差式扫描量热法DSC

合集下载

12差示扫描量热法(DSC)

12差示扫描量热法(DSC)

2.热流型DSC
与DTA仪器十分相似, 是一种定量的DTA仪器。
不同之处在于试样与参 比物托架下,置一电热片, 加热器在程序控制下对加 热块加热,其热量通过电 热片同时对试样和参比物 加热,使之受热均匀。要 求 试 样 和 参 比 物 温 差 ΔT 与试样和参比物间热流量 差成正比例关系。
DSC曲线
100%
ΔHf*:100%结晶度的熔融热焓(对于每一种高聚物来说, ΔHf* 是定值,其值可从表中查得,也可通过外推法求的。
13.4 热分析中的联用技术
单一的热分析技术,如TG、DTA或 DSC等,难以明确表征和解释物质 的受热行为。
如:TG只能反映物质受热过程中质 量的变化,而其它性质,如热学等 性质就无法得知有无变化和变化的 情况。
DSC常与DTA组装在一起,用 更换样品杆和增加功率补偿单元 达到既可作DSC,又可作DTA。
13.3.2 影响DSC的因素
DSC的影响因素与DTA基本上相类 似 , 由 于 DSC 用 于 定 量 测 试 , 因 此 实验因素的影响显得更重要,其主 要的影响因素大致有以下几方面:
1.实验条件:程序升温速率Φ,气氛 2.试样特性:试样用量、粒度、装填
温度和熔融热焓偏低。
但是当结晶的试样研磨成细颗粒时,往 往由于晶体结构的歪曲和结晶度的下降 也可导致相类似的结果。
对于带静电的粉状试样,由于粉末颗粒 间的静电引力使粉状形成聚集体,也会 引起熔融热焓变大。
3)试样的几何形状
在高聚物的研究中,发现试样几何 形状的影响十分明显。对于高聚物, 为了获得比较精确的峰温值,应该 增大试样与试样盘的接触面积,减 少试样的厚度并采用慢的升温速率。
2.无论试样产生任何热效应,试样和参 比物都处于动态零位平衡状态,即二者 之间的温度差T等于0。

DSC 差示扫描量热法

DSC 差示扫描量热法

DSC 差示扫描量热法差示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。

该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。

差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。

DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。

换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化关系。

如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。

物质在温度变化过程中,往往伴随着微观结构和宏观物理,化学等性质的变化。

宏观上的物理,化学性质的变化通常与物质的组成和微观结构相关联。

通过测量和分析物质在加热或冷却过程中的物理、化学性质的变化,可以对物质进行定性,定量分析,以帮助我们进行物质的鉴定,为新材料的研究和开发提供热性能数据和结构信息。

在差热分析中当试样发生热效应时,试样本身的升温速度是非线性的。

以吸热反应为例,试样开始反应后的升温速度会大幅度落后于程序控制的升温速度,甚至发生不升温或降温的现象;待反应结束时,试样升温速度又会高于程序控制的升温速度,逐渐跟上程序控制温度,升温速度始终处于变化中。

而且在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。

因此,到目前为止的大部分差热分析技术还不能进行定量分析工作,只能进行定性或半定量的分析工作,难以获得变化过程中的试样温度和反应动力学的数据。

差示扫描量热法(DSC)

差示扫描量热法(DSC)
2 设定实验条件
包括升温、降温速率和温度范围等,根据反应条件进行调整。
3 记录数据
自动化记录实验数据,并生成相应的曲线图像和热力学参数。
应用领域
差示扫描量热法广泛应用于化学、药品、食品、材料等领域,用于研究反应动力学、相变、热稳定 性、材料性能等问题。
1
化学领域
研究化学反应热力学、动力学、催化作用、聚合反应等。
吸热反应
反应过程中吸收热量,导致温 度下降,被量热计测量为正信 号。
基线
参比物和样品在无反应条件下 的基线,用于校正信号。
仪器和操作流程
差示扫描量热仪由样品盒、参比盒、控温系统、传感器和计算机组成。操作流程包括样品制备、 调试仪器、设定实验条件、记录数据、数据分析。
1 样品制备
样品必须纯净、均匀、充分干燥,以确保实验结果准确可靠。
2
材料领域
研究材料的热稳定性、热膨胀系数、晶体相变等。
3
药品领域
研究药品的热稳定性、储存条件、配方优化、反应动力学等。
优点和局限性
差示扫描量热法相比其他热学技术具有高灵敏度、快速、高精度、不需样品分离等优点,但也存在信号 干扰、噪声较大、基线不稳定等局限性。
优点
高灵敏度、高精度、
局限性
信号干扰、噪声较大、基线不稳定、不能确 定速率控制步骤。
案例研究
差示扫描量热仪可以用来研究化合物溶解和结晶过程、聚合反应、材料热稳定性等问题。
化合物溶解
结晶反应
研究葡萄糖在水中的溶解过程, 获得了其热力学参数。
观察钠乙酰丙酸盐的晶体化过 程,得到了其热力学曲线。
聚合反应
探究丙烯酸甲酯聚合反应的热 效应及反应动力学参数。
差示扫描量热法(DSC)

差示扫描量热法

差示扫描量热法
当反应完成时,在温度TC处,d/dt=0,如果忽略(3-17)式中的 第一、第二项,于是:
T C CS CS dT C
KT
dt
(3-26),积分得:
dT C
KT dt
T T C
t CS CS
T

T
exp
CS
KT CS
t
根据Kirchoff热功当量定律,可得下列方程式:
T TS T TS TR TS is
(3-7)
R
Rg
Rb
T TR T TR TR TS iR
(3-8)
R
Rg
Rb
式中:T——炉温;TS——试样温度;TR——参 比物温度。 (3-7)和(3-8)式相减并设T=TR-TS,即得
KT
KT dt KT dt
(3-15)
(3-15)式给出了初始瞬时 的热流DSC曲线。 根据(3-15)式,可推断出 当 KT/KT=0 和 CS=CR 时 , T=0 。 这 说 明 在 热 流 型 DSC 的 构 造 中 KT/KT 是 很 重 要 的 , 为 了获得小的KT/KT值, 结构对称性必须很高, 温度滞后(Tf-T)应该很小, 炉 温 要 均 匀 且 KT 必 须 很 大。
T T
K 4SR T T T K 5SR T 4 T T 4
(3-11)
dT
CR dt
K1R Tf T

K 2R
T
4 f
T
4
K 3R Tf T K 4SR T T T K 5SR T T 4 T 4
(1)炉壁传导到试样和参比物的热流分别为i1S和i1R,传 热系数分别为K1S和K1R;

差示扫描量热法(DSC)

差示扫描量热法(DSC)

DTA存在的两个缺点: 1 )试样在产生热效应时,升温速率是非线性 的,从而使校正系数 K值变化,难以进行定量; 2 )试样产生热效应时,由于与参比物、环境 的温度有较大差异,三者之间会发生热交换, 降低了对热效应测量的灵敏度和精确度。 →使得差热技术难以进行定量分析,只能进行定 性或半定量的分析工作。
热 流
温度→
2. 气氛的影响
气氛的成分对DSC曲线的影响很大,可以被氧化 的试样在空气或氧气氛中会有很大的氧化放热峰, 在氮气或其它惰性气体中就没有氧化峰了。 对于不涉及气相的物理变化,如晶型转变、熔融、 结晶等变化,转变前后体积基本不变或变化不大, 则压力对转变温度的影响很小,DSC峰温基本不变; 但对于放出或消耗气体的化学反应或物理变化,压 力对平的温度有明显的影响,则DSC峰温有较大的 变化,如热分解、升华、汽化、氧比、氢还原等。
5
DSC基本结构
DSC基本原理
将有物相变化的样品和在所测定温度范围内不发生相 变且没有任何热效应产生的参比物,在相同的条件下进行 等温加热或冷却,当样品发生相变时,在样品和参比物之 间就产生一个温度差。放置于它们下面的一组差示热电偶 即产生温差电势UΔT,经差热放大器放大后送入功率补偿 放大器,功率补偿放大器自动调节补偿加热丝的电流,使 样品和参比物之间温差趋于零,两者温度始终维持相同。 此补偿热量即为样品的热效应,以电功率形式显示于记录 仪上。
功率补偿型(Power Compensation) 在样品和参比物始终保持相同温度的条件下,测定 为满足此条件样品和参比物两端所需的能量差,并 直接作为信号Q(热量差)输出。 热流型(Heat Flux) 在给予样品和参比物相同的功率下,测定样品和参 比物两端的温差T,然后根据热流方程,将T(温 差)换算成Q(热量差)作为信号的输出。

差示扫描量热分析(DSC)

差示扫描量热分析(DSC)

K=ΔHWs/AR
量程校正 K值测定
在铟的记录纸上划出一块大 小适当的长方形面积,如取高度 为记录纸的横向全分度的3/10即 三大格,长度为半分钟走纸距离, 再根据热量量程和纸速将长方形
面积转化成铟的ΔH,
按K=ΔHWs/AR计算校正系
数K’。若量程标度已校正好,则K’ 与铟的文献值计算的K应相等。
差示扫描量热分析法
• DTA面临的问题
定性分析,灵敏度不高
• 差示扫描量热分析法(DSC)
Differential Scaning Calarmeutry
——通过对试样因热效应而发生的能量变化进行及时补 偿,保持试样与参比物之间温度始终保持相同,无温差、 无热传递,使热损失小,检测信号大。灵敏度和精度大 有提高,可进行定量分析。
若量程标度有误差,则K’与按 文献值计算的K不等,这时的实 际量程标度应等于K/K’R。
DSC的影响因素
样品因素: 试样量 试样粒度
试验条件: 升温速率,气氛
主要操作参数:试验量,升温速率和气氛
DSC曲线的数据处理方法
称量法: 误差 2%以内。 数格法: 误差 2%—4%。 用求积仪:误差 4%。 计算机: 误差 0.5%。
1、差示扫描量热分析原理 (1)功率补偿型差示扫描量热法
通过对试样因热效应而发生的能量变化进行及时补偿,保 持试样与参比物之间温度始终保持相同,无温差、无热传 递,使热损失小,检测信号大。零点平衡原理
(2) 热流式差示扫描量热仪
通过测量加热过程中试样热流量达到DSC分析的 目的,试样和参比物仍存在温度差。 采用差热分析的原理来进行量热分析。
比热测定
dH / dt mC p dT / dt 式中,为热流速率(J∙s-1);m为样品质量(g);CP为比

15.-实验二-差示扫描量热法(DSC)

15.-实验二-差示扫描量热法(DSC)

实验二差示扫描量热法(DSC)在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。

试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。

试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。

试样对热敏感的变化能反映在差热曲线上。

发生的热效大致可归纳为:(1)发生吸热反应。

结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。

(2)发生放热反应。

气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。

(3)发生放热或吸热反应。

结晶形态转变、化学分解、氧化还原反应、固态反应等。

用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。

由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。

在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。

简称DSC(Differential Scanning Calorimetry)。

因此DSC直接反映试样在转变时的热量变化,便于定量测定。

DTA、DSC广泛应用于:(1)研究聚合物相转变,测定结晶温度Tc 、熔点Tm、结晶度XD。

结晶动力学参数。

(2)测定玻璃化转变温度Tg。

(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。

一、目的要求:1.了解DTA、DSC的原理。

2.掌握用DSC测定聚合物的Tg 、Tc、Tm、XD。

二、基本原理:1.DTA图(11-1)是DTA的示意图。

通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。

差示扫描量热法(DSC)【精品-】

差示扫描量热法(DSC)【精品-】

3)试样的几何形状
在高聚物的研究中,发现试样几何形状 的影响十分明显。对于高聚物,为了获 得比较精确的峰温值,应该增大试样与 试样盘的接触面积,减少试样的厚度并 采用慢的升温速率。
6.4.3 DSC曲线峰面积的确定及仪器 校正
➢ 不管是DTA还是DSC对试样进行测定的过程中, 试样发生热效应后,其导热系数、密度、比热 等性质都会有变化。使曲线难以回到原来的基 线,形成各种峰形。如何正确选取不同峰形的 峰面积,对定量分析来说是十分重要的。
✓1.实验条件:程序升温速率Φ,气氛 ✓2.试样特性:试样用量、粒度、装填情况、
试样的稀释等。
1.实验条件的影响 (1).升温速率Φ
主要影响DSC曲线的峰温和峰形, 一般Φ越大,峰温越高,峰形越大和 越尖锐。
实 际 中 , 升 温 速 率 Φ 的 影 响 是 很 复 杂的,对温度的影响在很大程度上 与试样的种类和转变的类型密切相 关。
峰向上表示吸热
向下表示放热
在整个表观上,除 纵坐标轴的单位之 外,DSC曲线看上 去非常像DTA曲线。 像在DTA的情形一 样,DSC曲线峰包 围的面积正比于热 焓的变化。
6.4.2 影响DSC的因素
DSC的影响因素与DTA基本上相类似, 由于DSC用于定量测试,因此实验因素 的影响显得更重要,其主要的影响因素 大致有以下几方面:
➢1)试样在产生热效应时,升温速率是非 线性的,从而使校正系数K值变化,难以 进行定量;
➢2)试样产生热效应时,由于与参比物、 环境的温度有较大差异,三者之间会发 生热交换,降低了对热效应测量的灵敏 度和精确度。
→使得差热技术难以进行定量分析,只能 进行定性或半定量的分析工作。
基本原理
❖为了克服差热缺点,发展了DSC。该法 对试样产生的热效应能及时得到应有的 补偿,使得试样与参比物之间无温差、 无热交换,试样升温速度始终跟随炉温 线性升温,保证了校正系数K值恒定。 测量灵敏度和精度大有提高。

差示扫描量热法dsc起始温度热事件

差示扫描量热法dsc起始温度热事件

差示扫描量热法dsc起始温度热事件差示扫描量热法(DSC)是一种用于研究材料热性能的分析技术。

它通过比较样品与参考物质之间的热力学性质差异来研究材料的热行为。

DSC可以用来研究相变、热分解、熔融和玻璃化等热事件。

在DSC 实验中,常常需要测定样品的起始温度、终止温度和热事件峰值等参数。

本文将介绍DSC的原理和应用,以及如何测定样品的起始温度和热事件。

一、DSC的原理1. DSC是如何工作的DSC仪器包括一个样品盒和一个参考盒,它们分别装入样品和参考物质。

在实验过程中,样品和参考物质被置于恒温设备中,通过加热或冷却来改变温度。

当样品和参考物质发生热事件时,它们吸收或释放热量,导致样品和参考物质的温度发生变化。

DSC测定的是样品和参考物质之间的温度差异,从而得到材料的热学性质。

2. DSC曲线的含义DSC曲线通常包括热流曲线和温度曲线。

热流曲线是用来表示样品和参考物质之间的热量变化,而温度曲线则是表示样品和参考物质的温度变化。

根据这两个曲线,我们可以得到材料的热容、相变温度、热分解温度等重要信息。

二、DSC的应用1.材料研究DSC广泛应用于材料研究领域,可以用来研究材料的热性能和热行为。

通过DSC实验,科学家可以了解材料的热容、热分解温度、熔融温度等重要参数,为材料的设计和改进提供重要参考。

2.药物分析在制药工业中,DSC也被广泛应用于药物的研究和开发。

通过DSC 实验,可以了解药物的热降解温度、热吸收量等参数,为药物的稳定性和保存条件提供重要参考。

三、测定样品的起始温度和热事件1.测定起始温度测定样品的起始温度是DSC实验的重要步骤之一。

起始温度是指样品发生热事件的温度,通常可以通过观察DSC曲线的谷底来确定。

在谷底处,样品和参考物质的热量变化最为显著,可以用来确定起始温度。

2.测定热事件除了测定起始温度外,还需要测定样品的热事件。

热事件是指样品发生热分解、相变、熔融等过程,通常可以通过观察DSC曲线的峰值来确定。

差示扫描量热法 dsc 起始温度 热事件

差示扫描量热法 dsc 起始温度 热事件

差示扫描量热法 dsc 起始温度热事件差示扫描量热法(DSC)是一种广泛应用于材料科学领域的实验技术,用于研究材料在不同温度下的热性质变化。

起始温度是指在DSC实验中,样品发生热事件的温度起点。

热事件则是指在DSC曲线上观察到的吸热或放热现象。

本文将围绕差示扫描量热法的原理、应用、数据分析以及起始温度和热事件等方面展开深入探讨。

首先,差示扫描量热法是通过比较样品和参考物体在相同条件下的热量变化来研究样品的热性质。

在实验过程中,样品和参考物体分别放置在两个独立的量热杯中,然后通过控制加热速率和测量样品和参考物体的温度来记录热量变化。

当样品中发生物理或化学变化时,DSC曲线上就会出现峰值或谷底,代表着热事件的发生。

其次,DSC技术在材料科学领域有着广泛的应用。

通过DSC实验可以研究材料的熔融行为、晶型转变、玻璃化转变等热性质变化。

同时,DSC还可以用于研究反应动力学、相变热、热容等热力学参数,为材料的设计和改进提供重要参考。

在进行DSC实验时,对起始温度的准确测定至关重要。

起始温度可以反映样品发生热事件的温度范围,并且与样品的热稳定性和热活性密切相关。

通常情况下,起始温度通过观察DSC曲线上的峰值或谷底来确定,但有时也需要结合其他实验数据进行综合分析。

另外,热事件的性质和特征对于理解材料的性能和结构具有重要意义。

吸热峰通常代表着材料的熔融或晶型转变,而放热峰则可能与化学反应或玻璃化转变有关。

通过分析热事件的峰形、峰高、积分面积等参数,可以揭示材料内部的微观过程,为材料性能的改进和调控提供指导。

让我们总结一下本文的重点,我们可以发现,差示扫描量热法是一种强大的实验技术,广泛应用于材料研究领域。

通过准确测定起始温度和分析热事件,可以深入了解材料的热性质变化及其影响因素,为材料设计和性能优化提供重要参考。

未来,随着科学技术的不断发展,DSC技术将在材料研究和工业生产中发挥更大的作用,为新材料的开发和创新提供支持和保障。

dsc差示扫描量热法

dsc差示扫描量热法

dsc差示扫描量热法
"DSC" 代表差示扫描量热法(Differential Scanning Calorimetry),是一种热分析技术,用于研究材料的热性质。

差示扫描量热法通过测量样品与参考样品之间的热量差异,提供关于材料的热力学和热动力学性质的信息。

具体来说,DSC 在实验中通常会有一个样品和一个相同条件下的参考样品。

这两者都受到相同的温度程序控制。

当样品经历物理或化学变化时,释放或吸收的热量会导致样品和参考样品之间的温度差异。

这个温度差异通过传感器测量,从而得到与温度的关联的热量信号。

以下是DSC 在研究材料性质时的一些应用:
1.相变研究:DSC 可用于研究材料的相变,如固相到液相的熔
化、液相到气相的汽化,以及反应过程中的热效应。

2.玻璃化转变:DSC 可用于研究玻璃化转变,即非晶态到玻璃态
的过渡,提供关于材料的玻璃化温度和玻璃化热的信息。

3.聚合物研究:DSC 可用于分析聚合物的热性质,如熔化、结晶、
玻璃化等,有助于了解聚合物的热稳定性和加工性能。

4.药物和生物材料研究:DSC 在药物研发和生物材料研究中也
有广泛应用,用于研究药物的热性质、生物分子的相互作用等。

总体而言,DSC 是一种强大的实验工具,可提供关于材料的热性质、相变和反应的定量和定性信息。

差示扫描量热法

差示扫描量热法

差示扫描量热法
差示扫描量热法(DSC)是一种用于确定受控温度范围内被测样品与参考样品之间热流率差异的技术。

该分析过程是在一个封闭的系统中实现的,该封闭系统与周围环境之间通过边界隔离,只有热量和能量可以流动,而质量不能通过边界流动。

差示扫描量热法可以在恒定压力或恒定体积下进行,这使分析人员可以监测由所研究的反应引起的温度变化。

差示扫描量热法。

DSC常用于:1,获取未知材料的性质和成分信息;2,研究样品纯度和确认成分分析。

同时,DSC在食品和制药行业中也很流行,用于表征和微调某些性质;大分子的稳定性,折叠或展开信息也可以通过DSC实验测量。

差示扫描量热法可应用于:
1,相变分析。

通过测量焓随温度的变化来确定熔点、结晶点和相变;
2,玻璃化温度测量。

用高分辨率量热法检测玻璃化转变温度(Tg);3,比热容的测量。

用蓝宝石标准测定固体和液体的Cp(比热容);4,化学反应焓的测定。

测定化学反应的吸热和放热焓ΔH;
5,热、氧化稳定性的测定。

测定各种气体环境和不同压力下的氧化诱导时间。

差示扫描量热法DSC测试方法

差示扫描量热法DSC测试方法
差示扫描量热法
( Differential Scanning Calorimetry, DSC)
二、 DSC的基本原理
差示扫描量热仪待测的热量几乎全部是由电能来补偿的。
这类DSC有各自独立 的铂-铱合金微电炉
铂电阻温度计Biblioteka 铂丝加热电阻平均温度控制回路: 保证试样和参比物的 温度按程序控温速率 升、降温。记录升、 降温情况。
2.主要影响因素
(1) 样品 样品量:一般用量为5---10mg (10---20mg) 样品量少,分辨率高,但灵敏度低,峰温偏低。 样品量多,分辨率低,但灵敏度高,峰温偏高。
(2) 升,降温速度 一般的升,降温速度范围为5----20 ℃/min
最常用的为10 ℃/min
不同升降温速度测得的数据不具 可比性!!!
补偿回路: 试样吸、放热与参比物产 生温差时及时进行功率补 偿,使ΔT→0,并记录补偿 的情况,即维持ΔT→0所 需要的能量差ΔW。
反应或转变热:
DSC仪器(上海CDR-34P型) 同时兼备热流型和功补型的特点。
(1)保留均温块结构,以保持基线稳定和高灵敏度。 (2)配置功率补偿器,以便获得高分辨率。
Heat
Tg
Flow Start up
Transient
Ordering Process
Tm
Cold
DH
Crystallization
Curing
Degradation
Temperature
五、数据处理及实验报告要求
Tg= Tc= Tm= ΔH= fc= ΔH/ ΔH* ΔH*---完全结晶的熔融热
上海CDR-34P型
三、DSC曲线及其影响因素
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以温度(T)为横坐 标,即dH/dt-t(或T)曲线。 曲线离开基线的位移即代表 样品吸热或放热的速率 (mJ·s-1),而曲线中峰或 谷包围的面积即代表热量的 变化。 因而差示扫描量热法可以直 接测量样品在发生物理或化 学变化时的热效应。

示差扫描量热法

示差扫描量热法

示差扫描量热法
示差扫描量热法(Differential Scanning Calorimetry,DSC)是一种利用固体、液体或气态样品随着温度变化所产生的热力学性质变化进行测试和分析的技术。

该方法利用示差式扫描量热计(Differential Scanning Calorimeter)测量试样与基准的热流差值随温度变化的情况,从而获得样品在升温或降温过程中的热反应特性。

具体地,DSC在实验中,通常会将试样和基准置于两个独立的炉腔中,随着温度的变化逐步加热或冷却。

测量过程中,试样和基准分别接收到不同的能量流,差值就称为示差热流信号,通过这个信号,我们可以分析得到试样的热反应情况,如熔化、结晶、玻璃化、聚合等物理化学过程以及与空气或其他气体发生反应的物质。

可以根据试样的变化以及热反应等性质解释得到样品本身的特性、纯度等信息。

DSC技术广泛应用于化学制品、医药、食品等领域,它具有操作简便、测试精度高等优点,同时可以提供大量有用的热学数据,为高分子材料、金属材料、药物、食品等领域的研究和应用提供了强有力的支持。

差示扫描量热仪(DSC

差示扫描量热仪(DSC

DSC分析数据解读
通过分析DSC实验数据中的峰形、面积和位置等参数,可以了解样品的热性质、相变特性和热反应过程。
DSC可能出现的问题及解决方法
1 基线漂移
可能由于采样器漂移或环境干扰导致。检查采样器和环境条件,进行校准。
2 峰形模糊
可能由于样品蒸发、溶解或降解导致。确定样品含水量,调整实验条件。
DSC实验操作步骤
1
加载样品和参比物
2
将样品和参比物加载到DSC中,并确保样
品和参比物质量相近。
3

运行实验
4
启动DSC,开始记录样品和参比物之间的
热量差以及温度变化。
5
准备样品
选择合适的样品,进行样品制备和处理。
设定实验参数
根据实验要求设定温度范围、升温速率 和记录时间等实验参数。
数据分析
通过分析实验数据,研究样品的热性质 和热反应过程。
DSC利用热电偶测量样品和参比物在相同温度下的温差,通过控温系统和散热装置使它们保持在相同温度,并 测量样品和参比物之间的热量差。
主要应用领域
材料研究
通过分析物质的相变、热稳定性和热性能,为材料研究提供重要数据。
生物医药
用于研究药物的热效应、相变特性和稳定性,以提高药物的质量和稳定性。
化学反应
通过分析化学反应中的热变化,了解反应动力学和热力学参数,为化学工艺提供指导。
差示扫描量热仪(DSC)
差示扫描量热仪(DSC)是一种广泛应用于科学研究和工业生产中的热分析仪器, 用于研究材料的热性质和热反应过程。
差示扫描量热仪(DSC)简介
差示扫描量热仪(DSC)是一种热分析仪器,能够测量物质在加热或冷却过程中释放或吸收的热量变化,并通过 这些数据了解物质的热力学性质。

差示扫描量热仪(DSC

差示扫描量热仪(DSC
差示扫描量热仪(DSC)
目录
CONTENTS
• DSC基本原理 • DSC实验操作 • DSC实验结果解读 • DSC实验中的问题与解决方案 • DSC实验的未来发展与展望
01 DSC基本原理
CHAPTER
定义与工作原理
定义
差示扫描量热仪(DSC)是一种用于测量物质在加热或冷却过程中热流变化的 仪器。
热量误差
检查仪器热流传感器是否 正常工作,定期进行热量 校准。
实验重复性差
确保实验操作一致性,控 制实验条件如气氛、样品 量等。
数据解读的注意事项
01
解读数据时应结合实验条件和样品特性,避免误判。
02
对于异常数据点,需进行核实和排除,避免影响数 据整体分析。
03
数据处理时应采用合适的数学方法和软件工具,确 保数据准确性和可靠性。
时间。
DSC与其他仪器的联用
DSC-FTIR联用
将DSC与FTIR光谱仪联用,同时获取样品的热学和化学信息,为 材料研究提供更全面的数据。
DSC-SEM联用
将DSC与扫描电子显微镜联用,观察样品在加热过程中的微观结构 和形貌变化。
DSC-NMR联用
将DSC与核磁共振谱仪联用,研究样品在加热过程中的分子结构和 动态行为。
05 DSC实验的未来发展与展望
CHAPTER
新技术与新方பைடு நூலகம்的应用
纳米技术
01
利用纳米技术制造更小、更灵敏的传感器,提高DSC的检测极
限和分辨率。
人工智能与机器学习
02
通过人工智能和机器学习算法对DSC数据进行深度分析,提高
实验结果的准确性和可靠性。
微流控技术
03
结合微流控技术,实现样品的高效处理和快速分析,缩短实验

差示扫描量热法dsc简介

差示扫描量热法dsc简介

聚合物的热分析------差示扫描量热法(DSC)差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。

它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术。

简称DSC(Diffevential Scanning Calovimltry)。

DSC技术克服了DTA在计算热量变化的困难,为获得热效应的定量数据带来很大方便,同时还兼具DTA的功能。

因此,近年来DSC的应用发展很快,尤其在高分子领域得到了越来越广泛的应用。

它常用于测定聚合物的熔融热、结晶度以及等温结晶动力学参数,测定玻璃化转变温度T g;研究聚合、固化、交联、分解等反应;测定其反应温度或反应温区、反应热、反应动力学参数等,业已成为高分子研究方法中不可缺少的重要手段之一。

一、目的和要求了解差示扫描量热法的基本原理及应用围,掌握测定聚合物熔点、结晶度、结晶温度及其热效应的方法。

二、实验原理DSC和DTA的曲线模式基本相似。

它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。

于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。

从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。

这两个量热器皿都置于程序控温的条件下。

采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。

DSC体系可分为两个控制回路。

一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。

现在看一下程序温度与两个测量池温度的比较和控制过程。

比较是在平均放大器进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。

我总结的差示扫描量热法DSC

我总结的差示扫描量热法DSC

放热
结晶
放热行为 (固化,氧化,反应,交联)
玻璃化转变
基线
吸热 dH/dt(mW)
固固 一级转变
Tg Td
熔融
Tc
Tm
DSC曲线
分解气化 Tr
mW
冷结晶 玻璃化转变
放热
吸热
温度
聚合物典型 DSC曲线
熔融
C
➢热流型 DSC
在给予试样和参比品相同的功率下,测定 试样和参比品两端的温差ΔT,然后根据热 流方程,将 ΔT(温差)换算成 ΔQ(热量 差)作为信号的输出。
Tm
温度
C
固-液相转变的DSC曲线
② DTA及DSC曲线峰面积的计算
在 Ti 和 Tf 间直接连线。如图中的(a)和(b)。 联接 Ti 和 Tf 。是 ICTA 所规定的方法。
如图中的(c)。
过峰顶作基线垂线法。如图中的(d)。 对对称峰,在峰两侧在曲率最大的两点间
联线。如图中的(e)。
对峰形很明确而基线有移动的吸热峰,则
延长原来的基线法。如图中的(f)。
DSC及DTA曲线峰面的计算法方法
Tf
Ti
Tf
Ti
(a)
(b)
Tf
Tf
Ti
Ti
(c) (d)
大 选用高K值的,
如氦气
为获高的灵敏度
大 快 试样与参比物容器要 隔离(K大,R小) 小 选用低K值的, 如真空
表中, K —— 传热系数 R —— 热阻
五、DSC、DTA的基线
基线
DSC、DTA仪器未装载样品或者样品池 加载参比物时所测得的DSC或DTA曲线。
DSC、DTA的基线是曲线,而不是一 条直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt dH dt
dQ dt
dQ dt
dH dt dQ dt dQ W r s r s =−=Δ--单位时间给样品的热量--单位时间给参比物的热量--热焓变化率
以作图分析一般在DSC 热谱图中,吸热(endothermic)效应用凸起的峰值来表征(热焓增加),放热(exothermic)效应用反向的峰值表征(热焓减少)。

DSC曲线PET 热焓变化率,热流率(heat flowing),
单位为毫瓦(mW )
dt dH
吸收热量,样品热容增
加,基线发生位移
结晶,放出热量,放热峰;
晶体熔融,吸热,吸热峰endo
exo
T 20℃/min
/min
--------
10mg 2.5mg
endo endo
D D
D
影响Tg的若干因素:
a. 化学结构对Tg的影响
b. 相对分子质量对Tg的影响
c.结晶度对Tg的影响
d.交联固化对Tg的影响
e. 样品热历史效应对Tg的影响
f. 应力历史对Tg的影响
g. 形态历史对Tg的影响
d.交联固化对Tg的影响
•聚合物交联一般引起Tg的升高



固410℃以下,固化温度升高,
交联度增加,使Tg升高;
410℃以上,Tg下降,可能由
于高温裂解,使交联密度降
低,致使Tg降低。

放热峰
吸热
测试加热速率>制样冷却速率
测试加热速率<<制样冷却速率
影响结晶与熔融的若干因素:
a. 结晶形态对熔点的影响
b. 结晶条件对熔点的影响
c. 晶片厚度对熔点的影响
d. 聚合物多重熔融行为
e. 历史效应对熔点的影响
f. 结晶度的测定
g. 聚合物冷结晶现象的研究
f. 结晶度的测定
熔融热⊿H f :聚合物熔融时,只有其中的结晶部分发生变
化,破坏结晶结构所需要的热量, 通过测量DSC 峰面积计算得到。

•熔融热越大,结晶度越高,即聚合物的熔融热与其结晶度成正比。

0f
f H
H Xc ΔΔ=
样品测得的熔融热100%结晶样品的熔融热
可查阅手册;
或者利用x-射线衍射法测的结晶度,配合DSC 测出熔融热,
对应作图外推求出100%结晶熔融热。

冷结晶峰消失


苯乙烯含量
A:100%
B:55%
C:19%
D:0%
某组分成分增加,Tg转变的阶梯增加。

5 Tg
2
1固化放热峰。

相关文档
最新文档