差示扫描量热法(DSC) 8

合集下载

DSC 差示扫描量热法

DSC 差示扫描量热法

DSC 差示扫描量热法差示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。

该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。

差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。

DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。

换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化关系。

如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。

物质在温度变化过程中,往往伴随着微观结构和宏观物理,化学等性质的变化。

宏观上的物理,化学性质的变化通常与物质的组成和微观结构相关联。

通过测量和分析物质在加热或冷却过程中的物理、化学性质的变化,可以对物质进行定性,定量分析,以帮助我们进行物质的鉴定,为新材料的研究和开发提供热性能数据和结构信息。

在差热分析中当试样发生热效应时,试样本身的升温速度是非线性的。

以吸热反应为例,试样开始反应后的升温速度会大幅度落后于程序控制的升温速度,甚至发生不升温或降温的现象;待反应结束时,试样升温速度又会高于程序控制的升温速度,逐渐跟上程序控制温度,升温速度始终处于变化中。

而且在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。

因此,到目前为止的大部分差热分析技术还不能进行定量分析工作,只能进行定性或半定量的分析工作,难以获得变化过程中的试样温度和反应动力学的数据。

差示扫描量热法(DSC)

差示扫描量热法(DSC)
2 设定实验条件
包括升温、降温速率和温度范围等,根据反应条件进行调整。
3 记录数据
自动化记录实验数据,并生成相应的曲线图像和热力学参数。
应用领域
差示扫描量热法广泛应用于化学、药品、食品、材料等领域,用于研究反应动力学、相变、热稳定 性、材料性能等问题。
1
化学领域
研究化学反应热力学、动力学、催化作用、聚合反应等。
吸热反应
反应过程中吸收热量,导致温 度下降,被量热计测量为正信 号。
基线
参比物和样品在无反应条件下 的基线,用于校正信号。
仪器和操作流程
差示扫描量热仪由样品盒、参比盒、控温系统、传感器和计算机组成。操作流程包括样品制备、 调试仪器、设定实验条件、记录数据、数据分析。
1 样品制备
样品必须纯净、均匀、充分干燥,以确保实验结果准确可靠。
2
材料领域
研究材料的热稳定性、热膨胀系数、晶体相变等。
3
药品领域
研究药品的热稳定性、储存条件、配方优化、反应动力学等。
优点和局限性
差示扫描量热法相比其他热学技术具有高灵敏度、快速、高精度、不需样品分离等优点,但也存在信号 干扰、噪声较大、基线不稳定等局限性。
优点
高灵敏度、高精度、
局限性
信号干扰、噪声较大、基线不稳定、不能确 定速率控制步骤。
案例研究
差示扫描量热仪可以用来研究化合物溶解和结晶过程、聚合反应、材料热稳定性等问题。
化合物溶解
结晶反应
研究葡萄糖在水中的溶解过程, 获得了其热力学参数。
观察钠乙酰丙酸盐的晶体化过 程,得到了其热力学曲线。
聚合反应
探究丙烯酸甲酯聚合反应的热 效应及反应动力学参数。
差示扫描量热法(DSC)

差示扫描量热法(DSC)测试方法

差示扫描量热法(DSC)测试方法

DSC测试过程的步骤
样品准备
准备纯净、干燥的样品,并将其放置在DSC样品 舱中。
测量热响应
测量样品与参考样品之间的温差,得出样品的热 性质。
控制升温
以固定的升温速率升温样品,常见的升温速率为 10°C/min。
数据分析
根据热曲线,分析样品的热稳定性、物相转变、 反应动力学等信息。
DSC测试在材料研究中的应用
差示扫描量热法(DSC)测 试源自法差示扫描量热法(DSC)是一种常用的热分析技术,用于测量物质热性质。通过 分析样品在控制升温条件下的热响应,DSC可以提供有关材料的热稳定性、热 传导、物相变化等关键信息。
差示扫描量热法(DSC)测试方法 的原理
DSC通过比较被测样品与参考样品之间的热响应差异来测量热性质。当样品吸 收或释放热量时,DSC测量并绘制样品温度与参考温度之间的差异曲线,从而 提供有关样品热行为的信息。
热效应分析
研究反应的热放热或吸热性质, 评估反应的热稳定性。
聚合反应研究
研究聚合反应的起始温度、聚合 速率等关键参数。
DSC测试在药物研发中的应用
1
药物热性质表征
测量药物在不同温度下的热行为,为药
药物相变分析
2
物配方设计提供基础数据。
研究药物的晶型转变、熔化过程等,影
响药物的稳定性和溶解性。
3
配方优化
1 热稳定性评估
通过测量材料的热分解、熔融温度等参数, 评估材料的热稳定性。
2 相变分析
研究材料的物相变化过程,如晶化、熔化、 聚合等。
3 热导率测量
4 物性表征
通过分析样品的热响应,计算材料的热导率。
了解材料的热膨胀系数、比热容等物理性质。
DSC测试在化学反应中的应用

差示扫描量热法

差示扫描量热法
当反应完成时,在温度TC处,d/dt=0,如果忽略(3-17)式中的 第一、第二项,于是:
T C CS CS dT C
KT
dt
(3-26),积分得:
dT C
KT dt
T T C
t CS CS
T

T
exp
CS
KT CS
t
根据Kirchoff热功当量定律,可得下列方程式:
T TS T TS TR TS is
(3-7)
R
Rg
Rb
T TR T TR TR TS iR
(3-8)
R
Rg
Rb
式中:T——炉温;TS——试样温度;TR——参 比物温度。 (3-7)和(3-8)式相减并设T=TR-TS,即得
KT
KT dt KT dt
(3-15)
(3-15)式给出了初始瞬时 的热流DSC曲线。 根据(3-15)式,可推断出 当 KT/KT=0 和 CS=CR 时 , T=0 。 这 说 明 在 热 流 型 DSC 的 构 造 中 KT/KT 是 很 重 要 的 , 为 了获得小的KT/KT值, 结构对称性必须很高, 温度滞后(Tf-T)应该很小, 炉 温 要 均 匀 且 KT 必 须 很 大。
T T
K 4SR T T T K 5SR T 4 T T 4
(3-11)
dT
CR dt
K1R Tf T

K 2R
T
4 f
T
4
K 3R Tf T K 4SR T T T K 5SR T T 4 T 4
(1)炉壁传导到试样和参比物的热流分别为i1S和i1R,传 热系数分别为K1S和K1R;

差示扫描量热法名词解释

差示扫描量热法名词解释

差示扫描量热法名词解释差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种热分析技术,用于测量材料在加热或冷却过程中的热性质变化。

以下是一些与DSC相关的术语解释:1. 热容量(Heat Capacity):物体吸收或释放热量时,所需要的能量量和温度变化的比例。

在DSC实验中,热容量可以通过测量试样温度变化和释放/吸收的热量来计算。

2. 比热容(Specific Heat Capacity):物质单位质量的热容量。

与热容量类似,比热容可以用于计算试样在加热/冷却过程中的能量吸收或释放量。

3. 示差扫描量热图(Differential Scanning Calorimetry Curve):DSC实验中所得到的曲线图,与试样温度和释放/吸收的热量关系相关。

示差扫描量热图可以用于确定试样的物理性质和热力学参数。

4. 热流计(Heat Flux Calorimetry):用于测量试样释放或吸收的热量的仪器,在DSC实验中经常使用。

5. 熔点(Melting Point):材料从固态转变成液态的温度点。

在DSC 实验中,熔点可以通过观察热流图中的峰值来确定。

6. 结晶点(Crystallization Point):材料从液态转变成固态的温度点。

同样可以通过观察热流图来确定。

7. 玻璃化转变(Glass Transition):指材料从固态转变成一种非晶态的过程。

处于玻璃态的材料是非晶态和固态的中间阶段,具有类似液态的性质。

在DSC实验中,可以通过测量材料热容量的变化来确定玻璃化转变的温度。

8. 库仑效应(Curie effect):某些物质在温度变化时会发生磁性变化的现象。

在DSC实验中,可以通过观察热流图来确定库仑效应的温度。

以上是一些常见的DSC术语及其解释,能够帮助我们更好地理解差示扫描量热法及其实验结果。

08差示扫描量热法(DSC)

08差示扫描量热法(DSC)

DSC曲线 DSC曲线
纵坐标 :热流率 横坐标:温度T 横坐标:温度 (或时间 或时间t) 或时间 峰向上表示吸热 向下表示放热 在整个表观上, 在整个表观上 ,除 纵坐标轴的单位之 外 , DSC曲线看上 曲线看上 去非常像DTA曲线. 曲线. 去非常像 曲线 像在DTA的情形一 像在 的情形一 样 , DSC曲线峰包 曲线峰包 围的面积正比于热 焓的变化. 焓的变化.
1 dT φ = R0 dt R0
R0为坩埚与支持器之间的热阻
试样的DSC峰温为过其峰顶作斜率与高纯 峰温为过其峰顶作斜率与高纯 试样的 金属熔融峰前沿斜率相同的斜线与峰底线 交点B所对应的温度 所对应的温度T 交点 所对应的温度 e.
3. 量热校正(纵坐标的校正) 量热校正(纵坐标的校正)
用已知转变热焓的标准物质(通常用In , Sn, 用已知转变热焓的标准物质 ( 通常用 , Pb, Zn等金属)测定出仪器常数或校正系数 . 等金属) , 等金属 测定出仪器常数或校正系数K.
3)试样的几何形状
在高聚物的研究中, 在高聚物的研究中 , 发现试样几何形状 的影响十分明显. 对于高聚物, 的影响十分明显 . 对于高聚物 , 为了获 得比较精确的峰温值, 得比较精确的峰温值 , 应该增大试样与 试样盘的接触面积, 试样盘的接触面积 , 减少试样的厚度并 采用慢的升温速率. 采用慢的升温速率.
பைடு நூலகம்
1.玻璃化转变温度 1.玻璃化转变温度Tg的测定 玻璃化转变温度T
无定形高聚物或结晶高聚物无定形部分在升 温达到它们的玻璃化转变时, 温达到它们的玻璃化转变时 , 被冻结的分子 微布朗运动开始, 因而热容变大, 微布朗运动开始 , 因而热容变大 , 用 DSC可 可 测定出其热容随温度的变化而改变. 测定出其热容随温度的变化而改变.

差示扫描量热分析(DSC)

差示扫描量热分析(DSC)

K=ΔHWs/AR
量程校正 K值测定
在铟的记录纸上划出一块大 小适当的长方形面积,如取高度 为记录纸的横向全分度的3/10即 三大格,长度为半分钟走纸距离, 再根据热量量程和纸速将长方形
面积转化成铟的ΔH,
按K=ΔHWs/AR计算校正系
数K’。若量程标度已校正好,则K’ 与铟的文献值计算的K应相等。
差示扫描量热分析法
• DTA面临的问题
定性分析,灵敏度不高
• 差示扫描量热分析法(DSC)
Differential Scaning Calarmeutry
——通过对试样因热效应而发生的能量变化进行及时补 偿,保持试样与参比物之间温度始终保持相同,无温差、 无热传递,使热损失小,检测信号大。灵敏度和精度大 有提高,可进行定量分析。
若量程标度有误差,则K’与按 文献值计算的K不等,这时的实 际量程标度应等于K/K’R。
DSC的影响因素
样品因素: 试样量 试样粒度
试验条件: 升温速率,气氛
主要操作参数:试验量,升温速率和气氛
DSC曲线的数据处理方法
称量法: 误差 2%以内。 数格法: 误差 2%—4%。 用求积仪:误差 4%。 计算机: 误差 0.5%。
1、差示扫描量热分析原理 (1)功率补偿型差示扫描量热法
通过对试样因热效应而发生的能量变化进行及时补偿,保 持试样与参比物之间温度始终保持相同,无温差、无热传 递,使热损失小,检测信号大。零点平衡原理
(2) 热流式差示扫描量热仪
通过测量加热过程中试样热流量达到DSC分析的 目的,试样和参比物仍存在温度差。 采用差热分析的原理来进行量热分析。
比热测定
dH / dt mC p dT / dt 式中,为热流速率(J∙s-1);m为样品质量(g);CP为比

差示扫描量热法(DSC)【精品-】

差示扫描量热法(DSC)【精品-】

3)试样的几何形状
在高聚物的研究中,发现试样几何形状 的影响十分明显。对于高聚物,为了获 得比较精确的峰温值,应该增大试样与 试样盘的接触面积,减少试样的厚度并 采用慢的升温速率。
6.4.3 DSC曲线峰面积的确定及仪器 校正
➢ 不管是DTA还是DSC对试样进行测定的过程中, 试样发生热效应后,其导热系数、密度、比热 等性质都会有变化。使曲线难以回到原来的基 线,形成各种峰形。如何正确选取不同峰形的 峰面积,对定量分析来说是十分重要的。
✓1.实验条件:程序升温速率Φ,气氛 ✓2.试样特性:试样用量、粒度、装填情况、
试样的稀释等。
1.实验条件的影响 (1).升温速率Φ
主要影响DSC曲线的峰温和峰形, 一般Φ越大,峰温越高,峰形越大和 越尖锐。
实 际 中 , 升 温 速 率 Φ 的 影 响 是 很 复 杂的,对温度的影响在很大程度上 与试样的种类和转变的类型密切相 关。
峰向上表示吸热
向下表示放热
在整个表观上,除 纵坐标轴的单位之 外,DSC曲线看上 去非常像DTA曲线。 像在DTA的情形一 样,DSC曲线峰包 围的面积正比于热 焓的变化。
6.4.2 影响DSC的因素
DSC的影响因素与DTA基本上相类似, 由于DSC用于定量测试,因此实验因素 的影响显得更重要,其主要的影响因素 大致有以下几方面:
➢1)试样在产生热效应时,升温速率是非 线性的,从而使校正系数K值变化,难以 进行定量;
➢2)试样产生热效应时,由于与参比物、 环境的温度有较大差异,三者之间会发 生热交换,降低了对热效应测量的灵敏 度和精确度。
→使得差热技术难以进行定量分析,只能 进行定性或半定量的分析工作。
基本原理
❖为了克服差热缺点,发展了DSC。该法 对试样产生的热效应能及时得到应有的 补偿,使得试样与参比物之间无温差、 无热交换,试样升温速度始终跟随炉温 线性升温,保证了校正系数K值恒定。 测量灵敏度和精度大有提高。

差示扫描量热法dsc起始温度热事件

差示扫描量热法dsc起始温度热事件

差示扫描量热法dsc起始温度热事件差示扫描量热法(DSC)是一种用于研究材料热性能的分析技术。

它通过比较样品与参考物质之间的热力学性质差异来研究材料的热行为。

DSC可以用来研究相变、热分解、熔融和玻璃化等热事件。

在DSC 实验中,常常需要测定样品的起始温度、终止温度和热事件峰值等参数。

本文将介绍DSC的原理和应用,以及如何测定样品的起始温度和热事件。

一、DSC的原理1. DSC是如何工作的DSC仪器包括一个样品盒和一个参考盒,它们分别装入样品和参考物质。

在实验过程中,样品和参考物质被置于恒温设备中,通过加热或冷却来改变温度。

当样品和参考物质发生热事件时,它们吸收或释放热量,导致样品和参考物质的温度发生变化。

DSC测定的是样品和参考物质之间的温度差异,从而得到材料的热学性质。

2. DSC曲线的含义DSC曲线通常包括热流曲线和温度曲线。

热流曲线是用来表示样品和参考物质之间的热量变化,而温度曲线则是表示样品和参考物质的温度变化。

根据这两个曲线,我们可以得到材料的热容、相变温度、热分解温度等重要信息。

二、DSC的应用1.材料研究DSC广泛应用于材料研究领域,可以用来研究材料的热性能和热行为。

通过DSC实验,科学家可以了解材料的热容、热分解温度、熔融温度等重要参数,为材料的设计和改进提供重要参考。

2.药物分析在制药工业中,DSC也被广泛应用于药物的研究和开发。

通过DSC 实验,可以了解药物的热降解温度、热吸收量等参数,为药物的稳定性和保存条件提供重要参考。

三、测定样品的起始温度和热事件1.测定起始温度测定样品的起始温度是DSC实验的重要步骤之一。

起始温度是指样品发生热事件的温度,通常可以通过观察DSC曲线的谷底来确定。

在谷底处,样品和参考物质的热量变化最为显著,可以用来确定起始温度。

2.测定热事件除了测定起始温度外,还需要测定样品的热事件。

热事件是指样品发生热分解、相变、熔融等过程,通常可以通过观察DSC曲线的峰值来确定。

示差扫描量热法

示差扫描量热法

示差扫描量热法示差扫描量热法(Differential Scanning Calorimetry,DSC)是一种常用于研究材料热性质的实验技术。

本文将介绍DSC的原理、应用以及分析实验步骤。

一、原理DSC是通过测量样品与参比样品之间的热交换来研究样品的热性质。

DSC实验中,样品和参比样品同时加热,测量它们之间的温度差异,从而得到样品在不同温度下的热容变化。

通过对实验结果的分析,可以获得材料的相变温度、熔融峰、热容等信息。

二、应用DSC在材料科学、化学、药学等领域都有广泛的应用。

以下是一些常见的应用场景:1. 相变研究:DSC能够准确测定材料的熔点、结晶点等相变温度,从而为材料的热稳定性以及晶体结构的变化提供重要依据。

2. 沸点与汽化热:通过DSC可以测定液体材料的沸点,并计算其汽化热,这对于液体材料的性质研究以及定量分析具有重要意义。

3. 热分解动力学:DSC可以通过对材料在不同升温速率下的实验结果进行分析,得到热分解的活化能、反应级数等动力学参数,从而揭示反应机理。

4. 材料品质控制:DSC可以用于药品、塑料等材料的品质控制,通过样品与参比样品的热容差异来检测材料中的杂质、纯度等关键指标。

三、实验步骤1. 样品准备:按照实验要求选择适当的样品,并进行样品的预处理,如干燥、粉碎等。

2. 样品称量:将适量的样品和参比样品分别称量到DSC实验杯中,确保杯中样品均匀分布,并且样品和参比样品的质量相近。

3. 实验条件设置:根据样品的性质和实验需求,设置适当的升温速率和温度范围。

一般来说,升温速率选择较慢的情况下,可以更准确地测定材料的热性质。

4. 实验测量:将装有样品和参比样品的实验杯放入DSC仪器中,开始实验测量。

实验过程中,DSC仪器会记录样品和参比样品之间的温度差异,并绘制DSC曲线。

5. 数据分析:通过对DSC曲线的分析,可以确定样品的相变温度、熔融峰以及热容变化等参数,并结合其他数据如质谱结果等进行综合分析。

dsc差示扫描量热法

dsc差示扫描量热法

dsc差示扫描量热法
"DSC" 代表差示扫描量热法(Differential Scanning Calorimetry),是一种热分析技术,用于研究材料的热性质。

差示扫描量热法通过测量样品与参考样品之间的热量差异,提供关于材料的热力学和热动力学性质的信息。

具体来说,DSC 在实验中通常会有一个样品和一个相同条件下的参考样品。

这两者都受到相同的温度程序控制。

当样品经历物理或化学变化时,释放或吸收的热量会导致样品和参考样品之间的温度差异。

这个温度差异通过传感器测量,从而得到与温度的关联的热量信号。

以下是DSC 在研究材料性质时的一些应用:
1.相变研究:DSC 可用于研究材料的相变,如固相到液相的熔
化、液相到气相的汽化,以及反应过程中的热效应。

2.玻璃化转变:DSC 可用于研究玻璃化转变,即非晶态到玻璃态
的过渡,提供关于材料的玻璃化温度和玻璃化热的信息。

3.聚合物研究:DSC 可用于分析聚合物的热性质,如熔化、结晶、
玻璃化等,有助于了解聚合物的热稳定性和加工性能。

4.药物和生物材料研究:DSC 在药物研发和生物材料研究中也
有广泛应用,用于研究药物的热性质、生物分子的相互作用等。

总体而言,DSC 是一种强大的实验工具,可提供关于材料的热性质、相变和反应的定量和定性信息。

差示扫描量热法DSC

差示扫描量热法DSC

Tg-C
-47 -73 -75
Tc- C
Hc- J/g
Tm2- C
-67 -22 8 24 36
15 38 68 79 95
22 35 46 58 66
A:无定形
s-C:半结晶
从C10 到 C18 结晶能力增强
4.0
3.5 Heat Flow (W/g) 3.0
Recrystallization from the melt of shop linear -olefin based polymers
130.7 C
189.9C
5K/min
200 250
0
50
100
150
Temperature C
反应热(276J/g)可用于判断固化程度
聚合反应动力学
含不同长度脂肪链的酰亚胺的聚合 由亚甲基丁二酸酐与脂肪二胺[通式为H2N-(CH2)n-NH2, 其中n=6,8,10和12出发,合成一系列结构类似的含脂肪链的 酰亚胺,利用DSC研究具有如下结构的这类甲基顺丁烯酰 亚胺的聚合动力学。
(0.62)
54 10 50 Temperature C 90
150C预热后以( ) C/min冷却速率降到Tg以下再测定
样品放置时间对Tg时 间的影响
[0]
51
[2] 53
[25] 56 10 50 90
Temperature C
从150C以320C/min降到室温后放置[ ]天再测定
退火时间的影响
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 130 Annealed at 163C during: 30min

差示扫描量热法

差示扫描量热法

◇ 2.3 仪器
差示扫描量热仪主要由加热炉,程序控温系统,气 氛控制系统,信号放大器,记录系统等部分组成。 与差热分析仪的主要区别在于DSC仪中样品和参比 物各自装有单独的加热器,而DTA仪中样品和参 比物采用同一加热器。
• 图a为功率补偿DSC样品支持器,b为加热控 制回路。
◇ 2.4 DSC分析的特点
◆比热容定义
DSC曲线的纵坐标: dH (单位时间内的焓变) dt 程序控温(升温速度): dT
dt
等压热容: 比热容:
dH / dt dH cp dT / dt dT cp dH 1 c m dT m
( 1) ( 2)
◆ 直接法测定比热容
将(2)代入(1)得:
dH dT mc dt dt
*主要差别:原理和曲线方程不同
◆ DSC(测定热流率dH/dt;定量;分辨率好、灵敏
度高;有机、高分子及生物化学等领域)
◆ DTA(测定△T;无内加热问题,1500℃以上,
可到2400℃;定性;无机材料 )
(3)
直接将DSC曲线纵坐标值代入(3)求c ◎ 计算结果较粗略
◆ 相对法测定比热容
选定已知热容的蓝宝石作为标准物
样品
dH dT y mc dt dt dH dT ( )' y ' m' c' dt dt
蓝宝石
两式相比:
c ym' c' y ' m
◎ 计算结果准确
*纯度的测定
差示扫描量热法(DSC)
1 概念 2 原理 3 仪器 4 DSC分析的特点 5 DSC曲线 6 DSC的应用 7 DSC和DTA的比较
◇ 2.1 概念
差示扫描量热法(DSC):在程序控温下,测量输给 物质和参比物的功率差与温度关系的一种技术。即测 量为使被测样品与参比物温度一致所需的能量差△E。

差示扫描量热法 dsc 起始温度 热事件

差示扫描量热法 dsc 起始温度 热事件

差示扫描量热法 dsc 起始温度热事件
差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种广泛应用于材料科学领域的热分析技术,通过测量样品对比参考样品在加热或冷却过程中的热量差异来研究样品的热性质。

DSC技术在材料研究、药
物开发、食品科学等领域发挥着重要作用,是一种快速、灵敏的实验方法。

起始温度是DSC实验中一个关键的参数,它是指样品中发生热事件的
温度起点。

在DSC曲线中,起始温度可以告诉我们材料发生热事件的温度范围,帮助我们了解材料的热稳定性、热性能等特性。

通过对DSC曲线中起始温度的分析,可以更深入地理解材料的热行为。

热事件是指DSC曲线中出现的峰值或谷值,代表了样品在一定温度范
围内发生的物理或化学变化。

常见的热事件包括熔点、结晶点、玻璃化转变等,不同的热事件对应着不同的材料性质和结构变化。

通过对热事件的分析,可以确定材料的相变温度、热稳定性以及热动力学参数,为材料设计和性能优化提供重要参考。

在实际应用中,研究人员可以通过DSC技术对各种材料进行热性质表征,探究材料的热稳定性、相变行为、热动力学参数等重要信息。

通过对DSC曲线的解读和分析,可以揭示材料内部的微观结构和物理化学性质,为
材料的改性和优化提供有力支持。

让我们总结一下本文的重点,我们可以发现,DSC技术在材料研究领
域有着广泛的应用前景,通过对DSC曲线中起始温度和热事件的研究,可以深入了解材料的热性质和热行为,为材料设计、制备和性能优化提供重要参考。

希望未来可以通过不断创新和改进DSC技术,更好地应用于材料科学领域,推动材料研究的进步和发展。

差示扫描量热法(DSC)在材料分析中的应用及案例介绍

差示扫描量热法(DSC)在材料分析中的应用及案例介绍

差示扫描量热法(DSC)在材料分析中的应用及案例介绍一、差示扫描量热法(DSC)介绍二、主要影响因素三、DSC的应用鉴于DSC能定量的量热、灵敏度高,其应用领域很宽,涉及热效应的物理变化或化学变化过程均可采用DSC来进行测定。

DSC出峰的位置、形状、数目与物质的性质有关,故可用来定性的表征和鉴定物质,而峰的面积与反应热焓有关,故可用来定量计算参与反应的物质的量或者测定热化学参数。

图1DSC典型综合图谱1、聚合物玻璃化转变的研究无定形高聚物或结晶高聚物无定形部分在升温达到它们的玻璃化转变时,被冻结的分子微布朗运动开始,因而热容变大,用DSC可测定出其热容随温度的变化而改变。

DSC曲线测定Tg的方法下图3为一款市售纯丙乳液的DSC测试玻璃化转变温度Tg图(已进行了热历史的消除)。

图3纯丙乳液的DSC测试Tg图测试结果:经DSC测试,此纯丙树脂的tg点为2.74℃2、混合物和共聚物的判定、成分检测假定物质A和物质B,若为共混体系,则物质A、物质B均各自保持本身的熔融特性,DSC曲线特征峰(吸热或放热)为物质A、B两种物质位置上的简单加和,共混物中各组分的混合比例可分别根据它们的特征峰面积计算。

图4PA6和PA66共混物的DSC测试曲线图假定物质A和物质B,若为共聚体系,则物质A、B共聚形成新的物质C,物质A、B原本自身的熔融特性丧失,共聚物只呈现C的一个特征峰。

简单地说,对于同一指标,共混物有多个特征峰,共聚物只有一个特征峰。

图5EVA共聚物的DSC测试曲线图3、相容性的研究两种物质以一定比例共聚,若仅出现一个Tg,则表明两种物质相容;若出现两个Tg,则表明两种物质不相容,出现相分离。

以苯乙烯-对氟苯乙烯共聚物P(S-PFS)与聚苯醚PPO的共混聚合物为例,当PFS的摩尔含量为8-56%时,体系相容;高于56%时,发生相分离。

图6P(S-PFS)和PPO共聚混合物的DSC曲线图4、结晶度的测定由于结晶度与熔融热焓值成正比,可利用DSC测定高聚物的百分结晶度,先根据高聚物的DSC熔融峰面积计算熔融热焓ΔHf,再按下式求出百分结晶度。

差式扫描量热法(DSC)

差式扫描量热法(DSC)

差式扫描量热法(DSC)扎卡里·沃拉斯(Zachary Voras)1.分类差式扫描量热法(differential scanning calorimetry,DSC)属于破坏式分析技术。

2.说明DSC与差热分析(differential thermal analysis,DTA)有关,是一种能够识别材料热稳定性差异的定量技术。

利用DSC可以分辨一种材料与标准物质在结晶度、玻璃化转变状态或熔点/沸点方面的差异。

虽然该技术无法像光谱法或质谱法那样提供阳性定性,但它对热稳定性差异的检测非常灵敏,因此成为有机材料劣化研究的最佳选择。

这种技术会在样品加热过程中测量样品所发生物理/化学变化的各种属性。

实验基本设置为,将样品和标准物质分别置入两只样品托盘,放入分析室内统一加热,以便生成热谱图。

这种托盘只需毫克级样品就可进行分析。

分析室内可有各种氛围条件,如真空或气体吹扫(如氧气、氮气或氩气吹扫)。

应根据要检测的物理/化学变化来监控样品托盘的加热温度和(或)功率。

此外,还可使用吹扫气体诱导样品表征(例如用氧气令样品氧化)来调节DSC实验中的观察结果。

现代设备可完全自动化运转,也可在一个实验中加热多个样品,因此可获得更高的实验效率。

在这些实验中,得到的热谱图可用于观察与样品能量属性相关的所有变化,如结晶、相变、放热/吸热过程和动力学速率。

DSC有3种常见类型:功率补偿型DSC、热流型DSC和调制型DSC。

功率补偿型DSC是用两组独立的加热元件分别加热样品和标准物质,再监测维持恒定温度所用的功率差。

图2为功率补偿型DSC实验的一般示意图。

热流型DSC实验是以相同速率加热样品和标准物质,再测量热流差异并生成热谱图。

调制型DSC的实验设置与热流型DSC相似,不过样品和标准物质是在温度循环(热/冷循环)条件下测量热流并加以比较。

图3是热流型DSC或调制型DSC实验的一般示意图。

凭借检测生成的热谱图,分析人员可对各种转变温度进行量化,再将量化结果转化为比热、玻璃化转变温度、结晶温度和动力学速率等物理量。

八差示扫描量热法DSC测定聚合物的热性能

八差示扫描量热法DSC测定聚合物的热性能

差示扫描量热法(DSC)测定聚合物的热性能差热分析(Differential Thermal Analysis)是在温度程序控制下测量试样与参比物之间的温度差随温度变的一种技术,简称DTA。

在DTA基础上发展起来的是差示扫描量热法(Differential Scanning Calorimetry),简称DSC。

差示扫描量热法是在温度程序控制下,测量试样与参比物在单位时间内能量差随温度变化的一种技术。

DTA,DSC在高分子方面的应用特别广泛,试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,在差热曲线眩耀会出现吸热或放热峰。

试样发生力学状态变化时(例如由玻璃态转变为高弹态),虽无吸热或放热现象,但比热有突变,表现在差热曲线上是基线的突然变动。

试样内部这些热效应均可用DTA,DSC进行检测,发生的热效应大致可归纳为:(1)吸热反应。

如结晶、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。

(2)放热反应。

如气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。

(3)可能发生的放热或吸热反应。

结晶形态的转变、化学分解、氧化还原反应、固态反应等。

DTA、DSC在高分子方面的主要用途是:一是研究聚合物的相转变过程,测定结晶温度Tc、熔点Tm、结晶度Xc、等温结晶动力学参数;二是测定玻璃化转变温度T g;三是研究聚合、固化、交联、氧化、分解等反应,测定反应温度或反应温区、反应热、反应动力学参数等。

一、实验目的1、了解DSC的基本原理,通过DSC测定聚合物的加热及冷却谱图;2、通过DSC测定聚合物的T g、T m、T c。

二、实验原理1、DTADTA通常由温度程序控制、变换放大、气氛控制、显示记录等部分组成,此外还有数据处理部分。

参比物应选择那些在实验温度范围内不发生热效应的物质,如Al2O3、石英、硅油等。

把参比物和试样同置于加热炉中的托架上等速升温时,若试样不发生热效应,在理想情况下,试样温度和参比物温度相等,ΔT=0,差示热电偶无信号输出,记录仪上记录温差的笔仅划一条直线,称为基线。

高分子物理实验-差示扫描量热法(DSC)测定聚合物的热力学转变

高分子物理实验-差示扫描量热法(DSC)测定聚合物的热力学转变

实验三差示扫描量热法(DSC)测定聚合物的热力学转变2011011743 分1 黄浩实验日期:2014-2-26一、实验目的1. 掌握差示扫描量热法(DSC)的基本原理和差示扫描量热仪的使用方法;2. 测定聚合物的玻璃化温度Tg、熔点Tm和结晶温度Tc;二、实验原理差热分析是测量在同一加热炉中由于温度变化在测量样品和参比材料(α-Al2O3)之间的温差,简称DTA。

差示扫描量热法(DSC)是测量在同一加热炉中为保持样品和参比材料之间相同温度所需的d(∆H)/dT,简称DSC。

所以DTA的测量是不定量的,而DSC可用于转变焓的定量测定。

聚合物中一些重要物理变化可以用DSC或DTA来测定,如玻璃化温度Tg,结晶温度Tc,结晶熔化温度Tm及解聚温度T D等,用DSC还可测得这些变化的焓值。

一些含有热效应的化学变化也可用DTA或DSC来测定。

DSC是在程序控制温度下,测量输给试样和参比物的功率差与温度关系的一种技术。

经典DTA常用一金属块作为试样保持器以确保试样和参比物处于相同的加热条件下。

而DSC的主要特点是试样和参比物分别各有独立的加热元件和测温元件,并由两个系统进行监控。

其中一个用于控制升温速率,另一个用于补偿试样和惰性参比物之间的温差。

图1显示了DTA和DSC加热部分的不同,图2 为常见DSC的原理示意图。

(1) DTA (2)DSC 图2 功率补偿式DSC原理图图1 DTA和DSC加热元件示意图1-温差热电偶;2-补偿电热丝;3-坩埚;4-电炉;5-控温热电偶试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化:当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。

换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化d H/d t-t关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DSC是动态量热技术,对DSC仪器重要的校正 就是温度校正和量热校正。 为了能够得到精确的数据,即使对于那些精确 度相当高的DSC仪,也必须经常进行温度和量 热的校核。
1.峰面积的确定
一般来讲,确定DSC峰界限有以下四种
方法: (1)若峰前后基线在一直线上,则取基线 连线作为峰底线(a)。 (2)当峰前后基线不一致时,取前、后基 线延长线与峰前、后沿交点的连线作为 峰底线(b)。
基本原理
为了克服差热缺点,发展了DSC。该法 对试样产生的热效应能及时得到应有的 补偿,使得试样与参比物之间无温差、 无热交换,试样升温速度始终跟随炉温 线性升温,保证了校正系数K值恒定。 测量灵敏度和精度大有提高。
1.功率补偿型DSC测量的基本原理
功率补偿型DSC仪器的主要特点
1.试样和参比物分别具有独立的加热器和传感 器见图。整个仪器由两套控制电路进行监控。 一套控制温度,使试样和参比物以预定的速率 升温,另一套用来补偿二者之间的温度差。 2.无论试样产生任何热效应,试样和参比物都 处于动态零位平衡状态,即二者之间的温度差 T等于0。 这是DSC和DTA技术最本质的区别。
高岭土分析,单独使用TG或DTA就得不到 准确的分析结果,而采用TG-DTA联用技 术可获知高岭土的高温热分解机理。
高岭土 500-600℃ 脱水的高岭土 980℃ 亚稳态高岭土 1200℃ γ-Al2O3
热分析的联用技术,包括各种热分 析技术本身的同时联用, 如:TG-DTA,TG-DSC等。 热分析与其它分析技术的联用,如: TG-MS、TG-GC、TG-IR等。

(3)当峰前后基线不一致时,也可以过峰顶作为 纵坐标平行线.与峰前、后基线延长线相交, 以此台阶形折线作为峰底线(c)。 (4)当峰前后基线不一致时,还可以作峰前、后 沿最大斜率点切线,分别交于前、后基线延长 线,连结两交点组成峰底线(d)。此法是ICTA 所推荐的方法。
2
H f H
* f
100 %
ΔHf*:100%结晶度的熔融热焓
ΔHf*的测定
用一组已知 结晶度的样 品作出结晶 度ΔHf图, 然后外推求 出100%结 晶度ΔHf*.
6.5 热分析中的联用技术
单一的热分析技术,如TG、DTA或 DSC等,难以明确表征和解释物质 的受热行为。 如:TG只能反映物质受热过程中质 量的变化,而其它性质,如热学等 性质就无法得知有无变化和变化的 情况。
DSC的温度是用高纯物质的熔点或相变
温度进行校核的 高纯物质常用高纯铟,另外有KNO3、Sn、 Pb等。
1965,ICTA推荐了标定仪器的标准物质

试样坩埚和支持器之间的热阻会使试样坩埚温度 落后于试样坩埚支持器热电偶处的温度。这种热 滞后可以通过测定高纯物质的DSC曲线的办法求 出。高纯物质熔融DSC峰前沿斜率为:
6.4 差示扫描量热法(DSC) (Differential Scanning Calorimetry)
定义:在程序控制温度下,测量输给物 质与参比物的功率差与温度的一种技术。 分类:根据所用测量方法的不同 1. 功率补偿型DSC 2. 热流型DSC
6.4.1
基本原理
DTA存在的两个缺点: 1)试样在产生热效应时,升温速率是非 线性的,从而使校正系数K值变化,难以 进行定量; 2)试样产生热效应时,由于与参比物、 环境的温度有较大差异,三者之间会发 生热交换,降低了对热效应测量的灵敏 度和精确度。 →使得差热技术难以进行定量分析,只能 进行定性或半定量的分析工作。

热分析和气相色谱的联用
在分析时必须严格控制温度和气体
流量,尽量减少热分解副产品的产 生和保证气相色谱结果的重复性。
TG-GC联用
TG-MS联用技术
热分析与IR联用技术
采用红外光谱法对由多组分共混、共 聚或复合成的材料及制品进行研究时, 经常会遇到这些材料中混合组分的红 外吸收光谱带位臵很靠近,甚至还发 生重叠,相互干扰,很难判定,仅依 靠IR法有时就不能满足要求。 而用热分析测定混合物时,不需要分 离,一次扫描就能把混合物中几种组 分的熔点按高低分辨出来,但是单独 用其定性,灵敏度不够。
与DTA数据,节省时间 测量温度范围宽:室温~1500℃ 缺点:同时联用分析一般不如单一热分 析灵敏,重复性也差一些。因为不可能 满足TG和DTA所要求的最佳实验条件。
TG、DTA技术对试样量要求不一样, TG量稍多一些好,可以得到相对较 高的检测精度,而DTA试样少一些 好,这样试样中温度分布均匀,反 应易进行,可得到更尖锐的峰形和 较准确的峰温。 只能折衷选择最佳
冲击实验表明,含乙烯链段少的试样抗冲击性能 差。
3.结晶度的测定
高分子材料的许多重要物理性能是与其
结晶度密切相关的。所以百分结晶度成 为高聚物的特征参数之一。由于结晶度 与熔融热焓值成正比,因此可利用DSC 测定高聚物的百分结晶度,先根据高聚 物的DSC熔融峰面积计算熔融热焓ΔHf, 再按下式求出百分结晶度。
量。
根据物理或化学过程中所产生的重量和能量的变化 情况,TG和DTA对反应过程可作出大致的判断:

测试条件:试样量10.1mg,参比物:A12O3, 升温速率10K/min,气氛:空气
Cu(NO3)2· 2O (晶体)→Cu(NO3)2· 2O (液体) → 3H 3H 1/4[Cu(NO3)2· 3Cu(OH)2](晶体)→CuO(晶体)
2.热流型DSC
与 DTA 仪 器 十 分 相似,是一种定量的 DTA仪器。 不同之处在于试 样与参比物托架下, 臵一电热片,加热器 在程序控制下对加热 块加热,其热量通过 电热片同时对试样和 参比物加热,使之受 热均匀。
DSC曲线
纵坐标 :热流率 横坐标:温度T (或时间t) 峰向上表示吸热 向下表示放热 在整个表观上,除 纵坐标轴的单位之 外,DSC曲线看上 去非常像DTA曲线。 像在DTA的情形一 样,DSC曲线峰包 围的面积正比于热 焓的变化。
3)试样的几何形状
在高聚物的研究中,发现试样几何形状 的影响十分明显。对于高聚物,为了获 得比较精确的峰温值,应该增大试样与 试样盘的接触面积,减少试样的厚度并 采用慢的升温速率。
6.4.3 DSC曲线峰面积的确定及仪器 校正
不管是DTA还是DSC对试样进行测定的过程中, 试样发生热效应后,其导热系数、密度、比热 等性质都会有变化。使曲线难以回到原来的基 线,形成各种峰形。如何正确选取不同峰形的 峰面积,对定量分析来说是十分重要的。
种或多种分析技术,仪器的联接形式与 串联联用相同,但第二种分析技术是不 连续地从第一种分析仪取样。 DTA-GC(气相色谱)的联用。 TG-GC TG-GC-MS
热分析和气相色谱的联用
与气相色谱联用的热分析技术有TG、 DTA和 DSC。 既可得到热分析曲线又可分析相应的分解产物, 对研究热分解反应机理极为有用。 由于热分析是一种连续的测定过程,而气相色 谱从进样到出峰需要一定的时间间隔.所以在 热分析仪与气相色谱联用时就要通过一个接口 把它们串联起来。这种接口可以每隔一定时间 间隔通过载气把分解的气体产物送入色谱柱进 行分析。
无定形高聚物或结晶高聚物无定形部分在升 温达到它们的玻璃化转变时,被冻结的分子 微布朗运动开始,因而热容变大,用DSC可 测定出其热容随温度的变化而改变。
1)取基线及曲线弯曲部的外延线的交点 2)取曲线的拐点
2.混合物和共聚物的成分检测
脆性的聚丙烯往往与聚乙烯共混或共聚增加它的柔性。 因为在聚丙烯和聚乙烯共混物中它们各自保持本身的熔融 特性,因此该共混物中各组分的混合比例可分别根据它们 的熔融峰面积计算。
A:DSC峰面积cm2 ΔH:用来校正的标准物质的转变热焓:mcal/mg S:记录纸速cm/s a:仪器的量程(mcal/s) m:质量
任一试样的转变或反应焓值:
选用的标准物质,其转变温度应与被测
试样所测定的热效应温度范围接近,而 且校正所选用的仪器及操作条件都应与 试样测定时完全一致。
6.4.4 DSC的应用
1 dT R0 dt R0
R0为坩埚与支持器之间的热阻
试样的DSC峰温为过其峰顶作斜率与高纯
金属熔融峰前沿斜率相同的斜线与峰底线 交点B所对应的温度Te。
3. 量热校正(纵坐标的校正)
用已知转变热焓的标准物质(通常用In
、Sn、 Pb、 Zn等金属)测定出仪器常数或校正系数K。
2.试样特性的影响
1)试样用量:不宜过多,多会使试样内部传热慢,温度 梯度大,导致峰形扩大、分辨力下降。
2)试样粒度
影响比较复杂。
通常大颗粒热阻较大,而使试样的熔融
温度和熔融热焓偏低。 但是当结晶的试样研磨成细颗粒时,往 往由于晶体结构的歪曲和结晶度的下降 也可导致相类似的结果。 对干带静电的粉状试样,由于粉末颗粒 间的静电引力使粉状形成聚集体,也会 引起熔融热焓变大。
TG-DSC联用
在仪器构造和原理上与TG-DTA联 用相类似; 具有功率补偿控制系统,可定量量 热; 在 TG-DSC 仪中 DSC的 灵 敏度 要 降 低一些; 与TG-DTA一样广泛应用于热分解 机理的研究。
(2)串接联用技术
在程序控制温度下,对一个试样同
时采用两种或多种分析技术,第二 种分析仪器通过接口与第一种分析 仪器相串联,例如TG-MS(质谱)的 联用。
ICTA将热分析联用技术分为三类: 同时联用技术 串接联用技术 间歇联用技术
(1)同时联用技术
在程序控制温度下,对一个试样同 时采用两种或多种分析技术,TGDTA、TG-DSC应用最广泛,可以 在程序控温下,同时得到物质在质 量与焓值两方面的变化情况。
TG-DTA联用
主要优点: 能方便区分物理变化与化学变化; 便于比较、对照、相互补充 可以用一个试样、一次试验同时得到TG
相关文档
最新文档