烷基化装置工艺联锁逻辑控制说明
烷基化装置工艺操作仪表控制回路说明
烷基化装置工艺操作仪表控制回路说明2.1 C4原料罐液位控制控制目的将C4原料送至加氢反应器,保持C4原料罐液位正常控制方法1)LT10101:C4原料罐液位变送2)LIC10101:C4原料罐液位调节器,正作用3)FT10102:C4原料流量差压变送器4)FIC10102:C4原料流量调节器,正作用5)FV10102:C4原料流量调节阀, F.CC4原料罐液位在正常情况下,由原料罐液位调节器LIC10101作为主调节器投串级, C4原料流量调节FIC10102作为副调节器投自控;主调节器LIC10101输出作为副调节器FIC10102的给定值,副调节器FIC10102控制C4原料送加氢反应器流量调节。
当C4原料罐液位升高时,正偏差增大,由于C4原料罐液位调节器LIC10101调节器为正作用,输出信号增大,此时副调节器FIC10102的给定值增大,因此副调节器FIC10102给定值与C4原料流量变送FT10102输入值正偏差增大,副调节器FIC10102为正作用,因此输出值增大,C4原料流量调节阀FV10102风开阀,从而开大调节阀增大C4原料外送流量,降低C4原料罐液位,控制其在合理范围内。
反之,C4原料罐液位降低时负偏差增大,C4原料罐液位调节器LIC10101为正作用,输出信号减小,此时副调节器FIC10102的给定值减小,因此副调节器FIC10102给定值与C4原料流量变送FT10102输入值负偏差增大,副调节器FIC10102为正作用,因此输出值减小,C4原料流量调节阀FV10102为风开阀,从而关小调节阀减少C4原料外送流量,提高C4原料罐液位。
控制回路图2.2 加氢反应器进料温度调节控制目的控制加氢反应器进料温度在正常范围 控制方法1) TIC10204:加氢反应器进料温度调节器,反作用 2) TY10204:蒸汽冷凝液流量调节阀定位器,I /P 3) FV10204:蒸汽冷凝液流量调节阀,F.C 说明:加氢反应器进料温度控制正常情况下,由C4原料温度调节器TIC10204调节加氢反应器进料加热器E101热源1.0MPa 蒸汽冷凝量。
烷基化装置工艺联锁逻辑控制说明
烷基化装置工艺联锁逻辑控制说明
1.装置工艺联锁简介及联锁明细表
1.1装置工艺联锁简介
烷基化装置配备了一系列联锁,在出现可能损坏设备或危及人身安全的情况时使装置停车。
装置操作人员应当完全掌握每一种联锁才能消除由于联锁引起的停车故障。
烷基化装置联锁系统主要包括:停P-205A/B、P-206A/B、P-207A/B、P-208A/B、P-214A/B联锁逻辑;开104-XV-22005联锁、关闭104-XV-22304切断阀联锁、致冷压缩机104-K-201停机联锁;关104-XV-10101 、停104-P-101B、停104-P-101B联锁;关104-XV-10301 、停104-P-102B、104-P-102B;停104-P-201A/B、关104-HV20601;停104-P-202A/B、关104-HV20602;停104-P-211A/B、关104-HV21701联锁;停104-P-210A/B、关104-HV21802联锁。
1.2联锁明细表
104单元装置联锁明细表
1.3.联锁操作说明
2.机组联锁的逻辑控制说明
2.1机组联锁的逻辑控制说明
烷基化装置致冷压缩机配备了一系列联锁系统,来确保设备及人身安全。
操作人员应当完全掌握每一种联锁才能消除由于联锁引起的停车故障。
烷基化装置致冷压缩机联锁系统主
要包括:允许启动压缩机联锁;致冷压缩机润滑油备用泵自动启动;停机、开防喘振阀FV50101/50102联锁。
正常生产时需将联锁旁路开关切到“联锁”位置。
烷基化装置
烷基化装置一、背景介绍烷基化是一种重要的化学反应过程,用于合成烷基化合物。
烷基化装置是用来进行烷基化反应的设备,通常由反应器、加热装置、冷却装置、催化剂装置等部分组成。
二、烷基化反应原理烷基化反应是一种通过在烷基化催化剂的作用下,将烯烃或烷烃与烯烃发生加成反应,生成烷基化合物的化学反应。
这种反应通常需要高温和高压条件下进行。
三、烷基化装置的组成1.反应器:通常为不锈钢或其他耐高温、高压材料制成,用于容纳反应物和催化剂进行反应。
2.加热装置:用于提供反应所需的高温条件,通常采用电加热或其他加热方式。
3.冷却装置:用于控制反应温度,防止反应温度过高。
常见的冷却方式包括水冷却和空气冷却。
4.催化剂装置:用于催化烷基化反应的进行,通常选择适合的催化剂可以提高反应速率和选择性。
四、烷基化装置的运行过程1.将原料加入反应器中。
2.启动加热装置,提高反应器内温度至反应所需温度。
3.注入催化剂。
4.加热反应器至反应温度,开始烷基化反应。
5.根据反应情况控制冷却装置的温度,保持反应温度稳定。
6.反应结束后,停止加热和冷却,将产物从装置中取出。
五、烷基化装置的应用烷基化装置广泛应用于石油化工、有机合成等领域,用于制备各种烷基化合物,如乙基苯、苯乙烯、异丙醇等。
这些化合物在化工生产中具有重要的用途,是许多化学产品的重要原料。
六、总结烷基化装置是进行烷基化反应的重要设备,其具有广泛的应用领域和重要的经济意义。
通过对烷基化装置的结构、原理和运行过程的研究,可以更好地掌握烷基化反应的工艺条件,提高生产效率和产品质量,促进化工行业的发展。
烷基化装置仪表控制系统操作法
烷基化装置仪表控制系统操作法第一节仪表控制系统概况及操作1.分散控制系统(DCS)系统概述及操作1.1.概述惠州炼油所有的工艺装置和辅助设施、公用工程、储运系统等,均采用FOXBORO DCS进行集中控制和监测。
厂区内的生产装置、公用工程及储运系统的DCS显示操作站和部分控制站及附属设备均集中在中心控制室,进行集中操作、控制和管理。
根据全厂总平面的布置,设置12个现场机柜室(FAR)及7个现场控制室(FCR)。
各工艺装置或辅助单元的DCS控制站,按相关区域安装在各现场机柜室及现场控制室。
从现场机柜室及现场控制室到中心控制室的控制网络用单模冗余铠装光缆连接。
各现场机柜室及现场控制室根据需要设置一台现场工程师站,用于正常的维护和历史数据的存储。
当现场机柜室与中心控制室之间的网络联系中断或发生通讯故障时,现场工程师站应与所在机柜室内控制器构成独立系统。
每个现场控制室设置操作站,为现场操作人员使用。
整个DCS控制系统由控制站、操作站、工程师站和OPC服务器、历史站等设备组成。
各装置的DCS控制站独立设置,以保证各装置在正常生产和开、停工过程中互不干扰,减少关联影响。
1.2操作员用户分配由于全厂DCS由一个网络组成,为了防止互相干扰,避免误操作,每个单元都分配了相应的操作员用户。
各单元操作员用户分配如下表所示:1.3面板操作点击流程图上数值区域,会弹出如右图所示面板显示,通过面板可以进行以下操作:1)设定值修改:在自动情况下,选择SPT参数,就可以在数值输入区修改设定值;2)输出值修改:在手动情况下,选择OUT参数,就可以在数值输入区修改输出值;3)点击按钮可以调用趋势画面;4)点击按钮可以确认报警5)点击按钮可以将自动回路投手动,可以将手动回路投自动。
6)点击可以将副回路投串级。
(7) 点击按钮关闭面板显示画面图6-11.4报警操作1.4.1系统报警画面系统报警指出由于硬件故障产生的报警情况。
系统报警同站,以及与站相连的外围设备或通讯网络的工作状态有关。
烷基化操作规程 (1)
烷基化操作规程流出物制冷硫酸法烷基化装置操作手册目录第一章、工艺简介第二章、工艺原理第三章、操作原理第四章、开停工指南第五章、硫酸安全使用手册第六章、化验分析手册第七章、故障及分析第一章工艺简介本章内容主要介绍烷基化过程中的基本化学原理,讨论对产品质量有较大影响的操作变量。
烷基化反应实在强酸存在的条件下轻烯烃(C3、C4、C5)和异丁烷的化学反应。
虽然烷基化反应在没有催化剂存在时在高温下也可以发生,但是目前投入工业运行的主要的低温烷基化装置仅以硫酸或者氢氟酸做催化剂。
一些公司正在继续致力于固体酸催化剂烷基化装置的工业化。
烷基化过程发生的反应较为复杂,产品沸点范围较宽。
选择合适的操作条件,大多数产品的馏程能够达到所期望的汽油馏程,马达法辛烷值范围88~95,研究法辛烷值范围93~98。
STRATCO流出物制冷硫酸法烷基化工艺极其专利反应设备(STRATCO接触式反应器)的设计可促进烷基化反应、抑制副反应如聚合反应的发生。
副反应提高了酸消耗量,并造成产品干点升高、辛烷值降低。
本章的其余部分将对影响烷基化产品质量的烷基化反应化学原理及其工艺变量进行讨论。
A.化学原理在STRATCO烷基化工艺中,烯烃与异丁烷在硫酸催化剂存在的情况下发生反应,形成烷基化物——一种汽油调和组分。
进料中存在的正构烷烃不参加烷基化反应,但会在反应区域内起到稀释剂的作用。
下列化学式即可表示理想的C3、C4、C5烯烃的烷基化反应:CH3 CH3H2SO4H C CH3 +CH2 = C CH3CH3 C CH2CH CH3CH3 CH3 CH3 CH3实际的反应要复杂的多。
这些反应在酸连续相乳化液进行,在乳化液中烯烃与异丁烷接触。
酸/烃乳化液通过在STRATCO的专利设备——接触式反应器中对酸烯烃混合物剧烈搅拌得到。
STRATCO烷基化反应工艺使用硫酸作为催化剂。
根据定义,催化剂可以加快化学反应,但自身不发生变化。
然而,在硫酸烷基化工艺中,必须连续的向系统中加入硫酸。
烷基化装置工艺流程说明
烷基化装置工艺流程说明本装置由原料加氢精制、反应、致冷压缩、流出物精制和产品分馏及化学处理等几部分组成,现分别简述如下:1.原料加氢精制自MTBE 装置来的未反应碳四馏分经凝聚脱水器(104-D-105)脱除游离水后进入碳四原料缓冲罐(104-D-101),碳四馏分由加氢反应器进料泵(104-P-101)抽出经碳四-反应器进料换热器(104-E-104)换热后,再经反应器进料加热器(104-E-101)加热到反应温度后与来自系统的氢气在静态混合器(104-M-101)中混合,混合后的碳四馏分从加氢反应器(104-R-101)底部进入反应器床层。
加氢反应是放热反应。
随混合碳四带入的硫化物是使催化剂失活的有害杂质。
催化剂失活后可用热氢气吹扫使其活化。
反应后的碳四馏分从加氢反应器顶部出来与加氢裂化液化气混合。
自液化气双脱装置过来的加氢裂化液化气进入加氢液化气缓冲罐(104-D-102),加氢裂化液化气由脱轻烃塔进料泵(104-P-102)抽出与反应器(104-R-101)顶部出来的碳四馏分混合后进入脱轻烃塔(104-C-101)。
脱轻烃塔(104-C-101)的任务是脱去碳四馏分中的碳三以下的轻组分,同时将二甲醚脱除。
脱轻烃塔是精密分馏的板式塔,塔顶压力控制在1.7MPa(g)。
塔顶排出的轻组分经脱轻烃塔顶冷凝器(104-E-103A/B)冷凝冷却后,进入脱轻烃塔回流罐(104-D-103)。
不凝气经罐顶压控阀(PIC-10401)后进入全厂燃料气管网。
冷凝液由脱轻烃塔回流泵(104-P-103)抽出,一部分做为(104-C-101)顶回流,另一部分作为液化气送出装置。
塔底抽出的碳四馏分经(104-E-104)与原料换热后再经碳四馏分冷却器(104-E-105)冷至40℃进入烷基化部分。
塔底重沸器(104-E-102)采用0.45MPa 蒸汽加热,反应器(104-R-101)进料加热器使用1.0MPa 蒸汽加热,凝结水都送至凝结水回收罐(104-D-304)回收。
烷基化操作规程-(1)
烷基化操作规程-(1)烷基化操作规程流出物制冷硫酸法烷基化装置操作手册目录第一章、工艺简介第二章、工艺原理第三章、操作原理第四章、开停工指南第五章、硫酸安全使用手册第六章、化验分析手册第七章、故障及分析第一章工艺简介本章内容主要介绍烷基化过程中的基本化学原理,讨论对产品质量有较大影响的操作变量。
烷基化反应实在强酸存在的条件下轻烯烃(C3、C4、C5)和异丁烷的化学反应。
虽然烷基化反应在没有催化剂存在时在高温下也可以发生,但是目前投入工业运行的主要的低温烷基化装置仅以硫酸或者氢氟酸做催化剂。
一些公司正在继续致力于固体酸催化剂烷基化装置的工业化。
烷基化过程发生的反应较为复杂,产品沸点范围较宽。
选择合适的操作条件,大多数产品的馏程能够达到所期望的汽油馏程,马达法辛烷值范围88~95,研究法辛烷值范围93~98。
STRATCO流出物制冷硫酸法烷基化工艺极其专利反应设备(STRATCO接触式反应器)的设计可促进烷基化反应、抑制副反应如聚合反应的发生。
副反应提高了酸消耗量,并造成产品干点升高、辛烷值降低。
本章的其余部分将对影响烷基化产品质量的烷基化反应化学原理及其工艺变量进行讨论。
A.化学原理在STRATCO烷基化工艺中,烯烃与异丁烷在硫酸催化剂存在的情况下发生反应,形成烷基化物——一种汽油调和组分。
进料中存在的正构烷烃不参加烷基化反应,但会在反应区域内起到稀释剂的作用。
下列化学式即可表示理想的C3、C4、C5烯烃的烷基化反应:乳化液进行,在乳化液中烯烃与异丁烷接触。
酸/烃乳化液通过在STRATCO的专利设备——接触式反应器中对酸烯烃混合物剧烈搅拌得到。
STRATCO烷基化反应工艺使用硫酸作为催化剂。
根据定义,催化剂可以加快化学反应,但自身不发生变化。
然而,在硫酸烷基化工艺中,必须连续的向系统中加入硫酸。
由于副反应及进料中的污染物造成酸浓度下降,所以需要向系统中补充酸。
聚合反应是一种与烷基化反应竞争的副反应。
烷基化操作规程
烷基化装置操作规程目录第一章 (4)第二章 (4)2.1 工艺原理 (4)2.2 工艺说明 (5)2.3 原料规格 (11)2.4 产品规格 (14)2.5 界区条件 (15)2.6 公用工程要求 (15)2.7 开车对工艺化学品的要求 (18)2.8 排放物和副产品 (19)2.9 设计考虑 (21)第三章 (22)3.1 烃类原料污染物的影响 (22)3.2 装置进料成分敏感度: (22)3.3 正操操作和控制 (22)第四章 (33)4.1 推荐的样品分析方法 (33)4.2 分析仪一览表 (34)4.3 取样一览表 (34)第五章 (37)5.1 安全淋浴器和洗眼器 (37)5.2 防火系统 (38)5.3 化学品处理和循环 (38)5.4 压力排放系统 (39)第六章 (40)6.0 开车步骤 (40)6.1 公用工程系统 (40)236.2 单机试车(预试车)和准备 (42)6.3 CDAIky装置钝化工艺 (44)6.4 正常开车 (46)第七章 (53)7.0 停车步骤 (53)7.1 从正常操作到全面停车程序 (54)7.2 短期停车 (60)7.3 长期停车 (62)7.4 事故停车步骤: (64)第八章 (65)8.1 反应危害 (65)第一章序言本手册含有烷基化工艺方面包括操作条件和生产能力在内的保密信息。
这些信息不能泄露给未经授权的人员。
本手册还提供了装置系统方和操作程序方面的信息,该手册的目的主要是为操作人员在进行装置详细操作手册准备和编制。
第二章工艺原理2.1 工艺简述该工艺涉及的反应是烯烃同异丁烷的烷基化反应。
同时副反应中有副产品产出。
烷基化初级烷基化反应涉及异丁烷同烯烃、如丁烯的反应,使用硫酸作为催化剂生成高辛烷值的三甲基戊烷异构物。
通常三甲基戊烷异构物被称之为烷基化油。
i-C4+C4H8→2,2,4-三甲基戊烷类似的反应也在异丁烷和其他烯烃如丙烯和戊烷之间发生,分别生成庚烷和壬烷异构物,但是就低选择性生产高辛烷值产品而言,选择丁烯进料更适宜。
化工装置联锁控制系统演示幻灯片
1
2020/4/13
15
RS触发器(逻辑记忆)
A
R
C
B
S
R复位端 S置位端
RS触发器运算真值表
A
1
0
1
0
B
0
0
1
1
C
0
逻辑值不变 逻辑值不变 1
2020/4/13
16
逻辑ON延时
逻辑计时器(Time Delay On):
A
B
xxx sec
逻辑计时器的功能描述: 逻辑输入A=1连续成立xxx秒后,逻辑输出B=1。
输入分 电路A
输入分 电路B
输入分 电路C
输出端 继电器
2020/4/13
5
TRICON控制器的工作原理
TRICON 三重化冗余容错控制器是通过三重模件的冗余结构来实现容错的。不论 是部件的硬件故障,还是内部或外部的瞬时故障,系统都能够做到无差错、不 间断控制。
2020/4/13
6
容错技术
容错是 TRICON 控制器最重要的特性,它可以在线识别瞬态和稳态的故障并 进行适当的修正。容错技术提高了控制器 的安全能力和可应用性,使工艺 过程得到控制。 TRICON 控制系统由三个相同的系统通道组成,每个系统通道独立地执行控 制程序,并与其他两个通道并行工作。任何一个分电路故障,该故障的分 电路可被其他两个分电路取代,并可进行在线修复。
B
逻辑与
A
逻辑运算块的运算法则
C
逻辑触发器
逻辑或
E
2020/4/13
D
逻辑非
10
逻辑与
A
AND
C
B
AB=C
逻辑与运算真值表
烷基化装置操作规程(修改版)
第一章工艺技术规程装置概况1.1.1装置简介硫酸烷基化是以催化裂化的液态烃经气体精馏分离出来的C4组分中的异丁烷和丁烯为原料,以89%-98%的硫酸为催化剂,在低温下液相反应生成高辛烷值汽油组分—烷基化油的加工工艺过程。
装置全流程分为反应、制冷、流出物精制和分馏四个部分,其中反应部分主要是在催化剂的作用下,异丁烷和丁烯反应生成烷基化油,制冷部分是在压缩机的作用下,利用反应产物中大量的异丁烷减压汽化吸收热量,维持反应在低温液相下进行,同时为反应系统提供足够的循环冷剂,保证低温进料和反应器的分子比;流出物精制是将反应生成的烷基化油经过酸洗和碱洗,除去烷基化油中的酸性酯类物质,分馏部分主要是将经过精制系统的烷基化油经过脱异丁烷塔、脱正丁烷塔和再蒸馏塔分离出异丁烷、正丁烷和最终产物异辛烷的过程。
装置共有设备95台,其中主要设备包括:STRATCO公司的卧式流出物致冷反应器、制冷压缩机装置的主要特点:采用STRATCO流出物制冷工艺,取代了氨冷技术,消灭了氨泄漏造成的环境污染,节省了制冷剂;利用高位酸沉降罐和反应器构成的乳液循环,改善了反应条件,抑制了副反应的发生,提高了产品质量,降低了硫酸消耗;制冷部分采用外甩冷剂带走系统丙烷工艺,取消了丙烷塔系统,节省了投资,减少了能耗,方便了操作;全装置采用先进的DCS 自控系统,优化了操作,降低了操作强度。
历年大修的改造情况:本烷基化装置始建于1965年,1966年元月正式投产。
为我国第一套烷基化装置,采用立式氨冷反应器进行生产,设计能力为万吨产品/年。
随着石油工业的发展,1984年在原有装置的基础上进行扩建改造。
使生产能力提高到万吨产品/年。
1996年由于引进美国STRATCO公司的卧式流出物致冷反应器而进行的以节能、降耗、扩产为目的的装置改造使烷基化从原有的四十年代工艺水平提高到八十年代初期水平。
改造后的硫酸烷基化与MTBE组成联合装置,采用DCS控制,首期生产能力为万吨产品/年,并预留12万吨产品/年的加工能力,以适应远期的炼厂发展规划。
烷基化装置操作规程(修改版)讲义
第一章工艺技术规程1.1 装置概况1.1.1 装置简介硫酸烷基化是以催化裂化的液态烃经气体精馏分离出来的C4组分中的异丁烷和丁烯为原料,以89%-98%的硫酸为催化剂,在低温下液相反应生成高辛烷值汽油组分—烷基化油的加工工艺过程。
装置全流程分为反应、制冷、流出物精制和分馏四个部分,其中反应部分主要是在催化剂的作用下,异丁烷和丁烯反应生成烷基化油,制冷部分是在压缩机的作用下,利用反应产物中大量的异丁烷减压汽化吸收热量,维持反应在低温液相下进行,同时为反应系统提供足够的循环冷剂,保证低温进料和反应器的分子比;流出物精制是将反应生成的烷基化油经过酸洗和碱洗,除去烷基化油中的酸性酯类物质,分馏部分主要是将经过精制系统的烷基化油经过脱异丁烷塔、脱正丁烷塔和再蒸馏塔分离出异丁烷、正丁烷和最终产物异辛烷的过程。
装置共有设备95台,其中主要设备包括:STRATCO公司的卧式流出物致冷反应器、制冷压缩机装置的主要特点:采用STRATCO流出物制冷工艺,取代了氨冷技术,消灭了氨泄漏造成的环境污染,节省了制冷剂;利用高位酸沉降罐和反应器构成的乳液循环,改善了反应条件,抑制了副反应的发生,提高了产品质量,降低了硫酸消耗;制冷部分采用外甩冷剂带走系统丙烷工艺,取消了丙烷塔系统,节省了投资,减少了能耗,方便了操作;全装置采用先进的DCS自控系统,优化了操作,降低了操作强度。
历年大修的改造情况:本烷基化装置始建于1965年,1966年元月正式投产。
为我国第一套烷基化装置,采用立式氨冷反应器进行生产,设计能力为1.5万吨产品/年。
随着石油工业的发展,1984年在原有装置的基础上进行扩建改造。
使生产能力提高到4.3万吨产品/年。
1996年由于引进美国STRATCO公司的卧式流出物致冷反应器而进行的以节能、降耗、扩产为目的的装置改造使烷基化从原有的四十年代工艺水平提高到八十年代初期水平。
改造后的硫酸烷基化与MTBE组成联合装置,采用DCS控制,首期生产能力为6.5万吨产品/年,并预留12万吨产品/年的加工能力,以适应远期的炼厂发展规划。
烷基化装置操作规程
0.3MPa蒸汽主要用于装置内的管线、机泵和仪表伴热线的热源,一部分是从D-28顶供给的,另一部分来自管网
4)风
本装置由空分供给仪表风与高压仪表风,仪表风进入装置后经过除尘器后,进仪表风缓冲罐(D-24)后分别至装置各个控制阀。
高压仪表风进入装置后,经过除尘器进入高压仪表风缓冲罐D-34后,进装置压缩机控制系统和装置的2个在线仪表房。
以上反应是烷基化过程中希望的主反应,同时还会发生裂化反应、环化反应、聚合反应、歧化反应、自身烷基化反应,形成催化剂复合物及酯的副反应,减少副反应,对烷基化反应过程是极其关键的。
3.产品分馏原理
完成烷基化反应后,须将反应产物进行分离,才能得到目的产品。产品分馏是把反应产物(烷基化油、正丁烷、异丁烷的混合物)用物理的方法,把多组分的混合物进行多次的汽化与冷凝,按产品的沸点范围分割开来,生产出烷基化油、异丁烷、正丁烷、重烷基化油,这一过程是在分馏塔中实现的。
2)3.0MPa蒸汽
3.0MPa蒸汽,进入装置后分2路。一路去T-2底重沸器,出来后进D-30,通过D-30液面就地控制阀后进D-27进行扩容分液,汽相进入装置1.0MPa蒸汽管网再使用,液相进入D-28进行扩容,冷凝水进全厂冷凝水管网,汽相进全厂乏汽管网;另一路去T-3底重沸器,出来后进D-31,通过D-31液面就地控制阀后进D-27进行扩容分液,汽相进入装置1.0MPa蒸汽管网再使用,液相进入D-28进行扩容,冷凝水进全厂冷凝水管网,汽相进全厂乏汽管网。
4.蒸汽
1)1.0MPa蒸汽
由全厂系统供给1.0MPa(表)左右的饱和蒸汽经过压力控制阀进入装置后分为3支:一支去T-1重沸器E-7,出来后进D-29,通过D-29液面就地控制阀后进D-28进行扩容分液,冷凝水进全厂冷凝水管网,汽相进全厂乏汽管网;一支去碱加热器E-3,出来后进D-28进行扩容分液,冷凝水进全厂冷凝水管网,汽相进全厂乏汽管网;还有一支分别进装置的消防汽幕。
烷基化装置工艺流程说明
烷基化装置工艺流程说明本装巻由原料加氢稱制、反应、致冷压缩、流出物精制和产品分憎及化学处理等几部分组成,现分别简述如下:1.原料加氢精制自MTBE装宜来的未反应碳四镉分经凝聚脫水器(104-D-105)脱除游离水后进入碳四原料缓冲罐(104-D-101),碳四憾分由加氢反应器进料泵(104-P-101)抽岀经碳四-反应器进料换热器(104-E-104)换热后,再经反应器进料加热器(104-E-101)加热到反应温度后与来自系统的氢气在静态混合器(104-M-101)中混合,混合后的碳四餾分从加氢反应器(104-R-101)底部进入反应器床层。
加氢反应是放热反应。
随混合碳四带入的硫化物是使催化剂失活的有害杂质。
催化剂失活后可用热氢气吹扫使其活化。
反应后的碳四馅分从加氢反应器顶部岀来与加氢裂化液化气混合。
自液化气双脱装宜过来的加氢裂化液化气进入加氢液化气缓冲罐(104-D-102),加氢裂化液化气由脱轻坯塔进料泵(104-P-102)抽岀与反应器(104-R-101)顶部岀来的碳四馅分混合后进入脱轻炷塔(104-C-101)。
脱轻炷塔(104-C-101)的任务是脱去碳四餾分中的碳三以下的轻组分,同时将二甲陋脱除。
脱轻烧塔是精密分慵的板式塔,塔顶压力控制在l・7\IPa(g)。
塔顶排出的轻组分经脱轻坯塔顶冷凝器(104-E-103A/B)冷凝冷却后,进入脫轻桂塔回流罐(104-D-103)o不凝气经罐顶压控阀(PIC-10401)后进入全厂燃料气管网。
冷凝液由脱轻坯塔回流泵(104-P-103)抽出,一部分做为(104-C-101)顶回流,期一部分作为液化气送岀装置。
塔底抽出的碳四慵分经(104-E-104)与原料换热后再经碳四餾分冷却器(104-E-105)冷至40C进入烷基化部分。
塔底重沸器(104-E-102)采用0. 45MPa蒸汽加热,反应器(104-R-101)进料加热器使用1・OMPa蒸汽加热,凝结水都送至凝结水回收罐(104-D-304)回收。
装置联锁操作逻辑说明(简版)
蜡油加氢裂化装置联锁操作逻辑说明中海石油炼化有限责任公司惠州炼油分公司运行二部2011年12月10日【1】D102防溢流联锁联锁条件:1高速泄压2原料缓冲罐D102液位LT10201/2/3高高82.62%,(三取二)联锁动作:1关闭切断阀XV10101;2关闭D102氮封调节阀PV10201A(去自动反冲洗污油罐的阀门打开),同时压控PICA10201输出为50,压控自动切换至手动;3液位控制器LIC10201输出为0,切换到手动。
【2】P102出口防窜压联锁条件:1原料缓冲罐D102液位LT10201/2/3低低15%,(三取二)2 P102出口总管流量FT10204/5/6低低88,500kg/h,(三取二)3进料流控阀FV10301前后压差PDT10301/2/3低低0.02MPa,(三选二)4进料流控阀FV12401前后压差PDT12401/2/3低低0.02MPa,(三选二)5低速泄压6高速泄压联锁动作:1关闭P102出口总管切断阀XV102012关闭流控阀FV10301B/12401B和副线阀FV10301A/12401A,流控FIC10301/12401输出为0,切换至手动3高分入口温控TIC10302/12402切换成手动,输出锁定4将R101A/B燃料气管线上的调节阀PV12301/12801开度调整最小,燃料气调节器FIC12301/12801输出为零,切换至手动,加热炉最小火力5启动P102停泵联锁US10207,关闭PT101入口切断阀XV10202,停液力透平6迅速自动切换冷高分至冷低分液位开关LHS11001A,投用液位调节阀LV11001B 【3】P102及PT101停运联锁条件:D105液位LT10201/2/3低低低5%,(三取二)联锁动作1:关闭PT101入口切断阀XV10202和液控阀LV11001A,液位输出为零,切换至手动。
联锁条件:1 PT101转速 SI77101A/B达到3150rpm报警,如仍不能恢复正常2液力透平自身故障3 P102出口防窜压4 P102停泵联锁动作2:1将PT101与P102连轴节脱开,关闭PT101进口切断阀XV102022切换投用D105至D106液位调节阀至LV11001B。
烷基化装置设备操作规程
烷基化装置设备操作规程第一节大型专用设备操作规程1 压缩机的开停与正常操作烷基化制冷压缩机采用电机驱动,液力耦合器调速,压缩机轴封选用串联式干气密封。
试运前机组各设备,阀门,润滑油系统,与机组相关的工艺管道,电器,仪表控制系统以及水、电、汽、风等公用工程均安装完毕,并有齐全准确的校验记录和相关检修资料,为检验机组安装质量并保证机组能够顺利开车,制定方案如下:1.1油路系统冲洗,循环及干气密封系统的吹扫1.1.1改好润滑油系统流程。
●关闭所有高点,低点放空阀。
W [ ]●打开高位油箱充油阀及其付线阀。
W [ ]●关闭母管油压控制阀。
W [ ]●过滤器,冷却器各走一组。
W [ ]●全开回油箱油压控制阀。
W [ ]●打开油泵出入口阀门。
W [ ]●泵自启动联锁开关置于手动位置。
W [ ]●启动油泵进行油循环。
W [ ]●逐渐关闭回油箱控制阀。
W [ ]●打开母管油压控制阀。
W [ ]●确认调整油压至要求的指标。
W [ ]1.1.2.油系统冲洗循环●在建立循环时,应该检查法兰及各连接部位有无泄漏,对泄漏部位应该及时处理。
W [ ]●如系统运行正常,主备泵可交替运转,W [ ]●确认和检验机泵的运转状况。
W [ ]●冷却器和过滤器,阀门在冲洗过程中要定期开关和切换.W [ ]●高位油箱可在间隙时间内自流冲洗。
W [ ]●冲洗过程中,应该根据过滤器差压变化情况,清洗过滤器滤网。
W [ ]●在油箱最低处取样分析合格。
W [ ]●油冲洗达到要求时,将冲洗油过滤抽出。
W [ ]●将油箱清理干净,再用滤油机把油倒入油箱。
W [ ]1.1.3液力耦合器油系统冲洗,循环1.2 静态调试启动压缩机润滑油泵建立压缩机油系统的循环。
调整润滑油的压力润滑油母管 0.25 Mpa,各轴承进油压力达到要求的压力和流量。
压缩机前轴承 0.18 Mpa压缩机后轴承 0.18 Mpa压缩机推力轴承 0.18 Mpa齿轮箱 0.15 Mpa电机前轴承 0.07-0.09 Mpa电机后轴承 0.07-0.09 Mpa各回油管线见回油,油流量正常。
化工高危工艺装置自动控制和安全联锁范本(2篇)
化工高危工艺装置自动控制和安全联锁范本一、引言高危工艺装置是指在生产过程中存在较大的安全风险和事故隐患的装置。
为了确保高危工艺装置的安全运行,自动控制和安全联锁系统起到了重要的作用。
本文将介绍化工高危工艺装置自动控制和安全联锁的范本,包括控制策略、信号传递和错误处理等方面。
二、控制策略1. 控制策略的目标是实现装置的稳定运行和安全控制。
其中,稳定运行是指装置在正常工况下能够持续工作,而安全控制是指在出现异常情况时能够快速响应,并采取相应措施保证装置的安全。
2. 控制策略的核心是设定控制目标和实施控制动作。
通过对装置的动态特性进行建模和分析,可以确定控制目标,并设计相应的控制算法。
控制动作可以通过调节装置的参数或者改变工艺条件来实现。
3. 在高危工艺装置中,控制策略应考虑到紧急情况下的应急控制。
例如,当装置发生故障或者出现异常情况时,应采取紧急控制措施,以确保装置的安全。
三、信号传递1. 信号传递是指将传感器采集到的信号传递给控制器,并将控制器的输出信号传递给执行器。
在高危工艺装置中,信号传递的可靠性非常重要,因为在紧急情况下错误的信号传递可能导致严重后果。
2. 信号传递应采用多重冗余的方式来确保其可靠性。
例如,可以使用多个传感器进行信号采集,并通过冗余的通信线路传递给控制器。
控制器的输出信号也应通过多个通信线路传递给执行器,以确保信号的正确传递。
3. 在信号传递中,还应采用合适的通信协议和传输方式。
通信协议应具备一定的容错能力,能够检测和纠正传输过程中可能出现的错误。
传输方式应选择可靠、稳定的方式,如有线传输或者光纤传输。
四、错误处理1. 在高危工艺装置中,错误处理是确保装置安全的重要环节。
错误处理包括故障检测、故障诊断和故障恢复等步骤。
2. 故障检测是指对装置的各个部件进行监测,一旦发现故障或异常情况,立即采取相应的措施。
例如,可以设置故障检测器对传感器的输出信号进行监测,一旦发现异常,立即发出警报,并采取相应的补救措施。
化工高危工艺装置自动控制和安全联锁范本
化工高危工艺装置自动控制和安全联锁范本一、引言高危工艺装置是指在生产过程中存在较大的安全风险和事故隐患的装置。
为了确保高危工艺装置的安全运行,自动控制和安全联锁系统起到了重要的作用。
本文将介绍化工高危工艺装置自动控制和安全联锁的范本,包括控制策略、信号传递和错误处理等方面。
二、控制策略1. 控制策略的目标是实现装置的稳定运行和安全控制。
其中,稳定运行是指装置在正常工况下能够持续工作,而安全控制是指在出现异常情况时能够快速响应,并采取相应措施保证装置的安全。
2. 控制策略的核心是设定控制目标和实施控制动作。
通过对装置的动态特性进行建模和分析,可以确定控制目标,并设计相应的控制算法。
控制动作可以通过调节装置的参数或者改变工艺条件来实现。
3. 在高危工艺装置中,控制策略应考虑到紧急情况下的应急控制。
例如,当装置发生故障或者出现异常情况时,应采取紧急控制措施,以确保装置的安全。
三、信号传递1. 信号传递是指将传感器采集到的信号传递给控制器,并将控制器的输出信号传递给执行器。
在高危工艺装置中,信号传递的可靠性非常重要,因为在紧急情况下错误的信号传递可能导致严重后果。
2. 信号传递应采用多重冗余的方式来确保其可靠性。
例如,可以使用多个传感器进行信号采集,并通过冗余的通信线路传递给控制器。
控制器的输出信号也应通过多个通信线路传递给执行器,以确保信号的正确传递。
3. 在信号传递中,还应采用合适的通信协议和传输方式。
通信协议应具备一定的容错能力,能够检测和纠正传输过程中可能出现的错误。
传输方式应选择可靠、稳定的方式,如有线传输或者光纤传输。
四、错误处理1. 在高危工艺装置中,错误处理是确保装置安全的重要环节。
错误处理包括故障检测、故障诊断和故障恢复等步骤。
2. 故障检测是指对装置的各个部件进行监测,一旦发现故障或异常情况,立即采取相应的措施。
例如,可以设置故障检测器对传感器的输出信号进行监测,一旦发现异常,立即发出警报,并采取相应的补救措施。
烷基化装置生产工艺讲义.
设备名称
苯汽提塔塔顶泵 苯汽提塔塔底泵 脱烷烃汽提塔塔顶泵 脱烷烃汽提塔塔底泵 冲洗液泵 再蒸塔塔顶泵 再蒸塔塔底泵 回收塔塔底泵 真空泵(干式) 污水泵 芳烃回收泵 回收塔塔顶泵
烷基化装置工艺流程说明
• 一、反应器系统
• a.反应系统
• 从脱氢装置来的烷烯烃先经HF酸汽提塔进料换热 器E-1203A/B壳程降温后,烷烯烃与新鲜苯和循 环苯混合物料合在一起经烃进料冷却器E-1204壳 程冷却,冷却后的物料与含酸苯进行混合一起进 入静态混合器M-1202;之后此股物料再与循环酸 与含苯酸混合物料进行混合后进入下一段混合器 M-1201,这后再经过联合进料冷却器E-1205管程 冷却后进入烷基化反应器T-1202。
发生强烈反应,其蒸汽比空气重,能在较低处扩散到很远的地方,遇明火会 引起回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。流速过快,容 易产生和积聚静电。
烷基化装置物料物化性质
• 4、氢氧化钾: • 分子式 KOH • a.物化性质: • 外观及性壮:易潮解白色固体 • 熔点:360℃ • 沸点:1320℃ • 相对密度: • 禁忌物/禁忌:水、潮湿、金属、酸、易燃物、易爆物、
<3 <200
室温下饱和 2(最大)
烷基化装置成品指标
• 工业烷基苯指标
项目
优等品
指标 一等品
色泽/Hazen ≤
10
20
折光指数nD20
1.4820~ 1.4850
1.4820~ 1.4870
密度(20℃)/g/mL)
0.855~0.870
溴价/(gBr/100g) ≤
0.02
0.03
可磺化物/ % ≥
烷基化装置工艺原理
• 装置的分馏原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烷基化装置工艺联锁逻辑控制说明
1.装置工艺联锁简介及联锁明细表
1.1装置工艺联锁简介
烷基化装置配备了一系列联锁,在出现可能损坏设备或危及人身安全的情况时使装置停车。
装置操作人员应当完全掌握每一种联锁才能消除由于联锁引起的停车故障。
烷基化装置联锁系统主要包括:停P-205A/B、P-206A/B、P-207A/B、P-208A/B、P-214A/B联锁逻辑;开104-XV-22005联锁、关闭104-XV-22304切断阀联锁、致冷压缩机104-K-201停机联锁;关104-XV-10101 、停104-P-101B、停104-P-101B联锁;关104-XV-10301 、停104-P-102B、104-P-102B;停104-P-201A/B、关104-HV20601;停104-P-202A/B、关104-HV20602;停104-P-211A/B、关104-HV21701联锁;停104-P-210A/B、关104-HV21802联锁。
1.2联锁明细表
104单元装置联锁明细表
1.3.联锁操作说明
2.机组联锁的逻辑控制说明
2.1机组联锁的逻辑控制说明
烷基化装置致冷压缩机配备了一系列联锁系统,来确保设备及人身安全。
操作人员应当完全掌握每一种联锁才能消除由于联锁引起的停车故障。
烷基化装置致冷压缩机联锁系统主
要包括:允许启动压缩机联锁;致冷压缩机润滑油备用泵自动启动;停机、开防喘振阀FV50101/50102联锁。
正常生产时需将联锁旁路开关切到“联锁”位置。