OPALINUS硬泥岩热反应的监控与模拟
生烃岩热模拟实验及其结果应用
未成 熟生 油 岩较有 代 表性 。在 超过 生油 门 限后 , 随着埋 藏深 度 的增 加 , 酪根 热 降解 生 油 , 有 机 质 的氢 含 量 干 使 逐渐 变小 , 时 的生油 岩不适 于做热 模拟 实验 。 此
从 3 0 ~6 0 0℃ O ℃一 系列 瞬 时产烃 量 。 另外 把 其 中后 一 份 样 品 在热 解 炉 中 以 5 / n的 ℃ mi
生 油岩 的热解 热 模 拟 实 验 是建 立 在 干 酪根 热 降 解 生 油机 理 的基 础 上进 行 的 。 自然 界 的 有 机 质 随生 油 岩
在沉 积 盆 地 内 , 相 对 较 低 的 地 温 5 ℃ ~ 1 0 在 0 5 ℃
下 , 机质 的 自然 热 演 化 需 1 ~ 4 0 有 O 0 Ma的 时 间 , 实 在 验 室用 1 0 ~2 0 温 度 进 行 人 工 模 拟 有 机 质 热 演 8℃ 5℃ 化 也 要 几 个 月 的 时 间 ( so , 9 8 [ 。 而 用 快 速 热 Ti t 1 7 )2 s ]
4 0 、 1 ℃ 、 2 ℃ 、 3 ℃ 、 4 ℃ 、 5 ℃ 、 0 ℃ 、 5 ℃ 0 ℃ 40 40 40 40 40 50 50
上覆 沉 积物 的增加 , 度 逐 渐 升 高 , 漫长 的地 质 历 史 温 在 时期 生 成油气 。这个过 程 今天 已无 法再 现 , 在短 暂 的 要
解 的方 法在 半 小 时 内把有 机 质 加 热 至 6 0 0 ℃来 模 拟 有
经 粉碎 过 筛 ( 0 目) , 出 若 干 份 , 份 1 0 20 后 称 每 0 mg左 右 , 一 份 样 品 装 入 热 解 炉 , 5 mi 取 以  ̄ C/ n速 度 连 续 升
生烃岩热模拟实验及其结果应用
生烃岩热模拟实验及其结果应用
周丽;柳忠泉
【期刊名称】《西部探矿工程》
【年(卷),期】2011(023)009
【摘要】简要介绍热模拟实验的方法,并以鄂尔多斯盆地西缘苦深1井古生界烃源岩样品为例,开展了热模拟实验,制作出苦深1井的ⅡA型和Ⅲ型烃源岩的热演化系数关系图版和有机碳恢复系数图版,并简要叙述了图版的几点应用.同时得出,热模拟试验在恢复成熟特别是过成熟生油岩的原始面貌方面是有效的.
【总页数】5页(P45-48,51)
【作者】周丽;柳忠泉
【作者单位】胜利油田西部新区研究中心,山东东营 257015;胜利油田西部新区研究中心,山东东营 257015
【正文语种】中文
【中图分类】TE135
【相关文献】
1.山西地区太原组煤岩显微组分生烃模拟实验研究 [J], 王静;郭树芝
2.低熟页岩生烃特征的热模拟实验研究 [J], 郭少斌;毛文静;马啸
3.银根—额济纳旗盆地主力烃源岩生烃热模拟实验研究 [J], 朱连丰
4.烃源岩生烃热模拟实验方法及影响因素探讨 [J], 乔羽
5.低成熟海相黑色页岩生烃特征的热模拟实验 [J], 邓模;翟常博;杨振恒;段新国;郑伦举;宋振响
因版权原因,仅展示原文概要,查看原文内容请购买。
储能同轴深井换热器岩土热响应试验及换热性能分析
Value Engineering0引言随着低碳时代的到来,余热回收储存技术正面临新一轮的市场需求。
其中如何将火力发电厂夏季的余热储存到地下,进行冬季供暖,是值得深入研究的课题。
本文就北方某电厂计划采用同轴深井换热器进行跨季节储能,根据委托进行场地岩土热响应试验、进行数据处理分析、得出所在场区的地下岩土热物性参数,并就该技术换热性能等进行分析,为储能系统的深化设计及后期运行管理提供科学依据。
1同轴深井换热器结构简介北方某热电厂拟采用同轴深井换热器技术进行夏季余热储存和冬季取热。
先进行岩土热响应测试,获得场区岩土体岩层可钻性、初始平均温度、岩土体综合热物性及岩土体换热能力等参数。
设计DN80同轴深井1口,井深300m 。
具体结构和换热原理如下:1.1基本结构同轴深井换热器技术由我公司研发,我司编写并公开的《地源热泵同轴深井换热器应用技术导则》(Q/BHYDR001-2016),该项技术获安徽省住房和城乡建设厅鉴定(皖建科鉴字[2015]第026号)。
主要是采用钢外管及芯管组成的密闭环路形成的地下换热系统,有效深度约为300m ,内部芯管出水,外部环腔进水。
考虑管道防腐,外管非含氧层采用无缝钢管或焊管,含氧层采用镀锌钢管,含氧层套丝破坏镀锌层处采用沥青防水卷材热熔包裹,管道承压等级为1.6MPa 。
同轴深井换热器曾成功使用在某住宅小区地源热泵地埋管中[1],而由于本次同轴深井换热器用于储热。
考虑到管腔内水温要远高于地源热泵系统夏季管内循环水的温度,将原来的PE 芯管调整为耐高温的PERT 管[2],承压等级由1.0MPa 调整为1.6MPa 。
1.2换热原理循环介质经空调主机换热→地下换热器外支护套管→经充分热交换后由支护套管的底部→换热器芯管→经水平管→主机,完成换热。
外支护套管的口径远大于内管口径,在工质循环流量一定的条件下,工质在外支护套管内流速小;由于外支护套管口径、深度大,所以换热器与岩土的接触面积大,使得地下换热器与地下岩土有足够的换热空间;外支护套管内工质循环流速较小使得地下换热器有足够的时间与地下岩土进行热交换。
Cs和I在某拟建核电厂液态流出物长距离排放管线周围土壤中的扩散行为
第EU期 ! ! 陈 东 洋 等 %>)和C在 某 拟 建 核 电 厂 液 态 流 出 物 长 距 离 排 放 管 线 周 围 土 壤 中 的 扩 散 行 为
UVPX
'#*&+;#))#,-!",+60.)!%"*0"60#%&#-+#0%.,")#-./*"%+#,%0.#?**;;&6*-.,;-60&*%"!,:*" !&%-.)=T6*.,./*).",-7$,(#&#.'%-+(#,%?%#&%(#&#.',;>)i %-+CZ #-./*7",6-+:%.*"9 ),#&)').*$!./*#"+#;;6)#,-(*/%?#,")%.."%0.*+ $60/%..*-.#,-=C-./#):,"D!./*)/%&9
! 第JO卷 第EU期 !URUV年EU月
原子能科学技术 I.,$#0L-*"7'40#*-0*%-+@*0/-,&,7'
K,&=JO!A,=EU T*0=URUV
.$和E在某拟建核电厂液态流出物 距离排放管线周围土壤中的扩散行为
陈东洋EU+ 李传斌E+ 陈婧仪U杨!杰VY王建华VY 陈!媛VY王芝芬E% 吴涵玉UY% 康明亮UY
!! 我 国 核 电 厂 以 滨 海 厂 址 为 主!为 满 足 我 国 能 源 需 求 和 双 碳 目 标 等 能 源 低 碳 转 型 需 要!核 电建设将向近海厂址推进/与滨海厂址相比! 近海核电厂需要通过长距离取排水管道与受纳 水体连接!以 满 足 核 电 厂 的 用 排 水 需 求 / &E' 核 电 厂 运 行 期 间!满 足 排 放 标 准 的 放 射 性 液 态 流 出 物 通 过 输 送 管 道 进 入 受 纳 水 体!进 一 步 稀 释 和弥散/一些核电大国均建有采用长距离输送 管 道 排 放 液 态 流 出 物 的 近 海$内 陆 核 电 厂 !如 法 国EX座核电厂中有Y座 位 于 滨 海0E 座 位 于 入 海 口 !其 余 EY 座 位 于 内 陆 滨 河 *美 国 HJ 座 核 电 厂中 EH 座 位 于 滨 海$河 口0UJ 座 位 于 滨 湖0 UY座位于 滨 河 / &U' 尽 管 对 于 放 射 性 液 态 流 出 物 有 严 格 的 排 放 监 测 和 控 制!然 而 一 旦 长 距 离 输 送 管 道 发 生 破 损 !如 破 口 泄 漏 0穿 孔 持 续 泄 漏
CMG数值模拟软件简介
CMG数值模拟软件简介CMG数值模拟软件简介CMG开发的油藏数值模拟软件在市场上处于领先地位,作为提高采收率模拟的行业标准,得到了全球的认可CMG先进的模拟技术,不断开拓新领域-模拟简单到复杂的提高采收率过程。
通过结合简易的模型创建工作流程,最先进的性能增强技术以及跨学科多重机理(例如,热效应、地球化学、地质力学、流体相态、井筒、水力压裂以及完井等)精确模拟提高采收率过程。
CMOST AI强大的敏感性分析、历史拟合、方案优化以及不确定性分析工具,最大限度地提高各类油藏的采收率和净现值GEM组分模拟器世界领先的状态方程模拟器,适用于组分、化学驱以及非常规油气藏模拟IMEX黑油模拟器模拟常规和非常规油气藏模型的衰竭和二次开采过程,使用快速和简单的工作流程进行准确的预测STARS热采及化学驱模拟器准确模拟矿场提高采收率机理-热采、化学驱以及其他EOR技术-使得生产和效益最大化。
Builder前处理模块交互式、直观和易于使用的操作界面,为CMG模拟器快速和高效的准备模型Results后处理模块为更加深入的理解油藏特征、提高采收率过程以及油藏性能等提供了先进的可视化和分析工具WinProp相态模拟软件包为CMG模拟器创建流体模型,并为第三方油藏模拟软件提供黑油模型CMOST AI 提升油田开发研究能力和潜力,改善业务决策流程。
将统计分析、机器学习和无偏数据解释等人工智能技术与人类的工程专业知识相结合,确定油藏开发最佳方案。
认知油气储层在同一个模型中同时自动考虑所有不确定性参数,运行数百个模拟作业,分析数据并做出更好的业务决策。
图形展示对开发效果影响最大的参数从有限的模拟运算结果中获取信息,并通过它来认识每个参数如何影响模拟结果“假定推测”功能,快速得出属性变化对产量的影响结果,并实时更新生产曲线在更改一个或所有变量时,CMOST AI的内部引擎能自动预测变量之间的交互作用优化改进业务决策利用人工智能(AI)技术,用最少的计算找到最佳解。
塔里木盆地东部地区海相烃源岩超高温热模拟实验研究
摘 要 :生 烃模拟 实验是 评 价 源岩 生烃 潜 力的 重要 手段 ,以往 受技 术条 件和 常规 实验 思维 的 限制 ,模 拟温度 一般不超过 600℃ ,对于更 高温度条件下是否还有生烃潜力研 究的较 少。为此 ,我们 自行研 制 了超 高温模 拟 实验 装置 ,其 最 高模 拟 温度 可 以达到 1IO0 ̄C,应 用此装 置 对塔 东地 区过 成 熟 海相 烃 源 岩进行 了生烃热模拟 实验研 究。实验 结果表 明:(1)常规模拟实验结束后 ,过成熟的烃源岩仍然具有 一 定的生烃潜力;(2)在超 高温条件下水中的氢参与了生烃反应 ,但在地质条件下 ,由于温度较低 ,水 参与的生烃反应可能不会发生;(3)实验产生气体 中的CO 来 自于无机物(碳酸盐类)的裂解。 关 键词 :烃 源岩 ;过成 熟 ;超 高温模 拟 实验 ;生烃 潜力 中图分 类 号 :TEl4 文献标 识 码 :B 文章 编号 :1004—5716(2018)09—0086—03
86
西 部探 矿 工程
2018年第 9期
塔 里木 盆地 东部地 区海相烃 源岩超 高温热模拟 实验研 究
贾艳 双 q
(1.大庆油 田有限责任公 司勘探开发研究院,黑龙江 大庆 163712; 2.黑龙江 省 致 密油和 泥岩 油 成藏 研 究重 点 实验 室 ,黑 龙江 大庆 163712)
模 拟 实 验 原 始 样 品为 过 成 熟 黑 色 泥 岩 ,采 自塔 东 地 区早古生界奥套 系中奥 陶统 的井下岩芯样 品 ,其基 本地 球化 学 参数 见 表 1。
表 1 中奥 陶统黑 色泥岩样品地球化学参数
实验 使 用 的 岩 石 样 品 是 岩 芯 经 过 粗 碎 、缩 分 后 得 到 的 ,其 粒 径 小 于 O.18mm。干 酪根 是 原 始样 品经 常 规 干 酪 根 制 备 流 程 (GB/T 19144—2010沉 积 岩 中 干 酪 根 分 离方 法 )得 到 的 。
冻融循环作用下泥岩的力学特性及损伤机理研究
PENG Cheng,TU Fuhao,FAN Junwei
( School of Civil Engineering, University of South China, Hengyang, Hunan 421001, China)
0 引 言
我国寒区分布广泛,永久性寒区和季节性寒 区占国土总面积的 60% 以上[1] 。 对于季节性寒 区岩土工程,由于低温导致岩体内水冰相变,如此 反复冻融过程将对岩体的物理和力学性质产生巨 大损伤,而冻融循环作用是造成寒区岩石损伤劣 化的重要因素[2] 。
国内外诸多学者对岩石的冻融损伤力学等方 面展开了相关研究。 贾海梁等[3] 研究了孔隙结 构和冻结速率对冻融损伤的控制与影响,当冻结 速率快、孔隙的渗透系数小时,则即使在连通孔隙 中,冻胀作用导致的未冻水压力仍会引起岩石的 损伤。 宋勇军[4] 研究了不同次数冻融循环条件 下单轴循环加卸载作用对红砂岩的物理力学特性 的影响;M. Krautblatte[5] 建立了岩-冰耦合力学模 型,描述 了 冻 融 损 伤 对 岩 石 边 坡 的 破 坏。 刘 哲 汛[6] 用 ABAQUS 对冻融循环后砂岩的热应力应 变以及单向受压应力应变进行了模拟。 程桦[7] 建立了毛细-薄膜水分迁移单元模型,探究了多孔 岩石在冻融循环过程中孔隙内部水分迁移导致的 冻融损伤问题。 H. Yavuz[8] 研究了冻融循环对安 山岩的单轴抗压强度以及纵波波速的影响。 史 越[9] 将横观各向同性体的柯西转轴方程和随机 损伤理论结合,建立了考虑荷载损伤状态下的层 状岩石损伤本构模型,揭示了层状岩石在单轴压 缩条件下的损伤演化机理。 宋彦琦[10] 以岩石动 态弹性模量为损伤变量建立了冻融损伤方程,研 究结果表明损伤随冻融次数增加而呈现指数衰减 型增大。 杨鸿锐[11] 通过研究砂砾岩在不同温度 区间下的冻融循环作用得到:岩石质量、波速、抗 拉强度均随冻融循环次数增加而减小,但随冻融
不同温度-应力场下泥岩蠕变特性及本构模型
长 江 科 学 院 院 报 JournalofYangtzeRiverScientificResearchInstitute
doi:10.11988/ckyyb.20170013
Vol.35 No.8 Aug.2 0 1 8
2018,35(8):84-89
1 研究背景
随着社会经济的快速发展,人类对能源的需求 不断扩大,并逐渐向深部地下工程转变,由此带来的 与温度相关的地下岩土工程问题正受到众多专家学 者的关注。流变现象是岩土工程围压失稳破坏的重 要因素之一,特别是岩石的蠕变特性,历来受到研究 工作者的高度重视[1]。在地热资源开发与利用、石 油开采、煤矿工程、高放废物处置这些长期深部地下 工程中,因为涉及到工程长期的稳定安全,岩石蠕变 行为的研究就显得更加重要,其所受应力环境往往 比较复杂,常常存在应力、温度、渗流 3场之间的耦 合作用。
速率的变化特征。
图 1 同等围压、不同温度-应力场下蠕变应变曲线 Fig.1 Curvesofcreepstraininthepresenceof differenttemperatureandstressfieldsunderthesame
confiningpressure
从图 1中可看出: (1)泥岩 在 每 一 级 加 载 后,均 会 产 生 明 显 的 瞬 时应变,之后逐渐进入稳态蠕变阶段,此时硬化效应 大于损伤效应。 (2)低加 载 应 力 状 态 下,泥 岩 的 蠕 变 特 征 并 不 显著,进入稳态蠕变阶段后蠕变变形非常缓慢。随 着应力升高,蠕变变形逐渐增大,即稳态蠕变速率逐 渐升高,在破坏应力状态下,在稳定蠕变过后,逐渐 出现非线性加速蠕变,蠕变进入非稳定型,此时损伤 效应逐渐超过硬化效应,表明泥岩进入实质性损伤, 预示着其失稳破坏即将到来。 (3)相 同 围 压 下,温 度 越 高,其 蠕 变 应 变 量 越 大,蠕变破坏应力越小,蠕变加载时间也越短,且非 线性加速蠕变特征越明显。这表明高温的软化作 用,让泥岩内部分子的热运动显著增强,一方面使得 泥岩内部颗粒力学性质发生弱化,另一方面削弱了 颗粒之间的胶结作用,因而在总体上使得泥岩的延 性得到提高,但承载力减弱,宏观上则体现为蠕变破 坏应力的降低和蠕变应变的增加 。 [11] (4)相同 温 度 下,围 压 越 大,破 坏 应 力 越 大,延 性也越强。
光谱地壳计划探索新一代矿产勘查技术
"修回日期 收稿日期 $ % ! $ % # $ = $ % ! $ % > ! " ? $ $ 基金项目国家自然科学基金项目# 和地质调查局项目# 资助% " ! % @ $ $ " = ! $ ! $ % ! ! ! $ % $ $ $
作者简介 王晋年# 男! 研究员! 长期致力于航空遥感& 高光谱遥感! 以及空间信息在地质找矿与生态环境中的应用 ! ! A & & $
3, 2 5 航空成像光谱数据分析和提取了铀矿信息" 国土资源航空物探遥感中心和澳大利亚合作! 利用
射计 , 欧空局自制小卫星 K 5 4 0 *! * ( R , 搭载的 紧密型高分辨率成像仪 6 和 N* 2 5 0 + 7 2 5 , 4 卫星 搭载的中分辨率成像光谱仪 30 都得到了广 ! * 2 5 泛的应用%另外! 澳大利亚& 加拿大& 德国& 法国& 芬 兰& 日本等国也已相继发射或即将发射搭载高光谱 成像仪的卫星%故此! 许多国家在矿产勘查和资源 利用等方面取得了显著的效果% 我国的一些相关部门和研究单位也利用国内 外的高光谱卫星数据开展了许多岩矿地质方面的 应用研究%国土资源航空物探遥感中心应用 0 ( 1 ! 的高光谱传感器 N 对西藏驱龙地区 Q H D 8 < 数据! O P
6 8 B I L 8 J S金矿及其相邻地区进行了机载成像光谱 技术的矿物填图% 美国 ) $ % % @ 年! 5 / 5用 N 3 C O P
%
高光谱遥感技术在油气探测& 固体矿产资源普 查与勘查等方面发挥了重要作用% 它为成矿系统 和成矿过程提供完备& 规模化的可靠稳定的岩矿光 谱信息源! 满足地质勘查业务化的要求% 美国& 澳 大利亚等国家的矿业部门已大量采用高光谱遥感 技术& 高光谱岩芯探测编录技术用于精细采矿& 选 矿等工作! 大大提高了工作效率% 诸如! 利用地面 成像光谱仪获取地表岩石矿物的精确高光谱信息" 岩芯光谱扫描系统获取地下岩石矿物的高光谱数 据! 以开展矿物的 地 表 和 地 下 的 全 方 位 立 体 填 图 成为了目前世界各国研究的热点% 等! 在航天高光谱遥感方面! 美国国家航空航天局
2020年《地下空间与工程学报》总目次
2020年《地下空间与工程学报》总目次第1期・地下空间开发利用・基于系统动力学的地下物流系统对城市发展影响研究基于室内定位的地下商业综合体疏散引导策略研究…小城镇地下综合管廊规划建设与管理.............・理论与试验研究・岩石裂纹扩展诱发的强度弱化模型研究........... 围岩气体渗流解析计算中重要假设的数学证明....岩石动态断裂过程的能量分析...................压桩挤土位移变分模型及理论解答研究........... 圆形盾构隧道水土压力表示与计算半径取值分析•…水压作用含贯穿裂隙类岩石试件力学性能研究....黄土结构屈服损伤与其土水特征的关系............ 基于TSP和PCA-Bayes法的隧道围岩分级........次裂纹几何分布对裂纹岩体破坏机制影响研究....冻融腐蚀后大理岩变形局部化规律研究............ 龙游石窟5号洞室的破坏机理研究................高温热处理共和盆地干热岩力学特性实验研究.....压实膨润土膨胀应变时效性试验及模型研究.......生石灰膨润土泥浆土压盾构渣土改良试验研究……珊瑚砂微生物固化体三轴压缩声发射试验研究.....兰州红砂岩极限承载力深度修正方法试验研究.....扩大头构件受力机理的大比例尺模型试验研究……基坑支护倾斜悬臂桩受力变形特性试验研究......基于离散元方法的锚碇岩-碇接触力学性质研究……基于离心机模型试验的超深基坑受力变形研究.....・设计、施工、监测・长大单洞铁路隧道紧急岀口设置间距确定.......... 岩石群锚杆基础界限间距与群锚效率估算方法•……双锚固段新型锚索锚固机理数值分析及应用......高层建筑地下室上浮变形特征及处置措施研究……序贯高斯模拟在围岩质量预测中的应用............ 含石膏泥灰岩地质特点及隧道工程影响分析......•防灾与环境•基于有限元极限分析的双孔隧道稳定性分析......特大断面公路隧道地震动力响应分析.............. 基于HHT分析隧道围岩结构爆破累积损伤效应……花岗岩巷道岩爆声发射振铃计数波动规律研究.....含盐量和注浆对硫酸盐渍土中SRB还原效率影响…地埋管群全年蓄热取热同步模式下岩土传热特性……有限宽度土体主动土压力的离散元模拟研究.......颗粒级配对残积土MICP灌浆效果的影响评价.....泥石流软基消能排导槽流速与消能特性试验研究……嵌岩桩及较破碎岩石桩基影响系数探讨..........................杨涛,董建军,郭宗逵(1)...................耿康顺,张晓涛(7)高银宝,谭少华,谭大江,陈杰,曾献君(14).............李晓照,戚承志,邵珠山(26).................钟巍,田宙,王铁良(35)孙友杰,戚承志,朱华挺,郭云鹏,王玉琪(43).............高子坤,朱海峰,傅长荣(50)黄大维,冯青松,唐柏赞,涂文博,梁玉雄(5刀••…董振兴,李勇,朱维申,蔡卫兵,徐翔(64)......................褚峰,邵生俊(73).・吕擎峰,赵本海,潘松杰,霍振升,马博(80).................李硕,宁宝宽,于群(87)..........孙琦,姚念希,张淑坤,于阳(97)............于超云,张慧慧,唐春安(106)……卢运虎,王世永,陈勉,金衍,杨帅(114)...........................赖小玲(122)...................黄志强,冯东林(128)申春妮,方祥位,姚志华,刘汉龙,黄涛(134)............李凯甜,邓荣贵,周其健(141).....李永辉,陈陆杰,赵鹤飞,郭院成(149).........孔德森,张杰,王士权,刘一(160)'张茂础,崔臻,盛谦,马亚丽娜,张善凯(169)..............郭海庆,陶善之,张泉(177)李琦,王明年,于丽,罗欣宇,李敏(187)................刘伟,董天文(194)................袁坤,张玉芳(201)……于贵,李星,舒中文,刘乃康(211).........成涛,李晓军,陈建琴(219)..............许崇帮,王华牢(227)•赵明华,侯继超,彭文哲,张锐,赵衡(234)梁波,赵冯兵,任兆丹,张青松,李高歌(243).....胡刚,费鸿禄,包士杰,杨智广(249)••…张艳博,张行,孙林,姚旭龙,梁鹏(260)...............彭述权,王凡,樊玲(267)••吴晅,周雅慧,路子业,刘卫,侯正芳(274).............肖昕迪,李明广,吴浩(288)••靳贵晓,张瑾璇,许凯•黄明,邱继业(295).............刘曙亮,游勇,李小勇(303)王田龙,詹黔花,帅海乐,黄质宏,宋勇(312)第2期•地下空间开发利用•城市CBD地下空间耦合规划方法探索..............................................宋博文,王卫东,谭栋杰(319)基于公共空间建构的地下特色街区开发研究................................................刘皆谊,程元泽(325)中心城区既有地下公共空间活力评价研究..............................................阎波,贾鑫铭,王尽遥(334)多因素耦合的新区综合管廊系统布局方法研究..........................................王俊佳,王成坤.陈郊(345)•理论与试验研究•节理起伏角对非贯通节理岩体力学特性的影响.....泥水平衡盾构中海水泥浆性质试验研究............成浆方式不同盾尾浆液的压缩与强度特性试验.....非饱和砂质黏性紫色土一维渗透特性试验研究.....基于摄影法的红黏土裂隙试验研究................行星式椭圆形顶管机直接切削管片试验研究........长江口软土的次固结特性试验研究及应用........大尺寸富水卵砾石样冻结状态下的力学特性........影响格栅加筋膨胀土拉拔试验的新因素分析.......土拱效应下的挂板式斜插桩板墙模型试验研究......考虑初始应变的成都黏土分数阶导数经验蠕变模型…未穿透覆盖层的自流井渗流模型与解析解..........不排水桩复合地基非线性固结解析解.............砂岩单轴压缩破坏全过程声发射主频特征分析.……加载速率对煤样破坏力学及声发射特征研究........冲击荷载作用下灰岩的能量耗散及损伤演化规律研究花岗岩残积土抗剪强度指标取值影响的研究......巷道开挖面抗剪承载结构形成和蠕变规律研究......横向荷载作用下扩底桩弯曲破坏性状分析..........环向螺栓锈蚀对盾构隧道承载性能的彫响........含裂纹试件双轴压缩裂纹扩展数值模拟研究........基于机器视觉的高铁隧道衬砌裂缝骨架拐点识别••…•设计、施工、监测•••…陈庆芝,张玉石,刘远明,王唯.曹凯(351)杨振兴,孙振川,游永锋,吕乾乾.陈瑞祥(359).....武亚军,方敬奇,张孟喜.凌宇峰(366).......李达,汪时机.李贤,毛新.曹挺(373)••熊俊豪,刘宝臣,刘磊,颜荣涛,张炳晖(381)...............袁一翔.庄欠伟,张弛(388).....秦爱芳.赵忠义.孙德安,林哲鑫(395)胡双平,叶万军.张晓峰,胡智民,李长清(406).......................万亮,杨和平(412)-屈俊童,段自侠.雷真,字晓雷,屈林河(420)....................任鹏,王鹏,唐印(431).............王玉林,谢康和,李传勋(439)..........陈宙翔,郭彪,房锐,张文波(445).............王创业,常新科,杜晓娅(451).............高保彬,钱亚楠.吕蓬勃(463)..................方正峰,邹飞,唐旭(475).....李静荣,赵占仑,曾令浓,汤连生(484)彭瑞,欧阳振华,朱建明,赵启峰,刘金海(493)..............................孔娟(502)........殷剑光,金浩,宫全美,周顺华(508)............................米文静(516).........王睿,漆泰岳,万宇,于海莹(524)基于等摩擦耗能的滚刀多目标优化布局.....基于DTS的土体分布式导热系数测试方法••…不同均质度的粘土劈裂注浆特性及效果分析…基于现场监测统计的隧道围岩压力特征分析…基于两种DIC方法的含孔洞土样变形破坏观测超大直径空心变阶桩沉降算法研究及应用实例基于全息变形监测的隧道支护评估体系研究•••防灾与环境•基于经验方法的铁矿深井围岩岩爆倾向性预测…节理特性对顺层隧道破坏模式及稳定影响分析…冲击载荷下新型炮眼堵塞器的力学特征研究……含滑移界面复合式衬砌隧道地震响应边界元模拟火源高度对隧道烟气温度及质量流量影响研究•乔金丽,孟秋杰.刘建琴,徐源浩,薛桂香(531)..........桑宏伟.张春光,刘洋,张丹(540).....唐亚周,雷进生.马波.戴康,李申(547)..................梁庆国,房军,贺谱(555)........王学滨,张博闻.董伟.侯文腾(567)••刘豆.耿大新.胡文韬,上官兴,徐长节(577)..........李涛.仇文革,程云建,李斌(583)...............朱永生,李振,梁久正(591).....何长江,冯君,江南,张俞峰,黄林(599)杨东辉.宁掌玄.赵毅鑫.罗化峰.吕兆恒(608)..................刘中宪,李楠.黄磊(615).....陶亮亮,周小涵,王浩然,曾艳华(629)第3期•地下空间开发利用•城市地铁与地下物流系统协同运输方式研究.............................陈一村.董建军,尚鹏程,陈志龙.任睿(637)运用空间叙事营造场景的地下空间研究刘皆谊.杨陈婷(647)城市地下空间综合管理关键问题研究.....................................................•理论与试验研究•刘荆,邹亮.羊娅萍(656)卸荷路径下花岗岩变形与破坏特征试验研究•…花岗岩高温疲劳效应研究.................... 水对微波辐射下硬岩劣化效果的影响试验研究…围压影响的盐岩压缩力学特性及非线性本构模型 孙雪,李二兵,韩阳,段建立,濮仕坤(665)..............田振兴,苏培东,孙强(680)•-戴俊,王羽亮,黄斌斌,王苑朴,李慧(691)……张华宾,张顷顷,王来贵,冉莉娜(697)千湿循环作用下硫酸盐渍土强度特性试验研究岩石破坏瞬间压机-岩石系统振荡特性研究…结构物-标准砂界面剪切机理试验研究.....考虑冲刷深度变化的桩基小型振动台试验研究.............马君泽,张卫兵,张笑(704)................董京楠.金衍.陈勉(714)郭聚坤.雷胜友.王瑞.寇海磊.荣文涛(722)黄显彬.侯松,刘晨阳.梅玉娇,郭子红(734)非开挖水平定向钻钻杆全尺寸疲劳试验研究李志杰.曾聪,杨善,董顺(741)基坑双排桩支护的桩间土等效计算模型研究曹净.钱国伟,高越,左怀西(749)含交叉裂隙岩体力学性质数值模拟研究.......混合型缓冲材料水分迁移及干缩开裂规律研究•… 密实砂土中竖向受压PCC 桩端阻力计算方法研究局部周期性应力波作用下地下结构动力响应•…… 冲击荷载下浅埋框架结构上的动载计算分析•…… 理想砂井地基径向弹黏塑性固结分析.........锚杆与围岩共同作用的围岩特性曲线修正分析•…下伏空洞岩石地基极限承载力计算方法研究…•… 运用等效应力法建立压剪型危岩破坏判据的研究 宽级配粗粒土的内部侵蚀试验及其稳定性判别“•设计、施工、监测•..... 张梅丽,梁正召,高敏,武娜(758)刘平.潘东坍,焦大丁,赵亮,杨鸿锐(770) 陈亚东,于艳,陆凡,蔡江东.王旭东(780) ••张裕,刘元雪,高屹,谢凌,谭仪忠(787)刘付威,余沛,张埴铭,高素芹,张伟(796)••-刘忠玉,朱新牧.夏洋洋,张家超(804) ........... 谭鑫.金宇轩,赵明华(812) ........... 雷勇.邓加政,刘一新(820) ................陈洪凯,张金浩(827) ........梁莉,田大浪,宁越,王雄(835)新型煤岩体加固注浆料制备及应用分析.............................................................王晓蕾(844)喷射混凝土力学时空特性在中东抽蓄中的应用 地铁隧道横向变形的激光扫描检测方法及应用 基于激光扫描的盾构隧道断面提取与变形研究 电磁辐射法在某水电站岩爆监测中的工程应用...........................徐全.吴家耀,褚卫江.曹爱武,刘加进(852)..........................................吴昌睿.黄宏伟,邵华(863)..........................................谢雄罐,黄炎.赵铭睿(873)...........................周春华,李云安,尹健民.崔志刚,汪洋(882)埋地平行铁质管线磁异常模拟与探测识别杆式多点位移计监测资料可靠性分析•… 赵丹丹,杜坚,郭智勇,徐伟,刘忠祥(891) ……陈菲.邓建辉,魏进兵.高春玉(897)•防灾与环境•地面出入式盾构隧道施工对周边地层扰动研究•基坑围护结构侧向变形引起的坑外土体变形研究悬挂式止水帷幕基坑降水控制措施研究.......深厚软土地区大型沉井突沉行为分析........单洞双向公路隧道火灾人员疏散救援研究……........高守栋,刘超,张子新,刘海(903) 杨庆光,梁凌川,柳雄,邓方根,杨治飞(915)..................李光明,李明生(921) ……张治成,邓燕羚,郑锋利,王金昌(933)-王星,屈建荣,夏永旭,王蕾,郑云辉(944)第4期•地下空间开发利用•北京市地下空间资源利用地质适宜性评价研究.............................何静,周圆心,郑桂森,王继明,刘予(955)不动产地下空间权利界限确定方法•理论与试验研究•周沛,熊文华(967)膨润土-砂混合物缓冲层热传导性试验研究……软土地区竹节桩复合地基承载特性试验研究……昆明泥炭土工程性质原生各向异性试验研究……湿陷性黄土场地孔内深层超强夯挤密桩试验研究能源地下连续墙温度应力的离心模型试验研究…聚丙烯纤维气泡混合轻质土抗压力学性能研究•钢管后压浆预压托换桩竖向承载力性能分析•………刘平,赵亮,焦大丁.杨鸿锐,潘东明(975)……郦亮,叶俊能,周晔.刘干斌,朱瑶宏(986) ........桂跃,方超,徐其福,缪宁,杨松(993)赵治海,徐张建,燕建龙.盛云鸥.刘学峰(1004) .....李淑勇.夏才初,朱建龙,程晓辉(1012) .......王宗建.孙志城,卢谅,李金博(1021)白苗苗,唐丽云,张淑云,杨更社,申艳军(1030)天津地铁1.2.n管片环间樺式接头抗剪性能分析…单向循环荷载下超固结软黏土的永久变形特性••…钻孔埋入式后压浆管桩水平承载特性研究.......不同包裹角度下GFRP复合桩水平承载特性研究••几种高硬度透明材料与砂土接触面力学特性研究…承台刚度对受荷群桩基础承载性状的影响研究••…海相软土热力学本构模型研究..................考虑下卧弹性基岩的地下结构抗震分析模型.....基于桩土相互作用的嵌岩能源桩传热计算.......基于数据融合的山岭隧道围岩稳定性评价方法••…木寨岭隧道大变形分级标准与支护时机研究.....缓冲材料热-水-力耦合模型试验研究...........裂隙岩体质量三维精细分级S-RMR””方法及可视化•设计、施工、监测•长大双洞公路隧道联络通道间距设置研究........基于损伤预测的粘土围岩深地质处置库碉距分析••基于GA-SVM岩土参数反演的改进PBA工法研究城市市区地下空间暗挖工法适应性研究..........上海运营地铁盾构隧道收敛变形规律研究.......基坑可拆卸双肢BFW活络端现场应用与试验验证•防灾与环境•........张稳军,张琪,张高乐,宋传辉(1040) ..............................孙磊(1048) .....杨之俊,方晴,吕布,梅灿,傅旭东(1056)张建伟,尹海峰,李荣翔,张鹏翔,娄蒙凡(1062) ............邓衍博,陆勇,祁文,姜雨(1069)单华峰.王春凌,夏唐代,卢玉华,陶海冰(1078) .......................刘鹏,黄容聘(1088) ...............杨喻声,禹海涛,袁勇(1096) .............黄庆伟,刘齐建.高文华(1102)••…谢欣,吕波,王利宁,薛亚东.黄宏伟(1108)••王永刚,丁文其,刘志强.王者超,李歲(1116)曹胜飞,刘月妙.谢敬礼,马利科.高玉峰(1123)•-陈庆发,刘恩江,高飞红,尹庭昌,高远(1130)..........王星,任博,王永东,夏永旭(1142)■-梁海安,胡清波,杨婷,刘平辉,刘晓东(1153) ......孙明志.戴文亭,孙思博,曹耀兮(1163) .......................袁贝,陈卫忠(1172) ...............邵华,黄宏伟,王如路(1183) ........张明聚,杨萌,李鹏飞,陈金刚(1192)交通荷载下城市路面塌陷问题的试验研究.....地下水开采引起的地面沉降计算方法及分析……下伏软弱夹层路基堆载对桩基影响及处治方法•隧道中硫化氢有毒气体分级防护体系.........施工环境对膨胀土基坑支护变形影响的模拟分析超大直径泥水盾构施工对相邻单桩位移影响研究松软煤层托顶煤巷道煤柱宽度优化及控制技术•基桩下伏矩形溶洞稳定性分析.....................时刚.王宇魂,武天仪.刘忠玉(1202)……李静伟,许成顺,罗文林,钟紫蓝(1210)董芸秀,冯忠居.冯凯.文军强,何静斌(1219)•-唐协,李世琦,周雄华,王俊,石锦岩(1230)康景文,任新红,刘永红,李可一,王岩(1238) ..........廖晨,刘超,张子新,刘海(1248)陈川,马振乾,官瑞冲,梁旭超,宋文献(1258) ........杨博铭,赵明华,肖尧,赵衡(1265)第5期•地下空间开发利用•杭州萧山钱江世纪城亚运村片区地下空间规划........................................................黄慷(1273)宁波老城区中小学校园操场地下空间利用研究.................................................赵圣洁.牛牧(1286)编制导则与需求导向视角下的地下空间规划探索...............................................刘君,易伟全(1294)省会试点城市综合管廊规划设计与方法探究........................................................崔海婕(13()4)地下空间出让价格评估方法分析与案例探讨........................................................张金娟(1312)•理论与试验研究•酸化前后碳酸盐岩微细观组构及力学性能研究.......粗糙度对土石混合体与结构接触面剪切特性的影响••…沉井基础设置根键及压浆后处理原位试验分析........ 砂性土层大直径浅埋隧道掘进试验及离散元模拟..... 静动载下筋材变化对加筋土挡墙性能影响分析........ 原状与重塑黄土抗拉强度差异性研究...............煤岩本构关系与冲击倾向指标的力学分析...........含黏粒砂土动力特性试验研究....................... PAC改进真空预压法加固软土地基试验研究..........地铁车站一次扣拱暗挖逆作体系模型试验研究.......冻融对固化钻井泥浆强度及重金属浸出量影响.......考虑地层变异的浅基础承载力分析.................. 洞室岩体质量的多维联系云评价模型................ GSI围岩评级系统下围岩新型统计损伤模型..........基于改进Harrh函数的黏土分数阶统计损伤模型..... 锚固围岩流变特性与隧道衬砌压力演化规律研究..... 地应力作用深大竖井受力机理及稳定性研究.........偏压荷载作用下顶管力学响应及其影响因素..........大直径钢管复合桩承载特性研究.................... 三维裂隙网络建模技术修正及其工程应用...........•设计、施工、检测•寒区隧道新型维护型防排水系统研究...............城市新建隧道下穿既有道路影响分区研究...........对两个基坑支护规范有关土钉检测值的探讨..........临时支撑阶段变截面沉管隧道力学响应特征及加固措施-刘厚彬.崔帅.孟英峰.朱达江.李玉飞(1321)陈美婷,赵光思,雪青华.任明辉.沙汝晨(1328) ......何春林.龚成中.潘鹏超.陈东旭(1338) ..............张志华.张谢东.吴飞翔(1345) ..........王家全.侯森磊,唐湮,唐毅(1352)吴旭阳,梁庆国.罗从双,李春清.王丽丽(1362)••…丁鑫,肖晓春.潘一山,吕祥锋,吴迪(1371) ..........宋晓丽,张瑾.张鹏.凌贤长(1383) .....................庞毅玲.胡岱文(1391)康富中.李翔宇.宫剑飞.高文生.杨秀仁(1397) .....程寅,于浩,李钦栋,陈景,李亚非(1405) -张东明.代鎮锋,王慧,黄宏伟,胡群芳(1412) ........汪明武.龙静云,王霄.金菊良(1420) .....................张树光.刘文博(1426) ....................任鹏.王鹏.唐印(1435) ..................邵珠山.吴奎.秦溯(1442) ..............冷希乔,严金秀.韩璃萱(1451) ......童恺旻,杨春山,高振宇,黄雪阳(1459) .....崔允亮,王海峰,王新,魏纲.周锋(1467) .....李冬伟,刘健,陈亮,成功,李炜强(1476)................邓成锋.夏才初,何佳(1484) ...............................易立(1490) ........................郝峰.周瑞国(1498) ......杨春山.魏立新.莫海鸿.陈俊生(15()4)基于主动式纠偏的曲线顶管施工力学特性研究•…深孔注浆条件下地铁施工地层位移预测研究.....综合管廊穿越黄土挖填方场地受力变形状态研究•基于CPTU贯入深度超前滞后效应的数值模拟研究•防灾与环境•......................王永东,胡强.张化川(1511)……….............王鑫.罗富荣.张飞.韩埴(1521)••播•汀••…段旭.董琪.叶万军.门玉明.张昌翌(1529)..............耿功巧,蔡国军,陈妍,刘松玉(1538)地下采场爆破炮孔堵塞效应及长度研究……基于损伤过程耦合的断层空间滞后突水分析…地铁盾构隧道管片接缝复合型密封垫防水研究重点排烟坡度隧道纵向机械补风量研究....人防工程市民认知和掩蔽心理反应研究.....梁瑞.吕亚茹.周文海.邓克飞.何学良(1546) ........陈坤福,吴阳,李帅,冯利军(1555) ......龚国栋,丁超,李宏亮,张稳军(1563) ..............姜学鹏.王正阳.向勇(1569) ......张勣翔.陈力新,张凯,许宏发(1580)。
泥页岩热模拟排出油与滞留油中17α(H)-重排藿烷的成熟度指示规律
泥页岩热模拟排出油与滞留油中17α(H)-重排藿烷的成熟度指示规律李姗姗;白斌;严刚;徐耀辉;刘岩【期刊名称】《石油实验地质》【年(卷),期】2022(44)5【摘要】在沉积有机相接近的前提条件下,重排藿烷的相对丰度与热成熟度密切相关。
选用鄂尔多斯盆地低熟(R_(o)为0.58%)富有机质(总有机碳含量为3.87%)泥页岩进行生排烃热模拟实验,通过气相色谱—质谱(GC-MS)对排出油和滞留油中17α(H)-重排藿类化合物进行了检测与分析,并结合热模拟残余岩样的实测镜质体随机反射率(R_(o))界定了17α(H)-重排藿烷参数作为成熟度指标的适用范围。
结果表明,无论在排出油还是滞留油中,参数C_(29)∗/(C_(29)∗+C_(29)H)和C_(30)∗/(C_(30)∗+C_(30)H)呈现出类似的三段式变化特征,均随实验温度的升高先降低后升高最后降低,表明两个参数可能是较好的油源对比指标。
在325℃之前,即R_(o)<1.01%时,参数变化幅度均不明显;但在325~385℃之间,两个参数均随温度的升高呈现显著的上升趋势,表明在有机质成熟中期—高成熟早期阶段(1.01%<R_(o)<1.48%)两个参数均可作为有效的成熟度指标。
【总页数】9页(P887-895)【作者】李姗姗;白斌;严刚;徐耀辉;刘岩【作者单位】油气地球化学与环境湖北省重点实验室(长江大学资源与环境学院);油气资源与勘探技术教育部重点实验室(长江大学);中国石油勘探开发研究院【正文语种】中文【中图分类】TE122.11【相关文献】1.烃源岩人工模拟过程中苯并藿烷的成熟度指示2.烃源岩热模拟实验中重排藿烷类化合物变化特征及其意义3.原油热模拟实验中重排藿烷类变化特征及其意义4.塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅰ:族组分及同位素组成5.塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅱ:分子地球化学特征因版权原因,仅展示原文概要,查看原文内容请购买。
"源热共控"新西兰南大盆地生烃潜力
66勘捅•诬t n海相油气地质第20卷第3期 2015年7月D 〇l : 10.3969/j .issn . 1672-9854.2015.03.010 文章编号:1672-9854(2015)-03-0066-07“源热共控”新西兰南大盆地生烃潜力金莉,杨松岭,柯岭,籐柰强,孙翠娟(中海油研究总院海外评价中心)摘要新西兰南大盆地(Great South Basin )经历了裂谷期、拗陷期及大陆边缘期三个构造演化阶段,并发育了三套 烃源岩,分别为裂谷期的上白垩统Hoiho 群煤系烃源岩(为主要烃源岩)、拗陷期的上白垩统一古新统Taratu 组海岸平 原相煤系烃源岩和Wickliffe 组海相泥岩烃源岩。
源热耦合分析发现,裂谷期Hoiho 群湖沼相煤系烃源岩埋藏深,有机 质丰度高,热演化程度高,有效烃源岩体积大,生气潜力也大;Tam tu 组海岸平原相煤系烃源岩也是有效烃源岩。
认为 中央坳陷烃源岩发育,油气潜力大。
关键词新西兰;南大盆地;烃源岩;生烃潜力;源热共控论 中图分类号:TE 121.2文献标识码:A1概况新西兰沉积盆地发育,共有15个,主要位于北岛 和南岛东西两侧的海上(图1),总面积达75x l 04km 2。
新西兰的油气勘探最早始于上世纪初,勘探程度总 体较低。
近年来,天然气的短缺促使新西兰政府开始 向国际公司开放油气探采权,随着勘探活动的增加,不断有新的发现,在塔腊纳基(Taranaki )盆地(图1中 的盆地2)发现了一批油气田,且已投人开发,其它盆 地目前尚无商业性突破[|4(1>。
为开拓新西兰的勘探 新机会,除塔腊纳基盆地外,面积大、且有多处油气 显亦的南大盆地(Great South Basin )成为了重点关 注的对象。
南大盆地位于新西兰南岛东南海域(图1 ),面积 约10.5x l 04km 2,水深100~1250m 。
盆地的勘探始于 1969年,目前有二维地震近50000 km ,2006年后采集 的三维地震共6 163 km 2,主要分布在中央坳陷和Pakaha 隆起;共钻8 口探井,其中,1 口井发现油气,4 口井见油气显亦,3 口井为干井。
受动力打桩影响的泥岩宏细观力学特性室内试验研究
第 54 卷第 11 期2023 年 11 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.11Nov. 2023受动力打桩影响的泥岩宏细观力学特性室内试验研究张亚妹1,孙淦1,白晓宇1,桑松魁1,张明义1,许永亮2,麻栋栋2(1. 青岛理工大学 土木工程学院,山东 青岛,266033;2. 中铁建设集团有限公司,北京,100043)摘要:基于原状、受动力打桩影响的桩周泥岩的扫描电子显微镜(SEM)试验和室内单轴抗压试验,分析桩周扰动泥岩和原状泥岩的细观结构,揭示原状泥岩及桩周扰动泥岩单轴抗压强度的演变规律,并与泥岩的点荷载试验结果进行对比;同时开展桩周扰动泥岩三轴压缩试验,明确桩周扰动泥岩抗剪强度的演化特征,将试验获得的内摩擦角与由图像处理软件确定破裂面角度ψ推算出的内摩擦角进行对比。
研究结果表明:受动力打桩影响和受静载试验破坏的泥岩出现了二次损伤,与原状泥岩相比发生了结构性损伤;选用合适的SEM 图像放大倍数能够反映完整的损伤裂隙;与原状泥岩相比,桩周扰动泥岩的单轴抗压强度平均值降低28.2%,且试验得到的泥岩单轴抗压强度低于工程勘察报告的推荐值;三轴试验测得的桩周扰动泥岩抗剪强度指标c =217.2 kPa 、φ=21.6°,与图形处理软件所确定的内摩擦角φs =23.2°相近。
关键词:泥岩;动力打桩;SEM ;单轴抗压试验;三轴试验中图分类号:TU473 文献标志码:A 文章编号:1672-7207(2023)11-4523-08Laboratory test on macroscopic and mesoscopic mechanicalproperties of mudstone affected by driven pileZHANG Yamei 1, SUN Gan 1, BAI Xiaoyu 1, SANG Songkui 1, ZHANG Mingyi 1,XU Yongliang 2, MA Dongdong 2(1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;2. China Railway Construction Group Co. Ltd, Beijing 100043, China)Abstract: The scanning electron microscope(SEM) tests and laboratory uniaxial compression tests were carried收稿日期: 2023 −01 −22; 修回日期: 2023 −02 −26基金项目(Foundation item):国家自然科学基金资助项目(51778312,51708316);山东省自然科学基金重点资助项目(ZR2020KE009);山东省泰山学者项目(tsqn202306234);山东省自然科学基金青年基金资助项目(ZR2023QE107) (Projects(51778312, 51708316) supported by the National Natural Science Foundation of China; Project(ZR2020KE009) supported by the Key Program of Shandong Provincial Natural Science Foundation; Project(tsqn202306234) supported by Taishan Scholars Program of Shandong Province; Project(ZR2023QE107) supported by the Youth Program of Shandong Provincial Natural Science Foundation)通信作者:白晓宇,博士(后),教授,博士生导师,从事地基基础及城市地下工程方面的研究;E-mail :********************DOI: 10.11817/j.issn.1672-7207.2023.11.029引用格式: 张亚妹, 孙淦, 白晓宇, 等. 受动力打桩影响的泥岩宏细观力学特性室内试验研究[J]. 中南大学学报(自然科学版), 2023, 54(11): 4523−4530.Citation: ZHANG Yamei, SUN Gan, BAI Xiaoyu, et al. Laboratory test on macroscopic and mesoscopic mechanical properties of mudstone affected by driven pile[J]. Journal of Central South University(Science and Technology), 2023, 54(11): 4523−4530.第 54 卷中南大学学报(自然科学版)out on the mudstone and undisturbed mudstone around the pile affected by dynamic piling. The mesostructure ofdisturbed mudstone and undisturbed mudstone around pile was analyzed. The evolution law of uniaxial compressive strength of undisturbed mudstone and disturbed mudstone around pile was proposed and compared with the point load test results of mudstone. The evolution characteristics of the shear strength of disturbed mudstone were determined by triaxial compression test. The internal friction angle obtained by the experiment was compared with that derived from the angle ψ of fracture surface determined by image processing software. The results show that the mudstone affected by driven pile and static load test has secondary damage. Compared with the undisturbed mudstone, structural damage occurs. Proper SEM image magnification can reflect the complete damaged crack. The average uniaxial compressive strength of the disturbed mudstone around the pile is 28.2% lower than that of the undisturbed mudstone, and the uniaxial compressive strength obtained by the test is lower than the recommended value given by the engineering investigation report. The shear strength of disturbed mudstone around pile measured by triaxial test is c=217.2 kPa and φ=21.6°. The φis similar to the internal frictionangle φs=23.2° determined by the graphic processing software.Key words: mudstone; driven pile; SEM; uniaxial compression test; triaxial test动力打桩对地基土会产生扰动,也会改变地基土中的应力分布,进而影响周围岩土体的岩石强度,此现象在泥岩地基中尤为突出。
石英和锆石Ti温度计在地学中的应用及其Ti含量的微区分析技术进展
的变化很可能会影响到石英中 Ti和 Si的替换能力(Thomas
石英和锆石 Ti温度计在地学中的应用及其 Ti含量的 微区分析技术进展
牛俊龙1,2,3,4 吴石头1,2,3 杨岳衡1,2,3 张超5 王浩1,2,3 龚庆杰4 NIUJunLong1,2,3,4,WUShiTou1,2,3 ,YANGYueHeng1,2,3,ZHANGChao5,WANGHao1,2,3andGONGQingJie4
NiuJL,Wu ST,YangYH,ZhangC,WangH and GongQJ2024 Application ofTiinquartzand Tiinzircon thermometersingeoscienceandprogressofmicrobeam analysistechnologyofTicontent.ActaPetrologicaSinica,40(1):323 -337,doi:10.18654/10000569/2024.01.18
温度是地质深部过程中一个重要物理参数,地质温度计 是成因矿物学和岩石学研究的重要内容之一。Ti温度计(石 英和锆石)是近年来提出的单矿物微量元素温度计,并已经 广泛应用于多种地质过程的研究中。钛是一种金属元素,符 号是 Ti,原子序数 22,在化学元素周期表中位于第 4周期、第 IVB族,Ti原子半径为 2?,属于高场强元素(即离子电价与 半径的比值较大)。Ti在自然界中的相对丰度在所有元素中 排第十,但由于其存在分散,难以提取,故被人认为是稀有金 属。Ti温度计一般仅需要测定单一矿物的 Ti含量就可以计 算温度,简单实用,一经提出便引起了广泛注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25卷第4期岩石力学与工程学报V ol.25 No.4 2006年4月Chinese Journal of Rock Mechanics and Engineering April,2006MONITORING AND MODELING OF RESPONSES OF THE OPALINUS CLAY TO HEATINGZHANG Chunliang1,Rothfuchs Tilmann1,Wieczorek Klaus1,Jockwer Norbert1,Wileveau Yannick2(1. Gesellschaft für Anlagen und Reaktorsicherheit(GRS),Braunschweig38122,Germany;2. Agence Nationale Pour la Gestion des Déchets Radioactifs(ANDRA),B.P.9,Bure55290,France)Abstract:In order to gain a better understanding of coupled thermo-hydro-mechanical(THM) processes in indurated clays being considered in various countries as host rock for the disposal of high-level radioactive waste,a heating experiment named HE-D is being conducted on the Opalinus clay at the Mont Terri Rock Laboratory in Switzerland. An electric heater of 5.4 m length has heated the clay rock over more than one year. The maximum temperature of 100 ℃ is reached at the heater/rock interface. During the experiment,temperature,pore water pressure,gas migration,and deformation in the clay rock have been monitored by means of more than 80 instruments installed in 24 boreholes. Thermal expansion of the heated rock was observed. In the heated region at distance about 1m to the heater,the pore water pressure increased from about 1 MPa to 4 MPa. The responses of the clay rock to heating were simulated by coupled THM modeling.Preliminary results of the field measurements and the numerical calculations are presented.Key words:nuclear waste disposal;indurated clay;field test;heating;THM processes;monitoring;modelingCLC number:TL 942+.2;TU 45 Document code:A Article ID:1000–6915(2006)04–0659–11 OPALINUS硬泥岩热反应的监控与模拟张春良1,Rothfuchs Tilmann1,Wieczorek Klaus1,Jockwer Norbert1,Wileveau Yannick 2(1. 德国核安全研究中心,德国不伦瑞克 38122;2. 法国国家放射性废物管理局,B.P.9,法国布列 55290)摘要:目前,一些国家选择硬泥岩作为核废物地质深部处置的围岩。
为深入理解硬泥岩在热–水–力(THM)耦合作用下的变化特征,在瑞士的Mont Terri地下岩石实验室对Opalinus硬泥岩进行了现场加热试验。
该试验是利用一电加热器(直径= 30 cm,长度= 5.4 m)对硬泥岩进行了1 a多的加热,然后降温0.5 a。
加热器表面的最高温度达100 ℃。
在试验过程中,安装了80多个测试传感器对硬泥岩中的温度、孔隙水压、气体渗透以及变形进行了监控。
通过观察发现围岩受热膨胀且产生明显的孔隙水压升高。
距加热器约 1 m的区域,其孔隙水压从约1 MPa 增高到4 MPa。
最后对试验中观测的硬泥岩受热所产生的热–水–力全过程进行了模拟计算,并介绍了现场测量和数值计算的初步结果。
关键词:核废物处置;硬泥岩;现场试验;加热;热–水–力过程;监测;模拟Received date:2005–08–30;Revised date:2005–12–20Corresponding author:ZHANG Chunliang(1957–),male,Ph. D.,gained his M.S. degree in Mining Engineering from Liaoning Technical University in 1984,• 660 • 岩石力学与工程学报 2006年1 INTRODUCTIONIn underground repositories ,complex coupled thermo-hydro-mechanical(THM) processes will occur in the near-field and the far-field for very long periods of time due to the excavation ,backfilling/sealing and the thermal output from high-level radioactive waste (HLW). In order to gain a better understanding of coupled THM processes in indurated clays as host rock for the disposal of HLW ,a heating experiment named HE-D is being conducted by ANDRA(France),GRS(Germany) and other partners in the Opalinus clay at the Mont Terri Rock Laboratory in Switzerland [1]. The concept of the experiment is to heat the clay formation for a long period of time in the undisturbed zone by using electric heaters. Responses of the clay rock to heating are monitored by measuring temperature ,pore water pressure ,gas migration ,and deformation in the test field. The THM processes are analyzed by numerical simulations that are performed by several teams by using different codes. To provide database for the identification of material parameters associated with the constitutive models and to examine thermal effects on the hydro-mechanical behaviour of the Opalinus clay ,various laboratory tests have also been performed at GRS ′ geotechnical laboratory [2]. The main monitoring results of the temperature ,thermally-induced pore water pressure and gas pressure as well as the numerical calculations performed by GRS are presented.2 HE-D EXPERIMENTHE-D experiment was initiated in October 2003 with excavation of the HE-D niche located in the New Gallery in the Mont Terri Rock Laboratory(Fig.1). The heater borehole BHE –D0 of 30 cm in diameter was drilled with compressed air horizontally from the HE-D niche to a depth of 14 m parallel to the bedding plane in the shaly facies of the Opalinus clay at a distance of 8 m to the MI niche(Fig. 2(a)). An electric heater equipment of 5.4 m length with two elements of 2 m length each was installed at the borehole end(Fig.2(b)). Its location is far away from the excavation disturbed zone.Four months before heating ,a series of 24 boreholes of different diameters varying between 20 and 84 mm were drilled from adjacent galleries into the near-field around the heater and equipped with more than 80 instruments to measure temperature ,pore water pressure ,gas migration and deformation before ,during and after the heating periods. The experiment was prepared with excavation of the HE-D niche ,drilling of the boreholes ,instrumentations ,and starting of the measurements within the time periodFig.1 Location of HE-D experiment in the Mont Terri Rock LaboratoryHE-D experimentMotorway tunnel50 mNSecurity galleryMicrotunnel EBNew gallery 1998Niches 1996Geological map of Mont Terri Rock LaboratoryOpalinus clay(lower alenian)S h a l y f a c i e sS h a l y f a c i e sS h a l y f a c i e sS h a l y f a c i e sS h a l yf a c i e s第25卷 第4期 ZHANG Chunliang ,et al. Monitoring and Modeling of Responses of the Opalinus Clay to Heating • 661 •(a)(b)Fig.2 Overview of HE-D experiment with the heater and measurement boreholesbetween October 2003 and March 2004. The first heating phase began in April 2004 with a total electric power of 650 Watts. The second heating phase followed at a power of 1 950 Watts until March 2005. After that ,the heater power was shut down for cooling the rock. Finally ,dismantling of the experiment is scheduled for the beginning of January 2006.3 MONITORING SYSTEMSThe particular conditions of very low permeability and free water content as well as water chemistry in argillaceous formations require adequate systems for monitoring the hydraulic behaviour such as pore water pressure and permeability. Some factors may prove to be advantageous for the design of the long-term monitoring systems [3,4]:(1) Minimization of the effective volume of thetest interval.(2) Mechanical support of the interval to prevent borehole collapse.bottom ends of the intervals to allow for a complete flushing.(4) Selection of adequate materials for the equipment to prevent corrosion.Additionally ,the borehole diameter should be as small as possible to limit the damage zone caused by the borehole drilling. The small interval volume is particularly advantageous for elimination of effects of thermal expansion of the water injected in the interval. These aspects were taken into account in the development of GRS mini-packer and multi-packer systems for the measurement of pore water pressure and gas migration in clay formations at high temperature [5].3.1 GRS mini-packer systemFig.3 shows the GRS mini-packer system for the measurement of pore water pressure and temperature in the HE-D experiment. The mini-packer is constructed of non- metallic materials and has a diameter of 20 mm and a length of 55 mm. In order to simultaneously measure the temperature ,a PT100 sensor was additionally Heater 1Heater 2BHE –D0 A z =240°,D ip = 0 φ = 302 mm L = 13.94 m 13 265 m11 765 m 10 375 m8 985 m 7 485 m 3 mTubingφ = 335 mmL = 6.50 mA ′A B ′ B C ′C D ′ D E ′EF ′F D -D ′ E -E ′Heater HE-D nicheMI niche8 mboreholeHeater borehole 8 mHE-D nicheMI niche zx• 662 • 岩石力学与工程学报 2006年(a) construction of the mini-packer (b) configuration of the boreholes in the test fieldFig.3 GRS mini-packer system for measurement of pore pressure and temperatureat a distance of 3 mm to the borehole end and fixed by mechanical strain brought about by smoothly stretching a rubber-ring of 10 mm length. The interval volume of about 1 cm3 was filled with synthetic formation water through a 1/4′′(l in = 2.54 cm)-sized inflow line. The air in the interval was displaced through the outflow line. A piezo-resistive transducer through the connecting line records the water pressure in the test interval. The system applied allows a maximum pressure of 5 MPa.A total of 11 slim boreholes of 20 mm in diameter and different lengths up to 10 m were drilled successfully from the MI niche upwards and downwards perpendicular to the heater borehole BHE–D0 and equipped with the mini-packer systems. Four boreholes BHE–D8 to D11 reached the upper area at distances of 0.9–3.0 m to heater 1,four other ones BHE–D14 to D17 reached the lower area at distances of 0.8–3.0 m to heater 2,and the rest three BHE–D7,D12 and D13 are located near the MI niche and at distances of 4.0–7.0 m to the heaters. To avoid possible leakage and collapse of the borehole,resin was injected into the remaining free space. After injecting synthetic formation water into the test intervals,the measurement was started four months before start-up of heating. It is also planned to perform gas injection tests by using this mini-packer system for determination of gas entry as well as breakthrough pressures of the rock mass after the heating phase.3.2GRS multi-packer systemFor observation of possible gas migration in the Opalinus clay during the heating period,six boreholes (BHE–D18 to D23) of 76 mm in diameter and 10 m in length were drilled from the MI niche into the upper area above heater 2. Fig.4 shows the arrangement of the boreholes with regard to the heater borehole BHE–D0. The distances of the boreholes to the heater vary between 0.8 and 1.6 m and the distances between two neighbouring boreholes are equal to 0.3 m. The boreholes were equipped with GRS multi-packer systems of 4 intervals constructed with porous ceramics. The intervals have different lengths between 50 mm and 500 mm. The sealing of the boreholes,the pressure transducers,and the data acquisition system applied are the same as those of the GRS mini-packer systems mentioned above.V≈ 1 cm3 M1 nicheHE-D Niche M1 niche第25卷 第4期 ZHANG Chunliang ,et al. Monitoring and Modeling of Responses of the Opalinus Clay to Heating • 663 •A –A sectionFig.4 GRS multi-packer system for measurement of gaspressure and migration in the test fieldAfter the installation of the instruments in the boreholes ,the packers were inflated by water to about 3.5 MPa. Two intervals BHE –D18P3 and D21P3 positioned in the mid-length of the measuring sectionwere filled with nitrogen gas at a pressure of 0.9 MPa and then shut-in ,while the other 28 intervals were not filled ,i.e. the initial gas pressure in them is atmospheric. Changes of the gas pressures in the injection and extraction intervals were monitored.4 MEASUREMENT RESULTS4.1 TemperatureFig.5 presents the evolution of the temperature recorded at some selected points in the test field before and during the heating phases. The initial temperature in the rock was measured to be about 15 ℃. The first heating with the power supply of 650 Watts generated an increase of the temperature up to 43 ℃ at the heater/rock interface over the first 3 months. The following heating with the power supply of 1 950 Watts caused a maximum temperature of 100 ℃ at the interface over other 8 months. The gradual heat transfer away from the heater resulted in a build-up of a temperature gradient. The maximum temperatures in the area at the distances of 0.8–1.4 m to the heater ranged around 23 ℃–25 ℃ during the first heating phase and 45 ℃–51 ℃ during the second heating phase ,respectively. In the far-field at distances ofFig.5 Evolution of temperature in the test field before and during the heating periodTime/dT e m p e r a t u r e /℃injectionintervalsInitial phase• 664 • 岩石力学与工程学报 2006年2.9–3.5 m to the heater ,the maximum temperatures were recorded to be 15 ℃–17 ℃ and 22 ℃–28 ℃ during both heating phases. Due to the short interruption of the power supply ,the temperature at the heater/rock interface reduced significantly ,while in the rock ,no or only slight changes of the tempera- tures were observed. From this figure ,it can also be seen that the distribution and evolution of the temperature in the test field are very well modeled(see Section 5).4.2 Pore water pressureCorrelated with the temperature increase ,the pore water pressure in the test field near the heater increased significantly. Fig.6 illustrates the evolution of the pore water pressure measured at some selected points in different distances to the heater. The initial pore water pressures were measured between 0.7 and 1.2 MPa before the drilling of the heater borehole. The subsequent borehole drilling led to a slight reduction of the pore water pressures in the near-field at distances of 0.8–1.4 m to the heater. In the far-field at a distance of 2.9 m ,no response of the pore water pressure to the drilling was observed. The first heating caused a sudden pressure increase up to 2.4 MPa in the near-field. After the stabilization of the elevated pore water pressures ,the second heating phase resulted in a rapid increase in the pore water pressure up to 4.0 MPa at points BHE –D3 and D16 at distances of 1.1–1.4 m to the heater. After reaching the maximum levels ,the pore water pressures dropped down slowly. Due to the failure of the heater packer system ,the supporting stress applied on the borehole wall was not kept. This resulted in a sharp drop of the pore water pressures at positions BHE –D14 and D15 in the weak area near the bedding plane. The re-inflation of the heater packer led to a recovery of the pressures at both points. However ,the other locations did not exhibit any response of the pore water pressure to the packer failure. Whereas the pressures in the near-field decreased gradually with flow of the thermally- mobilized pore water towards the less heated region ,the pressure at the far point BHE –D17(r = 2.90 m) rose steadily to a high level ,even higher than the pore water pressures in the more heated area. Because of the interruption of the power supply during the second heating phase ,significant responses of the pore water pressures at all the points were recorded. After a short time ,the pressures rose again to the previous levels and then reduced in the same ways as before. The gradual evolution of the pore water pressuresFig.6 Responses of the pore water pressures to heatingDateP o r e w a t e r p r e s s u r e /M P a2003–12–012004–01–312004–04–012004–06–012004–08–012004–10–012004–12–012005–01–312005–04–01Bedding (40°) BHE-D14 (0.77m)BHE-D15 (0.93m)BHE-D17 (2.91m)BHE-D16 (1.38m) BHE-D3 (1.07m)HeaterHeater BHE –D3(r = 1.07 m)BHE –D17(r = 2.91 m)BHE –D16(r = 1.38 m)BHE –D15 (r = 0.93 m) BHE –D14(r = 0.77 m) Bedding(40°) Heating1 950 W第25卷 第4期 ZHANG Chunliang ,et al. Monitoring and Modeling of Responses of the Opalinus Clay to Heating • 665 •indicates that the temperature increase to 50 ℃ did not generate any macro-fractures in the clay rock. 4.3 Gas pressureFig.7 shows the pressure recorded in test intervals BHE –D18,D19 and D20 positioned at distances of 0.8–1.1 m above heater 2. The injection interval BHE –D18 was initially filled with nitrogen gas at a pressure of 0.9 MPa and then shut-in ,while the initial gas state in the other two extraction intervals was atmospheric. Before heating ,the gas pressure in all the intervals remained constant. The first heating caused only negligible pressure increases in the intervals. However ,the second heating generated significant pressure increases. The pressures in the extraction intervals in which the initial pressures were atmospheric increased more rapidly to higher levels than the pressure in the gas-injected intervals. The gas pressure in the intervals was measured to be 1.9–2.1 MPa. The exchange of the pressure transducers of the packers in November 2004 led the packers to be unloaded to zero and re-inflated to 4.0 MPa. Correspondingly ,the pressures in all the intervals fell down shortly and rose again to the previous levels. The subsequent interruption of the power supply led also to significant changes of the pressure. Such a high pressure was not expectedfor the gas-filled and non-filled intervals. To find reasons for the high pressure ,the two extraction intervals BHE –D22P1 and D23P1 in the far-field were inspected in November 2004. Consequently ,it was observed that the intervals were filled with water. The amounts of the water collected from both intervals were 0.23 and 0.36 liters ,respectively. From this fact it can be concluded that the recorded pressures were in fact controlled by intrusion of the thermally mobilized formation water. The intruded water compressed the gas in the intervals. Because the gas and water pressure in the intervals are equal ,it was impossible for the gas to enter the saturated pores in the rock. Additionally ,the steady increase of the pressure indicates that the clay rock around the heater was not damaged due to the heating up to 100 ℃.5 MODELINGModeling work included scoping calculations for the design of the experiment and simulations for interpretation of the observed THM processes. The coupled THM calculations were performed by using CODE-BRIGHT developed by the Technical University of Catalonia in Barcelona [6],assuming the OpalinusFig.7 Measurements of gas pressure in the test intervals before and during the heating period30cm80 c mHeater 230 c mBHE -D23B HE -D21B HE -D20B HE -D18B HE -D22D19Interval ary 3r Injection intervalE xtraction interval DateG a s p r e s s u r e /M P a2004–02–01 2004–04–02 2004–06–022004–08–022004–10–022004–12–02 2005–02–01Extraction intervalBHE –D2230 cmBHE –D23BHE –D21BHE –D18Interval array 3 80 c m 20 c mBHE –D19Heater 2Heating phase 21 950 WExtraction intervalBHE –D20Injection interval• 666 • 岩石力学与工程学报 2006年clay as a homogeneous and isotropic porous medium. A set of balance equations of energy ,solid mass ,water mass ,air mass and stress equilibrium were solved. The major assumptions made are :(1) Heat transport includes conduction(Fourier ′s law) through the porous medium ,advection of liquid water and vapor flow.(2) Water transport includes two parts of liquid water advection dominated by Darcy ′s law ,vapor diffusion in air(Fick ′s law),and the liquid/gas phase changes are represented by psychrometric law.(3) Flow of dry air due to air pressure gradient (Darcy ′s law) and dissolved air in the liquid phase(Henry ′s law) are considered.(4) A thermo-elasto-plastic model was applied for the description of the mechanical behaviour of the indurated clay with the main features of thermal expansion and consolidation ,swelling and shrinking ,and so on.5.1 Prediction of HM conditionsTo ensure the heaters to be positioned in an undisturbed zone ,the hydro-mechanical processes previously developed in the potential test field were blindly predicted by the 2D coupled HM modeling ,considering the excavation and ventilation of the MI niche. Fig.8 shows the prediction of the pore water pressure distribution along the radial distance to the niche in comparison with the measurements around several drifts in the Mont Terri Rock Laboratory [3,4].Generally ,the pore water pressure in the less or undisturbed far-field is higher than in the disturbed zone. Because of the complicated geological and geohydraulic boundary conditions ,the inhomogeneity of the rock mass ,the drift excavation techniques applied and ventilation durations ,the pore pressure distribution vary in a large scatter ,very much depending on locations. From the data it is difficult to identify a clear pore water pressure distribution around a drift. The model represents more or less the mean pore water pressure distribution around the drifts. The pore water pressures measured in the HE-D test field (BHE –D03,D08–17) before heating are somewhat lower than the model. Additionally ,the negative pore water pressure calculated indicates that the surrounding rock with an extension to about 5 m might be de-saturated. Taking into account the above results and the geological conditions ,it was decided for the heater to be installed in the saturated area at a distanceFig.8 Distribution of pore water pressure around drifts in the Mont Terri Rock LaboratoryDistance from tunnel/mP o r e w a t e r p r e s s u r e /M P a第25卷 第4期 ZHANG Chunliang ,et al. Monitoring and Modeling of Responses of the Opalinus Clay to Heating • 667 •of 8 m from the MI niche.5.2 Simulation of THM processesThe observed THM processes in the clay rock during the experiment were simulated by coupled THM calculations ,considering a simple 2D axi-symmetric model for a rock mass of 25 m length and 8 m radius around the heater. The test procedure including the drilling of the heater borehole ,both heating phases ,the failure of the heater packer and the interruption of the power supply was simulated. For most of the measuring points ,the temperature ,thermally-induced over pore pressure and deformation are reasonably modeled. Some typical examples of the modeling results are shown below.Fig.9 illustrates the modeling results for point BHE –D16 at a distance of 1.4 m to the heater. It is obvious that the calculated temperature and thermally- induced pore water pressure agree well with the measurements. In addition ,the model also reveals well the responses of the temperature and the pore water pressure to the short interruption of the power supply. Fig.10 shows the distribution of the temperature and the pore water pressure around the heaters at 135 days after the second heating phase. Heating generates atemperature gradient with the maximum of about 100 ℃ at the heater surface and the ambient value of 15 ℃ in the area of 6 m far away to the heater. The thermally induced pore water over pressure concentrated in the near field around the heater.The displacements at different locations in borehole BHE –D06 drilled horizontally from the MI-niche perpendicular to the heater were measured by the project partner DBE [7] and modeled by GRS. Fig.11 presents the measured and calculated relative displacements between two points DP05 and DP03 near the heater and the temperature at point TM07 between them. Each heating generated a relative compression of the area between two measuring points for a short time and then ,the clay expanded gradually with the temperature increase. The thermal expansion resulted mainly from the pore water expansion being much higher than that of the solid grains. Generally ,the deformation induced by borehole drilling and heating is reasonably represented by the model. The mechanical model in which time-dependent deformation has not been included yet might cause the differences between the calculated and measured curves.Fig.9 Thermally-induced pore water pressure calculated and measured in the test fieldP o r e w a t e r p r e s s u r e /M P aT e m p e r a t u r e /℃Measuring pointBHE –D16 (r = 1.38 m)• 668 • 岩石力学与工程学报 2006年(a) temperature(b) pore water pressureFig.10 Distribution of temperature and thermally induced pore water pressure around the heatersFig.11 Thermally-induced deformation calculated and measured in the test field6 CONCLUSIONSIn the HE-D experiment being conducted in theOpalinus clay at the Mont Terri Rock Laboratory ,the responses of the clay rock to heating were monitored by measuring temperature ,pore water pressure ,gas migration and deformation by more than 80 instrumentsTime/dP o r e w a t e r p r e s s u r e /M P aT e m p e r a t u r e /℃第25卷第4期 ZHANG Chunliang,et al. Monitoring and Modeling of Responses of the Opalinus Clay to Heating • 669 •and modeled by coupled THM calculations. From the preliminary results,the following conclusions are drawn:(1) The mini- and multi-packer systems newly developed by GRS are suitable for the long-term observation of the hydraulic processes in clay formations of very low permeability.(2) The heating with the power supply of 650 Watts for 3 months and 1 950 Watts for 8 months generated an extension of the temperature field around the heater from the initial value of 15 ℃ to 100 ℃at the heater/rock interface and 22 ℃at a distance of 3.6 m to the heater. Correlated with the temperature increase,the pore water pressure in the test field increased from the initial values of 1.0 MPa to 4.0 MPa. The intrusion of the water into the gas testing intervals compressed the gas to high pressures up to 2.0 MPa. The gradual evolution and the high levels of the pore water pressure and gas pressure indicate that no macro-fractures were thermally generated in the clay rock during the heating phases up to 100 ℃.(3) The observed responses of the clay rock to heating are reasonably represented by the THM modeling. The evolution and distribution of the temperature,pore water pressure and deformation calculated are in good agreement with the measurements,although the model was simplified. ACKNOWLEDGEMENTS The GRS work was funded by the German Federal Ministry of Economics and Labour(BMWA) under contract 02E9773. The authors would like to thank for this support. The contributions of all the project partners to the successful conduction of the HE-D experiment are gratefully acknowledged.References(参考文献):[1] Wileveau Y,Rothfuchs T. HE-D experiment:test plan. Mont TerriProject(Technical Note,2004–20)[R]. [s. l. ]:[s. n. ],2003.[2] Zhang C L,Rothfuchs T,Su K,et al. Experimental study on thethermo-hydro-mechanical behaviour of indurated clays[A]. In:the 2ndInternational Meeting of Clays in Natural and Engineered Barriers forRadioactive Waste Confinement[C]. Tours:[s. n. ],2005. 14–18. [3] Thury M,Bossart P. Mont Terri Rock Laboratory,results of thehydrogeological,geochemical and geotechnical experiments performed in1996 and 1997[R]. Bern:Geological Berichte Nr. 23,1999.[4] Heitzmann P. Mont Terri Project—hydrogeological synthesis,osmoticflow,berichte des BWG,serie geologie,No. 6[R]. Bern:[s. n. ],2004.[5] Kull H,Jockwer N,Zhang C L,et al. Measurement of thermally-induced pore water pressure increase and gas migration in the Opalinus clay at Mont Terri[A]. In:the 2nd International Meeting ofClays in Natural and Engineered Barriers for Radioactive Waste Confinement[C]. Tours:[s. n. ],2005. 163–164.[6] UPC CODE-BRIGHT,A 3D program for thermo-hydro-mechanicalanalysis in geological media[R]. Barcelona:[s. n. ],2002.[7] Jobmann M,Polster M. The response of Opalinus clay due to heating:a combined analysis of in-situ measurements,laboratory investigationsand numerical calculations[A]. In:the 2nd International Meeting of Clays in Natural and Engineered Barriers for Radioactive Waste Confinement[C]. Tours:[s. n. ],2005. 159–160.。