宜兴市桃溪中学2015-2016年八年级上12月月考数学试题有答案
江苏省无锡市宜兴市桃溪中学2015-2016学年度八年级数学12月月考试题(含解析) 新人教版
江苏省无锡市宜兴市桃溪中学2015-2016学年度八年级数学12月月考试题一.选择题(本大题共8 小题,每小题3 分,共24 分.)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.2.在3.14、﹣、、π、0.2020020002…这六个数中,无理数有()A.1 个 B.2 个 C.3 个 D.4 个3.有一个数值转换器,原理如下:当输入的 x=64 时,输出的 y 等于()A.2 B.8 C.D.4.下列条件中,不能判断△ABC 为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5 C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:55.一次函数 y=2x+3 的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,将点P(﹣2,1)向右平移3 个单位长度,再向上平移4 个单位长度得到点P′的坐标是()A.B.(1,5)C.(1,﹣3)D.(﹣5,5)7.已知点A(x l,y1)、B(x2,y2)在直线y=﹣2x+b 上,当x1<x2 则y1 与y2 的大小关系是()A.y1>y2 B.y1<y2C.y l=y2 D.y1 与y2 的大小关系不定8.一名考生步行前往考场,5 分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了()A.18 分钟B.20 分钟C.24 分钟D.28 分钟二.填空题(每空2 分,共18 分)9.= .10.函数的自变量x 的取值范围是.11.点M(3,﹣4)关于x 轴的对称点的坐标是.12.如图,若等腰△ABC 的腰长AB=10cm,AB 的垂直平分线交另一腰AC 于D,△BCD 的周长为14cm,则底边BC 是.13.若直角三角形斜边上的高和中线长分别是 6cm,8cm,则它的面积是.14.一次函数y=kx+b 的图象如图所示,则不等式0≤kx+b<5 的解集为.15.如图,△ABC 中,AB=AC=13,BC=10,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值为.[ [16.有一个如图示的长方体的透明玻璃杯,其长 AD=7cm ,高 AB=5cm ,水深为 AE=4cm ,在水面 线 EF 上紧贴内壁 G 处有一粒食物,且 EG=4cm ;一小虫想从杯外的 A 点沿壁爬进杯内 G 处吃掉食 物;小虫爬行的最短路线长为 cm (不计杯壁厚度).17.任何实数 a ,可用[a 表示不超过 a 的最大整数,如[4 =4,[3 =1,现对 72 进行如下操作:72 =8 [ =2 =1,这样对72 只需进行 3 次操作后变为 1,类似地:(1)对 81 只需进行 次操作后变为 1;只需进行 3 次操作后变为 1 的所有正整数中,最大的是 .三.简答题 18.(1)计算:2﹣2﹣ ﹣( ﹣1)0 解方程:64(x+1)2=25.19.如图,在平面直角坐标系 xOy 中,点 A (0,8),点 B (6,8).(1)只用直尺(没有刻度)和圆规,求作一个点 P ,使点 P 同时满足下列两个条件(要求保留作图 痕迹,不必写出作法):①点 P 到 A 、B 两点的距离相等;②点 P 到∠xOy 的两边距离相等. 若在 x 轴上有点 M ,则能使△ABM 的周长最短的点 M 的坐标为 .20.如图,△ABC 和△DAE 中,∠BAC=∠DAE ,AB=AE ,AC=AD ,连接 BD ,CE ,求证:△ABD ≌△AEC .21.如图,一架2.5 米长的梯子AB 斜靠在竖直的墙AC 上,这时梯子底部B 到墙底端的距离为0.7 米,考虑爬梯子的稳定性,现要将梯子顶部A 沿墙下移0.4 米到A′处,问梯子底部B 将外移多少米?22.如图,直线l:y=x+6 交 x、y 轴分别为A、B 两点,C 点与A 点关于y 轴对称.动点P、Q 分别在线段AC、AB 上(点P 不与点A、C 重合),满足∠BPQ=∠BAO.(1)点A 坐标是,BC= .当点 P 在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB 为等腰三角形时,求点P 的坐标.23.我市化工园区一化工厂,组织20 辆汽车装运A、B、C 三种化学物资共200 吨到某地.按计划20 辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A 种物资的车辆数为x,装运B 种物资的车辆数为y.求y 与x 的函数关系式;如果装运A 种物资的车辆数不少于5 辆,装运B 种物资的车辆数不少于4 辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.24.已知:如图,∠B=90°,AB∥DF,AB=4cm,BD=10cm,点C 是线段BD 上一动点,点E 是直线DF 上一动点,且始终保持AC⊥CE.(1)试说明:∠ACB=∠CED;若AC=CE,试求DE 的长;(3)在线段BD 的延长线上,是否存在点C,使得AC=CE?若存在,请求出DE 的长及△AEC 的面积;若不存在,请说明理由.江苏省无锡市宜兴市桃溪中学2015~2016 学年度八年级上学期月考数学试卷(12 月份)参考答案与试题解析一.选择题(本大题共8 小题,每小题3 分,共24 分.)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.【考点】轴对称图形.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意; C、不是轴对称图形,不符合题意; D、不是轴对称图形,不符合题意.故选B.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在3.14、﹣、、π、0.2020020002…这六个数中,无理数有()A.1 个 B.2 个 C.3 个 D.4 个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣、π、0.2020020002…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.有一个数值转换器,原理如下:当输入的x=64 时,输出的y 等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64 输入,可得其算术平方根为8,8 再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64 的算术平方根是8,8 的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.下列条件中,不能判断△ABC 为直角三角形的是() A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5 C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理.【分析】A、根据勾股定理的逆定理进行判定即可; B、根据比值并结合勾股定理的逆定理即可判断出三角形的形状;C、根据三角形的内角和为180 度,即可计算出∠C 的值;D、根据角的比值求出各角的度数,便可判断出三角形的形状.【解答】解:A、正确,1.52+22=2.52 符合勾股定理的逆定理,故成立;B、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得 x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.故选D.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.5.一次函数y=2x+3 的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】根据k,b 的符号确定一次函数y=2x+3 的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=3>0,图象过第二象限,∴直线y=2x+3 经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查一次函数的k>0,b>0 的图象性质.需注意x 的系数为1,难度不大.6.在平面直角坐标系中,将点P(﹣2,1)向右平移3 个单位长度,再向上平移4 个单位长度得到点P′的坐标是()A.B.(1,5)C.(1,﹣3)D.(﹣5,5)【考点】坐标与图形变化-平移.【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点 P′的坐标即可得解.【解答】解:∵点P(﹣2,1)向右平移3 个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4 个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7.已知点A(x l,y1)、B(x2,y2)在直线y=﹣2x+b 上,当x1<x2 则y1 与y2 的大小关系是()A.y1>y2 B.y1<y2C.y l=y2 D.y1 与y2 的大小关系不定【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2 即可得出结论.【解答】解:∵直线y=﹣2x+b 中,k=﹣2<0,∴y 随x 的增大而减小,∵x1<x2,∴y1>y2.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.一名考生步行前往考场,5 分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了()A.18 分钟 B.20 分钟 C.24 分钟 D.28 分钟【考点】一次函数的应用.【专题】应用题;压轴题.【分析】由题意可知步行需要30 分钟,设乘出租车的路程y 与时间x(分钟)的函数关系式为y=kx+b,根据“两点法”求这个函数关系式,求当y=1 时,x 的值,再计算提前的时间.【解答】解:依题意,步行到考场需要时间为30 分钟,设乘出租车的路程y 与时间x(分钟)的函数关系式为y=kx+b,则解得,y= x﹣,当y=1 时,x=10,提前时间=30﹣10=20 分钟.故选B.【点评】本题考查了一次函数的运用.关键是根据图象求出租车行驶的路程与时间的函数关系式,并根据此函数关系式求的时间.二.填空题(每空2 分,共18 分)9.= ﹣4 .【考点】立方根.【专题】计算题.【分析】谁的立方等于﹣64,谁就是﹣64 的立方根.【解答】解:∵(﹣4)3=﹣64,∴=﹣4,故答案为﹣4,【点评】本题考查了立方根的定义,属于基础题,比较简单.10.函数的自变量 x 的取值范围是x≤.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,可知:1﹣2x≥0,解得x 的范围.【解答】解:根据题意得:1﹣2x≥0,解得:x≤.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.点 M(3,﹣4)关于 x 轴的对称点的坐标是(3,4).【考点】关于x 轴、y 轴对称的点的坐标.【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(3,﹣4)关于x 轴的对称点M′的坐标是(3,4).故答案为:(3,4).【点评】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.如图,若等腰△ABC 的腰长AB=10cm,AB 的垂直平分线交另一腰AC 于D,△BCD 的周长为14cm,则底边 BC 是4cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出△BCD 的周长=AC+BC,然后代入数据进行计算即可得解.【解答】解:∵DE 是 AB 的垂直平分线,∴AD=BD,∴△BCD 的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵腰长AB=10cm,∴10+BC=14,解得BC=4cm.故答案为:4cm.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两腰相等,熟记性质并求出△BCD 的周长=AC+BC 是解题的关键.13.若直角三角形斜边上的高和中线长分别是 6cm,8cm,则它的面积是48cm2 .【考点】直角三角形斜边上的中线;三角形的面积.【分析】由直角三角形斜边上的中线长 8cm,根据直角三角形中斜边上的中线等于斜边的一半,即可求得斜边的长,又由直角三角形斜边上的高是 6cm,即可求得它的面积.【解答】解:∵直角三角形斜边上的高和中线长分别是 6cm,8cm,∴直角三角形斜边的长为:2×8=16(cm),∴它的面积是:×16×6=48(cm2).故答案为:48cm2.【点评】此题考查了直角三角形斜边上的中线的性质以及三角形的面积公式.此题难度不大,注意掌握定理的应用.14.一次函数 y=kx+b 的图象如图所示,则不等式 0≤kx+b<5 的解集为 0<x≤2 .【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】从图象上得到直线与坐标轴的交点坐标,再根据函数的增减性,可以得出不等式 0≤kx+b<5 的解集.【解答】解:函数y=kx+b 的图象如图所示,函数经过点,(0,5),且函数值y 随x 的增大而减小,∴不等式0≤kx+b<5 的解集是0<x≤2.故本题答案为:0<x≤2.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.15.如图,△ABC 中,AB=AC=13,BC=10,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC边上的动点,则 CF+EF 的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E 关于AD 的对称点M,连接CM 交AD 于F,连接EF,过C 作CN⊥AB 于N,根据三线合一定理求出BD 的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出C N,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E 关于AD 的对称点M,连接CM 交AD 于F ,连接EF ,过C 作CN⊥AB 于N,∵AB=AC=13,BC=10,AD 是 BC 边上的中线,∴BD=DC=5,AD⊥BC ,AD 平分∠BAC,∴M 在AB 上,在Rt△ABD 中,由勾股定理得:AD==12,∴S△ABC= ×BC×AD= ×AB×CN,∴CN= = = ,∵E 关于AD 的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF 的最小值是,12 [ [故答案为: .【点评】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表 性,是一道比较好的题目.16.有一个如图示的长方体的透明玻璃杯,其长 AD=7cm ,高 AB=5cm ,水深为 AE=4cm ,在水面 线 EF 上紧贴内壁 G 处有一粒食物,且 EG=4cm ;一小虫想从杯外的 A 点沿壁爬进杯内 G 处吃掉食 物;小虫爬行的最短路线长为 2 cm (不计杯壁厚度).【考点】轴对称-最短路线问题.【分析】作出 A 关于 BC 的对称点 A ′,连接 A ′G ,与 BC 交于点 Q ,此时 AQ+QG 最短,A ′G 为直 角△A ′EG 的斜边,根据勾股定理求解即可.【解答】解:如图所示,AQ+QG 为最短路程.∵在直角△AEG 中,AE=4cm ,AA ′=10cm ,∴A ′E=6cm , 又∵EG=4cm ,∴AQ+QG=A ′Q+QG=A ′G= =2 cm .∴最短路线长为 2cm . 故答案为:2 .【点评】本题考查了轴对称﹣最短路径问题,熟知两点之间线段最短,是解答此题的关键.17.任何实数 a ,可用[a 表示不超过 a 的最大整数,如[4 =4,[3 =1,现对 72 进行如下操作:72 =8 [ =2 =1,这样对72 只需进行 3 次操作后变为 1,类似地:(1)对 81 只需进行 3 次操作后变为 1;只需进行 3 次操作后变为 1 的所有正整数中,最大的是 255 .【考点】估算无理数的大小.【专题】新定义.【分析】(1)根据运算过程得出[ =9,[ =3,[ =1,即可得出答案. 最大的正整数是 255,根据操作过程分别求出 255 和 256 进行几次操作,即可得出答案.【解答】解:(1)∵[=9,[=3,[=1,∴对 81 只需进行 3 次操作后变为 1, 故答案为:3.最大的正整数是 255,理由是:∵[ =15,[ =3,[ =1,∴对 255 只需进行 3 次操作后变为 1,∵[ =16,[ =4,[ =2,[ =1,∴对 256 只需进行 4 次操作后变为 1,∴只需进行 3 次操作后变为 1 的所有正整数中,最大的是 255, 故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.三.简答题 18.(1)计算:2﹣2﹣ ﹣( ﹣1)0 解方程:64(x+1)2=25.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂与正整数指数幂互为倒数,开立方运算,非零的零次幂等于 1,可 化成有理数的运算,根据有理数的运算,可得答案;根据直接开平方,可得方程的解.【解答】解:(1)原式=﹣3﹣1=﹣3﹣1=﹣; 两边都除以 64,得(x+1)2= , 开方,得 x+1= ,x+1=﹣.x 1=﹣,x 2=﹣.【点评】本题考查了实数的运算,熟练掌握负整数指数幂、零指数幂、平方根是解题关键.19.如图,在平面直角坐标系 xOy 中,点 A (0,8),点 B (6,8).(1)只用直尺(没有刻度)和圆规,求作一个点 P ,使点 P 同时满足下列两个条件(要求保留作图 痕迹,不必写出作法):①点 P 到 A 、B 两点的距离相等;②点 P 到∠xOy 的两边距离相等. 若在 x 轴上有点 M ,则能使△ABM 的周长最短的点 M 的坐标为 (3,0) .【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质;轴对称-最短路线问题.【分析】(1)作AB 的中垂线,作∠XOY 的角平分线,交点即为点P;作出点A 关于x 轴的对称点C,连接BC,交x 轴于点M,根据勾股定理计算可得出点M 的坐标(3,0).【解答】解:(1)作AB 的中垂线EF,作∠XOY 的角平分线OH,交于点P,如图;作出点A 关于x 轴的对称点C,连接BC,交x 轴于点M,∵OA=OC,点A(0,8),点B(6,8),∴OM= AB=3,∴点M 的坐标(3,0).【点评】本题考查了作图题,以及涉及的知识点:线段的垂直平分线、角平分线、轴对称﹣最短路线问题,是2016 届中考的常见题型.20.如图,△ABC 和△DAE 中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.14【考点】全等三角形的判定.【专题】证明题.【分析】根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.【解答】证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD 和△AEC 中,,∴△ABD≌△AEC(SAS).【点评】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS,SAS,ASA,AAS,以及判断两个直角三角形全等的方法HL.21.如图,一架2.5 米长的梯子AB 斜靠在竖直的墙AC 上,这时梯子底部B 到墙底端的距离为0.7 米,考虑爬梯子的稳定性,现要将梯子顶部A 沿墙下移0.4 米到A′处,问梯子底部B 将外移多少米?【考点】勾股定理的应用.【分析】在Rt△ABC 中,根据已知条件运用勾股定理可将AC 的长求出,又知AA′的长可得AC 的长,在Rt△A′B′C 中再次运用勾股定理可将B′C 求出,B′C 的长减去BC 的长即为底部B 外移的距离.【解答】解:在Rt△ABC 中,∵AB=2.5,BC=0.7,∴AC= = =2.4 米,又∵AA′=0.4,∴A′C=2.4﹣0.4=2,在 Rt△A′B′C 中,B′C== =1.5 米,则BB′=CB′﹣CB=1.5﹣0.7=0.8 米.故:梯子底部B 外移0.8 米.【点评】本题考查正确运用勾股定理,比较简单.22.如图,直线l:y=x+6 交x、y 轴分别为A、B 两点,C 点与A 点关于y 轴对称.动点P、Q 分别在线段AC、AB 上(点P 不与点A、C 重合),满足∠BPQ=∠BAO.(1)点 A 坐标是(﹣8,0),BC= 10 .当点P 在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB 为等腰三角形时,求点P 的坐标.【考点】一次函数综合题.【分析】(1)把x=0 和y=0 分别代入一次函数的解析式,求出A、B 的坐标,根据勾股定理求出BC即可.求出∠PAQ=∠BCP,∠AQP=∠BPC,根据点的坐标求出AP=BC,根据全等三角形的判定推出即可.(3)分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,根据即可推出①,根据三角形外角性质即可判断②,根据勾股定理得出方程,即可求出③.【解答】解:(1)∵y=x+6∴当x=0 时,y=6,当y=0 时,x=﹣8,即A 的坐标是(﹣8,0),B 的坐标是(0,6),∵C 点与A 点关于y 轴对称,∴C 的坐标是(8,0),∴OA=8,OC=8,OB=6,由勾股定理得:BC= =10,故答案为:(﹣8,0),10.当P 的坐标是时,△APQ≌△CBP,理由是:∵OA=8,P,∴AP=8+2=10=BC,∵∠BPQ=∠BAO,∠BAO+∠AQP+∠APQ=180°,∠APQ+∠BPQ+∠BPC=180°,∴∠AQP=∠BPC,∵A 和C 关于y 轴对称,∴∠BAO=∠BCP,在△APQ 和△CBP 中,16,∴△APQ≌△CBP(AAS),∴当 P 的坐标是时,△APQ≌△CBP.(3)分为三种情况:①当PB=PQ 时,∵由知,△APQ≌△CBP,∴PB=PQ,即此时P 的坐标是;②当 BQ=BP 时,则∠BPQ=∠BQP,∵∠BAO=∠BPQ,∴∠BAO=∠BQP,而根据三角形的外角性质得:∠BQP>∠BAO,∴此种情况不存在;③当QB=QP 时,则∠BPQ=∠QBP=∠BAO,即BP=AP,设此时P 的坐标是(x,0),∵在Rt△OBP 中,由勾股定理得:BP2=OP2+OB2,∴(x+8)2=x2+62,解得:x=﹣,即此时P 的坐标是(﹣,0).∴当△PQB 为等腰三角形时,点P 的坐标是或(﹣,0).【点评】本题考查了一次函数图象上点的坐标特征,勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,题目综合性比较强,难度偏大.23.我市化工园区一化工厂,组织20 辆汽车装运A、B、C 三种化学物资共200 吨到某地.按计划20 辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A 种物资的车辆数为x,装运B 种物资的车辆数为y.求y 与x 的函数关系式;如果装运A 种物资的车辆数不少于5 辆,装运B 种物资的车辆数不少于4 辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.【专题】压轴题;函数思想.【分析】(1)根据题意列式:12x+10y+8=200,变形后即可得到y=20﹣2x;根据装运每种物资的车辆数都不少于5 辆,x≥5,20﹣2x≥4,解不等式组即可;18(3)根据题意列出利润与 x 之间的函数关系可发现是一次函数,利用一次函数的性质,根据实际意 义可知整数 x=8 时,利润最大.【解答】解:(1)根据题意,得:12x+10y+8=200,12x+10y+160﹣8x ﹣8y=200,2x+y=20,∴y=﹣2x+20;根据题意,得: 解得:5≤x ≤8∵x 取正整数,∴x=5,6,7,8,∴共有 4 种方案,即则 M=12×240x+10×320+8×200即:M=﹣1920x+64000 ∵M 是 x 的一次函数,且 M 随 x 增大而减小,∴当 x=8 时,M 最小,最少为 48640 元.【点评】此题考查的是一次函数的应用,主要考查利用一次函数的模型解决实际问题的能力.要先 根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据 自变量的实际范围确定函数的最值.24.已知:如图,∠B=90°,AB ∥DF ,AB=4cm ,BD=10cm ,点 C 是线段 BD 上一动点,点 E 是直 线 DF 上一动点,且始终保持 AC ⊥CE .(1)试说明:∠ACB=∠CED ; 若 AC=CE ,试求 DE 的长;(3)在线段 BD 的延长线上,是否存在点 C ,使得 AC=CE ?若存在,请求出 DE 的长及△AEC 的 面积;若不存在,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据∠DCE+∠CED=90°和∠ACB+∠DCE=90°即可解题;根据(1)中结论易证△ABC≌△CDE,可得DE=BC,AB=CD,即可求得DE 的长;(3)找到C 点使得CD=AB,连接A C,作CE⊥AE 交FD 延长线于点E,连接AE,易证△ACB≌△CED,可得AC=CE,DE=BC,根据勾股定理可以求得AC 的值,即可求得△ACE 的面积,即可解题.【解答】解:(1)∵∠DCE+∠CED=90°,∠ACB+∠DCE=90°,∴∠ACB=∠CED;在△ABC 和△CDE 中,,∴△ABC≌△CDE,(AAS)∴CD=AB,BC=DE,∵CD=AB=4,BD=10,∴DE=BC=BD﹣CD=BD﹣AB=6;(3)找到C 点使得CD=AB,连接AC,作CE⊥AE 交FD 延长线于点E,连接AE,∵∠ACB+∠A=90°,∠ACB+∠ECD=90°,∴∠A=∠DCE,在△ACB 和△CED 中,,∴△ACB≌△CED(ASA),∴CE=AC,∴DE=BC=AB+BD=14,此时AC== ,∴S△ACE = AC•CE= 212=106.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△CDE 和△ACB≌△CED 是解题的关键.。
江苏省无锡市宜兴市 八年级(上)第一次月考数学试卷
八年级(上)第一次月考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.下列各条件不能作出唯一直角三角形的是( )A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边3.下列语句中正确的有几个( )①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A. 1B. 2C. 3D. 44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90∘5.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是( )A. SASB. ASAC. AASD. SSS6.如图,将三角形纸片ABC折叠,使点C与点A重合,折痕为DE.若∠B=80°,∠BAE=26°,则∠EAD的度数为( )A. 36∘B. 37∘C. 38∘D. 45∘7.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )A. B. C. D.8.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间9.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=20cm,AC=8cm,则DE的长是( )A. 4cmB. 3cmC. 2cmD. 1cm10.如图,在△ABC中,AC=BC,∠ACB=90°,点D、E在AB上,将△ACD、△BCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将△A′CD、△B′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则∠A′OB′的度数是( )A. 90∘B. 120∘C. 135∘D. 150∘二、填空题(本大题共8小题,共16.0分)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有______个.12.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是______.13.如图,AC=BD,要使△ABC≌△DCB,只要添加一个条件______.14.如图,△ABC的周长为32,且BD=DC,AD⊥BC于D,△ACD的周长为24,那么AD的长为______.15.如图,已知AB∥CF,E为DF的中点,若AB=8cm,BD=3cm,则CF=______cm.16.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E,D,BD=CF,BE=CD.若∠AFD=155°,则∠EDF=______.17.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有______个(不含△ABC).18.已知在△ABC中,AB=5,BC=7,BM是AC边上的中线,则BM的取值范围为______.三、解答题(本大题共8小题,共76.0分)19.如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有______个.20.如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.21.已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法.)(1)作△ABC的角平分线BE,交AC于点E;(2)作BC边上的高AD,垂足为D.22.如图,点A、E、F、C在同一直线上,AD∥BC,AD=CB,AE=CF.求证:BE∥DF.23.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?24.如图(1)△ABC中,H是高AD和BE的交点,且AD=BD.(1)请你猜想BH和AC的关系,并说明理由(2)若将图(1)中的∠A改成钝角,请你在图(2)中画出该题的图形,此时(1)中的结论还成立吗?(不必证明).25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=______度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.26.如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等?请说明理由,并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为Scm2,请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AEP与△BPQ全等?答案和解析1.【答案】C【解析】解:第一个、第二个、第四个图形是轴对称图形,共3个.故选:C.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】解:A、∵两直角边和直角对应相等,∴根据SAS能推推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;B、如教师用的含30度角的三角板和学生使用的含30度的三角板符合两锐角相等,但是不能化成唯一直角三角形,故本选项正确;C、根据ASA或AAS可以推出两直角三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;D、根据HL定理即可推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;故选:B.根据直角三角形全等的判定定理(SAS,ASA,AAS,SSS,HL)判断即可.本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.【答案】B【解析】解:①关于一条直线对称的两个图形一定能重合;正确.②两个能重合的图形一定关于某条直线对称;错误.③两个轴对称图形的对应点一定在对称轴的两侧;错误,也可以在对称轴上.④一个圆有无数条对称轴.正确.故选:B.根据轴对称图形的性质、全等图形的性质即可一一判断;本题考查圆的认识、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.【答案】C【解析】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.【答案】D【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.6.【答案】B【解析】解:∵∠B=80°,∠BAE=26°,∴∠AEB=180°-(∠B+∠BAE)=180°-(80°+26°)=74°,∵将△ABC折叠点C与点A重合,∴AE=CE,∴∠EAD=∠C,由三角形的外角性质得,∠AEB=∠EAD+∠C,∴2∠EAD=74°,∴∠EAD=37°.故选:B.利用三角形的内角和等于180°求出∠AEB,再根据翻折变换的性质可得AE=CE,根据等边对等角可得∠EAD=∠C,然后利用三角形的一个外角等于与它不相邻的两个内角的和可得∠AEB=∠EAD+∠C,最后计算即可得解.本题考查了翻折变换的性质,三角形的内角和定理,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.【答案】D【解析】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在平行于斜边的位置上打3个洞,则直角顶点处完好,即原正方形中间无损,且有12个洞.故选:D.结合空间思维,分析折叠的过程及打孔的位置,易知展开的形状.本题主要考查学生抽象思维能力,错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.8.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.9.【答案】C【解析】解:∵AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∴×AB×DE+AC×DF=S△ABC=28,即×20DE+×8DE=28,解得DE=2.故选:C.根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.【答案】B【解析】解:如图所示:延长CO到F.∵AB=BC,∠ACB=90°,∴∠A=∠B=45°.由翻折的性质可知:∠A′CF=,,∠CA′O=∠DA′O=∠A=45°,∠OB′C=∠CB′E=∠ECB=45°.∴∠A′CB′=∠A′CF+∠B′CF==30°.∴∠A′OB′=∠A′CB′+∠CA′O+∠OB′C=30°+45°+45°=120°.故选:B.如图所示,延长CO到F,由翻折的性质可知:∠A′CF=,,∠CA′O=∠DA′O=∠A=45°,∠OB′C=∠CB′E=∠ECB=45°,最后利用三角形外角的性质可求得∠A′OB′的度数.本题主要考查的是翻折的性质,利用翻折的性质求得∠A′CB′=30°,∠CA′O=45°,∠OB′C=45°是解题的关键.11.【答案】4【解析】解:①角;③等边三角形;④线段;⑤等腰三角形是轴对称图形,故答案为:4.根据轴对称图形的概念判断即可.本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可完全重合.12.【答案】16:25:08【解析】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为:16:25:08.关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.13.【答案】AB=DC【解析】解:∵AC=BD,BC=CB,AB=CD,∴△ABC≌△DCB.故答案为AB=CD.根据全等三角形的判定定理SSS,进行解答即可.本题主要考查全等三角形的判定定理,关键在于熟练掌握全等三角形的判定定理.14.【答案】8【解析】解:∵AD⊥BC,BD=CD,∴AB=AC,∵△ABC的周长为32,∴AC+CD=16,∵△ACD的周长为24,∴AD=24-16=8.故答案为:8由AD⊥BC于D,BD=CD,可证得AB=AC,又由△ABC的周长为32,可求得AC+CD=16,然后由△ACD的周长为24,可求得答案.本题考查了线段垂直平分线的性质;由已知条件结合图形发现并利用AC+CD 是△ABC的周长的一半是正确解答本题的关键.15.【答案】5【解析】解:∵AB∥FC,∴∠ADE=∠EFC,∵E是DF的中点,∴DE=EF,在△ADE与△CFE中,,∴△ADE≌△CFE,∴AD=CF,∵AB=78m,BD=3cm,∴AD=AB-BD=8-3=5cm,∴CF=AD=5cm,故答案为5;根据平行线的性质求得内错角相等,已知对顶角相等,又知E是DF的中点,所以根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,BD的长,那么CF的长就不难求出.本题主要考查全等三角形的判定和性质,解题的关键在于求证△ADE≌△CFE.16.【答案】65°【解析】解:∵∠AFD=155°,∴∠CFD=25°,Rt△DEB和Rt△FDC中,,∴Rt△DEB≌Rt△FDC(HL),∴∠BDE=∠CFD=25°,∴∠EDF=180°-90°-25°=65°,故答案为:65°.证明Rt△DEB≌Rt△FDC,根据全等三角形的性质得到∠BDE=∠CFD=25°,结合图形计算.本题考查的是全等三角形的判定和性质,掌握两直角三角形确定的判定定理是解题的关键.17.【答案】7【解析】解:如图所示每个大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去△ABC外有七个与△ABC全等的三角形.故答案为:7.本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.18.【答案】1<BM<6【解析】解:延长BM到D,使BM=DM,连接AD.∵BM是中线,∴AM=MC,∠BMC=∠AMD,∴△BMC≌△AMD(SAS),∴AD=BC=7,又BM=a,∴2<2a<12,∴1<BM<6.故答案为:1<BM<6延长BM到D,使BM=DM,通过证明△BMC≌△AMD,可得AD=BC,根据三角形的三边关系,得出即可.本题主要考查了全等三角形的判定与性质和三角形的三边关系,三角形中任意两边之和大于第三边,任意两边之差小于第三边.19.【答案】6【解析】解:(1)如图所示:(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有6个.故答案为:6.(1)利用网格结合轴对称图形的性质画出符合题意的图形即可;(2)利用(1)中所画图形,进而得出答案.本题考查了利用轴对称设计图案,解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求.20.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)连接CA1,交直线DE于点Q,则点Q即为所求点.【解析】(1)分别作出点A、B、C关于直线DE的对称点,再顺次连接可得;(2)连接CA1,交直线DE于点Q,则点Q即为所求点.本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【答案】解:如图所示:(1)角平分线作对得,无作图痕迹不得分,字母E没有标或标错位置扣.(2)高作对得,无作图痕迹不得分,垂足D没有标或标错位置扣.【解析】(1)作△ABC的角平分线BE,按照作一个角的平分线的作法来做即可;(2)作BC边上的高AD,按照过直线外一点作直线的垂线步骤作即可.本题主要考查过直线外一点作直线的垂线和作一个角的平分线的作法,属于基本作图题.22.【答案】证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中AD=BC∠A=∠CAF=CE∴△ADF≌△CBE,∴∠DFA=∠BEC,∴BE∥DF.【解析】求出AF=CE,根据平行线的性质得出∠A=∠C,求出△ADF≌△CBE,根据全等三角形的性质得出∠DFA=∠BEC即可.本题考查了全等三角形的性质和判定,平行线的性质和判定的应用,解此题的关键是求出△ADF≌△CBE,注意:全等三角形的判定定理是SAS,ASA,AAS,SSS.23.【答案】答:△AOF≌△DOC.证明:∵两块完全相同的三角形纸板ABC和DEF,∴AB=DB,BF=BC,∴AB-BF=BD-BC,∴AF=DC∵∠A=∠D,∠AOF=∠DOC,即∠A=∠D∠AOF=∠DOCAF=DC,∴△AOF≌△DOC(AAS).【解析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC.此题主要考查学生对全等三角形判定定理的理解和掌握,解答此题的关键是根据题意得出AF=DC,AO=DO.24.【答案】证明:(1)BH=AC;如图1,∵AD和BE是△ABC的高,∴∠BDH=∠ADC=90°,∠DBH+∠C=∠CAD+∠C=90°,∴∠DBH=∠DAC,在△BDH和△ADC中,∠DBH=∠DACBD=AD∠BDH=∠ADC,∴△BDH≌△ADC∴BH=AC;(2)成立,如图2,∵AD和BE是△ABC的高,∴∠BDH=∠ADC=90°,∠DBH+∠H=∠DBH+∠C=90°,∴∠H=∠C,在△BDH和△ADC中,∠H=∠C∠BDH=∠ADCAD=BD,∴△BDH≌△ADC(AAS),∴BH=AC.【解析】(1)BH=AC;证明△BDH≌△ADC即可;(2)成立.证明思路同(1).本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.【答案】90【解析】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.本题考查三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.本题的亮点是由特例引出一般情况.26.【答案】解:(1)∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=6cm,∴AE=3cm,又∵P和Q的速度相等可得出AP=BQ=1cm,BP=3,∴AE=BP,在△AEP和△BQP中,AP=BQ∠A=∠BAE=BP,∴△AEP≌△BPQ,∴∠AEP=∠BPQ,又∵∠AEP+∠APE=90°,故可得出∠BPQ+∠APE=90°,即∠EPQ=90°,即EP⊥PQ.(2)连接QE,由题意得:AP=BQ=t,BP=4-t,CQ=6-t,S PEQ=S ABCD-S BPQ-S EDCQ-S APE=AD×AB-12AE×AP-12BP×BQ-12(DE+CQ)×CD=24-12×3t-12t(4-t)-12×4(3+6-t)=t22-32t+6.(3)设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,∴y=4−y3=xy,解得:x=32y=2,即点Q的运动速度为32cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,∴y=xy3=4−y,解得:x=1y=1(舍去).综上所述,点Q的运动速度为32cm/s时能使两三角形全等.【解析】(1)本题很容易证明△AEP≌△BPQ,这样可得出∠AEP=∠BPQ,因为∠AEP+∠APE=90°,可得出∠BPQ+∠APE=90°,这即可判断出结论.(2)可分别用t表示出AP、BQ、BP、CQ的长度,然后用矩形的面积减去△APE、△BPQ及梯形EDCQ的面积即可得出△PEQ的面积为Scm2.(3)设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.。
2015-2016八年级数学第一次月考试卷及答案
2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。
江苏省无锡市宜兴八年级(上)第一次月考数学试卷
江苏省无锡市宜兴八年级(上)第一次月考数学试卷一、选择题:(本大题共10题,每小题3分,共30分)1.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A. B.C.D.2.(3分)(2013•株洲)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形3.(3分)(2009•海南)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.(3分)(2014秋•美兰区校级期中)如图,CD⊥AB,BE⊥AC,垂足为D、E,BE、CD 相交于O点,∠1=∠2,AB=AC,图中全等的三角形共有()A.1对B.2对C.3对D.4对5.(3分)(2009秋•重庆校级期末)两个三角形有以下的元素对应相等,则不能判定全等的是()A.一边和两个角 B.两边和它们的夹角C.三边 D.两边和其中一边的对角6.(3分)(2015秋•合川区期中)如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°7.(3分)(2013秋•定州市期中)如图,△ABC的三边AB、BC、AC的长分别为20、30、40,其三条角平分线将△ABC分成三个三角形,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.6:4:3 C.2:3:4 D.4:3:28.(3分)(2006•梅州)如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF 等于()A.115°B.130°C.120°D.65°9.(3分)(2006•绵阳)如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性10.(3分)(2015秋•宜兴市校级月考)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1 B.2 C.3 D.4二、填空题:(本大题共7题,每空2分,共18分)11.(2分)(2005•山西)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是______.12.(4分)(2015秋•宜兴市校级月考)如图,△OCA≌△OBD,则这两个三角形中相等的边有______,相等的角有______.13.(4分)(2015秋•宜兴市校级月考)如图,AB=DE,AC=DF,BF=CE:(1)若BC=18cm,则FE=______;(2)若∠B=50°,∠D=100°,则∠EFD=______.14.(2分)(2014秋•西秀区校级期末)如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为______ (填一个即可)15.(2分)(2013秋•亭湖区校级期中)如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有______个.16.(2分)(2014秋•丹阳市期中)如图所示,有一块三角形田地,AB=AC=10m,作AB 的垂直平分线ED交AC于D,交AB于E,量得BC的长是7m,请你替测量人员计算△BDC 的周长为______m.17.(2分)(2015秋•宜兴市校级月考)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若DC=6,AB=12,则△ABD的面积是______.三、解答题:(本大题共7题,共52分)18.(7分)(2014•思明区质检)已知:D是AC上一点,BC=AE,DE∥AB,∠B=∠DAE.求证:AB=DA.19.(7分)(2012•乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.20.(7分)(2014•昌宁县二模)如图,在△ABC和△ABD中,AD和BC交于点O,∠1=∠2,请你添加一个重要条件(不再添加其它线段,不再标注或使用其它字母),使AC=BD,并给出证明.你添加的条件是______.21.(7分)(2015秋•兴化市校级月考)如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.22.(8分)(2006•湖州)已知Rt△ABC中,∠B=90°.(1)根据要求作图(尺规作图,保留作图痕迹,不写画法).①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.(2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形:△______∽△______;△______≌△______.并选择其中一对加以证明.23.(8分)(2015秋•宜兴市校级月考)如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:①______;②______.24.(8分)(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=______度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.江苏省无锡市宜兴八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题共10题,每小题3分,共30分)1.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A. B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.2.(3分)(2013•株洲)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.3.(3分)(2009•海南)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.【点评】本题考查全等三角形的知识.解题时要认准对应关系,如果把对应角搞错了,就会导致错选A或C.4.(3分)(2014秋•美兰区校级期中)如图,CD⊥AB,BE⊥AC,垂足为D、E,BE、CD 相交于O点,∠1=∠2,AB=AC,图中全等的三角形共有()A.1对B.2对C.3对D.4对【分析】在△ADO和△AEO中可利用AAS判定全等,可得到AD=AE,结合条件可得∠B=∠C,从而可证明△BOD和△COE全等,在△ABO和△ACO中利用SAS可证明全等,可得出答案.【解答】解:在△ABO和△ACO中∴△ABO≌△ACO(SAS),∴∠D=∠C,BO=CO,在△ADO和△AEO中∴△ADO≌△ACO(AAS),在△BOD和△COE中∴△BOD≌△COE(ASA),所以全等的三角形有三对,故选C.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法,即SSS、SAS、ASA、AAS和HL是解题的关键5.(3分)(2009秋•重庆校级期末)两个三角形有以下的元素对应相等,则不能判定全等的是()A.一边和两个角 B.两边和它们的夹角C.三边 D.两边和其中一边的对角【分析】熟记三角形全等的四个判定定理即可,结合各选项提供的已知条件认真思考.【解答】解:A、B、C三项分别符合AAS和ASA、SAS、SSS,故成立;D项没有这个定理不能判定三角形全等;故选D.【点评】考查一般三角形全等的四个判定.SSA不能作为全等三角形的判定方法.6.(3分)(2015秋•合川区期中)如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B【点评】此题考查全等三角形的判定和性质,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.7.(3分)(2013秋•定州市期中)如图,△ABC的三边AB、BC、AC的长分别为20、30、40,其三条角平分线将△ABC分成三个三角形,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.6:4:3 C.2:3:4 D.4:3:2【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△OAB:S△OBC:S△OAC=2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.8.(3分)(2006•梅州)如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF 等于()A.115°B.130°C.120°D.65°【分析】根据折叠前后角相等可知.【解答】解:∵∠1=50°,∴∠AEF=180°﹣∠BFE=180°﹣(180°﹣50°)÷2=115°故选A.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9.(3分)(2006•绵阳)如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性【分析】用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.【解答】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.(3分)(2015秋•宜兴市校级月考)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1 B.2 C.3 D.4【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD=S正方形BEDF=4,∴BE==2.故选:B.【点评】此题考查三角形全等的判定与性质,正方形的判定与性质,运用割补法把原四边形转化为正方形,其面积保持不变,所求BE就是正方形的边长了;也可以看作将三角形ABE 绕B点逆时针旋转90°后的图形.二、填空题:(本大题共7题,每空2分,共18分)11.(2分)(2005•山西)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是10:21.【分析】镜子中看到的数字与实际数字是关于镜面成垂直的线对称.注意镜子的5实际应为2.【解答】解:电子表的实际时刻是10:21,可以把给定的读数写在纸上,然后把纸翻过来看到的读数就是实际读数.故答案为10:21.【点评】对于这类题型常用的解题方法为把给定的读数写在纸上,然后把纸翻过来看到的读数就是实际读数.12.(4分)(2015秋•宜兴市校级月考)如图,△OCA≌△OBD,则这两个三角形中相等的边有AC=BD,OC=OB,OA=OD,相等的角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.【分析】利用三角形全等的性质,分清对应角和对应边,便可求出结果.【解答】解:∵△OCA≌△OBD,∴AC=BD,OC=OB,OA=OD,∠A=∠D,∠C=∠B,∠AOC=∠DOB.故答案为:AC=BD,OC=OB,OA=OD;∠A=∠D,∠C=∠B,∠AOC=∠DOB.【点评】此题考查全等三角形的性质,牢固掌握全等三角形的性质是解答本题的前提.13.(4分)(2015秋•宜兴市校级月考)如图,AB=DE,AC=DF,BF=CE:(1)若BC=18cm,则FE=18cm;(2)若∠B=50°,∠D=100°,则∠EFD=30°.【分析】(1)首先证明BC=EF,利用SSS即可证明△ABC≌△DEF,利用全等三角形的对应边的比相等即可求解;(2)根据△ABC≌△DEF,利用全等三角形的对应角相等,求得∠E的度数,然后利用三角形内角和定理求解.【解答】解:(1)∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴FE=BC=18(cm);∠E=∠B=50°,(2)∠EFD=180°﹣∠E﹣∠D=180°﹣50°﹣100°=30°.故答案(1)18cm;(2)30°【点评】本题考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是本题的关键.14.(2分)(2014秋•西秀区校级期末)如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为AB=DC(填一个即可)【分析】要使△ABC≌△DCB,由于BC是公共边,AC=DB是已知条件,若补充一组边相等,则可用SSS判定其全等,故可以添加条件:AB=DC.【解答】解:可以添加条件:AB=DC,理由如下:在△ABC和△DCB中:,∴△ABC≌△DCB(SSS).故答案为:AB=DC.【点评】本题主要考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.15.(2分)(2013秋•亭湖区校级期中)如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.【点评】本题考察了利用轴对称设计图案的知识,此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.16.(2分)(2014秋•丹阳市期中)如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得BC的长是7m,请你替测量人员计算△BDC 的周长为17m.【分析】根据中垂线的性质进行解答,线段中垂线上的点到线段两端点的距离相等,点D 在中垂线上,所以AD=BD,所以AD+CD=BD+CD,而BC的长度又已知,所以△BDC的周长可求出.【解答】解:根据中垂线的性质得:AD=BD,所以AD+CD=BD+CD=10,而BC=7,△BDC的周长为:17m.【点评】本题主要根据中垂线的性质进行解答.线段中垂线上的点到线段端点的距离相等.17.(2分)(2015秋•宜兴市校级月考)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若DC=6,AB=12,则△ABD的面积是36.【分析】过点D作DE⊥AB于点E,根据角平分线的性质可求出DE的长,再由三角形的面积公式即可得出结论.【解答】解:过点D作DE⊥AB于点E,∵∠C=90°,DC=6,∴DE=DC=6,∵AB=12,∴S△ABD=AB•DE=×12×6=36.故答案为:36.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.三、解答题:(本大题共7题,共52分)18.(7分)(2014•思明区质检)已知:D是AC上一点,BC=AE,DE∥AB,∠B=∠DAE.求证:AB=DA.【分析】根据平行线的性质,可得内错角相等,根据AAS,可得两三角形全等,根据全等三角形的性质,可得证明结果.【解答】证明:∵DE∥AB,∴∠EDA=∠CAB.在△DAE和△ACB中,∴△DAE≌ACB(AAS),∴AB=DA.【点评】本题考查了全等三角形的判定与性质,先证明∠EDA=∠CAB,再证明两三角形全等,最后证明全等三角形的对应角相等.19.(7分)(2012•乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM⊥直线l 于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【解答】解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.【点评】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.20.(7分)(2014•昌宁县二模)如图,在△ABC和△ABD中,AD和BC交于点O,∠1=∠2,请你添加一个重要条件(不再添加其它线段,不再标注或使用其它字母),使AC=BD,并给出证明.你添加的条件是∠C=∠D.【分析】添加的条件是∠C=∠D,根据AAS推出△ABC≌△DAB,根据全等三角形的性质推出即可.【解答】添加的条件是∠C=∠D,证明:∵在△ABC和△DAB中,∴△ABC≌△DAB(AAS),∴AC=BD,故答案为:∠C=∠D【点评】本题考查了全等三角形的性质和判定,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.21.(7分)(2015秋•兴化市校级月考)如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.【分析】由AB=AC,MB=MC,根据线段垂直平分线的判定定理,可得点A在BC的垂直平分线上,点M在BC的垂直平分线上,又由两点确定一条直线,可得直线AM是线段BC 的垂直平分线.【解答】证明:∵AB=AC,∴点A在BC的垂直平分线上,∵BM=CM,∴点M在BC的垂直平分线上,∴直线AM是BC的垂直平分线.【点评】此题考查了线段垂直平分线的判定.此题难度不大,注意掌握数形结合思想的应用.22.(8分)(2006•湖州)已知Rt△ABC中,∠B=90°.(1)根据要求作图(尺规作图,保留作图痕迹,不写画法).①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.(2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形:△AHF∽△ABD;△AHF≌△AHE.并选择其中一对加以证明.【分析】利用尺规作图,根据相似三角形的判定定理,从图中可看出相似三角形有很多组,再根据全等三角形的判定条件,例如ASA可判断△AHF≌△AHE.【解答】解:(1)如图所示;(2)相似三角形有:△AHF∽△ABD;△AHE∽△ABD;△DHE∽△ABD;△BDE∽△BCA等.全等三角形有:△AHF≌△AHE;△AHE≌△DHE;△AHF≌△DHE.证明:在△AHF和△ABD中∵FH⊥AD,∴∠AHF=90°∵∠B=90°,∠CAD为公共角∴△AHF∽△ABD.【点评】本题考查了尺规作图法,相似三角形的判定定理,全等三角形的判定定理,范围比较广.23.(8分)(2015秋•宜兴市校级月考)如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:①是;②是.【分析】(1)先根据SAS定理得出△ABM≌△BCN,故可得出∠1=∠2,再由∠BQM=∠AQN,∠AQN是△ABQ的外角即可得出结论;(2)①根据ASA定理得出△ABM≌△BCN,由全等三角形的性质即可得出结论;②同①可证△ABN≌△CAM,由全等三角形的性质即可得出结论.【解答】(1)证明:如图1,∵△ABC是正三角形,∴AB=BC,∠ABC=∠C=60°,在△ABM与△BCN中,,∴△ABM≌△BCN(SAS),∴∠1=∠2,∵∠BQM=∠AQN,∠AQN是△ABQ的外角,∴∠BQM=∠AQN=∠1+∠3=∠2+∠3=∠ABC=60°,∴∠BQM=60°;(2)①仍为真命题;证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∵∠BQM=∠AQN=60°,∴∠1+∠3=60°,∵∠3+∠2=60°,∴∠1=∠2,在△ABM与△BCN中,,∴△ABM≌△BCN(ASA),∴BM=CN;②解:如图2所示,同①可证△ABN≌△CAM,∴∠N=∠M,∵∠NAQ=∠CAM,∴∠BQM=∠ACB=60°,∴仍能得到∠BQM=60°.【点评】本题考查的是全等三角形的判定与性质,熟知等边三角形的性质、全等三角形的判定与性质等知识是解答此题的关键.24.(8分)(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.【分析】(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.【点评】本题考查三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.本题的亮点是由特例引出一般情况.第21页(共21页)。
宜兴初二数学月考试卷答案
宜兴初二数学月考试卷答案一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0答案:A2. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 等腰三角形D. 平行四边形答案:B3. 若x² - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 1 或 6D. 2 或 4答案:A4. 一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积为()A. 40cm²B. 32cm²C. 36cm²D. 48cm²答案:A5. 下列函数中,在定义域内单调递增的是()A. y = x²B. y = -xC. y = 2xD. y = -x²答案:C二、填空题(每题5分,共25分)6. 若a + b = 5,且a - b = 1,则a = ______,b = ______。
答案:3,27. 下列各数中,属于有理数的是 ______,属于无理数的是 ______。
答案:2/3,√28. 已知直角三角形两直角边分别为3cm和4cm,斜边长为 ______。
答案:5cm9. 若函数y = kx + b的图像经过点(1, 3),则k + b = ______。
答案:410. 下列各式中,完全平方公式正确的是 ______。
答案:a² - 2ab + b² = (a - b)²三、解答题(每题15分,共45分)11. 解方程:3x² - 5x + 2 = 0。
答案:x₁ = 1,x₂ = 2/312. 已知等边三角形ABC的边长为6cm,求三角形ABC的面积。
答案:9√3 cm²13. 若函数y = -2x + 3的图像与x轴交于点A,与y轴交于点B,求点A和点B的坐标。
初中数学江苏省宜兴市桃溪中学八年级上期中考模拟试数学考试题及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列美丽的车标中是轴对称图形的个数有……………………………………()A.1个 B.2个 C.3个D.4个试题2:一个等腰三角形的两边长分别是4和9,则它的周长是…………………()A.13 B.17 C.22 D.17或22试题3:如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A'O'B'=∠AOB的依据是……………………()A.SAS B.ASA C.AAS D.SSS试题4:已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是…………………………………………………………………()A.∠A:∠B:∠C=3:4:5 B. a:b:c=5:12:13 C. a2=b2-c2 D.∠A=∠C-∠B试题5:在联欢会上,有A、B、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的………………………………………………()A. 三边中线的交点B.三边中垂线的交点 C.三条角平分线的交点D.三边上高的交点试题6:如图,BD是∠ABC平分线,DE AB于E,AB=36cm,BC=24cm,S△ABC =144cm2,则DE的长是…………………………………………………()A.4.8cm B.4.5cm C.4 cm D.2.4cm试题7:在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有………()A.2条B.3条C.4条D.5条试题8:如下图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2= B1A2,连结A2 B2……按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则θ2016-θ2015的值为………………………()A.B.C. D.试题9:正方形是一个轴对称图形,它有条对称轴.试题10:16的平方根是试题11:;3的算术平方根是.试题12:一个正数的平方根为-m-3和2m-3,则这个数为.试题13:某直角三角形的两直角边长分别为6cm,8 cm,则此三角形斜边上的高的长是cm.试题14:如图,∠1=∠2,要使△ABE ≌△ACE,则还需添加一个条件是.试题15:如图,圆柱形玻璃杯高为12cm, 底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲cm试题16:如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.试题17:如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有____ _____个.试题18:如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为 .试题19:4x2-9=0 ;试题20:(x+1)2=16.试题21:作图题:(6分)(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC + PB的距离之和最小..(图1)(图2)试题22:(图3)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD =90º,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.试题23:中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.试题24:如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.试题25:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图DGH)的面积.2,求重叠部分(△如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.CA BDC试题2答案: C试题3答案: D试题4答案: A试题5答案: B试题6答案: A试题7答案: C试题8答案: B试题9答案: 4 ____试题10答案: ± 4试题11答案: _试题12答案:814.8 ;试题14答案:_∠B=∠C等 _试题15答案:_15 _;试题16答案:45°试题17答案:5个试题18答案:___.试题19答案:x= ±试题20答案:x= 3或-5试题21答案:(1) 图略(2)①图略②图略- 试题22答案:(1)∵∠ACB=∠E CD=90°∴∠ACB—∠ACD =∠E CD—∠ACD∴∠ECA=∠DCB∵△ACB和△ECD都是等腰三角形∴EC=DC,AC=BC∴△ACE≌△BCD∴∠EAC=∠B(2)∵△ACE≌△BCD∴AE=BD=24∵∠EAC=∠B=45 °∴∠EAD=∠EAC+∠CAD=90°∴在Rt△ADE中,∴∴DE=26 试题23答案:(1)作图如左图,∴点C就是所求点(2)解:连接BC,由作图可得:CD为AB的中垂线∴CB=CA由题意可得:OC=36—CA=36—CB∵OA⊥OB∴在Rt△BOC中,∴∴BC=20试题24答案:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP=BQ∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,3=4−tt=xt解得t=1x=1②若△ACP≌△BQP,则AC=BQ,AP=BP3=xtt=4−t解得t=2x=1.5-试题25答案:解:(1)∵∠ACB=90°,D是AB的中点,∴DC=DB=DA.∴∠B=∠DCB.又∵△ABC≌△FDE,∴∠FDE=∠B.∴∠FDE=∠DCB.∴DG∥BC.∴∠AGD=∠ACB=90°.∴DG⊥AC.又∵DC=DA,∴G是AC的中点.∴.∴.(2)如图2所示:∵△ABC≌△FDE,∴∠B=∠1.∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,∴点G为AH的中点;在Rt△ABC中,,∵D是AB中点,∴,连接BH.∵DH垂直平分AB,∴AB=BH.设AH=x,则BH=x,CH=8-x,由勾股定理得:(8-x)2+62=x2,解得x=,∴DH=.∴S△DGH=S△ADH=×××5=.试题26答案:(1)设BD=2x,AD=3x,CD=4x,(x>0)…在Rt△ACD中,AC==5x另AB=5x,AB=AC,∴△ABC是等腰三角形(2)S△ABC=×5x×4x=40cm2,而x>0,∴x=2cm则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10-t=t,∴t=5当DN∥BC时,AD=AN,有 t=6故若△DMN的边与BC平行时,t值为5或6.②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能. 如果DE=DM,则t-4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t-4,则(t-4)2-(t-7)2=42,∴t=…综上所述,符合要求的t值为9或10或.。
宜兴市2015-2016学年八年级上期中数学试题及答案
2015-2016学年度 第一学期期中考试初二数学试题卷(2015.11)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在答题卷相应的位置)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ( )A. B. C. D.2.在3.14、227、- 2 、327、π、0.2020020002这六个数中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个3.下列四组线段中,可以构成直角三角形的是 ( ) A . 4,5,6 B .2,3,4 C .7 ,3,4 D . 1, 2 ,34.下列命题中,正确的是 ( )A .有理数和数轴上的点一一对应 B. 等腰三角形的对称轴是它的顶角平分线C.全等的两个图形一定成轴对称 D. 有理数和无理数统称为实数5.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有 ( )A .3种B .4种C .5种D .6种6.一架2.5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯脚移动的距离是 ( )A .0.4mB .0.9mC .0.8mD .1.8m7.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌ △ADC 的是( )A .∠BCA=∠DCAB .∠BAC=∠DAC C .CB=CD D .∠B=∠D=90°8.如图所示,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上,折痕EF 交AD 边于点F (如图③);那么∠AEF 的度数为 ( )A . 60°B . 67.5°C . 72°D . 75° 第7题图二.填空题(每空2分,共22分)9.(1)16的算术平方根是_______; (2)比较大小:—4 —7.10.用四舍五入法把9.456×105 精确到千位,得到的近似值是 .11.若一个等腰三角形的一个内角为80°,则它的底角的度数是 度.12.如图,△ABC 中,AB=AC ,DE 是AB 的垂直平分线,△BCE 的周长为16,BC=6,则AB 长是 .13.若直角三角形两边长为3和4,则斜边上的中线为____________.14.等腰三角形的一条边长为6cm ,周长为14cm ,它的底边长为_________ .15.如图,△OAD ≌△OBC ,且∠O =72°,∠C =20°,则∠AEB =________度.第5题C A B D16.如图,Rt△ABC 中,AB =9,BC =6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为 .第15题 第16题第17题. 17. 如图,圆柱形玻璃杯高为12cm, 底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .18. 如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于 点D , DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB=6,AC=3,则BE= .三.解答题(共8题,共54分)19.计算(每小题3分,共6分) (1) (-3)2 +|1- 2 |-38-(π-1)0 (2)解方程 9x 2-121=0;20.作图题:(本题共5分)某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P 到边AB 、BC 的距离相等,并且点P 到点A 、D 的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).21.(本题5分)已知15-x 的平方根是3±,124++y x 的立方根是1,求y x 24-的平方根22.(本题7分)问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为、、,求这个三角形BC 边上的高.辉辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC 边上的高.(1)请在正方形网格中画出格点△ABC; 第12题A B C D M N A BC DE O 第18题(2)求出这个三角形BC 边上的高.23.(本题6分)如图,AD 平分∠BAC,∠BAC+∠ACD=180°,E 在AD 上,BE 的延长线交CD 于F ,连CE ,且∠1=∠2,试说明AB=AC .24.(本题7分) 如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE=CF ,BD =CE .(1)求证:△DEF 是等腰三角形; (2)当∠A=40°时,求∠DEF 的度数.25.(本题8分)如图,将长方形纸片ABCD 沿着EF 折叠,使得点C 与点A 重合.(1)求证:AE=AF ; (2)若AB=3,BC=9,试求CF 的长;(3)在(2)的条件下,试求EF 的长.26.(10分)如图,△ABC 与△DEF 是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB =AC=.现将△DEF 与△ABC 按如图所示的方式叠放在一起.现将△ABC 保持不动,△DEF 运动,且满足:点E 在边BC 上运动(不与B 、C 重合),且边DE 始终经过点A ,EF 与AC 交于M 点.请问:在△DEF 运动过程中,△AEM 能否构成等腰三角形?若能,请求出BE 的长;若不能,请说明理由.D'(C')F E D C B A AD B CE F。
最新人教版数学2015-2016学年八年级上第一次月考试卷含答案
2015--2016八年级(上)第一次月考数学试卷一、选择题(每题3分,共30分)1.(3分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得(第1题)(第3题)(第5题)半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两4.(3分)下面说法正确的是个数有()①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;6.(3分)(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,(笫6题)(第7题)(第8题)几何原理是()11.(2分)已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=_________.12.(2分)一个多边形截去一个角后,形成新多边形的内角和为1800°,则原多边形边数为_________.13.(4分)等腰三角形的两边的长分别为2cm和7cm,则三角形的周长是_________.14.(2分)如图,∠1+∠2+∠3+∠4=_________度.(第14题)(第15题).15.(2分)(2005•宿迁)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是_________.16.(2分)如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=_________°.(第16题)(第17题)17.(4分)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=_________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=。
江苏省宜兴市桃溪中学2016-2017学年八年级12月月考数学试题
初二数学上学期12月阶段性考试试卷一、精心选一选:(本大题共10小题,每小题2分,共20分)1.下列图案不.是.轴对称图形的是……………………………………………………( ▲ )2. 在平面直角坐标系中,下列哪个点在第四象限…………………………(▲ ) A .(4,2) B . (3,-1) C . (-2, 2) D .(-4, -1)3. 下列实数: -1.732、2π、34-、722、364-、0.121121112…、9- 中,属于 无理数的个数是---------( ▲ ) A .2个 B .3个 C .4个 D .5个4. 如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了-----------------------------------------( ▲ )A .2cmB .3cmC .4cmD .5cm5、如图∠1=∠2,再添加一个条件,不一定能判定△ABC≌△BAD 的是----------(▲ ) A . AC=BD B . ∠CAB=∠DBA C .∠C=∠D D .AD=BC6.下列说法: ①实数与数轴上的点一一对应;②直角三角形的两边长是 5和12,则第三边长是13;③近似数 1.5万精确到十分位;④实数分为正实数和负实数。
则说法错误..的个数有-------------------------------------------------------------( ▲ )A .4个B .3个C .2个D .1个7. 如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有--------------------( ▲ )A .3种B .4种C .5种D .6种8. 如图,ΔABC 中,∠A=500,AB=AC ,点P 为BC 上的点,点Q 为AC 上的点,若BD=PC ,BP=CQ 则∠DPQ 的度数为----------------------------------------------------( ▲ )第4题 第5题第8题A .500B . 700C . 650D . 8009. 下列函数中①y=2)(x ,②y=x x 2,③y=2x ,④y=33x 中与函数y=x 相同的函数个数是--------------( ▲ ) A . 0个 B . 1个 C . 2个 D . 3个10.如图,分别给出了变量x 与y 之间的对应关系的图像,则y 不是x 的函数的图像是( )二、细心填一填(每空2分,共18分)11. 2)2(-的平方根是 ▲ ;函数的自变量x 的取值范围是 ▲ 。
宜兴市2015-2016学年八年级上期末考试数学试题含答案
2015~2016学年第一学期期末考试卷八年级数学试题 2016.1注意事项:1.本卷考试时间为100分钟,满分100分.其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E 4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=c B 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶55.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( ) A . B . C .D CB A6.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-4 7.如图,在平面直角坐标系中,点P 坐标为(-4,3), 以点B (-1,0)为圆心,以BP 的长为半径画弧, 交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( ) A 、-6和-5之间 B 、-5和-4之间 C 、-4和-3之间 D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( )B.3C.4D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 . 11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 .12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为__________。
2015-2016八年级上第二次月考数学试卷及参考答案
2015-2016学年上学期八年级第二次月考数学试卷及参考答案2015.12一、选择题:(每小题3分,共30分)1.下列函数中是一次函数的是( )A .y=2x 2﹣1B .y=﹣1xC .y=13x +D .y=3x+2x 2﹣1 2.如果y=x+2a ﹣1是正比例函数,则a 的值是( ) A .12 B .0 C .﹣12 D .﹣23.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩ B .2311546a b b c -=⎧⎨-=⎩ C .292x y x ⎧=⎨=⎩ D .284x y x y +=⎧⎨-=⎩4.点A (3,y 1)和点B (2,y 2)都在直线y=﹣2x+3上,则y 1和y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定5.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有( ) A .24622x y y x +=⎧⎨=-⎩ B .24622x y x y +=⎧⎨=+⎩ C .24622x y y x +=⎧⎨=+⎩ D .24622x y y x +=⎧⎨=+⎩6.函数y=kx+b (k <0,b >0)的图象可能是下列图形中的( )A .B .C .D .7.方程y=1﹣x 与3x+2y=5的公共解是( )A .32x y =⎧⎨=⎩B .34x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩ 8.若函数y=2x+3与y=3x ﹣2b 的图象交x 轴于同一点,则b 的值为( ) A .﹣3 B .﹣32 C .9 D .﹣949.如果二元一次方程组3x y a x y a-=⎧⎨+=⎩的解是二元一次方程3x ﹣5y ﹣7=0的一个解,那么a 值是( )A .3B .5C .7D .910.汽车由天津驶往相距120千米的北京,其平均速度是30千米/时,下图中能表示汽车距北京的距离s (千米)与行驶时间t (小时)之间函数关系的是( )A.B.C.D.二、填空题(每小题4分,共40分)11.若一次函数y=5x+m的图象过点(﹣1,0),则m=.12.若x3m﹣2﹣2y n﹣1=5是二元一次方程,则m+n=.13.已知35xy=⎧⎨=⎩是方程ax﹣2y=2的一个解,那么a的值是.14.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.15.已知直线y=x+6与x轴,y轴围成一个三角形,则这个三角形面积为.16.点(﹣1,2)在直线y=2x+4上吗?(填在或不在).17.已知变量y和x成正比例,且x=2时,y=﹣12,则y和x的函数关系式为.18.已知2x+3y=1,用含x的代数式表示y,则y=.19.二元一次方程x+y=5的正整数解有.20.如图,点A的坐标可以看成是方程组的解.三、解答题:(21---25每小题10分,共30分)21.解方程组(1)37528y xx y=-⎧⎨+=⎩;(2)324237x yx y-=⎧⎨+=⎩.22.已知一次函数y=(k﹣2)x+3k2﹣12(1)k为何值时,图象平行于y=﹣2x的图象;(2)k为何值时,图象经过原点.23.在平面直角坐标系中,已知点A(2a﹣b,﹣8)与点B(﹣2,a+3b)关于原点对称,求a、b的值.24.已知一次函数y=kx+b的图象过A(0,4)和B(﹣1,﹣2),求这个一次函数的解析式.25.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度.四、解答题(26---30每小题8分,共40分)26.当a为何值时,方程组3522718x y ax y a-=⎧⎨-=-⎩的解x,y互为相反数?27.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;(2)如果小明家11月用水12立方米,应付水费多少元?28.若方程组84ax byax by+=⎧⎨-=⎩与方程组31x yx y+=⎧⎨-=⎩有相同的解,求a,b的值.29.已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.30.如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?五、解答题(10分)50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?2015-2016学年八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列函数中是一次函数的是()A.y=2x2﹣1 B.y=﹣1xC.y=13x+D.y=3x+2x2﹣1【考点】一次函数的定义.【分析】根据一次函数的定义对各选项进行逐一分析即可.【解答】解:A、是二次函数,故本选项错误;B、是反比例函数,故本选项错误;C、是一次函数,故本选项正确;D、是二次函数,故本选项错误.故选:C.【点评】本题考查的是一次函数的定义,即一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.2.如果y=x+2a﹣1是正比例函数,则a的值是()A.12B.0 C.﹣12D.﹣2【考点】正比例函数的定义.【分析】根据正比例函数的定义可知2a﹣1=0,从而可求得a的值.【解答】解:∵y=x+2a﹣1是正比例函数,∴2a﹣1=0.解得:a=12.故选:A.【点评】本题主要考查的是正比例函数的定义,由正比例函数的定义得到2a﹣1=0是解题的关键.3.下列方程组中,是二元一次方程组的是()A.4237x yx y+=⎧⎨+=⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.284x yx y+=⎧⎨-=⎩【考点】二元一次方程组的定义.【分析】二元一次方程的定义:含有两个未知数,并且未知数的项的最高次数是1的方程叫二元一次方程.二元一次方程组的定义:由两个二元一次方程组成的方程组叫二元一次方程组.【解答】解:根据定义可以判断A、满足要求;B、有a,b,c,是三元方程;C、有x2,是二次方程;D、有x2,是二次方程.故选A.【点评】二元一次方程组的三个必需条件:(1)含有两个未知数;(2)每个含未知数的项次数为1;(3)每个方程都是整式方程.4.点A(3,y1)和点B (2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣2的大小,根据函数的增减性进行解答即可.【解答】解:∵直线y=﹣2x+3中,k=﹣2<0,∴此函数中y随x的增大而减小,∵3>2,∴y1<y2.故选B.【点评】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,根据题意判断出函数的增减性是解答此题的关键.5.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.24622x yy x+=⎧⎨=-⎩B.24622x yx y+=⎧⎨=+⎩C.24622x yy x+=⎧⎨=+⎩D.24622x yy x+=⎧⎨=+⎩【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①某年级学生共有246人,则x+y=246;②男生人数y比女生人数x的2倍少2人,则2x=y+2【解答】解:根据某年级学生共有246人,则x+y=246;②男生人数y比女生人数x的2倍少2人,则2x=y+2.可列方程组为246 22x yx y+=⎧⎨=+⎩.故选B.【点评】找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.6.函数y=kx+b(k<0,b>0)的图象可能是下列图形中的()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到,当b>0时,向上平移;b<0时,向下平移可得答案.【解答】解:∵k<0,∴直线从左往右呈下降趋势,∵b>0,∴直线与y轴交于正半轴,故选:D.【点评】此题主要考查了一次函数图象,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.方程y=1﹣x与3x+2y=5的公共解是()A.32xy=⎧⎨=⎩B.34xy=-⎧⎨=⎩C.32xy=⎧⎨=-⎩D.32xy=-⎧⎨=-⎩【考点】一次函数与二元一次方程(组).【专题】计算题.【分析】先画出函数y=1﹣x 和函数3x+2y=5的图象,确定它们的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:如图,所以方程y=1﹣x 与3x+2y=5的公共解为32x y =⎧⎨=-⎩.故选C .【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.8.若函数y=2x+3与y=3x ﹣2b 的图象交x 轴于同一点,则b 的值为( )A .﹣3B .﹣32C .9D .﹣94【考点】两条直线相交或平行问题.【专题】计算题.【分析】本题可先求函数y=2x+3与x 轴的交点,再把交点坐标代入函数y=3x ﹣2b ,即可求得b 的值.【解答】解:在函数y=2x+3中,当y=0时,x=﹣32,即交点(﹣32,0), 把交点(﹣32,0)代入函数y=3x ﹣2b , 求得:b=﹣94. 故选D .【点评】注意先求函数y=2x+3与x 轴的交点是解决本题的关键.9.如果二元一次方程组3x y a x y a -=⎧⎨+=⎩的解是二元一次方程3x ﹣5y ﹣7=0的一个解,那么a 值是( ) A .3 B .5 C .7 D .9【考点】解三元一次方程组.【分析】先用含a 的代数式表示x ,y ,即解关于x ,y 的方程组,再代入3x ﹣5y ﹣7=0中可得a 的值.【解答】解:3x y a x y a -=⎧⎨+=⎩①② 由①+②,可得2x=4a ,∴x=2a ,将x=2a 代入①,得y=2a ﹣a=a ,∵二元一次方程组的解是二元一次方程的一个解,∴将2x a y a=⎧⎨=⎩代入方程3x ﹣5y ﹣7=0,可得6a ﹣5a ﹣7=0,∴a=7故选C.【点评】本题先通过解二元一次方程组,求得用a表示的x,y值后再代入关于a的方程而求解的.10.汽车由天津驶往相距120千米的北京,其平均速度是30千米/时,下图中能表示汽车距北京的距离s(千米)与行驶时间t(小时)之间函数关系的是()A.B.C.D.【考点】函数的图象.【分析】汽车距天津的路程=总路程﹣已行驶路程,把相关数值代入即可,自变量的取值应保证时间为非负数,S为非负数.【解答】解:汽车行驶路程为:30t,∴车距天津的路程S(千米)与行驶时间t(时)的函数关系及自变量的取值范围是:S=120﹣30t(0≤t≤4).故选C.【点评】考查了函数的图象,解决本题的关键是得到剩余路程的等量关系,注意时间和剩余路程均为非负数.二、填空题(每小题4分,共40分)11.若一次函数y=5x+m的图象过点(﹣1,0),则m=5.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】直接代入求出m的值.【解答】解:若一次函数y=5x+m的图象过点(﹣1,0),把(﹣1,0)代入解析式得到﹣5+m=0,解得m=5.【点评】本题主要考查了函数解析式与图象的关系,函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.12.若x3m﹣2﹣2y n﹣1=5是二元一次方程,则m+n=3.【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:由x3m﹣2﹣2y n﹣1=5是二元一次方程,得3m﹣2=1,n﹣1=1.解得m=1,n=2.m+n=1+2=3,故答案为:3.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.13.已知35xy=⎧⎨=⎩是方程ax﹣2y=2的一个解,那么a的值是4.【考点】二元一次方程的解.【专题】计算题.【分析】将x与y的值代入方程计算即可求出a的值.【解答】解:将x=3,y=5代入方程得:3a﹣10=2,解得:a=4,故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是m>﹣2.【考点】一次函数图象与系数的关系.【分析】根据图象的增减性来确定(m+2)的取值范围,从而求解.【解答】解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.【点评】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.15.已知直线y=x+6与x轴,y轴围成一个三角形,则这个三角形面积为18.【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】先求得直线y=x+6与x轴的交点坐标为(﹣6,0),与y轴的交点坐标为(0,6),再根据坐标的几何意义求得这个三角形面积.【解答】解:当y=0时,x=﹣6,当x=0时,y=6,所以直线y=x+6与x轴的交点坐标为(﹣6,0),与y轴的交点坐标为(0,6),则这个三角形面积为12×6×6=18.故答案为:18.【点评】本题考查的知识点为:某条直线与x轴,y轴围成三角形的面积=12×直线与x轴的交点坐标的横坐标的绝对值×直线与y轴的交点坐标的纵坐标的绝对值.16.点(﹣1,2)在直线y=2x+4上吗?在(填在或不在).【考点】一次函数图象上点的坐标特征.【分析】直接把横坐标代入直线y=2x+4,看结果是否等于2,等于2则在直线上,否则不在直线上.【解答】解:把x=﹣1代入直线y=2x+4=2,所以点(﹣1,2)在直线y=2x+4上.故答案为:在.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.已知变量y和x成正比例,且x=2时,y=﹣12,则y和x的函数关系式为y=﹣14x.【考点】待定系数法求正比例函数解析式.【分析】根据题意可设y=kx,再把当x=2时,y=﹣12代入可得k的值,进而得到函数解析式.【解答】解:∵y与x成正比例,∴设y=kx,∵当x=2时,y=﹣12,∴﹣12=2k,∴k=﹣14,∴y与x的函数关系式为y=﹣14x.故答案为:y=﹣14x.【点评】此题主要考查了待定系数法求正比例函数解析式,关键是正确掌握正比例函数的定义:y=kx(k≠0).18.已知2x+3y=1,用含x的代数式表示y,则y=213x-+.【考点】解二元一次方程.【专题】计算题;一次方程(组)及应用.【分析】把x看作已知数求出y即可.【解答】解:方程2x+3y=1,解得:y=213x-+.故答案为:213x-+.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.19.二元一次方程x+y=5的正整数解有解:1234,,,4321x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩.【考点】解二元一次方程.【专题】计算题.【分析】令x=1,2,3…,再计算出y的值,以不出现0和负数为原则.【解答】解:令x=1,2,3,4,则有y=4,3,2,1.正整数解为1234,,,4321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩.故答案为:1234,,,4321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩.【点评】本题考查了解二元一次方程,要知道二元一次方程的解有无数个.20.如图,点A的坐标可以看成是方程组521y xy x=-+⎧⎨=-⎩的解.【考点】一次函数与二元一次方程(组).【专题】计算题.【分析】由图象知:两个一次函数过A(2,3),再根据两个一次函数分别过(0,5),(0,﹣1),即可求出一次函数解析式,从而得出答案.【解答】解:由图象知:两个一次函数过A(2,3),再根据两个一次函数分别过(0,5),(0,﹣1),设两个一次函数分别为:y=k1x+b1,y=k2x+b2,代入解得:k1=﹣1,b1=5,k2=2,b2=﹣1,故点A的坐标可以看成是方程组521y xy x=-+⎧⎨=-⎩的解,故答案为:521y xy x=-+⎧⎨=-⎩.【点评】本题考查了一次函数与二元一次方程组,属于基础题,关键是掌握两个一次函数的交点即为方程组的解.三、解答题:(21---25每小题10分,共30分)21.解方程组(1)37528y xx y=-⎧⎨+=⎩;(2)324237x yx y-=⎧⎨+=⎩.【考点】解二元一次方程组.【分析】(1)先把①代入②求出x的值,再把x的值代入①即可得出y的值;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:(1)37528y xx y=-⎧⎨+=⎩①②,把①代入②得,5x+2(3x﹣7)=8,解得x=2,把x=2代入①得,y=3×2﹣7=﹣1,故此方程组的解为:21 xy=⎧⎨=-⎩;(2)324237x yx y-=⎧⎨+=⎩①②,①×3+②×2得,13x=26,解得x=2;把x=2代入①得,6﹣2y=4,解得y=1,故此方程组的解为21 xy=⎧⎨=⎩.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.22.已知一次函数y=(k﹣2)x+3k2﹣12(1)k为何值时,图象平行于y=﹣2x的图象;(2)k为何值时,图象经过原点.【考点】两条直线相交或平行问题.【分析】(1)根据两直线平行时其未知数的系数相等,列出方程,求出k的值即可;(2)根据b=0时函数的图象经过原点,列出方程组,求出k的值即可.【解答】解:(1)∵一次函数的图象平行于y=﹣2x的图象,∴k﹣2=﹣2,∴k=0;(2)∵一次函数y=(k﹣2)x+3k2﹣12的图象经过原点,∴3k2﹣12=0,∴2312020kk⎧-=⎨-≠⎩,∴k=﹣2.【点评】本题考查的是一次函数的图象与系数的关系,关键是根据两直线平行时其未知数的系数相等分析.23.在平面直角坐标系中,已知点A(2a﹣b,﹣8)与点B(﹣2,a+3b)关于原点对称,求a、b的值.【考点】关于原点对称的点的坐标.【专题】计算题.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.这样就可以得到关于a,b的方程组,解方程组就可以求出a,b的值.【解答】解:根据题意,得2238a ba b-=⎧⎨+=⎩,解得22a b =⎧⎨=⎩. 【点评】这一类题目是需要识记的基础题.解决的关键是对知识点的正确记忆.这类题目一般可以转化为方程或方程组的问题,能够熟练运用消元法解方程组.24.已知一次函数y=kx+b 的图象过A (0,4)和B (﹣1,﹣2),求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】把两个点的坐标代入y=kx+b 得到k 、b 的方程组,然后解方程组求出k 、b 的值,则可确定一次函数解析式. 【解答】解:根据题意得,解得.所以一次函数解析式为y=6x+4.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.25.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度.【考点】二元一次方程组的应用.【分析】设甲的速度是x 千米/时,乙的速度为y 千米/时,根据如果乙先走20km ,那么甲1小时就能追上乙可以列出方程x=20+y ,根据乙先走1小时,甲只用15分钟就能追上乙可以列出方程0.25x=(1+0.25)y ,联立列方程组求解即可.【解答】解:设甲的速度是x 千米/时,乙的速度为y 千米/时,由题意得,200.25(10.25)y x y x =+⎧⎨=+⎩, 解得:255x y =⎧⎨=⎩,答:甲的速度是25千米/时,乙的速度为5千米/时.【点评】本题考查了二元一次方程组的应用,此题是一个行程问题,主要考查的是追及问题,根据路程=速度×时间即可列出方程组.四、解答题(26---30每小题8分,共40分)26.当a 为何值时,方程组3522718x y a x y a -=⎧⎨-=-⎩的解x ,y 互为相反数? 【考点】二元一次方程组的解.【分析】由方程组的解互为相反数,得到x+y=0,即x=﹣y ,代入方程组求出a 的值即可.【解答】解:由方程组的解互为相反数,得到x+y=0,即x=﹣y ,代入方程组得:3522718x y a x y a -=⎧⎨-=-⎩①② 由①得:y=﹣4a , 由②得:y=189a -, ∴﹣4a =189a -, 解得:a=4.【点评】此题考查了二元一次方程组的解,解决本题的关键是熟记方程组的解为能使方程组中两方程都成立的未知数的值.27.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;(2)如果小明家11月用水12立方米,应付水费多少元?【考点】一次函数的应用.【专题】经济问题.【分析】(1)根据某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费可得未超过7立方米和多于7立方米时,y与x的函数关系式;(2)根据第一问得到的y与x的函数关系式,可以得到小明家11月份应付的水费.【解答】解:(1)根据题意可得,当x≤7时,y=x×1.0+x×0.2=x+0.2x=1.2x;当x>7时,y=x×1.5+x×0.4=1.5x+0.4x=1.9x.即x≤7时,y=1.2x;x>7时,y=1.9x.(2)∵12>7,∴将x=12代入y=1.9x,得y=1.9×12=22.8(元).答:如果小明家11月用水12立方米,应付水费22.8元.【点评】本题考查一次函数的应用,解题的关键是明确题意,能根据题意得到相应的函数关系式.28.若方程组84ax byax by+=⎧⎨-=⎩与方程组31x yx y+=⎧⎨-=⎩有相同的解,求a,b的值.【考点】二元一次方程组的解.【分析】两个方程组有相同的解,即有一对x和y的值同时满足四个方程,所以可以先求出第二个方程组的解,再把求得的解代入第一个方程组中,得到一个新的关于a、b的二元一次方程组,求出a、b.【解答】解:方程组31x yx y+=⎧⎨-=⎩的解为:21xy=⎧⎨=⎩,把21xy=⎧⎨=⎩代入方程组84ax byax by+=⎧⎨-=⎩得:2824a ba b+=⎧⎨-=⎩解得:32 ab=⎧⎨=⎩.【点评】本题考查了二元一次方程组的解,解决本题的关键是先根据已知方程组求出未知数的值,再把未知数的值代入另一个方程组中得到新的方程组,解此方程组求得要求的字母的值是解得此类题的常用方法.29.已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.【考点】两条直线相交或平行问题.【专题】计算题;数形结合.【分析】易求得A、B两点的坐标,联立两个函数的解析式,所得方程组的解即为C点的坐标.已知了A、B的坐标,可求得AB的长,在△ABC中,以AB为底,C点横坐标的绝对值为高,可求得△ABC 的面积.【解答】解:(1)在y=2x+3中,当x=0时,y=3,即A(0,3);在y=﹣2x﹣1中,当x=0时,y=﹣1,即B(0,﹣1);(2)依题意,得2321 y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=⎩;∴点C的坐标为(﹣1,1);(3)过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3﹣(﹣1)=4;∴S△ABC=12AB•CD=12×4×1=2.【点评】本题主要考查了函数图象交点、图形面积的求法等知识,函数图象交点坐标为两函数解析式组成的方程组的解.30.如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?【考点】一次函数的应用.【分析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.【解答】解:(1)平均速度=12493=km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b ,将(16,12),C (30,40)代入得,16123040k b k b +=⎧⎨+=⎩, 解得220k b =⎧⎨=-⎩.所以,当16≤t ≤30时,求S 与t 的函数关系式为S=2t ﹣20.【点评】本题考查了一次函数的应用,待定系数法求函数解析式,比较简单,准确识图并获取信息是解题的关键.五、解答题(10分)50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设一班学生x 名,二班学生y 名,根据题意可得等量关系:①两班共102人;②(1)班花费+(2)班花费=1118元,根据等量关系列出方程组即可;(2)计算出合并一起购团体票的花费102×8,再用1118﹣102×8即可.【解答】解:(1)设一班学生x 名,二班学生y 名,根据题意10212310118x y x y +=⎧⎨+=⎩,解得4953x y =⎧⎨=⎩, 答一班学生49名,二班学生53名;(2)两班合并一起购团体票:1118﹣102×8=302(元)答:可节省302元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.。
宜兴市XX中学2015-2016学年八年级上期中数学试卷含答案解析
2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷一、选择题1.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.的立方根是()A.±2 B.±4 C.4 D.23.下列几组数:①9,12,15;②8,15,17;③7,24,25;④3a,4a,5a(a为大于1的自然数).其中是勾股数的有()A.1组B.2组C.3组D.4组4.在 Rt△ABC中,∠C=90°,且c=29,a=20,则b为()A.9 B.10 C.20 D.215.有下列四个说法:①1的算术平方根是1,②的立方根是±,③﹣27没有立方根,④互为相反数的两数的立方根互为相反数,其中正确的是()A.①② B.①③ C.①④ D.②④6.在下列说法中正确的是()A.在 Rt△ABC中,AB2+BC2=AC2B.在 Rt△ABC中,若a=3,b=4,则c=5C.在 Rt△ABC中,两直角边长都为15,则斜边长为D.在直角三角形中,若斜边长为10,则可求出两直角边的长7.给出长度分别为7cm,15cm,20cm,24cm,25cm的五根木棒,分别取其中的三根首尾连接最多可以搭成的直角三角形的个数为()A.1个B.2个C.3个D.4个8.若三角形三边分别为5,12,13,那么它最长边上的中线长为()A.5 B.5.5 C.6.5 D.1.79.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.10.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题11.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为.12.在△ABC中,AB=5,BC=12,AC=13,则AC边上的高是.13.若有意义,则x的取值范围是;4的平方根是,﹣27的立方根是;的平方根是,﹣的立方根是.14.若x2=64,则= ;若x3=64,则= .15.算术平方根等于它本身的数有,,立方根等于本身的数有,,.16.若实数a、b满足=0,则a= ,b= .17.如果2a﹣1和5﹣a是一个数m的平方根,则a= ,m= .18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.19.如图,在Rt△ABC中,CD是AB边上的高,若AD=8,BD=2,则CD= .20.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E,AB=10cm,AC=6cm,△BDE的周长为 cm.三、解答题:21.若a、b为实数,且,求.22.已知实数x,y满足,求x﹣8y的立方根.23.已知2a一1的平方根是±5,3a+b﹣1的立方根是4,求a+2b+10的平方根.24.小强想知道学校旗杆的高,他发现旗杆端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后(即BC=5米),发现下端刚好接触地面,你能帮他算出来吗?若能,请你计算出AC的长.25.如图,已知△ABC的三边长为别为5,12,13,分别以三边为直径向上作三个半圆,求图中阴影部分的面积.26.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.27.如图,沿AE折叠长方形ABCD,使点D落在BC边的点F处,如果AB=CD=4cm,AD=B C=5cm,求EC的长.28.如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.29.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?30.如图,某市把一块形状为直角三角形的废地开辟为生物园,∠ACB=90°,AC=80m,BC=60m.(1)若入口E在边AB上,且与A、B距离相等,求从人口E到出口C的最短路线的长;(2)若线段CD是一条水渠,且点D在AB边上,已知水渠造价约为10元/m,则点D在距点A 多远处,此水渠的造价最低?最低造价是多少?提高题:31.如图,有一块塑料矩形模板ABCD,长为10cm,宽为5cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A,D重合),在AD上适当移动三角板顶点P,能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,所以,∠B=2×30°=60°,∠C=3×30°=90°,所以,此三角形是直角三角形.故选B.2.的立方根是()A.±2 B.±4 C.4 D.2【考点】立方根.【分析】原式利用算术平方根及立方根定义计算即可得到结果.【解答】解:=8,8的立方根是2,故选D3.下列几组数:①9,12,15;②8,15,17;③7,24,25;④3a,4a,5a(a为大于1的自然数).其中是勾股数的有()A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股数的定义分别对每一组数进行分析,即可得出答案.【解答】解:①∵92+122=152,∴9,12,15是勾股数;②∵82+152=172,∴8,15,17是勾股数;③∵72+242=252,∴7,24,25是勾股数;④(3a)2+(4a)2=(5a)2;∴3a,4a,5a是勾股数;共有四组勾股数;故选D.4.在 Rt△ABC中,∠C=90°,且c=29,a=20,则b为()A.9 B.10 C.20 D.21【考点】勾股定理.【分析】直接利用勾股定理得出b的值进而得出答案.【解答】解:∵∠C=90°,c=29,a=20,∴b==21.故选:D.5.有下列四个说法:①1的算术平方根是1,②的立方根是±,③﹣27没有立方根,④互为相反数的两数的立方根互为相反数,其中正确的是()A.①② B.①③ C.①④ D.②④【考点】立方根;平方根;算术平方根.【分析】①根据算术平方根的定义即可判定;②根据立方根的定义即可判定;③根据立方根的定义即可判定;④根据立方根、相反数的定义即可判定.【解答】解:①1的算术平方根是1,故说法正确;②的立方根是,故说法错误;③﹣27的立方根是﹣3,故说法错误;④互为相反数的两数的立方根互为相反数,故说法正确,故选C.6.在下列说法中正确的是()A.在 Rt△ABC中,AB2+BC2=AC2B.在 Rt△ABC中,若a=3,b=4,则c=5C.在 Rt△ABC中,两直角边长都为15,则斜边长为D.在直角三角形中,若斜边长为10,则可求出两直角边的长【考点】勾股定理.【分析】直接利用勾股定理得定义分别分析得出答案.【解答】解:A、在 Rt△ABC中,当∠B=90°,则AB2+BC2=AC2,故此选项错误;B、在 Rt△ABC中,若a=3,b=4,∠C=90°,c=5,故此选项错误;C、在 Rt△ABC中,两直角边长都为15,则斜边长为,正确;D、在直角三角形中,若斜边长为10,无法求出两直角边的长,故此选项错误;故选:C.7.给出长度分别为7cm,15cm,20cm,24cm,25cm的五根木棒,分别取其中的三根首尾连接最多可以搭成的直角三角形的个数为()A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理.【分析】分别求出5个数字的平方,看哪两个的平方和等于第三个数的平方,从而可判断能构成直角三角形.【解答】解:∵72=49,152=225,202=400,242=576,252=625,∴225+400=625,49+576=625即152+202=252,72+242=252,故选B.8.若三角形三边分别为5,12,13,那么它最长边上的中线长为()A.5 B.5.5 C.6.5 D.1.7【考点】勾股定理的逆定理;直角三角形斜边上的中线.【分析】根据勾股定理的逆定理判定三角形为直角三角形,结合直角三角形的性质求得最长边上的中线长.【解答】解:∵52+122=132,∴三角形为直角三角形,∴斜边长为13,∵直角三角形中斜边上的中线等于斜边的一半,∴中线长为6.5.故选C.9.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.【考点】算术平方根;平方根.【分析】设这个自然数为x,则x=a2,故与之相邻的下一个自然数为a2+1,再根据算术平方根的定义进行解答即可.【解答】解:设这个自然数为x,∵x平方根为a,∴x=a2,∴与之相邻的下一个自然数为a2+1,其算术平方根为:.故选D.10.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选B.二、填空题11.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为96 .【考点】勾股定理.【分析】先根据比值设出直角三角形的两直角边,用勾股定理求出未知数x,即两条直角边,用面积公式计算即可.【解答】解:设直角三角形的两直角边分别为3x,4x(x>0),根据勾股定理得,(3x)2+(4x)2=202,∴x=4或x=﹣4(舍),∴3x=12,4x=16∴直角三角形的两直角边分别为12,16,∴直角三角形的面积为×12×16=96,故答案为96.12.在△ABC中,AB=5,BC=12,AC=13,则AC边上的高是.【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理判定△ABC为直角三角形,再利用面积法进行求解.【解答】解:∵在△ABC中,AB=5,BC=12,AC=13,∴AB2+BC2=52+122=132=AC2,∴△ABC为直角三角形,且∠B=90°,∵直角边为AB,BC,设斜边AC上的高为h,根据三角形的面积有:×5×12=×13h,解得h=,故答案为.13.若有意义,则x的取值范围是x≥;4的平方根是±2 ,﹣27的立方根是﹣3 ;的平方根是±,﹣的立方根是﹣2 .【考点】二次根式有意义的条件;平方根;立方根.【分析】根据二次根式中的被开方数必须是非负数,以及平方根、立方根的含义和求法求解即可.【解答】解:∵有意义,∴2x﹣1≥0,∴x的取值范围是x≥;4的平方根是:±=±2;﹣27的立方根是:=﹣3;∵,∴的平方根是:±;∵=8,∴﹣的立方根是:=﹣2.故答案为:x≥;±2;﹣3;±;﹣2.14.若x2=64,则= ±2 ;若x3=64,则= 2 .【考点】立方根;算术平方根.【分析】直接利用平方根以及立方根的定义分析得出答案.【解答】解:∵x2=64,∴x=±8,∴=±2;∵x3=64,∴x=4,则=2.故答案为:±2,2.15.算术平方根等于它本身的数有0 , 1 ,立方根等于本身的数有0 , 1 ,﹣1 .【考点】立方根;算术平方根.【分析】算术平方根等于它本身的数是非负数,且绝对值较小,立方根等于本身的数的绝对值较小,由此即可求解.【解答】解:算术平方根等于它本身的数有0,1,立方根等于本身的数有0,1,﹣1.故填0,1;0,1,﹣1.16.若实数a、b满足=0,则a= ,b= .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出二元一次方程组,解方程组即可.【解答】解:由题意得,,解得,,故答案为:;.17.如果2a﹣1和5﹣a是一个数m的平方根,则a= 2或﹣4 ,m= 9或81 .【考点】平方根.【分析】由题意可得出(2a﹣1)的平方=(5﹣a)的平方,从而求解即可.【解答】解:根据题意得(2a﹣1)2=(5﹣a)2,∴(2a﹣1)=±(5﹣a),∴a=2或﹣4,∴m=9或81.18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49 cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.19.如图,在Rt△ABC中,CD是AB边上的高,若AD=8,BD=2,则CD= 4 .【考点】勾股定理.【分析】根据图形可得△BDC∽△CDA,从而利用对应边成比例可得出CD的长度.【解答】解:∵∠BCD+∠ACD=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCD,∴△BDC∽△CDA,故可得:,即CD2=AD•BD=16,∴CD=4.故答案为:4.20.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E,AB=10cm,AC=6cm,△BDE的周长为12 cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,可求出BE,再利用勾股定理列式求出BC,最后根据三角形的周长列式计算即可得解.【解答】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB于E,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6,∴BE=AB﹣AE=10﹣6=4,由勾股定理得,BC===8,∴△BDE的周长=BE+BD+CD=BE+BD+CD=BE+BC=4+8=12(cm).故答案为:12.三、解答题:21.若a、b为实数,且,求.【考点】二次根式有意义的条件.【分析】首先根据二次根式的被开方数是非负数求得b的值,进而求得a的值,代入求得代数式的值.【解答】解:根据题意得:,解得:b=7,则a=3.则原式=|a﹣b|=|3﹣7|=4.22.已知实数x,y满足,求x﹣8y的立方根.【考点】立方根;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】先根据非负数的性质求出x、y的值,再求出x﹣8y的立方根即可.【解答】解:∵,∴x﹣2y﹣3=0,2x﹣3y﹣5=0,∴x=1,y=﹣1,∴x﹣8y=1+8=9,∴x﹣8y的立方根是2.23.已知2a一1的平方根是±5,3a+b﹣1的立方根是4,求a+2b+10的平方根.【考点】立方根;平方根.【分析】由平方根的定义和列方程的定义可求得2a﹣1=25,3a+b﹣1=64,从而可求得a、b 的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.【解答】解:∵2a一1的平方根是±5,3a+b﹣1的立方根是4,∴2a﹣1=25,3a+b﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10的平方根为±5.24.小强想知道学校旗杆的高,他发现旗杆端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后(即BC=5米),发现下端刚好接触地面,你能帮他算出来吗?若能,请你计算出AC的长.【考点】勾股定理的应用.【分析】根据题意设旗杆的高AC为x米,则绳子AB的长为(x+1)米,再利用勾股定理即可求得AC的长,即旗杆的高.【解答】解:设AC=x,则AB=x+1,在Rt△ACB中,由勾股定理得:(x+1)2=x2+25,解得x=12(米),故:旗杆的高AC为12米.25.如图,已知△ABC的三边长为别为5,12,13,分别以三边为直径向上作三个半圆,求图中阴影部分的面积.【考点】勾股定理.【分析】先利用勾股定理逆定理求出△ABC是直角三角形,再根据图形,阴影部分的面积等于两个小扇形的面积加上△ABC的面积减去大扇形的面积,然后列式计算即可得解.【解答】解:∵52+122=169=132,∴△ABC是直角三角形,由图可知,阴影部分的面积为:=π()2+π()2+×5×12﹣π()2,=π+π+30﹣π,=30.26.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.【考点】勾股定理.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,所以有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.27.如图,沿AE折叠长方形ABCD,使点D落在BC边的点F处,如果AB=CD=4cm,AD=B C=5cm,求EC的长.【考点】翻折变换(折叠问题).【分析】首先求出BF的长度,进而求出FC的长度;根据勾股定理列出关于线段EF的方程,即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,由折叠得:AF=AD=5cm;DE=EF,再Rt△ABF中,由勾股定理得:BF2=52﹣42=9,∴BF=3cm,CF=5﹣3=2cm;设为DE=EF=xcm,EC=(4﹣x)cm;由勾股定理得:x2=22+(4﹣x)2,解得:x=,∴EC=4﹣=.28.如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.【考点】翻折变换(折叠问题);勾股定理.【分析】利用勾股定理求出CD=6,所以阴影部分面积为×CD×AC,求出即可.【解答】解:设CD=x,∵在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,∴BD=B′D=16﹣x,B′C=AB﹣AC=20﹣12=8,∠DCB′=90°,∴在Rt△DCB′中,CD2+B′C2=DB′2,∴x2+82=(16﹣x)2,解得:x=6,∴重叠部分(阴影部分)的面积为:×6×12=36.29.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?【考点】平面展开-最短路径问题.【分析】本题先把长方体展开,根据两点之间线段最短的性质,得出最短的路线是AG,然后求出展开后的线段AC、CG的长,再根据勾股定理求出AG即可.【解答】解:(1)如图(2)当蚂蚁从A出发先到BF上再到点G时∵AB=3cm,BC=5cm∴AC=AB+BC=3+5=8cm∵BF=6cm,∴CG=BF=6cm在Rt△ABG中AG===10cm(2)如图(1)当蚂蚁从A出发先到EF上再到点G时∵BC=5cm,∴FG=BC=5cm,∴BG=5+6=11cm在Rt△ABG中AG===,∵∴第一种方案最近,这时蜘蛛走过的路程是10cm.30.如图,某市把一块形状为直角三角形的废地开辟为生物园,∠ACB=90°,AC=80m,BC=60m.(1)若入口E在边AB上,且与A、B距离相等,求从人口E到出口C的最短路线的长;(2)若线段CD是一条水渠,且点D在AB边上,已知水渠造价约为10元/m,则点D在距点A 多远处,此水渠的造价最低?最低造价是多少?【考点】勾股定理的应用.【分析】(1)由题意可知:E点是AB的中点,则连接CE,CE是AB边的中线,则根据直角三角形中中线是斜边的一半;只要求得斜边AB的长即可,根据勾股定理可以求得AB的长;(2)根据从一点到一直线垂线段线段的距离最短可知:从C点向AB作垂线,则CD的造价最低;根据三角形相似可以求得CD的长,AD的长;最后可以求得水渠的造价.【解答】解:(1)过点C作CD⊥AB于D,取AB的中点为E,连接CE,根据勾股定理可知:AB===100,由题意可知:E点是AB的中点,根据直角三角形中斜边上的中线是斜边的一半,则CE=AB=×100=50m;(2)由题意可知:从一点到一直线垂线段线段的距离最短,则从C点向AB作垂线,则CD 的造价最低;∵△ACB是直角三角形,CD⊥AB,∴△ADC∽△ACB,则==,即==,可解得:AD=64,CD=48;则最低造价=10×48=480元.答:点D在距点A64m处,此水渠的造价最低,最低造价是480元.提高题:31.如图,有一块塑料矩形模板ABCD,长为10cm,宽为5cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A,D重合),在AD上适当移动三角板顶点P,能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.【考点】直线与圆的位置关系.【分析】此题是一个动点问题,三角板两直角边分别通过点B与点C,则会形成三个直角三角形:依据勾股定理,建立起各边之间的关系,即可解答.【解答】解:能.理由:设AP=x,则PD=10﹣x,在Rt△ABP中,PB2=x2+52,在Rt△PDC中,PC2=(10﹣x)2+52,假设三角板两直角边能分别通过点B与点C,∵∠BPC是直角三角形,∴PB2+PC2=BC2,即52+x2+(10﹣x)2+52=102,解得:x=5(cm).∴x=5cm时满足PB2+PC2=BC2,∴三角板两直角边能分别通过点B与点C.2016年11月29日。
宜兴市XX中学2016学年八年级上期中数学试卷(2)含答案解析 (1)
2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.105.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+10.若x、y为实数,,则4y﹣3x是.二、填空题11.16的平方根是,=.12.等腰三角形一个角为50°,则此等腰三角形顶角为.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=cm.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为cm.18.若,且ab<0,则a+b=.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是cm.20.若,则b c+a的值为.三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 【考点】二次根式的性质与化简.【分析】直接利用二次根式的定义以及二次根式的性质分别化简求出答案.【解答】解:A、,无意义,故此选项错误;B、=12,故此选项错误;C、=7,故此选项错误;D、(﹣)2=2,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等【考点】等腰三角形的性质;全等三角形的判定.【分析】由等腰三角形的性质得出A不正确、D正确;由全等三角形的判定方法得出B、C 不正确;即可得出结果.【解答】解:∵等腰三角形的底边上的高、底边上的中线、顶角平分线互相重合,∴A不正确;∵顶角相等的两个等腰三角形相似,不一定全等,∴B不正确;∵面积相等的两个三角形不一定全等,∴C不正确;∵等腰三角形的两个底角相等,∴D正确;故选D.【点评】本题考查了等腰三角形的性质、全等三角形的判定方法;熟练掌握等腰三角形的性质和全等三角形的判定方法是解决问题的关键.3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.10【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得到AB=BD,∠D=∠DAB,由三角形内角与外角的关系得到∠ABC的度数,再根据直角三角形的性质求解即可.【解答】解:∵B点在AD的垂直平分线上,∠D=15°,∴AB=BD,∠D=∠DAB=15°,∴∠ABC=∠D+∠DAB=30°,∴AB=2AC,∵AC=4,∴AB=8,∵AB=BD,∴BD=8.故选C.【点评】本题考查的是线段垂直平分线的性质及三角形内角与外角的关系,熟知线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.5.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【考点】线段垂直平分线的性质.【分析】利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=10°⇒∠AEB,∠AEB=∠EAC+∠C=2∠C.【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.【点评】此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE【考点】角平分线的性质;平行线的性质;等腰三角形的判定与性质.【分析】根据三角形的角平分线相交于一点,根据角平分线上的点到角的两边的距离相等,角平分线的定义,平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC正确,故本选项错误;B、I为△ABC角平分线的交点,I到三边的距离相等正确,故本选项错误;C、AI与DI的大小无法判断,故本选项正确;D、∵BI,CI分别是∠ABC和∠ACB的平分线,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠BCI,∴∠DBI=∠DIB,∠ECI=∠EIC,∴BD=DI,CE=EI,∴DE=DI+EI=BD+CE,即DE=BD+CE正确,故本选项错误.故选C.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定,熟记三角形的角平分线相交于一点,角平分线上的点到角的两边的距离相等的解题的关键.8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°【考点】等边三角形的性质.【分析】根据等边三角形的性质可得∠A=∠B=60°,又因为AM=BN,AB=AB,所以△AMB ≌△BNA,从而得到∠NAB=∠MBA=60°﹣∠MBC=35°,则∠MON=∠AOB=180°﹣2×35°=110°.【解答】解:∵△ABC是等边三角形∴∠A=∠B=60°∵AM=BN,AB=AB∴△AMB≌△BNA∴∠NAB=∠MBA=60°﹣∠MBC=35°∴∠AOB=180°﹣2×35°=110°∵∠MON=∠AOB∴∠MON=110°故选A.【点评】考查了等腰三角形的性质,根据等边三角形的性质,结合全等三角形求解.9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+【考点】平面展开-最短路径问题.【分析】根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出即可.【解答】解:∵蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,∴蚂蚁爬行的最短距离是如图BM的长度,∵无盖的正方体盒子的棱长为2,BC的中点为M,∴A1B=2+2=4,A1M=1,∴BM==.故选B.【点评】此题主要考查了平面展开﹣最短路径问题,利用图形得出最短路径为BM是解题关键.10.若x、y为实数,,则4y﹣3x是6.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x2﹣4≥0且4﹣x2≥0,根据分式有意义的条件可得x﹣2≠0,再解不等式即可.【解答】解:由题意得:x2﹣4≥0且4﹣x2≥0,x﹣2≠0,解得:x=﹣2,则y=0,4y﹣3x=6,故答案为:6.【点评】此题主要考查了二次根式有意义和分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二次根式中的被开方数是非负数.二、填空题11.16的平方根是±4,= 1.2.【考点】算术平方根;平方根.【分析】一个正数的平方根有两个,它们互为相反数;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵(±4)2=16,∴16的平方根是±4;=1.2.【点评】此题主要考查了平方根与算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为90.【考点】勾股定理.【分析】连续自然数,两数的差是1,较大的是斜边,根据勾股定理就可解得.【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故答案为:90.【点评】本题综合考查了勾股定理,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【考点】平方根.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=6.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【解答】解:∵|x﹣1|+(y﹣2)2+=0,∴x﹣1=0,y﹣2=0,z﹣3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=3cm.【考点】角平分线的性质.【分析】要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.【解答】解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故答案为:3【点评】此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为5cm.【考点】含30度角的直角三角形.【分析】根据比例设∠A、∠B、∠C分别为k、2k、3k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=60°,∠C=90°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5.【点评】本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.18.若,且ab<0,则a+b=﹣1.【考点】算术平方根.【分析】直接利用绝对值的性质以及二次根式的性质进而得出a,b的值,即可得出答案.【解答】解:∵|a|=5,=2,∴a=±5,b=4,∵ab<0,∴a=﹣5,b=4,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关性质是解题关键.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是5cm.【考点】勾股定理.【分析】先根据面积求出三角形另一边的长,再根据勾股定理求出直角三角形斜边长即可.【解答】解:∵该长方形的一边长为3cm,面积为12cm2,∴另一边长为4cm,∴对角线长==5cm.【点评】此题主要涉及的知识点:长方形的面积公式和勾股定理的应用.20.若,则b c+a的值为﹣3.【考点】二次根式有意义的条件;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据二次根式的意义,被开方数是非负数.则a﹣5≥0,5﹣a≥0,求得a的值,再根据非负数的性质,求得b,c的值,代入计算即可.【解答】解:∵a﹣5≥0,5﹣a≥0,∴a=5,∴+|2c﹣6|=0,∴b+2=0,2c﹣6=0,解得b=﹣2,c=3,∴b c+a=(﹣2)3+5=﹣8+5=﹣3,故答案为﹣3.【点评】本题考查了二次根式有意义的条件和非负数的性质,同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.【考点】解一元二次方程-直接开平方法.【分析】(1)先移项,然后开平方即可;(2)将(x﹣1)看作一个整体,然后开平方求出(x﹣1),继而再求x的值.【解答】解:(1)x2﹣25=0,x2=25,x1=﹣5,x2=﹣﹣5;(2)(x﹣1)2=16,x﹣1=±4,x1=﹣3,x2=5.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c (a,c同号且a≠0).22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.【考点】等边三角形的性质.【分析】【分析】因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,点D是AC的中点,则∠DBC=30°,再由题中条件求出∠E=30°,易得△DBE为等腰三角形,由等腰三角形的性质可证得结论.【解答】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点D是AC的中点,∴∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴△DBE为等腰三角形,∵DF⊥BE,∴BF=EF.【点评】本题考查了等边三角形的性质,掌握等腰三角形“三线合一”是解答此题的关键.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题中条件两角夹一边判定△ADC≌△ADB,得出AB=AC,进而亦可得出第二问的结论.【解答】证明:(1)∵∠BDE=∠CDE,∠BAE=∠CAE,∴∠ADB=∠ADC,又AD=AD,∴△ADC≌△ADB,∴AB=AC,(2)在△ABC中,AB=AC,∠BAE=∠CAE,∴AE⊥BC.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练掌握.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】求出AF=BE,根据平行线性质求出∠CFE=∠BED,根据AAS推出△ACF≌△BDE 即可.【解答】证明:∵CF∥DE,∴∠CFE=∠BED,∵AE=BF,∴AF=BE,∵∠C=∠B,在△ACF和△BDE中,∴△ACF≌△BDE(AAS),∴∠A=∠B,∴AC∥BD【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,解此题的关键是推出△ACF≌△BDE,注意:全等三角形的对应边相等,对应角相等.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.【考点】等腰三角形的性质;三角形三边关系.【分析】分三种情况求解后利用三角形的三边关系验证.【解答】解:若a=b,则5x﹣1=6﹣x,得x=,三边长分别为,,5,符合三角形三边关系;若a=c,则5x﹣1=4,得x=1,三角形的三边长为4,5,4,符合三角形三边关系;若b=c,则6﹣x=4,得x=2,三角形的三边长为9,4,4,不构成三角形;综上所述,符合要求的x值为或1;【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是分类讨论.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?【考点】勾股定理的应用.【分析】本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.【解答】解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.【点评】此题主要考查勾股定理的运用.关键是构造直角三角形,同时注意:时间=路程÷速度.27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.【考点】翻折变换(折叠问题).【分析】利用等腰直角三角形的性质得出BC的长,进而得出BH,DH的长,再利用勾股定理得出AE的长.【解答】解:作DH⊥AB于H,可得等腰Rt△DBH,由AB=4,可知BC=sin45°×AB=×4=2,于是BD=,BH=DH=×=1,设AE=DE=x,则EH=4﹣1﹣AE=3﹣x,在Rt△DEH中,(3﹣x)2+12=x2,解得:x=,故AE的长度为.【点评】此题主要考查了翻折变换以及勾股定理等知识,根据已知得出BH=DH的长是解题关键.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为14cm;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为35°;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.【考点】翻折变换(折叠问题).【分析】操作一利用对称找准相等的量:BD=AD,∠BAD=∠B,然后分别利用周长及三角形的内角和可求得答案;操作二利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案;【解答】解:操作一:(1)由折叠的性质可得AD=BD,∵△ACD的周长=AC+CD+AD,∴△ACD的周长=AC+CD+BD=AC+BC=8+6=14(cm);故填:14cm;(2)设∠CAD=4x,∠BAD=7x由题意得方程:7x+7x+4x=90,解之得x=5,所以∠B=35°;故填:35°;操作二:∵AC=9cm,BC=12cm,∴AB===15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解之得x=4.5,∴CD=4.5cm.【点评】本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?【考点】四边形综合题.【分析】(1)设t秒后,△APE的面积为长方形面积的,根据题意得:△APE的面积=APAD=t×4=,从而求得t值;(2)当P运动到AB中点时AEP为直角三角形,此时角APE为直角,t=3;还有一种情况,当P运动到BC上时,角AEP为直角时利用相似三角形求得AP的长即可求得t值;(3))第一种情况,当P在AE垂直平分线上时,AP=EP;第二种情况,P运动到点B上时APE为等腰三角形,此时AE=EP,t=6;第三种情况,P在AB上,AP=PE;【解答】解:(1)设t秒后,△APE的面积为长方形面积的,根据题意得:AP=t,∴△APE的面积=APAD=t×4=,解得:t=4,∴4秒后,△APE的面积为长方形面积的;(2)显然当t=3时,PE⊥AB,∴△APE是直角三角形,当P在BC上时,△ADE∽△ECP,此时,解得:CP=,∴PB=BC﹣PC=4﹣=,∴t=6+=;(3)①当P在AE垂直平分线上时,AP=EP,过P作PQ⊥AE于Q,∵AD=4,DE=3,∴AE=5,∴AQ=2.5,由△AQP∽△EDA,得:,即:,解得:AP=,∴t=;.②当EA=EB时,AP=6,∴t=6,③当AE=AP时,∴t=5.∴当t=、5、6时,△APE是等腰三角形.【点评】本题考查了四边形的综合知识和动点问题,动点问题更是中考中的热点考题,有一定的难度,解题的关键是能够化动为静,利用等腰三角形的性质求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册阶段性测试 2015.12.(本张试卷满分100分)一.选择题(本大题共8小题,每小题3分,共24分.)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A.B. C. D.2. 在3.14、2-、327、π、0.2020020002……这六个数中,无理数有 ( )A .1个B .2个C .3个D .4个 3. 有一个数值转换器,原理如下:当输入的x=64时,输出的y 等于 ( ) A .2 B .8 C .23 D .224. 下列条件中,不能判断△ABC 为直角三角形的是 ( )A . 1.5b=2, c=2.5a =,B .345a =:b :c :: C .∠A +∠B =∠C D .∠A :∠B :∠C =3:4:5 5. 一次函数y =2x +3的图象不经过...的象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是 ( )A.(2,4)B.(1,5)C.(1,-3)D.(-5,5) 7. 已知点A (x l ,y 1)、B (x 2,y 2)在直线y =-2x +b 上,当x 1<x 2则y 1与y 2的大小关系是( ) A . y 1>y 2 B .y 1<y 2 C .y l = y 2 D .y 1与y 2的大小关系不定 8. 一名考生前往考场,5分钟走了总路程的61,估计不能准时达到考场, 于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程 为1,出租车匀速),则他达到考场所花的时间比一直步行提前了 A. 18分钟 B.20分钟 ( ) C.24分钟 D.28分钟二.填空题(每空2分,共18分) 9. 计算364-=____10. 函数y =x 21-中自变量x 的取值范围是________11. 点M (3,-4)关于x 轴的对称点N 的坐标是_________12. 如图,若等腰△ABC 的腰长AB =10cm ,AB 的垂直平分线交另一腰AC 于D ,△BCD 的周长为14cm ,则底边BC 是_________13. 若直角三角形斜边上的高和中线长分别是6 cm ,8 cm ,则它的面积是________ cm 2. 14. 一次函数b kx y +=的图象如图所示,则不等式0≤b kx +<5的解集为_________15. 如图,△ABC 中,AB =AC =13,BC =10,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值为_________。
16.有一个如图示的长方体的透明玻璃杯,其长AD =7cm ,高AB =5cm ,水深为AE =4cm ,在水面线EF 上紧贴内壁G 处有一粒食物,且EG =4cm ;一小虫想从杯 外的A 点沿壁爬进杯 内G 处吃掉食物;小虫爬行的最短路线长为cm (不计杯壁厚度).17.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4] = 4,1]3[=,现对72进行如下操作: 72→第1次[72] = 8→第2次[8] = 2→第3次[2] = 1,这样对72只需进行3次操作后变为1,类似地:只需进行3次操作后变为1的所有正整数中,最大的是 .(第12题) ( 第14题) (第15题) (第16题) 三.简答题18. (本小题满分8分,每小题4分)(1)计算032)13(272----(2)解方程25)1(642=+x19. (本小题满分6分)如图,在平面直角坐标系xOy 中,点A点B (6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到A 、B 两点的距离相等;②点P 到∠xOy (2)若在x 轴上有点M ,则能使△ABM 的周长最短的点M 的坐标为 .A B E20.(本小题满分6分)如图,在△ABC 和△DAE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连接BD 、CE . 求证:△ABD ≌△AEC .21.(本题满分8分)如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时梯子底部B 到墙底端的距离为0.7米,考虑爬梯子的稳定性,现要将梯子顶部A 沿墙下移0.4米到A ′处,问梯子底部B 将外移多少米? ,22. (本小题满分10分)如图,直线l :364y x =+交x 、y 轴分别为A 、B 两点,C 点与A 点关于y 轴对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ=∠BAO. (1)点A 坐标是 , BC= .(4分) (2)当点P 在什么位置时,△APQ≌△CBP ,说明理由。
(4分) (3)当△PQB 为等腰三角形时,求点P 的坐标.(2分)23.(本小题满分10分)我市化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答y 与x 的函数关系式;(2)如果装运A 种物资的车辆数不少于5辆,装运B 种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.24.(本小题满分10分)已知:如图,∠B =90°,AB ∥DF ,AB =4cm,BD =10cm ,点C 是线段BD 上一动点,点E 是直线DF 上一动点,且始终保持AC ⊥CE . (1)试说明:∠ACB =∠CED 。
(3分)(2)若AC =CE ,试求DE 的长。
(3分)(3)在线段BD 的延长线上,是否存在点C ,使得AC =CE ,若存在,请求出DE 的长及△AEC 的面积;若不存在,请说明理由。
(4分)八年级数学上册阶段性测试(答题卷) 2015.123分,共二.9. _______ 10. __ _____ 11. _ _____ 12. _____ __ 13. _______ 14. _______ 15. _______ 16. _____ _ _ 17. ___ ____ 三.简答题解:22. (本小题满分10分),为等腰三角形时,求点(3)八年级数学上册阶段性测试 (答案)9. ____-4___ 10. __ x ≤21___ 11. _ (3,4) 12. _4cm____ __ 13. ___48____ 14. ___0<x ≤2____ 15. __13120_ 16. 17. __255_ ____18. (本小题满分8分,每小题4分) (1)—415 (2)—38或— 813 19. (本小题满分6分)(1)作AB 的垂直平分线与∠XOY 的角平分线的交点,即得点P .------------(4分) (2)M (3,0)-------------------------------------------------------------------------(6分) 20. (本小题满分6分) ∵∠BAC=∠DAE∴∠BAC-∠BAE=∠DAE-∠BAE即∠DAE=∠EAC------------------------------------------------------------(2分) ∵在△ABD和△AEC 中 AD=AC, ∠DAB=∠CAE,AB=AE∴△ABD ≌△AEC------------------------------------------------------------(6分)√2.52-0.72=2.4米,-------------------------------------------------------------(2分) 又∵AA ′=0.4,∴A ′C=2.4-0.4=2,--------------------------------------------------(4分) √ A ′B ′2-A ′C 2= √ 2.52-22=1.5米,------------------------------------------------------------(6分)则BB ′=CB ′-CB=1.5-0.7=0.8米.----------------------------------(8分)故:梯子底部B 外移0.8米.22. (本小题满分10分)(1)A (-8,0),BC =10 ----------------------------------(4分)(2)当P(2,0)时,△APQ≌△CBP。
---------------------------(5分)由OP=2,证△APQ≌△CBP。
(或者由△APQ≌△CBP,求得OP=2) ------(8分)(3)①当PB=PQ时,此时可证△APQ≌△CBP,得P(2,0);------(9分)②当BQ=BP时,P不在AC上,不成立;③当QB=QP时,可证PA=PB,设P(x,0)有勾股定理得(X+8)2=x2+62得x=得P(,0). --------------------------------(10分)23.(本小题满分10分)------------------------------(3分)----------------------------(5分)---------------------(7分)四8 4 8----------------------------243分)(6分)(10分)。