2015年秋河南省漯河市临颍县新人教版八年级数学上册教案13.2.1画轴对称图形.doc
人教版八年级数学上册13.2.1《画轴对称图形》教案
人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
新人教版数学八年级上册教案:13.2 画轴对称图形
课题:§13.2.1 画轴对称图形教学目标(一)〔知识与技能〕1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)〔过程与方法〕经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.(三)〔情感、态度与价值观〕1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学过程一、提出问题,创设情境[师]上节课我们学习了轴对称变换的概念,•知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的.•下面同学们来仔细观察一个图案.(小黑板展示)以虚线为对称轴画出图的另一半:[生甲]这个图案(1)左右两边应该完全相同,画出的整个图案的形状应该是个脸.[生乙]图案(2)画出另一半后应该是一座小房子.[师]大家能把这两个图案的另一半画出来吗?[师]我们利用方格纸来试着画一画.……[师]画好了吧?我们今天就来学习作出简单平面图形经过轴对称后的图形.二、导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:•对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L•的对应点A′,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.……[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢?•[例1]如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.[师]同学们讨论一下.……[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了.[师]好,下面大家一起动手做.作法:如图(2).(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线L的对称点;(2)类似地,作出点B、C关于直线L的对称点B′、C′;(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.[师]大家做完后,•我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形(1)上找三个点,在图形(2)中找一个点就可以,如下图:[师]现在我们来做练习.Ⅲ.随堂练习(一)课本P41练习1、2.1.如图,把下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图(略)2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,•看看哪些部分能够重合,哪些部分不能重合.答案:本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.(二)阅读课本P67~P68,然后小结.三、课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.四、课后作业(一)课本P71习题13.2的1、5、8、9题.(二)预习内容P68~P70.五、活动与探究[探究1]如图(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.•泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图(2),设B′是B的对称点,•将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>AB′,•而AB′=AC+CB′=AC+CB,则有AC+CB<AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短备课资料参考练习1.已知△ABC,过点A作直线L.求作:△A′B′C′使它与△ABC关于L对称.作法:(1)作点C关于直线L的对称点C′;(2)作点B关于直线L的对称点B′;(3)点A在L上,故点A的对称点A′与A重合;(4)连结A′B′、B′C′、C′A′.则△A′B′C′就是所求作的三角形.2.已知a⊥b,a、b相交于点O,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).作法:(1)过点P作PC⊥a,并延长PC到M,使CM=PC.(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.则点M、N就是点P关于a、b的对称点.证明:∵点P与点M关于直线a对称,∴直线a是线段PM的中垂线.∴OP=OM.同理可证:OP=ON.∴OM=ON.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,•要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略.六、教学反思:这节课是北师版小学数学三年级下册空间与图形中的学习内容,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础.这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主.反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点.学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦.课题:§13.2.3 用坐标表示轴对称教学目标(一)〔知识与技能〕1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x 轴、y•轴对称的图形.(二)〔过程与方法〕1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识.2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)〔情感、态度与价值观〕在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点:用坐标表示轴对称.教学方法:探索发现法.教具准备:坐标纸.学具准备:坐标纸.教学过程一、提出问题,创设情境[活动1]1.如图:(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?设计意图:通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,•使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.师生行为:[生]1.(1)观察可发现图中的两个圆脸关于y轴对称.(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),•嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A•到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1).2.师生共同完成[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.[师]A(2,2)与A1(-2,2)关于y轴对称,B(4,2)与B1(-4,2)关于y轴对称,C(4,4)与C(-4,4)关于y轴对称,D(2,4)与D1(-2,4)关于y轴对称.那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,B(4,2)与B2(4,-2)关于x轴对称,C(4,4)与C2(4,-4)关于x轴对称,D(2,4)与D2(2,-4)关于x轴对称.那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.二、导入新课[活动2]在如图所示的平面坐标系中,画出下C列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,,1),E(4,0).-5),D(12关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).设计意图:通过学生动手操作,分别作A,B,C,D,E关于x轴、y轴的对称点A′,B′,C′,D′,E′;A″,B″,C″,D″,E″,并且求出它们的坐标,观察,归纳它们坐标之间的关系.师生行为:教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律.[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C (-6,-5),D(1,1),E(4,0)点.2我们先在坐标系中作出A点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,•M点的坐标为(2,0).在AM的延长线上截A′M=AM,则A′就是A点关于x轴的对称点,所以A′在第一象限,因为A′M=AM,所以A′的纵坐标为3,因为AA′⊥x 轴,即AA′∥y轴,•所以A′的横坐标为2,即A′的坐标为(2,3).同理可求得B,C,D,E关于x轴的对称点B′,C′,D′,E′的坐标分别为B′(-1,•-2),C′(-6,5),D′(1,-1),E′(4,20).列表如下:续表[师]观察上表每对对称点坐标之间的关系,你发现什么规律?[生]每对对称点的横坐标相同,纵坐标互为相反数.[师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.[生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A 关于y轴的对称点.A″在第三象限,AA″⊥y轴,•且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(-1,1),E″(-4,0).列表如下:续表[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.例2(教材P70)三、随堂练习(教科书P70练习)四、课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.五、课后作业教科书习题13.2─2、3、4题,第6题、第7题(学有余力的同学做).六、教学反思:本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本节课采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,“请你想办法检验你所发现的规律的正确性,说说你是如何检验的”,目的在于培养学生形成良好的科学研究方法,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.然后通过把对称轴是坐标轴变成了直线x=3和y=-4的变式探究,使学生再次体验数形结合的思想,并拓展到直线x=m和y=n,使学生学会通过寻找线段之间的关系来求点的坐标,形成方法.最后一个练习中的图案匠心独具设计成一只美丽的蝴蝶,能较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用.。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计一. 教材分析人教版八年级数学上册第十三章《轴对称》是学生在学习了平面几何基本概念和性质的基础上进行的一章内容。
本章主要让学生掌握轴对称图形的概念,性质,以及如何画出各种轴对称图形。
13.2节《画轴对称图形》是本章的第二节内容,主要让学生学会如何通过对称轴画出各种轴对称图形,培养学生的动手操作能力和空间想象能力。
二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对一些基本的几何图形有了一定的了解。
但学生在画图方面可能还有一定的困难,特别是在画对称轴和轴对称图形时。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步掌握画图的方法。
三. 教学目标1.让学生理解轴对称图形的概念,并能找出生活中的轴对称图形。
2.让学生掌握画轴对称图形的方法,提高学生的动手操作能力和空间想象能力。
3.培养学生观察、思考、交流的能力,提高学生的合作意识。
四. 教学重难点1.重点:让学生掌握轴对称图形的概念,以及画轴对称图形的方法。
2.难点:如何引导学生找出生活中的轴对称图形,以及如何让学生独立画出各种轴对称图形。
五. 教学方法采用“引导法”、“实例法”、“合作学习法”等教学方法。
教师通过引导,让学生主动探索轴对称图形的性质,找出生活中的轴对称图形。
同时,采用合作学习的方式,让学生在小组内交流讨论,共同完成画轴对称图形的任务。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备几何画图工具,如直尺、圆规等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形实例,如剪纸、图片等,引导学生观察并思考:这些图形有什么共同特点?让学生初步感受轴对称图形的性质。
2.呈现(10分钟)教师通过课件呈现轴对称图形的定义,让学生明确轴对称图形的概念。
同时,教师通过讲解,让学生了解轴对称图形的性质,如对称轴的性质,对称点的性质等。
人教版八年级上册数学 13.2 第1课时 画轴对称图形教案1
13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB =60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A 、B 、C 关于直线l 的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.。
人教版八年级数学上册教学设计13.2 画轴对称图形
人教版八年级数学上册教学设计13.2 画轴对称图形一. 教材分析人教版八年级数学上册“画轴对称图形”这一节,主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这个概念解决一些实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,接着引导学生通过观察、操作、猜想、推理等过程,体会轴对称图形的特征,最后通过一些练习题,巩固学生对知识的理解和运用。
二. 学情分析学生在七年级时已经学习了图形的变换,对图形的平移、旋转等概念有了一定的了解。
但轴对称图形与这些变换有所不同,它需要学生能够从图形中抽象出对称轴,并理解对称轴是将图形分成两个完全相同的部分。
因此,在教学过程中,需要关注学生对抽象概念的理解,以及他们能否将理论知识应用到实际问题中。
三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的特征。
2.学会寻找对称轴,并能运用轴对称图形的知识解决一些实际问题。
3.培养学生的观察能力、操作能力以及抽象思维能力。
四. 教学重难点1.重点:轴对称图形的概念,对称轴的寻找。
2.难点:理解轴对称图形的特征,将理论知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,让学生在解决问题的过程中,逐渐理解并掌握轴对称图形的知识。
同时,运用观察、操作、猜想、推理等方法,引导学生主动探索,提高他们的抽象思维能力。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备一些练习题,包括基础题和拓展题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形实例,如剪纸、图片等,让学生观察并说出它们的特点。
引导学生发现这些图形都具有对称性,从而引入本节课的主题——轴对称图形。
2.呈现(10分钟)讲解轴对称图形的概念,让学生理解什么是对称轴,如何判断一个图形是否是轴对称图形。
通过一些具体例子,让学生学会寻找对称轴,并理解对称轴是将图形分成两个完全相同的部分。
新人教版八年级数学上册教案:13.2画轴对称图形
5.培养学生数学抽象和数学建模素养,使学生能够从实际情境中抽象出数学问题,并运用轴对称知识进行模型构建。
三、教学难点与重点
1.教学重点
-理解轴对称图形的定义:轴对称图形是指可以通过某条直线(对称轴)将图形分为两部分,其中一部分经过旋转180度后与另一部分完全重合的图形。
-掌握轴对称的性质:包括对称轴的识别、对称点、线、面的性质等。
-学会绘制轴对称图形:能够根据给定图形,准确地找到对称轴并绘制出其轴对称图形。
举例:如在教学过程中,通过展示和分析等腰三角形、矩形、正方形等常见轴对称图形,强调对称轴的寻找和图形翻转的规律。
2.教学难点
-识别复杂图形的对称轴:对于形状复杂的图形,学生可能难以迅速准确地找到其对称轴。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称图形的基本概念。轴对称图形是指可以通过某条直线(对称轴)将图形分为两部分,其中一部分经过旋转180度后与另一部分完全重合的图形。它在艺术、建筑、设计等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以等腰三角形为例,分析其对称轴、对称点等性质,并展示如何绘制其轴对称图形。
(3)对于绘制具有挑战性的轴对称图形,可以采取以下措施:
-分步骤指导,将复杂图形分解为简单的部分,逐步引导学生完成绘制;
-提供直观的工具,如透明纸、直尺等,帮助学生准确绘制对称图形;
-创设挑战性的任务,鼓励学生尝试不同的方法,培养他们的创新精神和解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
-利用对称轴绘制给定图形的轴对称图形;
-探索轴对称在实际应用中的例子。
13.2.1《画轴对称图形》教案-河南省漯河市舞阳县人教版八年级数学上册
13.2.1《画轴对称图形》【课标内容】通过观察和动手操作认识轴对称图形,能辨别那些图形是轴对称图形,在动手操作的过程中培养学生的观察能力、动手操作能力和创新思维能力.【教材分析】本节教材在学习了轴对称的基础上学习的,在学习本节课之前,学生已经初步知道了轴对称特点,大部分同学对轴对称掌握的比较好,学生已具备了学习本节课的部分知识和思想准备,学习这部分内容,对学习等腰三角等的知识奠定了基础,是进一步研究等腰三角形的工具性内容,因此本节课在教材中具有承上启下的作用.【学情分析】鉴于教材特点及初二学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意利用图片的不同颜色的对比来启发学生,运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识.【教学目标】1.理解解线段的垂直平分线的性质性质定理及逆定理;2. 要求学生在学习中运用发现法;让学生通过探索活动来发现结论,经历知识的再发现过程;【教学重点】引导学生探索并掌握轴对称图形的基本特点、简单轴对称图形的画法.【教学难点】用轴对称知识解决相应的数学问题【教学方法】五步教学法演示法、直观教学法【课前准备】三角板学案多媒体课件【课时设置】二课时【教学过程】第一课时一、预学自检互助点拨(阅读教材P67-68,完成以下问题)1.知识回顾(1)什么是轴对称图形?什么叫两个图形成轴对称?(2)轴对称主要有哪些性质?2﹒操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?3﹒归纳:结论 1.对称轴的方向和位置发生变化时,得到的图形的方向和位置也发生变化.结论2.由一个图形可以得到它关于对称轴的对称图形,这两个图形的形状大小完全相同活动1操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;(2)新图形上一个点,都是原图形上的某一点关于直线l的对称点;(3)连接任意一对对应点的线段被对称轴垂直平分.活动2二、合作互学探究新知1﹒画出点A关于 l 的对称点A’:( 1 )过点A作对称轴l 的垂线,垂足为B;( 2 )延长A B 至A’,使得BA’= A B.( 3 )点 A’就是点A关于 l 的对称点.如图(1),已知△ABC l 对称的图形吗?图(1) 图(2) 学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接A O 并延长到A ′,使A ′O=A O ,则点A ′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些B'l l特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、自我检测成果展示1.完成课后68页练习1﹒ 2题2.用两个圆、两个三角形、两条平行线段可以构造出许多独特而有意义的轴对称图形(如下图),请你也仿照构思一个图案,别忘了加上一两句贴切的解说词哦.四、应用提升挑战自我1.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?五、经验总结反思收获本节课你学到了什么?写出来【设计意图】师引导学生归纳总结,旨在让学生学会归纳总结,梳理知识,提高认识.【板书设计】13.2作轴对称图形(一)一、轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.二、利用轴对称变换设计图案【备课反思】这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主.反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点吗,学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦.。
人教版-数学-八年级上册《13.2.1作轴对称图形(2)》教案
年 级 八年级 课题 作轴对称图形(2) 课型 新授教 学 媒 体 多 媒 体教 学 目 标知识技 能1. 掌握直线同侧两点到线上一点距离和最小问题.2. 进一步熟练求作点的对称点,线段的对称线段.过程方 法通过对轴对称作图学习体会轴对称在现实生活中的应用。
通过利用轴对称变换把同侧点问题转化为异侧点问题体会数学的转化思想。
.情感态 度通过対异侧点问题的探究活动,培养学生的探究问题、分析问题、解决问题的能力。
教学重点利用轴对称解决实际问题。
教学难点确定最短距离的点及理论说明。
教 学 过 程 设 计教 学 程 序 及 教 学 内 容师生行为设计意图 一、情境引入前几课我们研究了轴对称的有关知识,这节课我们研究用轴对称解决实际问题。
二、探究新知 探究:1.如图1,小区A 、B 分居公路l 两侧,现要在公路旁建一个液化气站C ,要求到两个小区的距离之和最短,问应建在什么地方?请作出点C .2.如图2,要在燃气管道l 上修建一个泵站C ,分别向同侧两镇A ,B 供气,问泵站修在管道的什么地方,可使所用的输气管线最短?为什么? 3.对于问题2,我们不妨随意假设建在P 处,受第1题启发,可考虑利用轴对称把A ,P 的距离转化为P A ,'的距离,如图3,这样到两镇的距离之和就等于PB P A +',你还能使这个距离之和比图中再小些吗?老师引出本节课的课题,并板书课题。
学生自己画图,确定点C ,说出理由。
教师引导学生把问题2转化为问题1来解决。
学生通过观察图3发现老师给出的点P 不满足距离和最短,合作交流重新画图。
并说明理由。
情境引入简单直奔主题,使学生非常清楚这节课的重点内容。
为异侧点问题作铺垫,分散其难度,便于学生接受。
问题3的设计目的把问题2的难点继续分散,便于学生更容易理解。
学生通过观察、思考、合作交流,鼓励学生善于思考、勇于发现,大胆尝试,培养合作意识。
归纳:1. 求直线上一点到同侧两点的距离和最小问题,一般是通过作关于直线的对称点,转化为异侧两点距离和最小问题,之后根据两点之间线段最短解决问题.作法:1. 作点A关于直线l的对称点A'2. 连结BA',交直线l于点C,点C是所求位置.2. 距离和最小的证明,是一种较特殊的证明方法.通常是任选一个异于所求的点,再算距离和,与“最小的距离和”进行比较,因为选点具有任意性,所以结论具有一般性.【例题】如图,AD为等腰ABC∆底边上的高,E为AC 上一点,在AD求一点F,使CFEF+最小.【解析】等腰三角形是轴对称图形,直线AD为对称轴。
初二数学八年级上册《13.2 第1课时 画轴对称图形》教案
(1)由一个平面图形可以得到它关于一条直线 成轴对称的图形,这个图形与原图形
的、完全相同;
(2)新图形上的每一点,都是原图形上的某一点关于直线 的点;
(3)连接任意一对对应点的线段被对称轴。
探究(二)
1、请同学们尝试解决以下问题;
如图(1),实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形。
解题反思:
四、双基检测
1、把下列图形补成关于 对称的图形。
2、小明在平面镜中看到身后墙上钟表显示的时间是12:15,这时的实际时间应该是。
五、学习反思
请你对照学习目标,谈一下这节课的收获及困惑。
问题:(1)你可以通过什么方法来验证你画的是否正确?
(2)和其他同学比较一下,你的方法是最简单的吗?
2、如图(2),已知点A和直线 ,试画出点A关于直线 的对称点A′。
A·
3、如图(3),已知点A和直线 ,试画出线段AB关于直线 的对称图形。
Bቤተ መጻሕፍቲ ባይዱ
A·
4、例题:如图(4)已知△ABC,直线 ,画出△ABC关于直线 的对称图形。
13.2画轴对称图形
第1课时画轴对称图形
一、学习目标
1、认识轴对称图形,探索并了解它的基本性质;
2、能够按要求作出简单平面图形经过一次对称后的图形;
二、温故知新
1、什么是轴对称图形?
2、请画出下列图形的对称轴。
三、自主探究合作展示
探究(一)
自学:认真阅读教材67页图13.2-1。
1、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?
人教版-数学-八年级上册《13.2.1作轴对称图形(1)》教案
年 级 八年级 课题 作轴对称图形(1) 课型 新授教 学 媒 体 多 媒 体教 学 目 标知识技 能1.会作出图形经过一、两次轴对称的图形.2.体会成轴对称图形全等,对称线段相等.3.体会对称点所连线段被对称轴垂直平分.4.会利用作轴对称图形进行简单图案设计. 过程方 法经历对称的变换的画图、观察、交流等活动理解其基本性质。
情感态 度通过利用轴对称作图和图案设计,发展实践能力。
教学重点利用轴对称作图 教学难点利用对称变换设计图案教 学 过 程 设 计教 学 程 序 及 教 学 内 容师生行为 设计意图 一、情境引入 准备两张半透明的纸.1.在纸的左边部分,画出左手印,把这张纸左右对折后描图,打开对折的纸进行观察,这两个手印成轴对称吗?你知道对称轴是什么吗?2.在纸上画一个ABC ∆,在旁边任意画一条直线l ,分别作出顶点C B A ,,到直线l 的垂线段,然后将纸沿直线l 对折,描出ABC ∆及顶点到l 的垂线段,打开对折的纸进行观察。
你能从中悟出怎样作一个图形关于某直线对称的对称图形吗?二、探究新知探究:1. 已知点A 和直线l ,作点A 关于直线l 的对称点。
作法:过点A 作直线l 的垂线,垂足为O ,在垂线上截取OA A O =',点A '即为点A 关于l 的对称点.2. 已知线段AB 和直线l ,作线段AB 关于直线l 的对称线段。
作法:分别作出端点A 、B 的对称点B A '',,连结B A ''.学生按要求画图,观察所得图形,再回答问题。
老师引出本节课的课题,并板书课题。
学生按要求利用轴对称的性质自己画图,试着用语言描述作法。
培养学生的动手能力,让学生进一步体会轴对称的性质,为本节课研究作轴对称图形铺垫。
培养学生的动手能力,进一步体会轴对称的性质。
归纳作轴对称图形的方法:几何图形均可看作由点组成,从理论上只要分别作出所有点关于对称轴的对称点,就可得到轴对称图形.但实际操作上,只须作出图形中的一些特殊点(如线段端点,多边形顶点)的对称点,再依样连接即可.用多媒体展示生活中经过多次轴对称的图案。
新人教八年级数学上册:13.2.1 画轴对称图形导学案
新人教八年级数学上册:13.2.1 画轴对称图形导学案流程具体内容方法指导一、目标导学学习目标:1.能按照要求作出简单平面图形经过一次或两次轴对称后的图形;2.能利用轴对称进行图案设计.二、自主学习轴对称变换的特征:由一个平面图形可以得到它关于一条直线 l 对称的图形,这个图形与原图形的形状、大小完全一样.新图形上的每一点,都是原图形上的某一点关于直线l的对称点.连接任意一对对应点的线段被对称轴垂直平分.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.在由小正方形围成的L形图中,请你用三种方法分别添画一个小正方形,使它成为轴对称图形.方法指导(1)温馨提示:(用时(2)分钟)三、问题探究已知一个图形和一条直线,如何作出与这个图形关于这条直线对称的图形呢?例1 已知点A和直线l,以直线l 为对称轴,作点A经轴对称变换后所得的图形A′例2已知线段AB和直线l,以直线l为对称轴,作线段AB经轴对称变换后所得的图形A′B′.例3 已知三角形ABC和直线l,作出三角形ABC关于直线l对称的图形.见课本67页例1方法指导温馨提示:(用时分钟)四、反馈提升已知四边形ABCD和直线l,作出与四边形ABCD关于直线l对称的图形.方法指导温馨提示:(用时分——钟)五、达标运用水泵站修在什么地方?如图,要在河边修建一个水泵站,分别向刘村、张庄送水,思考:水泵站修在河边什么地方,可使所用的水管最短?方法指导温馨提示:C限时分钟总结与反思【知识梳理】合作交流:【收获与反思】刘村张庄AB。
人教版八年级数学上册13.画轴对称图形教案
任务2:已知△ABC,直线L,画出△ABC关于直线L对称的图形。
尝试归纳:
任何图形都可以看作由点组成。
对于某些图形只要画出图形中的一些特殊点的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
三、课堂练习:
1.教材68页练习1书(做在书上)
2.如图所示,钱塘江的一侧有A,B两个村庄现要在江边建造一个水厂C 把水送到这两个村庄,(1)要使供水管到两村庄的距离相等,水厂C应建在何处.(2)要使供水管路线最短,水厂C应建在何处.
四、课堂小结:
我们学习了如何作已知图形关于给定直线对称的图形的方法:。
人教版八年级数学上册 教案:13.2 第1课时 画轴对称图形2【精品】
13.2 画轴对称图形第1课时画轴对称图形教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是作简单平面图形经过轴对称后的图形.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.课时小结本节课我们主要学习了如何通过轴对称变换作出一个图形的轴对称图形,•并且利用轴对称变换设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.。
人教版数学八年级上册教学设计13.2《画轴对称图形》
人教版数学八年级上册教学设计13.2《画轴对称图形》一. 教材分析《画轴对称图形》是人教版数学八年级上册第13章“轴对称图形”的第二节内容。
本节课主要让学生掌握轴对称图形的概念,学会如何画出轴对称图形,并理解轴对称图形与实际生活的联系。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。
二. 学情分析八年级的学生已经掌握了七年级数学的基本知识,具备一定的观察、思考和动手操作能力。
但部分学生对抽象图形的概念理解较浅,对实际生活中的轴对称现象认识不足。
因此,在教学过程中,要注重引导学生从实际生活中发现轴对称现象,加深对轴对称图形概念的理解。
三. 教学目标1.知识与技能目标:让学生掌握轴对称图形的概念,学会画出轴对称图形。
2.过程与方法目标:通过观察、操作、思考,培养学生发现和解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,感受数学与生活的联系。
四. 教学重难点1.重点:轴对称图形的概念及画法。
2.难点:如何引导学生从实际生活中发现轴对称现象,加深对轴对称图形概念的理解。
五. 教学方法1.情境教学法:通过展示实际生活中的轴对称现象,引导学生发现和理解轴对称图形的概念。
2.动手操作法:让学生亲自动手画出轴对称图形,提高学生的动手操作能力。
3.小组合作法:引导学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.准备一些实际生活中的轴对称图片,如剪纸、蝴蝶、树叶等。
2.准备黑板、粉笔、直尺、圆规等教学用具。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用课件展示一些实际生活中的轴对称图片,如剪纸、蝴蝶、树叶等,引导学生观察并提问:“这些图片有什么共同特点?”让学生发现轴对称现象,引出本节课的主题。
2.呈现(10分钟)教师简要讲解轴对称图形的概念,并用课件展示一些轴对称图形的例子。
同时,让学生动手折纸,亲身体验轴对称现象。
3.操练(10分钟)学生分组讨论,每组选择一个轴对称图形,用直尺、圆规等工具在黑板上画出所选图形的轴对称图形。
人教版八年级数学上册教案: 13.2 画轴对称图形
D(0,-1)
E(4,0)
关于x轴对称
关于y轴对称
3. 已知点P(2a+b,-3a)与点P′(8,b+2).
若点P与点P′关于x轴对称,则a=________,b=________.
若点P与点P′关于y轴对称,则a=________,b=________.
4.教师:接下来,我们一起来看看利用关于坐标轴对称的点的坐标变换规律,是否可以作出与一个图形关于x轴或y轴成轴对称的图形.
以北京地图为例引出新课,既可以激发学生的兴趣,又可以让学生感受到用坐标描述对称的重要性.
二、师生互动,探究新知
如图,在平面直角坐标系中你能画出点A(2,3)关于x轴、y轴的对称点吗?
说出你是怎么操作的?这么操作的依据是什么?
教师活动:出示点关于x,y轴对称点的坐标特点,进行知识小结.
强化结论:关于坐标轴对称的点的坐标变换规律:
从动手操作、解决问题到总结规律,是从感性认识上升到理性认识,培养学生善于总结和归纳的学习习惯.
三、运用新知,解决问题
学生活动:
1.同位每人说出两个点,让对方直接说出关于x轴,y轴对称点的坐标.
2.你能不经过画图,直接说出下列各点关于x轴,y轴对称点的坐标吗?学生以抢答方式进行.
已知点
A(3,-3)
B(-1,2)
学生口述作法,教师归纳总结.
从最简单的几何图形做起,便于学生理解、掌握.
通过问题的设置,层层递进,使画轴对称图形问题的难点得到分散,通过师生合作,学习热情达到高潮,完成对例题的解答.
四、课堂小结,提炼观点
从这节课中你学到了什么?有什么收获?
五、布置作业,巩固提升
教材第68页练习 第2题
教材第71页练习 第1题
人教版八年级数学上册13.2.1《画轴对称图形》教学设计
人教版八年级数学上册13.2.1《画轴对称图形》教学设计一. 教材分析《画轴对称图形》是人教版八年级数学上册第13章《轴对称与中心对称》的第一个知识点。
本节课的主要内容是让学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何画出一个轴对称图形。
本节课的内容是学生对几何图形认识的一次升华,是学生空间观念形成的重要阶段。
二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的认识有一定的基础。
但是,对于轴对称图形的概念和判断方法可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出轴对称图形的概念,并通过实例让学生理解轴对称图形的性质。
三. 教学目标1.知识与技能:让学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何画出一个轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:轴对称图形的概念和判断方法。
2.难点:如何画出一个轴对称图形。
五. 教学方法采用“问题驱动”的教学方法,通过引导学生观察实际问题,激发学生的思考,从而引出轴对称图形的概念。
在教学过程中,注重学生的动手操作和实践,让学生在实践中掌握轴对称图形的性质和画法。
同时,采用小组合作的学习方式,培养学生的合作意识和交流能力。
六. 教学准备1.教具:准备一些实际的轴对称图形,如纸牌、硬币等。
2.学具:每个学生准备一张白纸、一把剪刀、一支铅笔。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的轴对称图形,如纸牌、硬币等,引导学生观察并提问:“这些图形有什么特点?你们能找到它们的轴对称线吗?”学生通过观察和思考,初步感知轴对称图形的性质。
2.呈现(10分钟)教师通过讲解和示范,向学生介绍轴对称图形的概念,以及如何判断一个图形是否为轴对称图形。
同时,教师引导学生发现轴对称图形的对称轴是对称的关键。
河南省漯河市临颍县2014-2015学年八年级数学上册 第13章 轴对称教案 (新版)新人教版
轴对称教学目标:(一)知识与技能1、在生活实例中理解轴对称图形和两个图形关于某直线对称的概念。
2、探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察3、探索线段垂直平分线的性质与判定,培养学生认真探究积极思考的能力。
(二)过程与方法1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力.(三)情感态度与价值观通过对丰富的轴对称现象的认识,进一步培养学生主动参与数学活动的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.教学重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
教学难点:轴对称图形和关于直线成轴对称的区别和联系。
教学过程:一、情景导入(2分钟)把学生收集的材料以小组为单位在多媒体上展示,并由学生进行分类。
问题1:第一类图案有什么共同特征?问题2:第二类图案有什么共同特征?二、自学指导(8分钟)1、熟读课本P58-60。
2.如果这个图形叫做轴对称图形。
3.把那么就说关于这条直线(成轴)对称。
4.轴对称和轴对称图形的区别与联系。
5. 叫做这条线段的垂直平分线。
6.轴对称的性质是。
7.轴对称图形的性质。
设计意图:通过设置富有阶梯形的自学指导,引导学生自主学习,发现问题,解决问题。
注意事项:教师出示自学指导,先让学生自学课本P58-60 ,学会例题。
,能够说出轴对称图形,轴对称的定义,区别与联系,老师要追问怎样判断一个图形是轴对称图形?1.在26个大写英语字母中,是轴对称图形的有 。
2.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形设计意图:第1题怎样判断一个图形是轴对称图形;第2题轴对称图形的应用。
注意事项:第2题要让学生找出多种方法,熟练掌握轴对称图形。
四、合作探究(15分钟)1.哪些几何图形是轴对称图形?有几条对称轴?2.如图,已知正方形ABCD 的边长为6㎝, 则图中阴影部分的面积是 ㎝ .3.如图,Rt ⊿ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上的A ′处,折痕为CD ,求∠A ′DB 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
(一)知识与技能
1.
2.探索作出轴对称图形的对称轴的方法,会画轴对称图形。
(二)过程与方法
1.
2.掌握轴对称图形对称轴的作法。
3.在探索的过程中,培养学生分析、归纳的能力。
(三)情感态度与价值观
究问题的经验和方法,开拓实践能力,培养创新精神。
教学重点:
作一个图形经轴对称变换后的图形。
教学难点:
通过动手操作总结轴对称变换的特征。
教学过程:
一、情景导入(2分钟)
通过多媒体介绍剪纸文化艺术:学生欣赏展示的剪纸图片,提出问题:何剪出来的呢?相信同学们学了本节课后,也能剪出如此漂亮的剪纸!
二、自学指导(8分钟)
1、熟读课本P67-68 ,学会例题。
2.由一个平面图形可以得到与它关于一条直线l
完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的
一对的线段被垂直平分。
设计意图:
引导学生自主学习,发现问题,解决问题。
注意事项:
教师出示自学指导,先让学生自学课本P67-68,学会例题;
已知一个图形和一条对称轴,会画它的对称图形。
三、自学检测(6分钟)
1.如图,作出点A关于直线l的对称点。
2.如图,已知△ABC和直线l,画出△ABC
关于直线l对称的图形。
B A 第1题着重考查如何作点的对称点;第2题着重考查如何作一个图形的对称图形。
注意事项:
要引导学生总结作对称点的方法,作垂直延长成2倍关系;作一个图形的对称图形,
先作点的对称点, 再顺次连接各对称点。
四、合作探究(15分钟)
1.如图,以虚线为对称轴,画图形的另一半。
1. 如图,画出△ABC 关于直线l 对称的图形△A ′B ′C ′。
3. 如图,已知台球桌面上有P 、Q 两个球,怎样去打球P ,使球P 撞击边框AD ,反射后撞击球Q ?
4.已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ;
(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标;
(3)求△ABC 的面积.
第1、2题着重考查如何画轴对称图形;第3、4题着重考查对称在实际生活中的应用。
这四道题对培养学生的画图能力有很大的帮助。
注意事项:
1.要引导学生总结作对称点的方法,作垂直延长成2倍关系;作一个图形的对称图形,先作点的对称点,再顺次连接各对称点。
2.在合作探究环节中,教师要关注学生在展示过程中出现的问题,并及时予以点拨。
3.学生分组合作探究,每个小组讨论完成后,给出答案并进行展示,让学生上台说明,培养学生总结能力,大胆发言的良好习惯。
五、课堂小结(3分钟)
问题1 本节课你学习了什么?
问题2 本节课你有哪些收获?
问题3 通过本节课的学习,你想进一步探究的问题是什么?
设计意图:
以上三个问题引导学生回顾自己的学习过程,畅所欲言,进一步进行反思、提炼及知识的归纳,并纳入自己的知识结构中;
注意事项:
①作对称点的方法,作垂直延长成2倍关系。
②作一个图形的对称图形,先作点的对称点,再顺次连接各对称点。
六、课堂检测(10分钟)
A组(基础限时练)
1. 京广铁路贯穿我市,为我市的经济发展提供了巨大的商机。
A、B两商业重镇如图所示,市政府决定在铁路旁修建一物资中转站,以便A、B两商业重镇的产品及时调运。
为了A、B 两镇的公平,中转站应建在什么地方?并说明理由;
B组(能力拓展)
1.如图,AB=13cm,AC=15cm,点B与点M关于DE对称,
点C与点M关于GH对称,求四边形ADMG的周长。
设计意图:
分层设计课堂检测,体现了对学生的因材施教,让不同层次的学生各有所得。
注意事项:
1.按照规定时间完成A组(基础限时练)。
B组依时间选做。
2.B组练习如果课堂不能当堂完成,可作为课下作业,并不影响课堂的教学目标的完成。
七、作业设计
必做题:
课本第71页习题13.2的第1、6题
教学反思:。