任意角的三角函数练习题及答案详解(要)

合集下载

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习一、选择题1.下列选项中与-80°终边相同的角为( )A. 100°B. 260°C. 280°D. 380°2.在平面直角坐标系中,角3πα+的终边经过点P (1,2),则sin α=( )3.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125- 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是( ) A. π3 B. π6 C. -π3 D. -π65.已知角α的终边经过点(sin 48,cos48)P ︒︒,则sin(12)α︒-=( )A. 12 C. 12- D. 6.若12cos 13x =,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-5127.若函数()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f ππ-= B. )3()3(ππf f <- C. )3()3(ππf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( )A .sin 0>θB .cos 0<θC .tan 0>θD .sin tan 0>θθ9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( )A .1B .2C .3D .410.已知tan 2α,其中α为三角形内角,则cos α=()A. 5- D.二、填空题11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______.12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=_________.14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度.15.弧长为3π,圆心角为135°的扇形,其面积为____.三、解答题16.已知角α的终边经过点P (54,53-). (1)求sin α的值. (2)17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?18.在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限,已知(1,3)A -.(Ⅰ)若OA OB ⊥,求tan α的值.(Ⅱ)若B 点横坐标为45,求AOB S ∆.19.已知2sin tan 3⋅=αα,且0<<απ.(Ⅰ)求α的值;(Ⅱ)求函数()4cos cos()f x x x =-α在[0,]4π上的值域.试卷答案1.C2.A3.B4.B5.A6.D8.D9.D10.A11.212.二或四13.1/314.2.515.6π 16.17.(1)设扇环的圆心角为,则()30102(10)x x θ=++-, 所以10210x xθ+=+,………………………4分 (2) 花坛的面积为 2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<.…7分 装饰总费用为()9108(10)17010x x x θ++-=+, …………………………9分 所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++, …………11分令17t x =+,则3913243()101010y t t =-+≤,当且仅当t=18时取等号,此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.……………………………14分18.⑴解法1:由题可知:(1,3)A -,(cos ,sin )B αα, (1,3)OA =-,(cos ,sin )OB αα=OA OB ⊥,得0OA OB ⋅= ∴cos 3sin 0αα-+=,1tan 3α= 解法2、由题可知:(1,3)A -,(cos ,sin )B αα 3OA k =-, tan OB k α= ∵OA OB ⊥,∴1OA OB K K ⋅=-得3tan 1α-=-, 得1tan 3α=⑵解法1:由⑴OA == 记AOx β∠=, (,)2πβπ∈∴sin β==,cos β==1OB = 4cos 5α=,得3sin 5α==43sin sin()10510510AOB βα∠=-=+=∴11sin 122AOB S AO BO AOB ∆=∠=32= ……12分 解法2:3sin 5α== 即43(,)55B 即:(1,3)OA =-,43(,)55OB = ,OA ==1OB =,4313cos OA OB AOB OA OB-⨯+⨯⋅∠===sin 10AOB ∠==则113sin 122102AOB S AO BO AOB ∆=∠=⨯= ……12分略19.解:(Ⅰ)由已知得ααcos 3sin 22=,则02cos 3cos22=-+αα…………… 3分 所以21cos =α或2cos -=α(舍)…………………………………5分 又因为πα<<0所以 3πα=……………………………………………………………7分 (Ⅱ)由(Ⅰ)得)3cos(cos 4)(π-=x x x f)sin 23cos 21(cos 4x x x +=……………………9分 x x x cos sin 32cos 22+=x x 2sin 32cos 1++=)62sin(21π++=x ………………………………11分 由40π≤≤x 得32626πππ≤+≤x ……………………………………12分 所以 当0=x 时,)(x f 取得最小值2)0(=f 当6π=x 时,)(x f 取得最大值3)6(=πf ……………………14分 所以函数)(x f 在]4,0[π上的值域为]3,2[……………………………15分。

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案

任意角的三角函数练习题一.选择题1.已知角α的终边过点P (-1,2),cos α的值为 ( )A .-55 B .- 5 C .552 D .252.α是第四象限角,则下列数值中一定是正值的是( )A .sin αB .cos αC .tan αD .cot α3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( )A .25B .-25C .0D .与a 的取值有关4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( )A .410 B .46 C .42D .-410 5.函数x x y cos sin -+=的定义域是 ( ) A .))12(,2(ππ+k k ,Z k ∈ B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈6.若θ是第三象限角,且02cos <θ,则2θ是 ()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知sin α=54,且α是第二象限角,那么tan α的值为 ( )A .34- B .43- C .43 D .34 8.已知点P (ααcos ,tan )在第三象限,则角α在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 二.填空题1.已知sin αtan α≥0,则α的取值集合为 .2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______.3.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = .4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 . 三.解答题 1.求43π角的正弦.余弦和正切值.2.若角α的终边落在直线y x 815=上,求ααtan sec log 2-.3.(1)已知角α的终边经过点P(4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sinα+cosα的值.参考答案一. 选择题ABAA BBAB 二.填空题 1.⎭⎬⎫⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα; 2.12=m 时,1317cos sin =+αα;12-=m 时,137cos sin -=+αα. 3.21sin ±=θ;33tan =θ. 4.4745πθπ<<.三.解答题1.2243sin=π;2243cos -=π;143tan -=π. 2.(1)取)15,8(1P ,则17=r ,2815817log tan sec log 22-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815817log tan sec log 22=--=-αα. 3.(1)∵3,4-==y x ,∴5=r ,于是:5254532cos sin 2-=+-⋅=+αα.(2)∵a y a x 3,4-==,∴a r 5=,于是:当0>a 时,5254532cos sin 2-=+-⋅=+αα 当0<a 时,5254532cos sin 2=-+⋅=+αα (3)若角α终边过点()3,4P ,则254532cos sin 2=+⋅=+αα;若角α终边过点()3,4-P ,则5254532cos sin 2=-+⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2-=+-⋅=+αα.。

人教A版数学高二任意角的三角函数精选试卷练习(含答案)3

人教A版数学高二任意角的三角函数精选试卷练习(含答案)3

C. cos sin tan
D. cos tan sin
2
2.若点 P 在角 的终边上,且|OP|=2,则点 P 的坐标是( )
3
A. (1, 3)
B. ( 3, 1)
C. (1, 3)
D. (1, 3)
sin cos 3. 若α是第三象限角,则 sin - cos =( )
2
标 x, y
46.设 sin 0 且 tan 0 ,确定角 是第几象限角.
47.(1)已知角α的终边经过点 P(4,-3),求 2sinα+cosα的值; (2)已知角α的终边经过点 P(4a,-3a)(a≠0),求 2sinα+cosα的值; (3)已知角α终边上一点 P 与 x 轴的距离与 y 轴的距离之比为 3∶4,求 2sinα+cosα的值.
A. 2cos 2, 2sin 2
B. 2cos, 2sin
C. cos 2,sin 2 D. 4cos, 4sin
20.下列形式中,正确的是()
A. 2k 45, k Z
B.
2k

2


2k


,
k

Z




为第二象限的角
C. cos1 tan1 sin1
D. cos1 sin1 tan1
9.点 Acos 2019,sin 2019 在平面直角坐标系中位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10.已知角α的终边与单位圆的交点 P
,则 tanα=( )
A.
B.±
C.
Hale Waihona Puke D.±11.若角α的终边落在 y=-x 上,则 tanα的值为( )

1.2.1任意角的三角函数题型全归纳

1.2.1任意角的三角函数题型全归纳

1.2.1任意角的三角函数题型全归纳题型一、三角函数的定义及应用【例1】 (1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________, tan α=________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.(3)已知角α的终边过点(,2)m m ,0m ≠,求角α的的正弦值、余弦值.【类题通法】利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b 2,余弦值cos α=a a 2+b2,正切值tan α=ba . (2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论. 变式1:已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.变式2:已知点1)2P -在角θ的终边上,且[0,2)θπ∈,则θ的值为 ( ) A .56π B.23π C.116π D .53π题型二、三角函数值符号的运用【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)点P (tanα,cosα)在第三象限,则角α的终边在第 象限. (3)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3. 【类题通法】三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立. 变式3:若sin 2α>0,且cos α<0,试确定α终边所在的象限.变式4:在△ABC 中,若sin A ·cos B ·tan C <0,则△ABC 的形状是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .不能确定变式5:函数sin cos tan |sin ||cos ||tan |x x xy x x x =++的值域题型三、诱导公式一的应用【例3】 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.【类题通法】诱导公式一的应用策略应用诱导公式一时,先将角转化到0~2π范围内的角,再求值.对于特殊角的三角函数值一定要熟记. 变式6:求下列各式的值: (1)sin25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°. (3)sin ⎝⎛⎭⎫-196π=________. 变式7:化简下列各式: (1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.题型四 角的对称问题例4.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32 C .-12 D.12变式8:.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.题型五、三角函数线的作法【例5】 作出3π4的正弦线、余弦线和正切线.【类题通法】三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT .变式9:作出-9π4的正弦线、余弦线和正切线.题型六、利用三角函数线比较大小【例6】 分别比较sin 2π3与sin 4π5;cos 2π3与cos 4π5;tan 2π3与tan 4π5的大小.【类题通法】利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.变式10:设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?题型七、利用三角函数线解不等式【例7】 利用三角函数线,求满足下列条件的α的范围. (1)sin α<-12;(2)cos α>32.【类题通法】利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点,一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图像可得. 变式11:利用三角函数线求满足tan α≥33的角α的范围.变式12:求函数f (x )=lg(3-4sin 2x )+1+2cos x 的定义域.题型八 利用三角函数线进行证明例8.用单位圆证明角α的正弦绝对值与余弦绝对值之和不小于1,即已知0≤α<2π, 求证:|sin α|+|cos α|≥1.变式13:求证:当α∈⎝⎛⎭⎫0,π2时,sin α<α<tan α.1.2.1任意角的三角函数题型全归纳参考答案【例1】 (1)[答案] -1213 513 -125(2)[解] 直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r = -1 2+ 3 2=2,所以sin α=32,cos α=-12,tan α=-3; 在第四象限取直线上的点(1,-3),则r =12+ -3 2=2,所以sin α=-32,cos α=12,tan α=- 3.(3)当0m <时,,sin r αα===当0m >时,,sin r αα===变式1:1713. 变式2:【答案】C 【例2】(1)[答案] C (2) 【答案】二(3)①sin 105°·cos 230°<0. ②cos 3·tan ⎝⎛⎭⎫-2π3<0. 变式3:解:因为sin 2α>0,所以2k π<2α<2k π+π(k ∈Z ),所以k π<α<k π+π2(k ∈Z ).当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角.所以α为第一或第三象限角. 又因为cos α<0,所以α为第三象限角.变式4:【答案】 B 变式5:{3,-1} 【例3】(1)=1+64. (2) 12.变式6:(1)32+1; (2) 1;(3)12变式7:(1)-a +b ;(2)(p -q )2;(3)a 2+b 2.例4.【答案】 D 【解析】因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.变式8:【答案】(-1,3)【例5】 [解] 角3π4的终边(如图)与单位圆的交点为P .作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT ,与3π4的终边的反向延长线交于点T ,则3π4的正弦线为MP ,余弦线为OM ,正切线为AT .变式9:解:如图所示,-9π4的正弦线为MP ,余弦线为OM ,正切线为AT . 【例6】 [解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边作2π3的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin 2π3=MP ,cos 2π3=OM ,tan 2π3=AT .同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan 4π5=AT ′.由图形可知,MP >M ′P ′,符号相同,则sin 2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5;AT <AT ′,符号相同,则tan 2π3<tan 4π5.变式10:解:如图所示,当π4<α<π2时,角α的正弦线为MP ,余弦线为OM ,正切线为AT ,显然在长度上,AT >MP >OM ;当π2<α<3π4时,角α的正弦线为M ′P ′,余弦线为OM ′,正切线为AT ′,显然在长度上,AT ′>M ′P ′>OM ′.【例7】(1)如图①,过点⎝⎛⎭⎫0,-12作x 轴的平行线交单位圆于P ,P ′两点,则sin ∠xOP =sin ∠xOP ′=-12,∠xOP =11π6,∠xOP ′=7π6, 故α的范围是⎩⎨⎧α⎪⎪⎭⎬⎫7π6+2k π<α<11π6+2k π,k ∈Z .(2)如图②,过点⎝⎛⎭⎫32,0作x 轴的垂线与单位圆交于P ,P ′两点,则cos ∠xOP =cos ∠xOP ′=32,∠xOP =π6,∠xOP ′=-π6,故α的范围是⎩⎨⎧α⎪⎪⎭⎬⎫-π6+2k π<α<π6+2k π,k ∈Z . 变式11:解:如图,过点A (1,0)作单位圆O 的切线,在切线上沿y 轴正方向取一点T ,使AT =33,过点O ,T 作直线,则当角α的终边落在阴影区域内(包含所作直线,不包含y 轴)时,tan α≥33.由三角函数线可知,在[0°,360°)内,tan α≥33,有30°≤α<90°或210°≤α<270°,故满足tan α≥33,有k ·180°+30°≤α<k ·180°+90°,k ∈Z .变式12:【解析】要使函数有意义,应有⎩⎪⎨⎪⎧3-4sin 2x >0,1+2cos x ≥0,由3-4sin 2x >0得,sin 2x <34,∴-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图(1)阴影部分所示),∴x ∈(k π-π3,k π+π3)(k ∈Z ).由1+2cos x ≥0得,cos x ≥-12,利用三角函数线画出x 满足条件的终边范围如图(2).∴x ∈[2k π-2π3,2k π+2π3],k ∈Z . 综上知,x ∈(2k π-π3,2k π+π3),k ∈Z .例8.证明:作平面直角坐标系xOy 和单位圆.(1)当角α的终边落在坐标轴上时,不妨设为Ox 轴,设它交单位圆于A 点,如图1,显然sin α=0,cos α=OA =1,所以|sin α|+|cos α|=1.图1图2变式13:证明:如图所示,设角α的终边与单位圆相交于点P ,单位圆与x 轴正半轴的交点为A ,过点A 作圆的切线交OP 的延长线于T ,过P 作PM ⊥OA 于M ,连接AP ,则在Rt △POM 中,sin α=MP ,在Rt △AOT 中,tan α=AT ,又根据弧度制的定义,有AP ︵=α·OP =α,易知S △P O A <S 扇形P O A <S △A O T ,即12OA ·MP <12AP ︵·OA <12OA ·AT ,即sin α<α<tan α.。

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案

任意角的三角函数练习题一.选择题1.已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-55 B .- 5 C .552 D .252.α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .cot α3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-25 C .0 D .与a 的取值有关4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.函数x x y cos sin -+=的定义域是()A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈D .[2k π,(2k+1)π],Z k ∈ 6.若θ是第三象限角,且02cos<θ,则2θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知sin α=54,且α是第二象限角,那么tan α的值为 ()A .34- B .43- C .43D .34 8.已知点P (ααcos ,tan )在第三象限,则角α在()A .第一象限B .第二象限C .第三象限D .第四象限二.填空题1.已知sin αtan α≥0,则α的取值集合为 .2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______. 3.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = . 4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .三.解答题1.求43π角的正弦.余弦和正切值.2.若角α的终边落在直线y x 815=上,求ααtan sec log 2-.3.(1)已知角α的终边经过点P(4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin α+cos α的值.参考答案一. 选择题ABAA BBAB 二.填空题1.⎭⎬⎫⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα; 2.12=m 时,1317cos sin =+αα;12-=m 时,137cos sin -=+αα. 3.21sin ±=θ;33tan =θ.4.4745πθπ<<.三.解答题1.2243sin=π;2243cos -=π;143tan -=π. 2.(1)取)15,8(1P ,则17=r ,2815817log tan sec log 22-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815817log tan sec log 22=--=-αα. 3.(1)∵3,4-==y x ,∴5=r ,于是:5254532cos sin 2-=+-⋅=+αα. (2)∵a y a x 3,4-==,∴a r 5=,于是:当0>a 时,5254532cos sin 2-=+-⋅=+αα 当0<a 时,5254532cos sin 2=-+⋅=+αα(3)若角α终边过点()3,4P ,则254532cos sin 2=+⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2=-+⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2-=+-⋅=+αα.。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。

三角函数计算练习(含详细答案)

三角函数计算练习(含详细答案)

三角函数计算练习1.已知x∈(﹣,0),cosx=,则tan2x=( )A.B.C.D.2.cos240°=( )A.B.C.D.3.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( )A.﹣B.C.±D.﹣k4.已知角α的终边经过点(﹣4,3),则cosα=5.cos480°的值为6.已知,那么cosα=7.已知sin(+α)=,则cos2α等于( )8.已知α是第二象限角,P(x,)为其终边上一点,且cosα=x,则x=9.已知sinα=,则cos2α=.10.若cos(α+)=,则cos(2α+)=.11.已知θ∈(0,π),且sin(θ﹣)=,则tan2θ= .试卷答案1.D考点:二倍角的正切.专题:计算题.分析:由cosx的值及x的范围,利用同角三角函数间的基本关系求出sinx的值,进而求出tanx的值,然后把所求的式子利用二倍角的正切函数公式变形后,将tanx的值代入即可求出值.解答:解:由cosx=,x∈(﹣,0),得到sinx=﹣,所以tanx=﹣,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx 和tanx时注意利用x的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos(180°+60°)=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈(,π),∴sinα==,∴sin(π+α)=﹣sinα=﹣.故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos(360°+120°)=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.故选C.点评:此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.7.C考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin(+α)=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的值.解答:解:∵sin(+α)=,∴cosα=,∴cos2α=2cos2α﹣1=2×=﹣,故选:C.点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基础题.8.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:根据三角函数的定义有cosα=,条件cosα=x都可以用点P的坐标来表达,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,∴x=0(∵α是第二象限角,舍去)或x=(舍去)或x=﹣.故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法.9.考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查.10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos(2α+)=2cos2(α+)﹣1=2×﹣1=.故答案为:.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin(θ﹣)=(sinθ﹣cosθ)=,∴sinθ﹣cosθ=,①∴1﹣2sinθcosθ=,2sinθcosθ=>0,依题意知,θ∈(0,),又(sinθ+cosθ)2=1+sin2θ=,∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cos2θ﹣1=﹣,∴tan2θ==﹣.故答案为:﹣.点评:本题考查两角和与差的正弦函数,考查同角三角函数间的关系式的应用,考查二倍角的正弦、余弦与正切,属于中档题.。

三角函数习题及答案

三角函数习题及答案

任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。

7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设则Y的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。

12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。

8.已知,则的值为▁▁▁▁▁▁。

9.=▁▁▁▁▁。

10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。

解答题:11.已知:,求的值。

12.已知,求证:13.已知,且,求的值。

14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60D.1【答案】B【解析】因为60°=又根据弧长计算公式L=故选B.【考点】扇形的弧长计算公式.2.下列各式中,值为的是A.B.C.D.【答案】D【解析】;;;.【考点】二倍角的正弦、余弦、正切公式.3. cos540°= ().A.0B.1C.-1D.1/2【答案】C【解析】.【考点】诱导公式.4.下列不等式中,正确的是A.B.C.D.【答案】B【解析】函数在区间为单调递增函数,在区间为单调递增函数,由,由,故A,C错误;在区间为单调递增函数,,由,即,故B 正确;,所以有,故D错误,综上,选B.【考点】(1)三角函数诱导公式的应用;(2)三角函数单调性应用.5.已知点P()在第三象限,则角在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由题知,∴角在第四象限,故选D.由点P在第三象限知且,由知角在第二象限或第四象限,由知角在第三象限或第四象限,故角在第四象限.【考点】三角函数在各象限的符号6.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.7.已知,则的值是()A.B.C.D.【答案】C.【解析】由三角函数的定义及特殊角的三角函数值易知,.【考点】任意角的三角函数的定义.8.已知sinα=,且α为第二象限角,那么tanα的值等于()A.B.C.D.【答案】【解析】根据,是第二象限角,可知,利用可知,则.【考点】余弦正负的判断; ;.9.与13030终边相同的角是()A.B.C.D.【答案】C【解析】终边与1303°相同的角是k•360°+1303°,k∈Z∴k=-4时,k•360°+1303°=-137°.故选C.【考点】终边相同的角.10.已知P(-8,6)是角终边上一点,则的值等于( )A.B.C.D.【答案】D【解析】P(-8,6)是角终边上一点,所以,;则=【考点】三角函数的定义.11.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角12.已知的值()A.不大于B.大于C.不小于D.小于【答案】D【解析】∵,∴,又∵,∴,∴.【考点】三角函数值的符号判断13.在平面直角坐标系中,已知角的终边经过点,且,则()A.1B.C.1或D.1或3【答案】A【解析】,,解得或,因为,则,即。

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案一、选择题1.已知角α的终边过点P(-1,2),cosα的值为()。

A.-2555 B.-5 C.D.552答案:B.-52.α是第四象限角,则下列数值中一定是正值的是()。

A.sinα B.cosα C.tanα D.cotα答案:B.cosα3.已知角α的终边过点P(4a,-3a)(a<0),则2sinα+cosα的值是()。

A.22 B.- C.0 D.与a的取值有关答案:A.224.α是第二象限角,P(x,5)为其终边上一点,且cosα=x/2,则sinα的值为()。

A. B. C.D.-4444答案:D.-44445.函数y=sinx cosx的定义域是()。

A.(2k,(2k1)),k Z B.[2k2,(2k1)],k Z C.[k,(k1)],k Z D.[2kπ,(2k+1)π],k Z答案:B.[2k/2,(2k1)]6.若θ是第三象限角,且cosθ=1/2,则是()。

A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案:B.第二象限角7.已知sinα=3/4,且α是第二象限角,那么tanα的值为()。

A. B. C.334 D.344答案:A.8.已知点P(tanα,cosα)在第三象限,则角α在()。

A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:D.第四象限二、填空题1.已知sinαtanα≥1/2,则α的取值集合为()。

答案:(2kπ+π/4,2kπ+3π/4),k∈Z2.角α的终边上有一点P(m,5),且cosα=m/13,则sinα+cosα=______。

答案:12/133.已知角θ的终边在直线y=3x上,则sinθ=______;tanθ=______。

答案:sinθ=3/√10,tanθ=3/√74.设θ∈(0,2π),点P(sinθ,cos2θ)在第三象限,则角θ的范围是()。

答案:(5π/6,2π)三、解答题1.求角的正弦、余弦和正切值。

(完整版)任意角的三角函数练习题及标准答案详解

(完整版)任意角的三角函数练习题及标准答案详解

随意角的三角函数一、选择题1.以下四个命题中,正确的选项是( )A.在定义域内,只有终边同样的角的三角函数值才相等B.{|= k +, k∈ Z }≠{|= - k +, k∈ Z }6 6C.若是第二象限的角,则 sin2 < 0 D .第四象限的角可表示为{| 2k +3<< 2k , k∈ Z }22.若角的终边过点 (- 3,- 2),则 ( )A . sin tan > 0B . cos tan > 0 C.sin cos > 0 D . sin cot > 0 3.角的终边上有一点P(a, a), a∈R ,且 a≠ 0,则 sin 的值是 ( )A .2 2 2D . 1 2B . - C.±2 224.α是第二象限角,其终边上一点P( x,5),且 cos α=4x,则 sin α的值为()10 6 2 10A.4 B.4 C.4 D.- 4 5. 使 lg ( cos θ·tan θ)存心义的角θ是()A.第一象限角B.第二象限角C .第一或第二象限角D.第一、二象限角或终边在y 轴上6. 设角α是第二象限角,且|cos 2 |=-cos 2 ,则角 2 是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知会合E={θ|cos θ< sin θ,0≤θ≤2π},F={θ|tan θ< sin θ},那么 E∩F 是区间 ( )1 / 6二、填空题1.已知角的终边落在直线y= 3x 上,则 sin = ________.2.已知 P(- 3 ,y)为角的终边上一点,且sin =13,那么y的值等于________.133.已知锐角终边上一点P(1, 3 ),则的弧度数为________.4.( 1) sin 9tan7_________4 35.三、解答题1.已知角的终边过P(- 3 , 4),求的三角函数值2.已知角的终边经过点P(x,- 3 )(x>0).且cos=x,求sin、cos、tan的值.23.(1)已知角α 终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;4.一个扇形的周长为 l ,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 . 化简或求值:三角函数的引诱公式一、选择题(本大题共12 个小题,每题 5 分,共 60 分 . 在每题给出的四个选择中,只 有一项为哪一项切合题目要求的 .) 1 、与- 463°终边同样的角可表示为( )A .k ·360°+ 436°( k ∈ Z )B .k ·360°+ 103°( k ∈ Z )C .k ·360°+ 257°( k ∈ Z )D .k ·360°- 257°( k ∈ Z ) 2、以下四个命题中可能建立的一个是( )A 、 sin1且 cos1 B 、 sin0且cos122C 、 tan1且 cos1 D 、 是第二象限时, tansiacos43、若 sin,且是第二象限角,则 tan 的值为()54 33 4C 、A 、B 、4D 、3434、若 sin cos2 ,则 tancot 等于( )A 、 1B 、 2C 、 -1D 、-21、 tan 300 sin 450 的值为( )A 、 13 B 、 13 C 、 1 3D 、1 35、若 A 、B 、 C 为△ ABC 的三个内角,则以下等式建立的是( )A 、 sin(BC ) sin AB 、 cos(BC ) cos AC 、 tan(B C ) tan AD 、 cot( BC ) cot A6、 12 sin( 2) cos(2) 等于()A . sin2- cos2B .cos2- sin2C . ±( sin2-cos2)D . sin2+cos27 、 sin α cos =α 1 , 且< α < , 则 cos α - sin α 的 值 为842( )3 3 3 3 A .B .C .D .22442 8、在△ ABC 中,若最大角的正弦值是2,则△ ABC 必是( )A 、等边三角形B 、直角三角形C 、钝角三角形D 、锐角三角形4 / 69、以下不等式中,不建立的是()A 、 sin 130 sin 140B 、 cos130 cos140C 、 tan130 tan140D 、cot 130 cot 14010、已知函数 f ( x)cos x,则以下等式建立的是()2A 、 f (2 x) f ( x)B 、C 、 f (x)f ( x)D 、 f ( 2 x) f ( x)f ( x)f ( x)11sin 、 cos 是对于 x 的方程 4x 22mx m 0的两个实根,则 m 值为( )、若A 、 m4,0B 、 m 15C 、 m 15D 、 m 15312、 已 知 f (x) a sin( x )b cos( x) 4 ( a, b, ,为非零实数),f (2011) 5则 f (2012) ( )A .1B . 3C . 5D .不可以确立二、填空题(本大题共4 个小题 ,每题5 分,共 20 分 .将答案填在题中横线上)13、化简 sin 2sin 2 sin 2 sin 2cos 2 cos 2 .14、若 sin3 cos0 ,则 cos2 sin 的值为.3sin2 cos15、 cos( 945 ).16、 tan 1tan 2 tan 3tan 89.三、解答题(本大题共6 道小题,共 70 分 .解答应写出文字说明 ,证明过程或演算步骤)17、求值 sin 2 120cos180 tan45 cos 2( 330 ) sin( 210 )sin 2 () cos( ).18、 化简:) cos 3 (tan(2 ) tan()19、已知sin( ) 1) cos 的值.,求 sin( 2) tan(220、已知sin 4和 tan 的值 .. 求cos51 sin 1 sin21、( 10 分)已知α是第三角限的角,化简sin 1 sin122、已知sin() 1,求证tan(2) tan0。

弧度制及任意角的三角函数(习题)解析版

弧度制及任意角的三角函数(习题)解析版

专题15 弧度制及任意角的三角函数1.若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0【答案】D 【分析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D. 【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.2.已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1 【分析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径. 【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1 【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.3.在平面直角坐标系中,角α的顶点在原点,始边在x 轴的正半轴上,角α的终边经过点M ⎝ ⎛⎭⎪⎫-cos π8,sin π8,且0<α<2π,则α=( )A.π8B.3π8C.5π8D.7π8【答案】D【解析】(1)因为角α的终边经过点M ⎝ ⎛⎭⎪⎫-cos π8,sin π8,且0<α<2π,所以根据三角函数的定义,可知cos α=-cos π8=cos ⎝ ⎛⎭⎪⎫π-π8=cos 7π8,则α=7π8.故选D.4.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32C.12D.32【答案】C【解析】由题意得点P (-8m ,-3),r =64m 2+9, 所以cos α=-8m 64m 2+9=-45, 所以m >0,解得m =12. 5.若tan 0α>,则A. sin 20α> B . cos 0α> C . sin 0α> D . cos20α> 【答案】A【解析】由tan 0α>知,α在第一、第三象限,即2k k ππαπ<<+(k Z ∈),∴222k k παππ<<+,即2α在第一、第二象限,故只有sin 20α>,故选A .6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B)35- (C) 35 (D) 45【答案】B【解析】在直线2y x =取一点P (1,2),则r 5sin θ=y r 25 ∴cos2θ=212sin θ-=35-,故选B .7.(2018•新课标Ⅰ,文11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||(a b -= ) A .15B 5C 25D .1【答案】B【解析】角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,22cos22cos 13αα∴=-=,解得25cos 6α=,30|cos |α∴=306|sin |136α∴-,6|sin |56|tan |||||21|cos |30b a a b ααα-==-===-,故选B . 8.若两个圆心角相同的扇形的面积之比为1∶4,则这两个扇形的周长之比为________. 【答案】1∶2【解析】设两个扇形的圆心角的弧度数为α,半径分别为r ,R (其中r <R ),则12αr 212αR 2=14,所以r ∶R =1∶2,两个扇形的周长之比为2r +αr2R +αR =1∶2.9.(2022浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin()απ+的值;(2)若角β满足5sin()13αβ+=,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 10.下列各式:①sin(-100°);①cos(-220°);①tan(-10);①cos π. 其中符号为负的有( )A .1个B .2个C .3个D .4个【解析】-100°在第三象限,故sin(-100°)<0;-220°在第二象限,故cos(-220°)<0; -10①⎝ ⎛⎭⎪⎫-72π,-3π,在第二象限,故tan(-10)<0,cos π=-1<0.11.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6. 【解析】(1)因为103°、220°分别是第二、第三象限的角, 所以sin 103°>0,cos 220°<0,所以sin 103°·cos 220°<0; (2)因为3622π<<π,所以6是第四象限的角,所以cos 6>0,tan 6<0,所以cos 6°·tan 6<0. 12.已知sin 0θ>且cos 0θ<,则角θ的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】依据题设及三角函数的定义,可知角θ终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,故选B .13.已知sin 0,tan 0αα<>,则角α可以为第( )象限角 A .1B .2C .3D .4【解析】sin 0α<,则α的终边在x 边下方,tan 0α>,α是第一象限或第三象限角, 综上,α是第三象限角.故选:C .14.若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角【解析】 由sin αtan α<0可知sin α,tan α异号,从而α是第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,从而α是第三或第四象限角. 综上可知,α是第三象限角.15.已知点P (tan α,cos α)在第四象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】因为点P 在第四象限,所以有⎩⎨⎧tan α>0,cos α<0,由此可判断角α的终边在第三象限.16.角α的终边属于第一象限,那么3α的终边不可能属于的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【解析】因为角α的终边在第一象限, 所以222k k ππαπ<<+,k Z ∈,所以223363k k παππ<<+,k Z ∈, 当3()k n n Z =∈时,此时角α的终边落在第一象限, 当31()k n n Z =+∈时,此时角α的终边落在第二象限, 当32()k n n Z =+∈时,此时角α的终边落在第三象限, 综上所述,角α的终边不可能落在第四象限, 故选:D .17.时间经过4小时,分针转的弧度数为( ) A .π-B .2πC .4π-D .8π-【解析】时间经过4小时,分针是按顺时针方向转了4圈, 所以分针转过的弧度数为248ππ-⨯=-. 故选:D .18.已知α为第二象限角,则32πα-为( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】α是第二象限角,∴222k k ππαππ+<<+,k Z ∈,32222k k ππππαπ∴-+<-<-+,k Z ∈. ∴32πα-为第三象限角. 故选:C .19.“α是锐角”是“α是第一象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件【解析】因为α是锐角,故090α︒<<︒,则α一定是第一象限角, 若α是第一象限角,不妨取330-︒,则α不是锐角,所以“α是锐角”是“α是第一象限角”的充分不必要条件. 故选:A .20.若α,β满足22ππαβ-<<<,则αβ-的取值范围是( )A .παβπ-<-<B .0παβ-<-<C .22ππαβ-<-<D .02παβ-<-<【解析】从题中22ππαβ-<<<可分离出三个不等式:22ππα-<<①,22ππβ-<<②,αβ<③.根据不等式的性质, ②式同乘以1-得22ππβ-<-<④,根据同向不等式的可加性,可得παβπ-<-<.由③式得0αβ-<, 所以0παβ-<-<. 故选:B .21.已知α是第三象限角,则2α是( ) A .第一象限角 B .第二象限角C .第一或第四象限角D .第二或第四象限角【解析】解:α是第三象限角,即322,2k k k Z ππαππ+<<+∈.当k 为偶数时,2α为第二象限角; 当k 为奇数时,2α为第四象限角. 故选:D .22.若角θ为第四象限角,则2πθ+是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】θ是第四象限的角,由2πθ+是将θ的终边逆时针旋转2π,得到角2πθ+,∴2πθ+是第一象限的角故选:A .23.我们学过用角度制与弧度制度量角,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为3π,则角θ的余弦值为( ) A .3B .12-C .12D 3 【解析】设角θ所在的扇形的半径为r ,则由题意,可得22123r r θπ=,解得23πθ=, 可得21cos cos 32πθ==-. 故选:B . 24.29π化成角度是( ) A .20︒ B .40︒C .50︒D .80︒【解析】π180rad =︒,即1 180rad π︒=,∴221804099rad πππ︒=⨯=︒. 故选:B .25.圆的半径为r ,该圆上长为32r 的弧所对的圆心角是( )A .23radB .32radC .23πD .32π【解析】圆的半径为r ,弧长为32r ,∴圆心角是3322rrad r =. 故选:B .26.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或4【解析】设扇形的半径为r ,弧长为l , 则212l r +=,182S lr ==,∴解得2r =,8l =或4r =,4l =1l rα==或4.故选:C .27.点P 为圆224x y +=与x 轴正半轴的交点,将点P 沿圆周顺时针旋转至点P ',当转过的弧长为23π时,点P '的坐标为( ) A .(13) B .(1,3)- C .(1,3)--D .1(2,3 【解析】由题意,||2OP '=,转过的弧长为23π,则旋转角为3π-,∴点P '的横坐标2cos()13x π=-=,纵坐标为2sin()33y π=-=∴点P '的坐标为(1,3)-.故选:B .28.一个扇形的弧长为6,半径为4,则该扇形的圆心角的弧度数为( ) A .1B .32C .2D .23【解析】根据扇形的弧长为6,半径为4,计算该扇形的圆心角弧度数为6342l rα===. 故选:B .29.(2020·河北唐山第二次模拟)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( ) A .12 B .-12 C .32D .-32解析:选A .由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A .30.(2018·高考北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A .AB ︵ B .CD ︵C .EF ︵D .GH ︵解析:选C .设点P 的坐标为(x ,y ),利用三角函数的定义可得yx <x <y ,所以x <0,y >0,所以P 所在的圆弧是EF ︵,故选C .31.(创新型)已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右运动,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r , 则AQ ︵=AP =tm ,根据切线的性质知OA ①AP , 所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,所以S 1=S 2恒成立. 答案:S 1=S 232.(创新型)(2020·四川乐山、峨眉山二模)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田由圆弧和其所对弦所围成,公式中“弦”指圆弧对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为2π3,半径长为4的弧田(如图所示),按照上述公式计算出弧田的面积为________.解析:由题意可得①AOB =2π3,OA =4.在Rt △AOD 中,易得①AOD =π3,∠DAO =π6,OD =12OA =12×4=2,可得矢=4-2=2.由AD =AO sin π3=4×32=23,可得弦AB =2AD =4 3.所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2. 答案:43+233.若角θ的终边过点P (-4a ,3a )(a ≠0). (1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a ,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |, 当a >0时,r =5a ,sin θ+cos θ=-15. 当a <0时,r =-5a ,sin θ+cos θ=15. (2)当a >0时,sin θ=35①⎝ ⎛⎭⎪⎫0,π2,cos θ=-45①⎝ ⎛⎭⎪⎫-π2,0,则cos(sin θ)·sin(cos θ) =cos 35·sin ⎝ ⎛⎭⎪⎫-45<0;当a <0时,sin θ=-35①⎝ ⎛⎭⎪⎫-π2,0,cos θ=45①⎝ ⎛⎭⎪⎫0,π2,则cos(sin θ)·sin(cos θ) =cos ⎝ ⎛⎭⎪⎫-35·sin 45>0.综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin (cos θ)的符号为正.34.(创新型)在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中,用电焊切割成扇形,现有如图所示两种方案,既要充分利用废料,又要切割时间最短,问哪一种方案最优?解:因为①AOB 是顶角为120°、腰长为2的等腰三角形, 所以A =B =30°=π6,AM =BN =1,AD =2,所以方案一中扇形的弧长=2×π6=π3;方案二中扇形的弧长=1×2π3=2π3; 方案一中扇形的面积=12×2×2×π6=π3,方案二中扇形的面积=12×1×1×2π3=π3.由此可见:两种方案中利用废料面积相等,方案一中切割时间短.因此方案一最优. 35.(2021·河北衡水中学高三三模)已知4cos sin 3θθ-=,则θ的终边在( ) A .第一象限 B .第二象限 C .三象限 D .第四象限【答案】D 【分析】两边平方得7sin 209θ=-<,进而得324k k ππθππ+<<+或34k k ππθππ+<<+,k Z ∈,,再分k 为偶数和k 为奇数两种情况讨论求解即可. 【详解】解:由4cos 3sin θθ-=,平方得:2216sin cos 2sin cos 9θθθθ+-=,则161sin 29θ-=,即7sin 209θ=-<,则32222k k ππθππ+<<+或322222k k ππθππ+<<+,k Z ∈,即有324k k ππθππ+<<+或34k k ππθππ+<<+,k Z ∈, 当k 为偶数时,θ位于第二象限,sin 0θ>,cos 0θ<,cos sin 0θθ-<,不成立, 当k 为奇数时,θ位于第四象限,sin 0θ<,cos 0θ>,成立. ①角θ的终边在第四象限. 故选:D. 【点睛】本题考查正弦的二倍角公式,根据三角函数的符号求角的范围,考查运算求解能力,分类讨论思想,是中档题.本题解题的关键在于根据题意得7sin 209θ=-<,进而根据函数符号得θ的范围,再分类讨论求解.36.(2021·珠海市第二中学高三其他模拟)已知A 为锐角ABC 的内角,满足sin 2cos tan 1A A A -+=,则A ∈( )A .(0,)6πB .(6π,)4πC .(4π,)3πD .(3π,)2π【答案】C 【分析】设()sin 2cos tan 1f x x x x =-+-,则()0f A =,根据零点存在性定理判断零点所在区间; 【详解】解:A 为锐角ABC 的内角,满足sin 2cos tan 1A A A -+=,设()sin 2cos tan 1f x x x x =-+-,即()sin 2cos tan 10f A A A A =-+-=,0,2x π⎛⎫∈ ⎪⎝⎭,则函数在0,2π⎛⎫ ⎪⎝⎭上为连续函数,又sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,tan y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,cos y x =在0,2π⎛⎫ ⎪⎝⎭上单调递减,所以()sin 2cos tan 1f x x x x =-+-在0,2π⎛⎫⎪⎝⎭上单调递增; 在(0,)2π中取4x π=,得2()sin 2cos tan 144442f ππππ=-+-=-,在(0,)4π中取6π,得1()sin 2cos tan 166662f ππππ=-+-=-,(0)sin 02cos0tan 013f =-+-=-,334()sin 2cos tan 103333f ππππ-=-+-=>,()()043f f ππ<,(,)43A ππ∴∈. 故选:C .37.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,①AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【分析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B38.(2021·合肥市第六中学高三其他模拟(理))如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点,24P π⎛⎫⎪⎝⎭,其对应的方程为122sin 2x y x ωπ⎛⎫⎡⎤=- ⎪⎢⎥⎣⎦⎝⎭(0x ≥,其中[]x 为不超过x 的最大整数,05ω<<).若该葫芦曲线上一点M 到y 轴的距离为53π,则点M 到x 轴的距离为( )A .14B 3C .12D .32【答案】B 【分析】根据,24P π⎛⎫ ⎪⎝⎭的坐标,求得2ω=,若该葫芦曲线上一点M 到y 轴的距离为53π,即53x π=,代入即可求得结果. 【详解】由曲线过,24P π⎛⎫ ⎪⎝⎭知,21422sin 24ππωπ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=-⨯ ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥ ⎪⎣⎦⎝⎭, 即sin 14πω⎛⎫⨯= ⎪⎝⎭,又05ω<<,求得2ω=,若该葫芦曲线上一点M 到y 轴的距离为53π,即53x π= 代入得到5215332sin 2234y πππ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=-⨯= ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎪⎣⎦⎝⎭故选:B39.(2021·辽宁高三三模)(多选题)如图,圆心在坐标原点O 、半径为1的半圆上有一动点P ,A 、B 是半圆与x 轴的两个交点,过P 作直线l 垂直于直线AB ,M为垂足.设AOP α∠=,则下列结论正确的有( )A .若0,2πα⎛⎫∈ ⎪⎝⎭,则sin cos 1αα+>B .若0,2πα⎡⎫∈⎪⎢⎣⎭,则sin αα>C .若()0,απ∈,则2BM AM PM +≥D .若[]0,απ∈,则PA PB +的最大值为2 【答案】AC 【分析】利用三角形三边关系可判断A 选项的正误;取0α=可判断B 选项的正误;利用基本不等式可判断C 选项正误;利用辅助角公式结合正弦型函数的有界性可判断D 选项的正误. 【详解】对于A 选项,sin PM α=,cos OM α=,由三角形三边关系可得OM PM OP +>, 即sin cos 1αα+>,A 选项正确;对于B 选项,当0α=时,sin αα=,B 选项错误; 对于C 选项,2PBA α∠=,cos2cos22PB AB αα==,2cos2cos 22BM PB αα==,则222sin2AM BM α=-=,sin2sincos222PM PB ααα==,由基本不等式可得222cos2sin 4sincos22222BM AM PM αααα+=+≥=,当且仅当sincos22αα=时,因为0απ<<,即当2πα=时,等号成立,C 选项正确;对于D 选项,2sin2PA α=,2cos2PB α=,所以,2sin2cos222224PA PB αααπ⎛⎫+=+=+ ⎪⎝⎭, 0απ<<,可得34244παππ<+<,所以当242αππ+=时,即当2πα=时,PA PB +取最大值为2D 选项错误. 故选:AC. 【点睛】方法点睛:三角函数最值的不同求法: ①利用sin x 和cos x 的最值直接求;①把形如sin cos y a x b x =+的三角函数化为()sin y A ωx φ=+的形式求最值; ①利用sin cos x x ±和sin cos x x 的关系转换成二次函数求最值.40.(2021·宁夏银川一中高三其他模拟(文))若33sin 22πθ⎛⎫+=- ⎪⎝⎭,[0,2)θπ∈,则θ=___________. 【答案】116π【分析】根据三角函数的诱导公式,求得3cos θ=,结合[0,2)θπ∈,进而求得θ的值. 【详解】由三角函数的诱导公式,可得33sin cos 22πθθ⎛⎫+=-=- ⎪⎝⎭,即3cos 2θ=,又因为[0,2)θπ∈,所以116πθ=. 故答案为:116π. 41.(2021·浙江高三其他模拟)已知E 为平面内一定点且1OE =,平面内的动点P 满足:存在实数1λ≥,使()112OP OE λλ+-=,若点P 的轨迹为平面图形S ,则S 的面积为___________. 【答案】36π+【分析】 以O 为圆心,以12为半径作圆,过E 作圆O 的切线EA ,EB 分别与圆O 切于点A ,B ,连结OA ,OB ,延长EO 与圆O 交于点F ,设点Q ,满足()1OQ OP OE λλ=+-,由1λ≥,则点Q 在EP 的延长线上,若要存在1λ≥使得12OQ =,所以EP 的延长线与圆O 有交点,从而得出点点P 的轨迹图形,从而可求解. 【详解】 以O 为圆心,以12为半径作圆, 过E 作圆O 的切线EA ,EB 分别与圆O 切于点A ,B , 连结OA ,OB ,延长EO 与圆O 交于点F ,存在点P 以及实数1λ≥,设点Q ,满足()1OQ OP OE λλ=+-,OQ OE OP OE λλ-=-,即EQ EP λ=由1λ≥,可知点Q 在EP 的延长线上, 若要存在1λ≥使得12OQ =,相当于EP 的延长线与圆O 有交点, 故P 只能在图中阴影部分,所以点P 的轨迹面积AOEBOEAOF BOF S S SS S =+++扇形扇形,因为EA 与圆O 相切于点A ,所以OA AE ⊥, 由勾股定理可知,3AE =所以3AOE S =△3BOE S =△ 因为12AO OE =,所以120AOF ∠=︒, 所以13412AOF BOF S S ππ==⨯=扇形扇形,综上所述,S 的面积为36π+. 故答案为:364π+.【点睛】关键点睛:本题考查轨迹问题,圆的几何性质和平面向量的共线的结论的应用,解答本题的关键是设点Q ,满足()1OQ OP OE λλ=+-,由1λ≥,可知点Q 在EP 的延长线上,由条件得出相当于EP 的延长线与圆O 有交点,从而得出点点P 的轨迹图形,属于中档题.。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解任意角的三角函数一、选择题1.以下四个命题中,正确的是()A.在定义域内,只有终边相同的角的三角函数值才相等B.{α|α=kπ,k∈Z}≠{β|β=-kπ,k∈Z}C.若α是第二象限的角,则sin2α<0D.第四象限的角可表示为{α|2kπ+π<α<2kπ,k∈Z}2.若角α的终边过点(-3,-2),则()A.sinαtanα>0B.cosαtanα>0C.sinαcosα>0D.sinαcotα>03.角α的终边上有一点P(a,a),a∈R,且a≠0,则sinα的值是()A.√2/2B.-√2/2C.±√2/2D.1/24.α是第二象限角,其终边上一点P(x,5),且cosα=4x,则sinα的值为()sinα=√(1-cos^2α)=√(1-(16x^2/25))=√((9-16x^2)/25)5.使XXX(cosθ·tanθ)有意义的角θ是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一、二象限角或终边在y轴上6.设角α是第二象限角,且|cos2α|=-cos2α,则角2α是()cos2α<0,所以2α是第二或第三象限角,又|cos2α|=-cos2α,所以cos2α=0,即2α=π/2+kπ,k∈Z,所以2α是第二象限角。

7.点P是角α终边上的一点,且tanα=5/12,则b的值是()tanα=y/x=5/12,所以y=5x/12,又a^2+b^2=x^2+y^2,代入得a^2+b^2=x^2+(25/144)x^2,所以b=√(119/144)x。

8.在△ABC中,若最大的一个角的正弦值是1/2,则△ABC是()最大角的正弦值为1/2,所以最大角为π/6,所以△ABC 是等边三角形。

9.若α是第四象限角,则sin(α+π)是()sin(α+π)=sinαcosπ+cosαsinπ=-sinα10.已知sinα=4/5,且α为第二象限角,那么tanα的值等于()cosα=√(1-sin^2α)=3/5,所以tanα=sinα/cosα=4/3.二、填空题12.已知角α的终边落在直线y=3x上,则sinα=3/√10.因为直线y=3x的斜率为3,所以α的终边与x轴夹角为arctan3,所以sinα=sin(arctan3)=3/√10.13.已知P(-3,y)为角α的终边上一点,且sinα=13/√218,那么y的值等于-9/√218.因为sinα=y/√(x^2+y^2)=13/√218,且终边过点(-3,y),所以x=-3,代入得y=-9/√218.14.已知锐角α终边上一点P(1,3),则α的弧度数为arctan(3/1)。

(完整版)三角函数公式练习(答案)

(完整版)三角函数公式练习(答案)

三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.化为弧度是( )A.B.C.D.【答案】B【解析】本题角度化为弧度,变换规则是度数乘以,,故选B.【考点】弧度与角度的互化.2.若是第三象限角,则是第象限角.【答案】一【解析】是第三象限角,则.所以,故在第一象限.【考点】角的象限.3.化简sin600°的值是( ).A.0.5B.-C.D.-0.5【答案】B【解析】.【考点】诱导公式.4.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.5.若角的终边经过点,则的值为.【答案】【解析】由三角函数定义知,==.考点:三角函数定义6.函数的定义域为A.B.为第Ⅰ、Ⅱ象限的角C.D.【答案】C【解析】由题知,解得,故选C【考点】三角函数在各象限的符号7.已知角的终边经过点,则=___________.【答案】【解析】由题知,所以==.【考点】三角函数定义8.某扇形的半径为1cm,它的弧长为2cm,那么该扇形的圆心角为()A.2°B.4rad C.4°D.2rad【答案】D【解析】因为扇形的弧长公式为l=r|α|,由已知,l=2,r=1,所以=2弧度故选D.【考点】扇形的弧长公式.9.与13030终边相同的角是()A.B.C.D.【答案】C【解析】终边与1303°相同的角是k•360°+1303°,k∈Z∴k=-4时,k•360°+1303°=-137°.故选C.【考点】终边相同的角.10.已知P(-8,6)是角终边上一点,则的值等于( ) A.B.C.D.【答案】D【解析】P(-8,6)是角终边上一点,所以,;则=【考点】三角函数的定义.11. 60°="_________" .(化成弧度)【答案】【解析】根据角的弧度数的定义,弧度.【考点】角度制与弧度制的转化.12.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.13.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.14. sin2100 = ( )A.B.-C.D.-【答案】D【解析】sin210°=sin(180°+30°)=-sin30°=-.【考点】运用诱导公式化简求值.15.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.16.化为弧度角等于;【答案】【解析】,.【考点】角度制与弧度制的互化17.已知角α的终边经过点(3a,-4a)(a<0),则sin α+cos α等于( )A.B.C.D.-【答案】A【解析】,,.故选A.【考点】三角函数的定义18.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.19.已知角的终边上有一点,则的值是()A.B.C.D.【答案】D【解析】由三角函数的定义可知,故选D.【考点】三角函数的定义.20.点A(x,y)是300°角终边上异于原点的一点,则值为 ( )A.B.-C.D.-【答案】B【解析】由题意知,故正确答案为B.【考点】三角函数的定义21.已知,,则=________.【答案】-【解析】法一:因为,,则可取角的终边上一点P,,则;法二:,因为,所以=-【考点】任意角三角函数定义,同角三角函数基本关系式22. sin(-)= .【答案】【解析】.【考点】本题主要考查了利用三角函数的诱导公式求三角函数值得方法,属基础题.23.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不伦用角度制还是用弧度制度量一个角,它们与扇形所在圆的半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限角.其中正确命题的个数是()A.B.C.D.【答案】A【解析】由终边相同的角的定义易知①是错误的;②的描述中没有考虑直角,直角属于的正半轴上的角,故②是错误的;④中与的终边不一定相同,比如;⑤中没有考虑轴的负半轴上的角.只有③是正确的.【考点】角的推广与象限角.24. .【答案】-【解析】由三角函数的诱导公式,=-。

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的三角函数
一、选择题
1.以下四个命题中,正确的是( )
A .在定义域内,只有终边相同的角的三角函数值才相等
B .{α|α=k π+6
π,k ∈Z }≠{β|β=-k π+6
π
,k ∈Z }
C .若α是第二象限的角,则sin2α<0
D .第四象限的角可表示为{α|2k π+2
3π<α<2k π,k ∈Z }
2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0
D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .
2
2 B .-
2
2 C .±
2
2 D .1
4.α是第二象限角,其终边上一点P (x ,5),且cos α=42
x ,则sin α的值为
( )
A .410
B .46
C .42
D .-410
5.使lg (cos θ·tan θ)有意义的角θ是( )
A .第一象限角
B .第二象限角
C .第一或第二象限角
D .第一、二象限角或终边在y 轴上
6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α
是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
7.点P
是角α终边上的一点,且
,则b 的值是( )
A 3
B -3
C ±3
D 5
8.在△ABC 中,若最大的一个角的正弦值是
,则△ABC 是( )
A 锐角三角形
B 钝角三角形
C 直角三角形
D 等边三角形
9.若α是第四象限角,则
是( )
A 第二象限角
B 第三象限角
C 第一或第三象限角
D 第二或第四象限角
10.已知sin α=4
5
,且α为第二象限角,那么tan α的值等于 ( ) (A)3
4 (B)43
- (C)4
3
(D)4
3-
11.若θ是第三象限角,且02
cos <θ,则2
θ是
( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限
二、填空题
12.已知角α的终边落在直线y =3x 上,则sin α=________.
13.已知P (-3,y )为角α的终边上一点,且sin α=
13
13
,那么y 的值等于________. 14.已知锐角α终边上一点P (1,3),则α的弧度数为________. 15.(1)sin
49πtan 3

_________ 16.是角θ终边上的一点,且。

17. 函数 的图象过点
,则当
时,x 的取
值范围是____________________。

18. 与
终边相同的最小正角是_______________;与-75°终边相同的
角的集合是___________________________。

19. -15°=_____________弧度;
=____________度。

20. 时钟的分针走了1小时10分,它所转过的角度是_____________度,是__________弧度。

21.若
2cos sin 2cos sin =-+α
αα
α,则=αtan ______________
三、解答题
1.已知角α的终边过P (-3,4),求角α的sin α、cos α、tan α的值.
2.已知角α的终边经过点P (x ,-3)(x >0).且cos α=2
x ,求sin α、cos α、
tan α的值.
3. 一弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长和扇形的面积
的值求已知ααααcos ,sin ,cos 2sin .4-=
x x
x x x x tan 1tan 1sin cos cos sin 21:52
2+-=--求证
任意角的三角函数答案
一,1.C 2.C3.A 4.A 5。

C 6.C7.A8.B 9.D10.B11.B
二. 12.10103±
13.21 14.3π 15.26 16.
17.
18. 19.
20.
21.1 三,1.=
a sin 54 53cos -=a ,34tan -=a , 43cot -=a , 35sec -=a ,4
5csc =a 2. 3tan ,2
1
cos ,23sin -==-
=βββ。

相关文档
最新文档