|=4满足题意.当直线l 的斜率存在时,其方程为y =k (x -3),由⎩⎪⎨⎪⎧y =k x -3,x 2-y 22=1,得(2-k 2)x 2+23k 2x -3k 2-2=0.当2-k 2≠0时,x 1+x 2=23k 2k -2,x 1x 2=3k 2+2k -2,|AB |=1+k 2x 1+x 22-4x 1x 2=1+k 2⎝ ⎛⎭⎪⎫23k 2k 2-22-12k 2+8k 2-2 =1+k2k 2+k 2-2=+k 2|k 2-2|=4, 解得k =±22,故这样的直线有3条.故选C. 5.(2016·浙江高考)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案 A解析 在椭圆中,a 1=m ,c 1=m 2-1,e 1=m 2-1m.在双曲线中,a 2=n ,c 2=n 2+1,e 2=n 2+1n.因为c 1=c 2,所以n 2=m 2-2.由n >0,m >1可得m >n ,且m 2-2>0.从而e 21·e 22=m 2-1n 2+1m 2·n 2=m 2-12m 2·m 2-2,则e 21e 22-1=m 2-12m 2m 2-2-1=1m 2m 2-2>0,即e 1e 2>1.故选A.6.(2017·福建龙岩二模)已知离心率为52的双曲线C :x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线的实轴长是( )A .32B .16C .84D .4答案 B解析 由题意知F 2(c,0),不妨令点M 在渐近线y =bax 上,由题意可知|F 2M |=bca 2+b 2=b ,所以|OM |=c 2-b 2=a .由S △OMF 2=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.7.(2018·湖南十校联考)设双曲线x 2a 2-y 2b 2=1的两条渐近线与直线x =a 2c分别交于A ,B两点,F 为该双曲线的右焦点.若60°<∠AFB <90°,则该双曲线的离心率的取值范围是( )A .(1,2)B .(2,2)C .(1,2)D .(2,+∞)答案 B解析 双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,x =a 2c 时,y =±abc ,不妨设A ⎝ ⎛⎭⎪⎫a 2c ,ab c ,B ⎝ ⎛⎭⎪⎫a2c,-ab c ,∵60°<∠AFB <90°,∴33<k FB <1,∴33<abc c -a 2c<1,∴33<a b <1,∴13<a 2c 2-a2<1,∴1<e 2-1<3,∴2<e <2.故选B.8.(2017·福建漳州八校联考)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,e 1,e 2分别是两曲线的离心率,若PF 1⊥PF 2,则4e 21+e 22的最小值为( )A.52 B .4 C.92 D .9答案 C解析 由题意设焦距为2c ,令P 在双曲线的右支上,由双曲线的定义知|PF 1|-|PF 2|=2a 2,①由椭圆定义知|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=4c 2,③ ①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22,④ 将④代入③,得a 21+a 22=2c 2,∴4e 21+e 22=4c2a 21+c 2a 22=a 21+a 222a 21+a 21+a 222a 22=52+2a 22a 21+a 212a 22≥52+22a 22a 21·a 212a 22=92,当且仅当2a 22a 21=a 212a 22,即a 21=2a 22时,取等号.故选C. 9.(2017·青州市模拟)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,记椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫15,+∞C.⎝ ⎛⎭⎪⎫19,+∞ D .(0,+∞)答案 A解析 设椭圆和双曲线的半焦距为c ,|PF 1|=m ,|PF 2|=n (m >n ), 由于△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10, 即有m =10,n =2c ,由椭圆的定义可得m +n =2a 1, 由双曲线的定义可得m -n =2a 2, 即有a 1=5+c ,a 2=5-c (c <5),再由三角形的两边之和大于第三边,可得2c +2c >10, 可得c >52,即有52<c <5.由离心率公式可得e 1·e 2=c a 1·c a 2=c 225-c 2=125c 2-1, 由于1<25c2<4,则有125c 2-1>13. 则e 1·e 2的取值范围为⎝ ⎛⎭⎪⎫13,+∞.故选A. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1B.x 212+y 26=1C.x 216+y 24=1 D.x 220+y 25=1答案 D解析 ∵椭圆的离心率为32, ∴c a =a 2-b 2a =32,∴a =2b .∴椭圆的方程为x 2+4y 2=4b 2. ∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝ ⎛⎭⎪⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4, ∴b 2=5,∴a 2=4b 2=20.∴椭圆C 的方程为x 220+y 25=1.故选D.二、填空题11.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是________.答案 10解析 依题意得,点F 1(-5,0),F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.12.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0),作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率为________.答案102解析 圆x 2+y 2=a 24的半径为a 2,由OE →=12(OF →+OP →)知,E 是FP 的中点,设F ′(c,0),由于O 是FF ′的中点,所以OE ⊥PF ,|OE |=12|PF ′|⇒|PF ′|=2|OE |=a .由双曲线定义,|FP |=3a ,因为FP 是圆的切线,切点为E ,所以FP ⊥OE ,从而∠FPF ′=90°.由勾股定理,得|FP |2+|F ′P |2=|FF ′|2⇒9a 2+a 2=4c 2⇒e =102. 13.(2018·安徽江南十校联考)已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→=0,则P 到x 轴的距离为________.答案 2解析 由题意取F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,则可设P (x 0,2x 0),由PF 1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故P 到x 轴的距离为2|x 0|=2.14.(2018·贵州六校联考)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F 1,F 2是一对相关曲线的焦点,P 是它们在第一象限的交点,当∠F 1PF 2=60°时,这一对相关曲线中双曲线的离心率是________.答案3解析 设椭圆的半长轴为a 1,椭圆的离心率为e 1, 则e 1=ca 1,a 1=c e 1.设双曲线的实半轴为a ,双曲线的离心率为e ,e =c a ,a =c e. |PF 1|=x ,|PF 2|=y (x >y >0),则由余弦定理得4c 2=x 2+y 2-2xy cos60°=x 2+y 2-xy , 当点P 看作是椭圆上的点时, 有4c 2=(x +y )2-3xy =4a 21-3xy ,① 当点P 看作是双曲线上的点时, 有4c 2=(x -y )2+xy =4a 2+xy ,② ①②联立消去xy ,得4c 2=a 21+3a 2, 即4c 2=⎝ ⎛⎭⎪⎫c e 12+3⎝ ⎛⎭⎪⎫c e2,所以⎝ ⎛⎭⎪⎫1e 12+3⎝ ⎛⎭⎪⎫1e2=4,又因为1e 1=e ,所以e 2+3e2=4,整理得e 4-4e 2+3=0,解得e 2=3,所以e =3, 即双曲线的离心率为 3. 三、解答题15.已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求OA →·OB →的最小值.解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,实半轴长a = 2.又焦距2c =4,所以虚半轴长b =c 2-a 2= 2. 所以W 的方程为x 22-y 22=1(x ≥2).(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).当AB ⊥x 轴时,x 1=x 2,y 1=-y 2,从而OA →·OB →=x 1x 2+y 1y 2=x 21-y 21=2.当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m (k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1, 所以OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m ) =(1+k 2)x 1x 2+km (x 1+x 2)+m 2=+k2m 2+k -1+2k 2m 21-k+m 2 =2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0. 所以OA →·OB →>2.综上所述,当AB ⊥x 轴时,OA →·OB →取得最小值2. 16.已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 解 (1)双曲线C 与直线l有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1,有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,所以⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.即双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2),直线l 与y 轴交于点D (0,-1),由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0,所以⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD =12(|x 1|-|x 2|)=12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD =12(|x 1|+|x 2|)=12|x 1-x 2|.所以S △OAB =12|x 1-x 2|=2,所以(x 1-x 2)2=(22)2,即⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2=8, 解得k =0或k =±62,又因为-2<k <2, 且k ≠±1, 所以当k =0或k =±62时,△AOB 的面积为 2.。

相关文档
最新文档