精品2019秋八年级数学上册 第六章 数据的分析达标测试卷 (新版)北师大版

合集下载

八年级数学上册 第六章《数据的分析》单元测试(扫描版)(新版)北师大版

八年级数学上册 第六章《数据的分析》单元测试(扫描版)(新版)北师大版

数据的分析
第六章数据的分析
一、选择题
1. C
2. B
3. D
4. A
5. D
6. A
7. A
8. D
9. B 10. C 11. C 12. B
二、填空题
13. 2 14. 11 15. 80.4 16. 5.0,3 000
三、解答题
17. (1)1 500,1 500;(2)2 300;(3)略.
18. (1)甲7,乙6.1;(2)甲7.5,乙7;(3)甲8,乙7;(4)略.
19. (1)
(2)①从平均数和众数相结合看(分析哪个年级成绩好些):八年级;
②从平均数和中位数相结合看(分析哪个年级成绩好些):七年级.
(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?说明理由:略.
20.(1)平均数是20.5,众数是18,中位数是18;(2)略.
21. 师生购买午餐费用的平均数3.5,中位数3,众数3.
22. 八(2)班,理由略.
23.(1)D同学这天的话费是0.9元.
(2)这五位同学这天的实际平均通话费0.64元,用原电话收费标准算出的平均通话费
0.72元,减少了0.08元.。

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试题(答案解析)(4)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试题(答案解析)(4)

一、选择题1.某班七个兴趣小组人数分别为4,4,5,x,6,6,6.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.42.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是()A.平均数是2 B.众数和中位数分别是-1和2.5C.方差是16 D.标准差是43 33.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21 C.抽查了10个同学D.中位数是50 4.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.5 5.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分7980■8181■80那么被盖住的两个数依次是()A.79,0.8 B.79,1 C.80,0.8 D.80,16.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是()A.80分B.99分C.100分D.110分7.已知一组数据为7,1,5,x,8,它们的平均数是5,则这组数据的方差为()A.3 B.4.6 C.5.2 D.68.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A .极差是6B .众数是7C .中位数是5D .方差是89.在一次期末考试中,某一小组的6名同学的数学成绩(单位:分)分别是114,115,100,108,110,120,则这组数据的中位数是( ) A .100 B .108 C .112 D .120 10.若一组数据2,2,x ,5,7,7的众数为7,则这组数据的x 为( ) A .2B .5C .6D .711.下表记录了甲、乙、丙、丁四名立定跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数()V cm 166 165 166 165方差22()s cm3.53.5 15.5 16.5根据表中数据,要从中选择一名成绩好发挥稳定的运动员参加比赛,应该选择( ) A .甲B .乙C .丙D .丁12.已知数据1x 、2x 、3x 、、100x 是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a ,中位数为b ,方差为c ,如果再加上中国首富马化腾的年收入101x ,则在这101个数据中,a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变二、填空题13.已知x 1,x 2…x 10的平均数是a ;x 11 ,x 12,…x 30的平均数是b ,则x 1,x 2…x 30的平均数是____.14.2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下:甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差甲校84.792m88.91乙校83.7n88.5184.01(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格)(4)得出结论a.估计甲学校掌握疫情防控知识优良的学生人数约为;b.可以推断出学校的学生掌握疫情防控知识的水平较高,理由为.15.一组数据2,4,2,3,4的方差s2=_____.16.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.17.下表是甲,乙两名同学近五次测试成绩统计表:第一次第二次第三次第四次第五次甲9893969197乙969793959418.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.19.某公司招聘考试分笔试和面试两项,其中笔试按60%,面试按40%计算加权平均数作为总成绩.马丁笔试成绩85分,面试成绩90分,那么马丁的总成绩是______分. 20.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如表(单位:分),则学期总评成绩优秀的是________.纸笔测试实践能力成长记录甲908395乙889095丙908890三、解答题21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?22.为加强抗击疫情的教育宣传,某中学开展防疫知识线上竞赛活动,八年级(1)、(2)班各选出5名选手参加竞赛,两个班各选出的5名选手的竞赛成绩(满分为100分)如图所示:(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两个班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好;(3)计算两个班竞赛成绩的方差,并说明哪个班的竞赛成绩较为整齐.23.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫:现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如上面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年7月开始,以后每月家庭人均月纯收入都将比上一个月增加20元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在2020年实现全面脱贫.24.某中学八年级四个班组织征文比赛,共收到参赛学生的文章100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整).比赛设一、二等奖若干,结果共有25人获奖,其中三班参赛学生的获奖率为20%,一、a.二、三、四班获奖人数的比为6:7::5(1)填空:①四班有_______人参赛,α=______︒.②a=______,各班获奖学生数的众数是______.(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?25.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B95859526.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C组中的数据是:94,94,90.根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)计算d的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由;(3)该中学七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(x≥95)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7-4-4-5-6-6-7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:C.【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键.2.C解析:C【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断.【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求;()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;S ,故D 选项不符合要求. 故选:C 【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.3.B解析:B 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.4.C解析:C 【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得. 【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30, 所以该组数据的众数为30、中位数为20252+=22.5, 故选C . 【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.A解析:A 【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得. 【详解】解:丙的成绩为5×80﹣(79+80+81+81)=79, 所以这五名学生成绩的方差为15×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8, 故选:A . 【点睛】本题考查了方差,解题的关键是掌握算术平均数和方差的定义.6.B解析:B 【分析】设一班总人数为m ,二班总人数为n ,总成绩为y ,根据已知条件列式即可; 【详解】设一班总人数为m ,二班总人数为n ,总成绩为y , 则110y m =,90y n =, ∴11090m n =,得到911m n =, ∴两个班的平均分9110901109018011999201111n n m nn m nn n n ⨯++====++. 故答案是B . 【点睛】本题主要考查了平均数的知识点,准确分析是解题的关键.7.D解析:D 【分析】先根据算术平均数的定义列出关于x 的方程,解之求出x 的值,从而还原这组数据,再根据方差的定义求解可得. 【详解】解:∵数据7,1,5,x ,8的平均数是5,∴71855x ++++=5,解得:x=4,则数据为1,4,5,7,8,所以这组数据的方差为15×[(1-5)2+(4-5)2+(5-5)2+(7-5)2+(8-5)2]=6, 故选:D . 【点睛】本题主要考查方差,解题的关键是掌握算术平均数和方差的定义.8.D解析:D 【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断. 【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9. A .极差1138=-=,结论错误,故A 不符合题意; B .众数为5,7,11,3,9,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D .平均数是()57113957++++÷=,方差()()()()()2222221577711737975S ⎡⎤=-+-+-+-+-⎣⎦8=.结论正确,故D 符合题意. 故选D . 【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.9.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数. 【详解】解:将这组数据按从小到大的顺序排列为:100,108,110,114,115,120, 由中位数的定义可知,这组数据的中位数是1101142+=112(分). 故选:C . 【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.D解析:D 【分析】根据众数的定义可得x 的值. 【详解】解:∵数据2,3,x ,5,7的众数为7, ∴x=7, 故选:D . 【点睛】本题考查众数的意义,掌握众数是数据中出现最多的一个数是解题的关键.11.A解析:A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x 甲乙丁丙>,∴从甲和丙中选择一人参加比赛, ∵22S S 甲丙<, ∴选择甲参赛, 故选:A . 【点睛】本题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.B解析:B 【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x 201后,数据的变化特征,易得到答案. 【详解】解:∵数据x 1,x 2,x 3,…,x 200是龙岩市某企业普通职工的2019年的年收入, 而x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200, 故这201个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x 201比较大的影响,而更加离散,则方差变大 故选:B . 【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200也是解答本题的关键.二、填空题13.【分析】利用平均数的定义利用数据x1x2…x10的平均数为ax11x12…x30的平均数为b 可求出x1+x2+…+x10=10ax11+x12+…+x30=20b 进而即可求出答案【详解】因为数据x1 解析:23a b+ 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案. 【详解】因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a , 因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b , ∴x 1,x 2,…,x 30的平均数=10+2300a b =23a b+. 故答案为:23a b+. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.14.(3)m =845n =96;(4)a280人;b 乙乙校的中位数大于甲校的中位数【分析】(3)根据(1)中的数据可以得到中位数m 和众数n 的值;(4)a 根据(1)中的数据和(3)中的说明由样本估算总体可以解析:(3)m =84.5,n =96;(4)a .280人;b .乙,乙校的中位数大于甲校的中位数. 【分析】(3)根据(1)中的数据,可以得到中位数m 和众数n 的值;(4)a .根据(1)中的数据和(3)中的说明,由样本估算总体,可以得到甲学校掌握疫情防控知识优良的学生人数;b .根据(3)中表格中的数据,由中位数可以得到哪所学校的学生掌握疫情防控知识的水平较高,理由见详解. 【详解】解:(3)甲校的中位数m =(85+84)÷2=84.5, 乙校的众数是n =96; 故答案为:84.5,96(4)a .成绩80分及以上为优良,根据样本数据计算甲学校掌握疫情防控知识优良的学生人数约为:400×1420=280(人), 故答案为:280;b .可以推断出乙学校的学生掌握疫情防控知识的水平较高,理由为乙校的中位数大于甲校的中位数,故答案为:乙,乙校的中位数大于甲校的中位数. 【点睛】此题考查中位数、众数、由样本估算总体等相关知识,熟练掌握中位数、众数的定义及运用由样本估算总体等是解题关键.15.8【分析】根据方差公式计算即可方差S2=【详解】解:=(2+4+2+3+4)÷5=3故S2=(2﹣3)2+(4﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2÷5=08故填08【点睛】本题考查了方解析:8 【分析】根据方差公式计算即可.方差S 2=()()()22212n 1x x x x ...x x n ⎡⎤-+-++-⎣⎦ 【详解】解:x =(2+4+2+3+4)÷5=3,故S 2=[(2﹣3)2+(4﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2]÷5=0.8. 故填0.8. 【点睛】本题考查了方差的计算,熟知方差公式是解决问题的关键.16.5【分析】根据平均分=总分数÷总人数求解即可【详解】这个兴趣小组实验操作得分的平均分=(分)故答案为:875分【点睛】本题考查了加权平均数的求法熟记公式:是解决本题的关键解析:5 【分析】根据“平均分=总分数÷总人数”求解即可. 【详解】这个兴趣小组实验操作得分的平均分=105+98+84+73175==87.55+8+4+320⨯⨯⨯⨯(分).故答案为:87.5分. 【点睛】本题考查了加权平均数的求法.熟记公式:11221212 ( 0)n nn nx f x f x f x f f f f f f ++⋯++++≠+++=是解决本题的关键.17.乙【分析】根据平均数的计算公式先求出甲和乙同学的平均数再代入方差公式求出甲和乙同学的方差然后根据方差的意义即可得出答案【详解】解:甲同学的平均数是:(98+93+96+91+97)=95(分)甲同学解析:乙 【分析】根据平均数的计算公式先求出甲和乙同学的平均数,再代入方差公式求出甲和乙同学的方差,然后根据方差的意义即可得出答案. 【详解】解:甲同学的平均数是:15(98+93+96+91+97)=95(分), 甲同学的方差是:15[(98-95)2+(93-95)2+(96-95)2+(91-95)2+(97-95)2]=6.8, 乙同学的平均数是:15(96+97+93+95+94)=95(分), 乙同学的方差是:15[(96-95)2+(97-95)2+(93-95)2+(95-95)2+(94-95)2]=2, ∵6.8>2, ∴方差小的为乙,∴成绩比较稳定的同学是乙. 故答案为:乙. 【点睛】本题考查了算术平均数和方差的计算,熟练掌握计算公式是解答本题的关键.对于n 个数x 1,x 2,…,x n ,算术平均数的计算公式是:123...na a a a x n++++=,方差的计算公式为:()()()()22221232...n x x x x x x x xS n-+-+-++-=.18.7【分析】根据平均数求出x 的值再根据中位数定义求出答案【详解】由题意得:解得x=8将数据重新排列为:5667889∴这组数据的中位数是7故答案为:7【点睛】此题考查平均数的计算公式中位数的定义求一组解析:7 【分析】根据平均数求出x 的值,再根据中位数定义求出答案. 【详解】由题意得:56678977x ++++++=⨯, 解得x=8,将数据重新排列为:5、6、6、7、8、8、9, ∴这组数据的中位数是7, 故答案为:7. 【点睛】此题考查平均数的计算公式,中位数的定义,求一组数据的中位数.19.87【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩列出算式进行计算即可【详解】小明的总成绩为85×60+90×40=87(分)故答案为87【点睛】本题考查了加权平均数关键是根据加权平均数的计解析:87【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】小明的总成绩为85×60%+90×40%=87(分).故答案为87.【点睛】本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.20.甲乙【分析】根据加权平均数的定义分别计算三人的加权平均数然后与90比较大小即可得出答案【详解】解:根据题意得:甲的总评成绩是:90×50+83×20+95×30=901乙的总评成绩是:88×50+9解析:甲、乙【分析】根据加权平均数的定义分别计算三人的加权平均数,然后与90比较大小即可得出答案.【详解】解:根据题意得:甲的总评成绩是:90×50%+83×20%+95×30%=90.1,乙的总评成绩是:88×50%+90×20%+95×30%=90.5,丙的总评成绩是:90×50%+88×20%+90×30%=89.6,则学期总评成绩优秀的有甲、乙二人;故答案为:甲、乙.【点睛】本题考查了加权平均数,根据加权成绩等于各项成绩乘以不同的权重的和是解题的关键.三、解答题21.(1)28,(2)1.5元,1.8元;(3)960【分析】(1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.【详解】解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚, 中位数是:1.5元,众数是1.8元; 故答案为:1.5元,1.8元; (3)3000×32%=960(枚), 答:价格为1.8元的约960枚. 故答案为:960. 【点睛】本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)八(1)班平均成绩86分;八(2)班平均成绩86分;(2)八(1)班中位数80分,八(2)班中位数85分,八(2)班成绩较好,见解析;(3)八(1)班方差64,八(2)班方差114,八(1)班成绩较为整齐,见解析 【分析】(1)根据平均数的概念求解即可; (2)根据中位数的定义即可得到结论;(3)先计算出两个班的方差,再根据方差的意义求解即可. 【详解】(1)八(1)班的平均成绩是:1(80809080100)865++++=(分) 八(2)班的平均成绩是:1(80100957085)865++++=(分) (2)八(1)班的中位数是80分,八(2)班的中位数85分;两个班的平均成绩相同,八(2)班的中位数比八(1)班的中位数大,八(2)班的优秀学生多,∴八(2)班的成绩优秀.(3)八(1)班的方差为:222222(1)1[(8086)(8086)(9086)(8086)(10086)]645S =-+-+-+-+-=八(2)班的方差为:222222(2)1[(8086)(10086)(9586)(7086)(8586)]1145S =-+-+-+-+-=22(1)(2)S S <∴八(1)班的成绩较为整齐.【点睛】本题考查了平均数,中位数,方差的概念及统计意义,熟练掌握其概念是解题关键. 23.(1)120;(2)2.4千元;(3)可以预测该地区所有贫家庭能在2020年实现今面脱贫 【分析】(1)用该地区尚未脱贫的家庭1000户乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可;(2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为:6100012050⨯=(户);(2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为1(1.56 2.08 2.210 2.512 3.09 3.25) 2.450⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元);(3)依题意:2020年该地区农民家庭人均月纯收入的最低值如下:50030015020030045047049051053055057050204000 +++++++++++=>,所以可以预测该地区所有贫家庭能在2020年实现今面脱贫.【点睛】本小题考查频数和频数的意义、加权平均数、条形图、折线图等基础知识,考查运算能力、推理能力、数据分析观念、应用意识,考查统计思想,利用样本中百分比估计总体的数量,以及利用统计表统计2020年该地区农民家庭人均月纯收入的最低值是解题关键.24.(1)25人,90°,7,7;(2)一、二等奖学生人数分别为10人,15人.【分析】(1)先求出四班参赛人数,再用所占比例乘以360就得到α的度数.再根据一、二、三、四班获奖人数为6:7:a:5,求出a的值;得到各班获奖学生数的众数;(2)设获一二等奖的学生人数分别为x人,y人,根据共有25人和共用去1900元,可以列方程组即可求得.【详解】解:(1)①九(四)班参赛人数有100×(1-20%-20%-35%)=25人;α=360×(1-20%-20%-35%)=90;②三班参赛人数有100×35%=35,获奖者有35×20%=7,因为一、二、三、四班获奖人数为6:7:a:5,所以a=7;即一、二、三、四班获奖人数分别为6,7,7,5.所以各班获奖学生数的众数是7;故答案为:①25人,90°②7,7;(2)设获一二等奖的学生人数分别为x 人,y 人,则25100601900x y x y +=⎧⎨+=⎩,解得:1015x y =⎧⎨=⎩, 即获一二等奖学生人数分别为10人,15人. 【点睛】此题考查了学生的综合应用能力,解题的关键是掌握扇形图和方程组的应用以及众数的意义. 25.选手B 【分析】利用加权平均数的定义计算出A 、B 选手的综合成绩,从而得出答案. 【详解】解:A 选手的综合成绩为85595495190541⨯+⨯+⨯=++(分),B 选手的综合成绩为95585495191541⨯+⨯+⨯=++(分),∴选手B 的成绩更优秀. 【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.26.(1)a =40,b =94,c =99;(2)52,八年级的成绩较稳定,见解析;(3)估计参加此次竞赛活动获得成绩优秀的学生有972人 【分析】(1)根据扇形统计图的制作方法可求出“D 组”所占的百分比,即可求出a 的值,根据中位数、众数的意义可求出b 、c 的值;(2)先求出七年级的方差,再根据方差进行分析得出答案;(3)求出样本中的优秀率,进而得到总体的优秀率,再求出总体中的优秀人数. 【详解】解:(1)∵八年级成绩在“C 组”的有3人,占3÷10=30%, ∴“D 组”所占的百分比为1﹣10%﹣20%﹣30%=40%, ∴a =40,∵八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是94, ∴中位数是94,即b =94,∵七年级10名学生成绩出现次数最多的是99, ∴众数是99,即c =99 , ∴a =40,b =94,c =99;(2)()()()2222180-9286-92399-9210S ⎡⎤=⨯+++⨯⎣⎦七 =52 ,即:d=52, ∵50.4<52,∴八年级的成绩较稳定;(3)抽取的10名八年级学生中,成绩优秀的有 10×40%=4(人),抽取的10名七年级学生中,成绩优秀的有5人,∴抽取的20名学生中,成绩优秀的共有9人∴2160×9=972(人)20答:估计参加此次竞赛活动获得成绩优秀的学生有972人.【点睛】本题考查扇形统计图、中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数、方差的意义和计算方法是正确解答的关键.。

八年级数学上册 第六章《数据的分析》单元测试(扫描版)(新版)北师大版

八年级数学上册 第六章《数据的分析》单元测试(扫描版)(新版)北师大版

数据的分析
第六章数据的分析
一、选择题
1. C
2. B
3. D
4. A
5. D
6. A
7. A
8. D
9. B 10. C 11. C 12. B
二、填空题
13. 2 14. 11 15. 80.4 16. 5.0,3 000
三、解答题
17. 〔1〕1 500,1 500;〔2〕2 300;〔3〕略.
18. 〔1〕甲7,乙6.1;〔2〕甲7.5,乙7;〔3〕甲8,乙7;〔4〕略.
19. 〔1〕
平均数众数中位数
七年级85.5 80 87
八年级85.5 85 86
九年级85.5 78 84
〔2〕①从平均数和众数相结合看〔分析哪个年级成绩好些〕:八年级;
②从平均数和中位数相结合看〔分析哪个年级成绩好些〕:七年级.
〔3〕如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?说明理由:略.
20.〔1〕平均数是20.5,众数是18,中位数是18;〔2〕略.
21. 师生购置午餐费用的平均数3.5,中位数3,众数3.
22. 八〔2〕班,理由略.
23.〔1〕D同学这天的话费是0.9元.
〔2〕这五位同学这天的实际平均通话费0.64元,用原收费标准算出的平均通话费
0.72元,减少了0.08元.。

北师大八年级上第6章数据的分析单元试卷含答案解析

北师大八年级上第6章数据的分析单元试卷含答案解析

北师大新版八年级数学上册《第6章数据的分析》单元测试卷一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9B.极差是5C.众数是5D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8B. C.2D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2, B.2,1C.4, D.4,38.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7B.平均数是9C.众数是7D.极差是5二、填空题11.一组数据2、﹣2、4、1、0的中位数是.12.近年来,义乌市民用汽车拥有量持续增长,年至我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示120 123 127 132 138 141 145 148 …(度)估计李好家六月份总月电量是度.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:38 39 40 41 42cm)件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是cm,中位数是cm.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的﹣这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组22.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.北师大新版八年级数学上册《第6章数据的分析》单元测试卷参考答案与试题解析一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9B.极差是5C.众数是5D.中位数是9【考点】极差;算术平均数;中位数;众数.【分析】根据极差、平均数、众数、中位数的概念求解.【解答】解:这组数据的平均数为: =9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.【点评】本题考查了极差、平均数、众数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和40【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.6【考点】算术平均数;众数.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】常规题型.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8B. C.2D.5【考点】方差;众数.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2= [(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]= =2.8.故选:A.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2, B.2,1C.4, D.4,3【考点】方差;算术平均数.【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′= [(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]= [3×(x1+x2+…+x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9× [(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).8.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条【考点】用样本估计总体.【专题】计算题.【分析】第二次捕捞鱼共200条,有10条做了记号,即有记号的鱼占到总数的,然后根据一共50条做了记号,来估算总数.【解答】解:设湖中有x条鱼,则200:10=x:50,解得x=1 000(条).故选D.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【考点】算术平均数.【专题】应用题.【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系.【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.【点评】本题主要考查了平均数与众数,中位数的关系.平均数: =(x1+x2+…x n).众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.中位数:n个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数.10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7B.平均数是9C.众数是7D.极差是5【考点】极差;加权平均数;中位数;众数.【分析】根据中位数、平均数、极差、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为: =9,众数为:7,极差为:12﹣7=5.故选:A.【点评】本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.二、填空题11.一组数据2、﹣2、4、1、0的中位数是1.【考点】中位数.【分析】按大小顺序排列这组数据,中间两个数的平均数是中位数.【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.近年来,义乌市民用汽车拥有量持续增长,年至我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为23.【考点】算术平均数.【分析】根据平均数的计算公式进行计算即可.【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.【点评】此题考查了算术平均数,熟记平均数的计算公式是本题的关键,是一道基础题.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示120 123 127 132 138 141 145 148 …(度)估计李好家六月份总月电量是120度.【考点】用样本估计总体.【专题】计算题.【分析】从表中可以看出李好观察了7天,这7天的用电量是148﹣120=28度,即可求得平均用电量,然后乘以30即可.【解答】解:×30=120(度).【点评】本题的关键是注意表中写了8天的数字,但实际上李好观察了7天这一要点.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:38 39 40 41 42cm)件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是39cm,中位数是40cm.【考点】众数;中位数.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为1,3,5或2,3,4.【考点】中位数;算术平均数.【专题】计算题.【分析】根据平均数和中位数的定义,结合正整数的概念求出这三个数.【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.【点评】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.平均数的求法.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是2.【考点】方差;算术平均数.【分析】先由平均数公式求得x的值,再由方差公式求解即可.【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2= [(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.【点评】本题考查了平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人中位数方差平均字数数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.【考点】加权平均数.【分析】按照权重为演讲内容:演讲能力:演讲效果=5:4:1的比例计算两人的测试成绩,再进行比较即可求解.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.【点评】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的﹣这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是345,极差是24.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【考点】折线统计图;算术平均数;中位数;极差.【专题】图表型.【分析】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可;(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解;(3)根据平均数的求解方法列式计算即可得解.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)年与年相比,333﹣334=﹣1,与年相比,345﹣333=12,与相比,347﹣345=2,与相比,357﹣347=10,所以增加最多的是;(3)这五年的全年空气质量优良天数的平均数===343.2天.【点评】本题考查了折线统计图,要理解极差的概念,中位数的定义,以及算术平均数的求解方法,能够根据计算的数据进行综合分析,熟练掌握对统计图的分析和平均数的计算是解题的关键.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组1414 1.7乙组141511.7【考点】折线统计图;算术平均数;中位数;方差.【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.22.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【考点】条形统计图;扇形统计图;加权平均数;众数.【专题】图表型.【分析】(1)用捐款15元的人数14除以所占的百分比28%,计算即可得解;(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数;(3)根据加权平均数的求解方法列式计算即可得解.【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【考点】方差;算术平均数.【分析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差= [(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点评】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.。

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测题(有答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测题(有答案解析)(2)

一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.在学校数学竞赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是85C .平均数是89D .极差是153.张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:①2019年10月至2020年3月通话时长统计表 时间10月11月 12月 1月 2月 3月 时长(单位:分钟) 520530550610650660②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为( ) A .550 B .580C .610D .6304.某校书法兴趣小组20名学生日练字页数如表所示:这些学生日练字页数的众数、平均数分别是( ) 日练字页数 2 3 4 5 6人数26543A .3页,4页B .3页,5页C .4页,4页D .4页,5页5.已知一组数据为7,1,5,x ,8,它们的平均数是5,则这组数据的方差为( )A .3B .4.6C .5.2D .66.在一次期末考试中,某一小组的6名同学的数学成绩(单位:分)分别是114,115,100,108,110,120,则这组数据的中位数是( ) A .100B .108C .112D .1207.某文艺汇演中,10位评委对节目A 的评分为1210a a a 、、、,去掉其中一个最高分和一个最低分得到一组新数据128b b b 、、、,这两组数据一定相同的是( ) A .平均数 B .中位数 C .众数 D .方差 8.若一组数据2,2,x ,5,7,7的众数为7,则这组数据的x 为( )A .2B .5C .6D .79.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 510.下表记录了甲、乙、丙、丁四名立定跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数()V cm 166 165 166 165方差22()s cm3.53.5 15.516.5根据表中数据,要从中选择一名成绩好发挥稳定的运动员参加比赛,应该选择( ) A .甲B .乙C .丙D .丁11.下表记录了甲、乙、丙、丁四位跳远运动员选拔赛成绩的平均数与方差:根据表中信息,请你选择一名成绩好且发挥稳定的选手参赛,最合适的是( ) A .甲B .乙C .丙D .丁12.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙2二、填空题13.为了响应学校“书香校园”建设,八(1)班的同学们积极捐书,其中第一组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,那么这组数据的方差是_____.14.市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛。

2019年秋北师大版八年级数学上册第六章数据的分析作业设计

2019年秋北师大版八年级数学上册第六章数据的分析作业设计

1平均数1. 小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天最低温度的平均值是()A. 1℃B. 2℃C. 0℃D. -1℃2. 某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是()A. 30吨B. 31吨C. 32吨D. 33吨3. 在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽实验,结果如下表所示:由此估计这种作物种子的发芽率为____________.4. 为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形统计图,观察改图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.5. 在一次“爱心互助”捐款活动中,某班第一组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A. 3.5元B. 6元C. 6.5元D. 7元6. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分、2分、3分、4分四个等级,将调查结果绘制成如图所示的条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是()A. 2.25分B. 2.5分C. 2.95分D. 3分7. 宾馆客房的标价影响住宿百分率,下表是某宾馆在近几年旅游周统计的平均数据:在旅游周,要使宾馆客房收入最大,客房标价应选()A. 160元B. 140元C. 120元D. 100元8. 若一组数据的平均数为,则另一组数据的平均数是()A. B. C. D. 无法确定9. 高一某班在入学体检中测得全班同学的平均体重是48kg,其中男同学的平均体重比女同学的平均体重多20%,而女同学人数比男同学人数多20%.男、女同学平均体重各是多少?10. 已知这四个数的平均数是5,这四个数的平均数是9,则________.11. 某班进行个人投篮比赛,下表记录了在规定时间内投进个球的人数分布情况:已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球各多少人?12. 某景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表:(1)该风景区称调整后这5个景点门票的平均收费不变,日平均总收入持平,问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的日平均总收入相对于调价前,实际增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一个说法较能反映整体实际?13. 某校为了招聘一批优秀教师,对入选的三名候选人进行技能与专业知识两项考核,现将甲、乙、丙三人的考核成绩统计如下:(1)如果校方认为教师的教学技能与专业知识水平同等重要,那么候选人将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,并且赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.14. “校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是;(3)在条形统计图中,“非常了解”所对应的学生人数是;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人.15. 某校举行八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原、每个项目得分按一定百分比折算后记入总分,下表为甲、乙、丙三位同学得分情况(单位:分)(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖,现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后分数和是20分,问甲能否获得这次比赛的一等奖.答案1.【答案】C【解析】这五天的最低温度的平均值是.故选C.考点:算术平均数.2.【答案】C【解析】由折线统计图知,这5天的平均用水量为: (吨).故选C .3.【答案】0.94【解析】把每次做实验的总的个数作为整体,求出发芽率,根据总体与样本的关系,即可认为就是这种作物种子发芽率.×100%=0.939≈0.94.考点:算术平均数;用样本估计总体.4.【答案】 60 13【解析】共抽查:15+10+15+20=60(株),平均数是:(15×10+10×12+15×14+20×15)÷60=13.故答案为:60,13.点睛:根据平均数的定义进行计算即可.5. 【答案】D【解析】根据加权平均数的计算公式用总钱数除以8即可得出答案.根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元)故选C.考点:加权平均数.6.【答案】C【解析】首先求得每个小组的人数,然后求平均分即可.总人数为12÷30%=40人,∴3分的有40×42.5%=17人2分的有8人∴平均分为:=2.95故选C.“点睛”本题考查了加权平均数即统计图的知识,解题的关键是观察图形并求出各个小组的人数.7.【答案】B【解析】设客房的总数是,A. 160元:×63.8%×160=102.08(元);B. 140元:×74.3%×140=104.02 (元);C. 120元:×84.1%×120=100.92 (元);D. 100元:×95%×100=95 (元);104.02>102.08>100.92>95;所以B(140元)时收入最高.故选B.8.【答案】B【解析】一组数据的平均数是,即那么,的平均数是:故选B.9.【答案】男同学平均体重为52.8千克,女同学平均体重44千克.【解析】等量关系:全班同学平均体重是48千克等于男生总体重与女生总体重的和除以总同学数.根据男同学平均体重比女同学平均体重多20%,可以用男同学的体重表示出女同学的体重;根据女同学人数比男同学人数多20%,可以用女生人数表示男生人数.解:设女同学平均体重x千克,则男同学平均体重为1.2x千克;设男同学y人,则女同学1.2y人。

2019秋八年级数学上册 第六章 数据的分析达标测试卷 (新版)北师大版

2019秋八年级数学上册 第六章 数据的分析达标测试卷 (新版)北师大版

第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( )A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是( )A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( ) A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是( )A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均数大于乙运动员得分的平均数 D .甲运动员的成绩比乙运动员的成绩稳定9.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数 B .标准差C .中位数D .众数10.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据a 1,a 2,a 3,0,a 4,a 5的平均数和中位数是( )A .a ,a 3B .a ,a 2+a 2+a 32C. 56a ,a 2+a 32D. 56a ,a 3+a 42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x=________,y=________.18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:型号根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:3 4 5 6 8 8 9 10乙:4 6 6 6 8 9 12 13丙:3 3 4 7 9 10 11 12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示. (1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n (|x 1-x |+|x 2-x |+…+|x n -x |)(其中x表示n 个数据x 1,x 2,…,x n 的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.223.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图). (1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定. (2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。

八年级数学上册 第六章《数据的分析》单元测试(扫描版)(新版)北师大版

八年级数学上册 第六章《数据的分析》单元测试(扫描版)(新版)北师大版

数据的分析
第六章数据的分析
一、选择题
1. C
2. B
3. D
4. A
5. D
6. A
7. A
8. D
9. B 10. C 11. C 12. B
二、填空题
13. 2 14. 11 15. 80.4 16. 5.0,3 000
三、解答题
17. (1)1 500,1 500;(2)2 300;(3)略.
18. (1)甲7,乙6.1;(2)甲7.5,乙7;(3)甲8,乙7;(4)略.
19. (1)
(2)①从平均数和众数相结合看(分析哪个年级成绩好些):八年级;
②从平均数和中位数相结合看(分析哪个年级成绩好些):七年级.
(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?说明理由:略.
20.(1)平均数是20.5,众数是18,中位数是18;(2)略.
21. 师生购买午餐费用的平均数3.5,中位数3,众数3.
22. 八(2)班,理由略.
23.(1)D同学这天的话费是0.9元.
(2)这五位同学这天的实际平均通话费0.64元,用原电话收费标准算出的平均通话费
0.72元,减少了0.08元.。

八年级数学上册第六章数据的分析达标测试卷新版北师大版

八年级数学上册第六章数据的分析达标测试卷新版北师大版

第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( )A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是( )A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( ) A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是( )A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均数大于乙运动员得分的平均数 D .甲运动员的成绩比乙运动员的成绩稳定9.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数 B .标准差C .中位数D .众数10.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据a 1,a 2,a 3,0,a 4,a 5的平均数和中位数是( )A .a ,a 3B .a ,a 2+a 2+a 32C. 56a ,a 2+a 32D. 56a ,a 3+a 42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x=________,y=________.18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:型号根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:3 4 5 6 8 8 9 10乙:4 6 6 6 8 9 12 13丙:3 3 4 7 9 10 11 12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示. (1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n (|x 1-x |+|x 2-x |+…+|x n -x |)(其中x表示n 个数据x 1,x 2,…,x n 的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.223.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图). (1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定. (2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。

秋八年级数学上册 第六章 数据的分析达标测试卷 (新版)北师大版

秋八年级数学上册 第六章 数据的分析达标测试卷 (新版)北师大版

——————————新学期新成绩新目标新方向——————————第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( )A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是( )A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( ) A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是( )A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2 400元,2 400元B .2 400元,2 300元C .2 200元,2 200元D .2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均数大于乙运动员得分的平均数 D .甲运动员的成绩比乙运动员的成绩稳定9.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数 B .标准差C .中位数D .众数10.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据a 1,a 2,a 3,0,a 4,a 5的平均数和中位数是( )A .a ,a 3B .a ,a 2+a 2+a 32C. 56a ,a 2+a 32D. 56a ,a 3+a 42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x 1,x 2,x 3,x 4的方差为2,则4x 1,4x 2,4x 3,4x 4的方差是________. 16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s 乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x =________,y =________. 18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表: 型号根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:3 4 5 6 8 8 9 10乙:4 6 6 6 8 9 12 13丙:3 3 4 7 9 10 11 12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示. (1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n (|x 1-x |+|x 2-x |+…+|x n -x |)(其中x表示n 个数据x 1,x 2,…,x n 的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.223.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图). (1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定. (2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。

北师大版八年级数学上册试题 第6章 数据的分析 章节测试卷(含解析)

北师大版八年级数学上册试题 第6章 数据的分析 章节测试卷(含解析)

第6章《数据的分析》章节测试卷、一.选择题(共10小题,满分30分,每小题3分)1.八(1)班的学生从第一学期到第二学期时,下列有关年龄的统计量不变的是()A.平均年龄B.年龄的方差C.年龄的众数D.年龄的中位数2.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()吨2 A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是433.某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均值(结果取整数)为()A.87次B.110次C.112次D.120次4.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数是()A.3分B.3.55分C.4分D.45%5.八位评委对参加演讲比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下的6个分数的平均分作为选手的比赛得分,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数B.中位数C.极差D.众数6.育新中学八年级六班有53人.一次月考后,数学老师对数学成绩进行了统计.由于有三人因事没有参加本次月考,因此计算其他50人的平均分为90分,方差s2=40.后来三进行了补考,数学成绩分别为88分,90分,92分.加入这三人的成绩后,下列说法正确的是()A.平均分和方差都改变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都不变7.一组数据的方差为s2,将这组数据中每个数据都除以3,所得新数据的方差是()A.13s2B.3s2C.19s2D.9s28.(3分)某同学各科成绩如图所示,则其成绩的中位数是()A.75分B.75.5分C.76分D.77分9.第1组数据为:0、0、0、1、1、1,第2组数据为:m 个00、0、⋯、0、n 个11、1、⋯、1,其中m 、n 是正整数.下列结论:①当m=n 时,两组数据的平均数相等;②当m>n 时,第1组数据的平均数小于第2组数据的平均数;③当m<n 时,第1组数据的中位数小于第2组数据的中位数;④当m =n 时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A .①②B .②③C .①③D .②④10.某数学兴趣小组对我县祁禄山的红军小道的长度进行n 次测量,得到n 个结果x 1,x 2,x 3,…,x n (单位:km ).如果用x 作为这条路线长度的近似值,要使得(x −x 1)2+(x −x 2)2+⋅⋅⋅+(x −x n )2的值最小,x 应选取这n 次测量结果的( )A .中位数B .众数C .平均数D .最小值二.填空题(共6小题,满分18分,每小题3分)11.某学校开展“齐诵满江红,传承报国志”诵读比赛,八年级准备从小乐和小涵两位同学中选拔一位同学参加决赛,如图是小乐和小涵两位同学参加5次选拔赛的测试成绩(满分为100分)折线统计图,若选择一位成绩优异且稳定的同学参赛,推选参加决赛的同学是 (填“小乐”或“小涵”).12.有一组数据:a,b,c,d,e(a <b <c <d <e).将这组数据改变为a −2,b,c,d,e +2.设这组数据改变前后的方差分别是s 21,s 22,则s 21与s 22的大小关系是 .13.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为 .14.甲、乙、丙三种糖果的售价分别为每千克6元、每千克7元、每千克8元,若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果的售价应定为每千克元.15.若质数a,b满足a2−9b−4=0,则数据a,b,2,3的中位数是.16.若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是.三.解答题(共7小题,满分52分)17.(6分)已知一组数据:x,10,12,6的中位数与平均数相等,求x的值.18.(6分)校园广播站招聘小记者,对应聘同学分别进行笔试(含阅读能力、思维能力和表达能力三项测试)和面试,应聘者小成同学成绩(单位:分)如下表:笔试面试阅读能力思维能力表达能力92成绩889086(1)请求出小成同学的笔试平均成绩;(2)如果笔试平均成绩与面试成绩按6:4的比例确定总成绩,请求出小成同学的总成绩.19.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b c d(1)写出表格中a,b,c,d的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)近些年来,我国航天事业飞速发展.今年5月30日,搭载神舟十六号载人飞船的长征二号F遥十六运载火箭,在酒泉卫星发射中心发射升空,神舟十六号航天员乘组由景海鹏、朱杨柱、桂海潮3名航天员组成,发射取得圆满成功.而“天宫课堂”让广大人民尤其是青少年学到了很多科学知识,激发了更多人的航天梦.为普及科学知识,某校开展了“天宫课堂”知识竞赛.为了解七、八年级学生(八年级有600名学生、八年级有800名学生)的竞赛情况,现从两个年级各随机抽取20名学生的成绩(百分制)进行分析.过程如下:【收集数据】八年级20名学生成绩:62,52,58,67,70,69,75,73,75,75,80,78,77,90,81,84,86,88,94,98;八年级20名学生成绩在80≤x<90的分数:83,85,87,81,80,84,82;【整理数据】按照分数段,整理、描述两组样本数据:年级x<7070≤x<8080≤x<9090≤x≤10八年级5a53八年级3674【分析数据】两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级76.676b131八年级76.6c78124(1)直接写出a、b、c的值;(2)根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有多少人?【得出结论】(3)通过以上分析,你认为这两个年级中哪个年级对“天宫课堂”知识掌握情况更好一些,并说明推断的合理性(写出一条理由即可).21.(8分)每年4月中上旬的体育考试,是初三同学们决胜中考的第一关,为了解我校初2023届学生的体育训练情况,对初2023届学生进行了一次体育机器模拟测试.测试完成后,在初2023届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:①20名女生的测试成绩统计如下:44,47,48,45,50,49,45,50,48,49,50,50,44,50,43,50,44,50,49,45.②抽取的20名男生的测试成绩扇形统计图如图:③抽取的20名男生成绩得分用x表示,共分成五组:A:40<x≤42;B:42<x≤44;C:44<x≤46;D:46<x≤48;E:48<x≤50.其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.④抽取男生与女生的学生的测试成绩的平均数、中位数、众数如表所示:性别平均数中位数众数女生47.548.5c男生47.5b49(1)根据以上信息可以求出:a=______,b=______,c=______;(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2023届学生中男生有600人,女生有550人,(规定49分及以上为优秀)请估计该校初2023届参加此次体育测试的学生中成绩为优秀的学生人数.22.(8分)某校为了解八年级800名学生跳绳情况,从八年级学生中随机抽取50名学生进行1分钟跳绳测试,并对测试成绩进行统计,绘制了如下统计表.组别1分钟跳绳个数n频数组内学生平均1分钟跳绳个数A n<100680B100≤n<13015120C130≤n<16020145D n≥1609180其中C组同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.根据以上信息,回答下列问题:(1)这50名学生1分钟跳绳个数的中位数是_______;(2)求这50名学生1分钟跳绳个数的平均数;(3)若跳绳个数超过140个为优秀,则该校八年级学生跳绳成绩优秀的约有多少人?23.(8分)甲、乙两名队员练习射击,每次射击的环数为整数,两人各射击10次,其成绩分别绘制成如图1、图2所示的统计图,两幅图均有部分被污染,两名队员10次的射击成绩整理后,得到的统计表如下表所示.平均数中位数众数方差甲a7b 1.8乙7c83(1)甲队员射中7环的次数为___________;(2)统计表中a=___________;b=___________;c=___________;(3)___________队员的发挥更稳定;(4)乙队员补射1次后,成绩为m环,据统计乙队员这11次射击成绩的中位数比c大0.5,则m的最小值为___________.答案与试题一.选择题1.B【分析】根据当数据都加上一个数时的平均数、方差、众数、中位数的变化特征逐项判断即可解答.【详解】解:由题意知,八年级一班的学生升八年级时,每个同学的年龄都加1,其中平均年龄加1,众数加1,中位数加1,方差不变,故A、C、D不符合要求;B符合要求.故选:B.2.C【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【详解】∵这组数据的6出现了3次,3,4,5各出现了1次,∴众数为6吨,∵平均数为3+4+5+6×36=5吨,方差为[(4−5)2+(3−5)2+(5−5)2+(6−5)2×3]6=43吨2,中位数是6+52= 5.5吨,∴A,B,D选项正确,不符合题意,C选项错误,符合题意,故选:C3.C【分析】根据众数的定义求解即可【详解】解:∵45%>25%>15%>10%>5%,∴由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:C.5.B【分析】根据平均数、中位数、众数、极差的意义分别判断即可得到答案.【详解】去掉一个最高分和一个最低分后一定会影响平均分、极差,有可能影响众数,但是这组数据的中间两个数没有变化故一定不会影响中位数,故选:B.6.C【分析】分别求出加入三人成绩后的平均分、方差,然后比较大小即可.【详解】解:由题意知,加入三人成绩后的平均分为:90×50+88+90+9253=90,∴平均分不变,方差为:40×50+(88−90)2+(90−90)2+(92−90)253≈37.9,∵37.9<40,∴方差变小,故选:C.7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x1,x2,…,x n表示出已知数据的平均数与方差,再根据题意用x1,x2,…,x n表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.【详解】设原数据为x1,x2,…,x n,其平均数为x,方差为s2.根据题意,得新数据为13x1,13x2,…,13x n,其平均数为13x.根据方差的定义可知,新数据的方差为1n[(13x1−13x)2+(13x2−13x)2+⋯+(13x n−13x)2]=19×1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]=19s2.故选C.【点睛】本题考查平均数与方差,会分别利用方差和平均数的公式去表示方差和平均数是解题的关键.其次根据题意给代数式进行等量变形也非常重要.8.(3分)(2023春·江西九江·八年级统考期中)某同学各科成绩如图所示,则其成绩的中位数是()9.C【分析】根据平均数的定义,中位数的定义,方差的定义对每一项判断解答即可.【详解】解:∵第1组数据为:0、0、0、1、1、1,∴第1组数据的平均数为0+0+0+1+1+16=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据平均数为m×0+n×1m+n =nm+n,∵m=n,∴第2组数据平均数nm+n =n2n=12,∴当m=n时,两组数据的平均数相等,故①正确;∵当m>n时,m+n>2n,∴第2组数据平均数nm+n <n2n=12,∴第1组数据的平均数大于第2组数据的平均数,故②错误;∵第1组数据为:0、0、0、1、1、1,∴第1组数据的中位数为0+12=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴当m<n时,若m+n为奇数时,第2组数据的中位数为1;若m+n偶数,第2组数据的中位数是为1,∴当m<n时,第2组的中位数为1,当m<n时,第1组数据的中位数小于第2组数据的中位数,故③正确;∵第1组数据为:0、0、0、1、1、1,∴第1组数据方差:3×(0−0.5)2+3×(1−0.5)26=0.25,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据的方差为m(0−0.5)2+n(1−0.5)2m+n=0.25,∴当m=n时,第2组数据的方差等于第1组数据的方差,∴正确的序号为①③,故选C.10.C【分析】先设出y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2,然后进行整理得出y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),再求出二次函数的最小值,再根据x的取值即可得出答案.【详解】解:设y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2 y=x2﹣2xx1+x12+x2﹣2xx2+x22+x2﹣2xx3+x32+…+x2﹣2xxn+xn2y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),则当x=−﹣2(x1+x2+x3+…+x n)2n =x1+x2+x3+…+x nn时,二次函数y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2)最小,∴x所取平均数时,结果最小,故选:C.二.填空题11.解:根据题意得:x小乐=85+90+60+70+905=79,S2小乐=15[(85−79)2+(90−79)2+(60−79)2+(70−79)2+(90−79)2]=144,x小涵=80+80+90+85+905=85,S2小涵=15[(80−85)2+(80−85)2+(90−85)2+(85−85)2+(90−85)2]=20,∵x小涵>x小乐,S2小涵<S2小乐,∴小涵的成绩优异且稳定,∴推选参加决赛的同学是小涵,故答案为:小涵.12.S21<S22【分析】设数据a,b,c,d,e的平均数为x,根据平均数的定义得出数据a−2,b,c,d,e+2的平均数也为x,再利用方差的定义分别求出s21,s22,进而比较大小.【详解】解:设数据a,b,c,d,e的平均数为x,则数据a−2,b,c,d,e+2的平均数也为x,∵s21=15[(a−x)2+(b−x)2+…+(e−x)2],s22=15[(a−2−x)2+(b−x)2+…+(e+2−x)2]=15[(a−x)2+(b−x)2+…+(e−x)2−4(a−x)+4+4(e−x)+4]=15[(a−x)2+(b−x)2+…+(e−x)2+4(e−a)+8]∴s22=S21+15[4(e−a)+8]∵a<e,∴s21<s22.故答案为s21<s22.13.8【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.【详解】解:由题意得,{3+a+2b+5=4×6a+6+b=3×6,解得{a=8b=4,这两组数合并成一组新数据为:3,8,8.5,8,6,4,在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.14.6.9【分析】先根据甲种糖果6千克,乙种糖果10千克,丙种糖果4千克求出混合后的糖果甲、乙、丙比,再用各自所占比乘各自的售货单价相加即可.【详解】解:若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果甲、乙、丙比为3:5:2,∴混合后的糖果的售价每千克应定为310×6+510×7+210×8= 6.9(元),故答案为:6.9.15.4或7【分析】由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,可得{a+2=9a−2=b或{a+2=b a−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解方程组可得满足要求的a,b的值,然后根据中位数是第二、三位数的平均数求解即可.【详解】解:由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,∴{a+2=9a−2=b 或{a+2=ba−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解得{a=7b=5,{a=11b=13,{a=3b=59(舍去),{a=5b=73(舍去),当{a=7b=5时,2,3,5,7的中位数为3+52=4;当{a=11b=13时,2,3,11,13的中位数为3+112=7;∴数据a,b,2,3的中位数是4或7,故答案为:4或7.16.19【分析】根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.三.解答题17.解:①当x≤6时,这组数据按从小到大顺序排列为x,6,10,12由题意得x+6+10+124=6+102则x=4②当6<x≤10时,这组数据按从小到大顺序排列为6,x,10,12由题意得x+6+10+124=x+102则x=8③当10<x≤12时,这组数据按从小到大顺序排列为6,10,x,12由题意得x+6+10+124=x+102则x=8(舍)④当x>12时,这组数据按从小到大顺序排列为6,10,12,x由题意得x+6+10+124=10+122则x=16综上所述:x=4或8或16.18.(1)解:由题意可得:88+90+863=88(分)∴小成同学面试平均成绩为88分;(2)解:(88×6+92×4)÷(6+4)=89.6(分)∴小成同学的最终成绩为89.6分.19.解:(1)甲的平均成绩a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),又∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的众数:c=8(环)其方差为:d=110[(3−7)2+(4−7)2+(6−7)2+(7−7)2+3×(8−7)2+(9−7)2+(10−7)2]=110×(16+9+1+0+3+4+9)=110×42=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(1)解:根据八年级20名学生成绩,分数段在70≤x<80的有7人,即a=7;八年级20名学生成绩中,75分的有3人,人数最多,故b=75;根据八年级分数段可得,中位数在80≤x<90分数段中,将80≤x<90分数段中的分数按照从小到大排列为80,81,82,83,84,85,87,故八年级的中位数是80+812=80.5;故a、b、c的值分别为:7,75,80.5.(2)解:七、八年级“天宫课堂”竞赛成绩为优秀人数为:600×820+800×1120=680人;故根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有680人.(3)八年级对“天宫课堂”知识掌握情况更好一些,∵八年级的中位数和众数都高于八年级,且方差小于八年级的方差,说明八年级的成绩更加稳定一些.21.(1)由题意可得:a%=1−(5%+5%+30%+45%)=15%,∴a=15,由已知可得男生各组人数分别如下:A、B、C三组总人数为:20×(5%+5%+15%)=5,D组:20×30%=6,E组:20×45 %=9,∴男生成绩按照从低到高排序,排在第10和第11位的都为48,∴b=48,把女生成绩从低到高排序为:43,44,44,44,45,45,45,47,48,48,49,49,49,50,50,50,50,50,50,50,∴根据众数的意义可得c=50,故答案为:15;48;50;(2)∵在本次测试中,男生成绩和女生成绩的平均数相同,女生成绩的中位数与众数都比男生成绩的中位数与众数较高,∴此次的体育测试成绩女生更好;(3)由数据可知:男生E组数据48<x≤50均为优秀,女生优秀人数为10人,∴600×45%+550×1020=545(人),∴该校初2023届参加此次体育测试的学生中成绩为优秀的学生为545人.故答案为:545人.22.(1)根据数据可知中位数在C组,由C组数据同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.可得这50名学生1分钟跳绳个数的中位数是137.故答案为:137.(2)150(80×6+120×15+145×20+180×9)=150×7800=156.答:这50名学生1分钟跳绳个数的平均数为156;(3)14+950×800=368(人)答:该校八年级学生跳绳成绩优秀的约有368人.23.(1)解:由条形统计图可得成绩为7环的次数为10−2−1−1−2=4(次),故答案为:4;(2)解:平均数a=5×2+6×1+7×4+8×1+9×210=7,众数b=7,由折线统计图可得剩余两次的成绩和为7×10−3−6−4−8−7−8−10−9=15,∵众数为8,∴剩余两次的成绩为7和8,将乙的10次成绩从大到小依次排序为10,9,8,8,8,7,7,6,4,3,∴中位数c=8+72=7.5,故答案为:7,7,7.5;(3)解:∵方差1.8<2,∴甲队员的发挥更稳定,理由是方差越小稳定性越好,故答案为:甲;(4)解:由题意知,乙队员11次射箭成绩的中位数为7.5+0.5=8,即乙的11次成绩从大到小依次排序中第6次成绩为8,∴m≥8,∴m的最小值为8,故答案为:8..。

2018_2019学年八年级数学上册第六章数据的分析测评(新版)北师大版

2018_2019学年八年级数学上册第六章数据的分析测评(新版)北师大版

第六章测评(时间:45分钟,满分:100分)一、选择题(本大题共8个小题,每小题4分,共32分.每小题给出的四个选项中,只有一项是符合题意的)1.(2017浙江丽水中考)根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/m3)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21 微克/m3B.20 微克/m3C.19 微克/m3D.18 微克/m32.下列是某校活动小组学生的年龄情况:13,15,15,16,13,15,14,15(单位:岁),这组数据的中位数和极差分别是()A.15,3B.14,5C.16,16D.14,33.今年,我省启动了“关爱留守儿童工程”.某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15B.众数是10C.中位数是17D.方差是4434.有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如下:这四位同班同学中,月考班级名次波动最大的是()A.甲B.乙C.丙D.丁5.小华所在的九(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65 m,而小华的身高是1.66 m,下列说法错误的是()A.1.65 m是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65 mD.这组身高数据的众数不一定是1.65 m6.小明星期天在某无监控的十字路口,对闯红灯的人次进行统计,根据上午7:00~12:00中各时间段(以1 h为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为()闯红灯人次统计图A.40,15B.10,15C.15,15D.10,207.已知一组数据x1,x2,x3,…,x10的平均数是5,另一组数据x11,x12,x13,…,x20的平均数是3,则x1,x2,x3,…,x20的平均数是()A.5B.3C.4D.88.若一组数据-1,0,2,4,x的极差为7,则x的值是()A.-3B.6C.7D.6或-3二、填空题(每小题5分,共20分)9.如果一组数据同时减去350后,新数据的众数为7.3,中位数为8.2,那么原数据的众数是,中位数为.10.如图,这是某市一个景点6月份1~10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的众数是,中位数是.11.某种蔬菜按品质分成三个等级销售,销售情况如下表:则售出蔬菜的平均单价为元/kg.12.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是.三、解答题(共48分)13.(15分)(2017黑龙江绥化中考)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.14.(15分)甲、乙两名运动员在相同的条件下各射靶10次,每次射靶的成绩情况如下图所示:(1)请你根据图中数据填写下表:(2)根据以上信息分析谁的成绩好些.15.(18分)某中学九年级(1)班全体同学积极参加了向贫困山区捐款活动,该班同学捐款情况的部分统计如图所示:(1)求该班的总人数;(2)请将该条形图补充完整,并写出捐款金额的众数;(3)该班平均每人捐款多少元?答案:一、选择题1.B2.A3.C4.D5.B由题意,可知该班学生的平均身高是1.65 m,所以1.65 m是该班学生身高的平均水平,选项A 正确;九(1)班共有50名学生,而小华的身高是1.66 m,高于平均身高,不能说明班上比小华高的学生人数不会超过25人,所以选项B是错误的.6.C7.C8.D∵这组数据的极差是7,∴x-(-1)=7或4-x=7,解得x=6或x=-3.二、填空题9.357.3358.210.26 ℃26 ℃11.4.412.乙观察图象可知,三人中成绩最稳定的是乙.三、解答题13.解 (1)a=1-15%-25%-40%=20%.100×20%=20(人),100×40%=40(人),100×25%=25(人),100×15%=15(人).则本次抽查中学生每天参加活动时间的中位数是1.=1.175(h).(2)20×0.5+40×1+25×1.5+15×2100答:本次抽查中学生每天参加户外活动的平均时间是1.175 h.2=1,乙的中位数为7.14.解 (1)s甲(2)因为甲、乙的平均数与中位数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.=50(人),因此该班总人数是50.15.解 (1)1428%(2)图形补充完整如图所示,捐款金额的众数是10元.(3)1(5×9+10×16+15×14+20×7+25×4)50×655=13.1(元),=150因此该班平均每人捐款13.1元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章达标测试卷
一、选择题(每题3分,共30分)
1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ) A.6 B.7 C.8 D.9
2.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是( )
A.众数和平均数B.平均数和中位数
C.众数和方差D.众数和中位数
3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是( ) A.5 B.6 C.-1 D.5.5
4.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( )
A.3 B.4 C.5 D.6
5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数B.方差C.平均数D.中位数
6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是( )
A.甲B.乙C.丙D.丁
7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
A.2 400元,2 400元B.2 400元,2 300元
C.2 200元,2 200元D.2 200元,2 300元
(第8题)
8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是( )
A.甲运动员得分的极差大于乙运动员得分的极差
B .甲运动员得分的中位数大于乙运动员得分的中位数
C .甲运动员得分的平均数大于乙运动员得分的平均数
D .甲运动员的成绩比乙运动员的成绩稳定
9.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,
则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数 B .标准差 C .中位数 D .众数
10.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据a 1,a 2,a 3,0,a 4,a 5的平均数
和中位数是( ) A .a ,a 3
B .a ,a 2+a 2+a 3
2
C. 56a ,a 2+a 3
2
D. 56a ,a 3+a 42
二、填空题(每题3分,共24分)
11.已知一组数据为25,25,27,27,26,则其平均数为________.
12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,
极差是________.
13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .
(第13题)
(第16题)
14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,
40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.
15.已知样本数据x 1,x 2,x 3,x 4的方差为2,则4x 1,4x 2,4x 3,4x 4的方差是________.
16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成
绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s 甲2
________s 乙2
(填“>”“<”或“=”). 17.某班40名学生的某次数学测验成绩统计表如下:
若这个班的数学平均成绩是74分,则x=________,y=________.
18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:
型号
根据表中的数据回答下列问题:
(1)该商店这两个月平均每月销售空调________台;
(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调
要少进.
三、解答题(19~21题每题10分,其余每题12分,共66分)
19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):
甲:3 4 5 6 8 8 9 10
乙:4 6 6 6 8 9 12 13
丙:3 3 4 7 9 10 11 12
三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.
20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.
(第20题)
(1)根据图中信息填写上表;
(2)分别用平均数和中位数解释谁的成绩比较好.
21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下
(单位:听):33,32,28,32,25,24,31,35. (1)这8天的平均日销售量是多少听?
(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?
22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示.
(1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式
是:绝对差=1
n (|x 1-x |+|x 2-x |+…+|x n -x |)(其中x 表示n 个数据x 1,x 2,…,x n 的平均数),并规定
绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定? (2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.
2
23.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统
计图(如图).
(1)参加这次夏令营活动的初中生共有多少人?
(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人
捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?
(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?
(第23题)
24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.
(1)请你根据统计图填写下表:
(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售
公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.
(第24题)
答案
一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.32
16.< 17.10;8 18.(1)52 (2)B ;D
三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5
(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.
21.解:(1)这8天的平均日销售量是1
8
(33+32+28+32+25+24+31+35)=30(听).
(2)30×181=5 430(听).
所以估计上半年该店能销售这种饮料5 430听.
22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=1
5
(|81-80|+|82-80|+|79-80|+|78-80|+
|80-80|)=1.2,P 2=1
5(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所
以第1次数学测验成绩更稳定.
(2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.
23.解:(1)200×(1-10%-20%-30%)=80(人).
(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.
24.解:(1)
(2)甲乙,所以甲汽车销售公司比乙汽车销售公司的销售情况稳定.
②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。

相关文档
最新文档