2008年肇庆市八年级数学竞赛(决赛)试题
2008年肇庆市中考试题及答案
肇庆市2008年初中毕业生学业考试化 学 试 卷说明:1.全卷共6页。
考试时间90分钟,满分100分。
2.答卷前,务必用黑色字迹的钢笔或签字笔将自己的考生号和姓名填写在答题卡上,并用2B 铅笔将试室号和座位号填涂在答题卡对应的位置上。
3.请将选择题的答案用2B 铅笔在答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦擦干净后,再选涂其他答案。
4.非选择题必须用黑色字迹的钢笔或签字笔在答题卡上指定区域作答;如需改动,先在原来的答案上划一横线,然后在旁边空位处重新写。
不准..使用铅笔和涂改液。
5.相对原子质量:H-1 He-4 C-12 N-14 O-16 Na-23 S-32 Cl-35.5 Ca-40一、选择题(本题有14小题,每题2分,共28分。
每小题只有一个选项符合题意) 1.下列的水属于纯净物的是A .矿泉水B .自来水C .硬水D .浮有冰的水 2.氮肥能使柑桔枝繁叶茂、果实硕大。
下列化肥中属于氮肥的是A .K 3PO 4B .K 2SO 4C .CO(NH 2)2D .Ca(H 2PO 4)2 3.储存烟花爆竹的仓库应贴上的标志是BD4.2008年北京奥运会若用大型遥控飞艇作广告。
为了安全,艇内充入的气体最好是 A .氢气 B .氧气 C .氦气 D .二氧化碳 5.下列操作正确的是A .用H 2还原CuO 结束时,先停气后灭酒精灯B .夜间闻到煤气泄漏的气味时,开灯寻找泄漏源C .不慎将烧碱溶液溅到眼睛里,马上去找医生治疗D .鉴别钻石制品真伪的方法是:用其刻划玻璃6.区分日常生活中的下列各组物质,所加试剂或操作方法错误的是7.配制50g 8%的氯化钠溶液时,不需要...用到的仪器是 A .托盘天平 B .量筒 C .烧杯 D .漏斗 8.下面O 2和CO 2的自述中,属于物理性质的是9.1854年5月30日,英国战舰“欧罗巴”的船舱里装滿了供战马吃的草料,航行途中 突然草料着火,整个战舰瞬间变为火海。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
肇庆市八年级数学竞赛决赛试题和(答案)
20####市八年级数学竞赛〔决赛〕试题〔竞赛时间:20##3月18日上午9:30—11:30〕一、选择题〔本大题共6小题,每小题5分,满分30分〕 1.当2012=x 时,计算xx x x x x 22)44121(222-÷+---的结果是〔 〕 A .20101- B .20101C .20141- D .201412、已知22b -20-4a N 412=-+,=b a a M ,则M 与N 的大小关系是〔 〕 A .M<NB .M>NC .M ≤N D .M ≥N3、两个正整数a 、b 的比是k 〔k<1〕,若a+b=s,则a 、b 中较大的数可以表示成〔 〕 A .ks B .sk s - C .s ks +1 D .ks+1 4、如图1,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置上, ∠EFB =67°,则∠AED ′等于〔 〕 A .53° B .48°C .46° D .43°5、设m 为整数,若方程组⎩⎨⎧+=--=+my x my x 1313的解y ,x 满足0>+y x ,则m 的最大值是〔 〕A .4B .5C .6D .7 6、某班学生人数不足60人,在一次数学测验中,有71的学生得优,有的学生得良,有的学生得与格,则不与格的学生有〔 〕A .1人B .3人C .5人D .6人二、填空题〔本大题共6小题,每小题5分,满分30分〕7、若两个连续偶数的平方差为2012,则这两个偶数中较大的一个是.8、如图2,在△ABC 中,∠ACB=100°,点D 、E 在AB 上,且BE=BC,AD=AC,则∠DCE 的大小是度.9、已知8,10==z y y x ,则=+-+zy z x 1.10、有A 、B 、C 三种商品,如果购买A 商品2件,B 商品3件,C 商品1件,共需295元钱,购买A 商品4件,B商品3件,C 商品5件,共需425元钱,则购买A 、B 、C 三种商品各1件,共需 元.11、已知n 是整数,以n n n --+18,23,56这三个数作为同一个三角形的边长,则这样的三角形共有个.12、已知k ba cc a b c b a =+=+=+,则一次函数k kx y +=的图象与坐标轴围成的面积 是.以下三、四、五题要求写出解题过程。
2008年广东省肇庆市07.07
广东省肇庆市2008年初中毕业生学业考试数 学 试 题说明:全卷共4页,考试时间为100分钟,满分120分.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的.)1.一个正方体的面共有()A.1个 B.2个 C.4个 D.6个2.数据1,1,2,2,3,3,3的极差是()A.1 B.2 C.3 D.63.的绝对值是()A.3 B. C. D.4.一个正方形的对称轴共有()A.1条 B.2条 C.4条 D.无数条5.若,则的值是()A.3 B. C.0 D.66.如图1,AB是⊙O的直径,∠ABC=30°,则∠BAC =()A.90° B.60° C.45° D.30°7.如图2,箭头表示投影线的方向,则图中圆柱体的正投影是()A.圆 B.圆柱 C.梯形 D.矩形8.下列式子正确的是()A.>0 B.≥0 C.a+1>1 D.a―1>19.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.从n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K的概率为,则n =()A.54 B.52 C.10 D.5二、填空题(本大题共5小题,每小题3分,共15分.)11.因式分解: = .12.如图3,P是∠AOB的角平分线上的一点,PC⊥OA于点C,PD⊥OB于点D,写出图中一对相等的线段(只需写出一对即可).13.圆的半径为3cm,它的内接正三角形的边长为 .14.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是 .15.已知,,=8,=16,2=32,……观察上面规律,试猜想的末位数是 .三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本小题满分6分)计算:.17.(本小题满分6分)在Rt△ABC中,∠C = 90°,a =3 ,c =5,求sin A和tan A的值.18.(本小题满分6分) 解不等式:≥70.19.(本小题满分7分)如图4, E、F、G分别是等边△ABC的边AB、BC、AC的中点.(1)图中有多少个三角形?(2)指出图中一对全等三角形,并给出证明.20.(本小题满分7分)在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.21.(本小题满分7分)如图5,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证AE=BF;(2)若BC=cm,求正方形DEFG的边长.22.(本小题满分8分)已知点A(2,6)、B(3,4)在某个反比例函数的图象上.(1)求此反比例函数的解析式;(2)若直线与线段AB相交,求m的取值范围.23.(本小题满分8分)在2008北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下(单位:环):甲 10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2乙 9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7(1)两名运动员射击成绩的平均数分别是多少?(2)哪位运动员的发挥比较稳定?(参考数据: 0.2=2.14 ,=1.46)24.(本小题满分10分)如图6,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.(1) 求证AE=CE;(2) EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;(3)若(n>0),求sin∠CAB.25.(本小题满分10分)已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线上.(1)求抛物线与x轴的交点坐标;(2)当a=1时,求△ABC的面积;(3)是否存在含有、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.肇庆市2008年初中毕业生学业考试数学试题参考答案和评分标准一、选择题(本大题共10小题,每小题3分,共30分.)题号12345678910答案D B A C A B D B C D 二、填空题(本大题共5小题,每小题3分,共15分.)题号11121314153cm8cm6答案(x-1)2PC=PD(答案不唯一)三、解答题(本大题共10小题,共75分.)16.(本小题满分6分)解:原式= (3分)= (6分)17.(本小题满分6分)解:在Rt △ABC中,c=5,a=3.∴(2分)∴ 4分).(6分)18.(本小题满分6分)解:≥,(2分)≥,(4分)∴≥.(6分)19.(本小题满分7分)解:(1)图中共有5个三角形;(2分)(2)△≌△.(3分)∵△是等边三角形,∴∠∠.(4分)∵、、是边、、的中点,∴AE=AG=CG=CF=AB.(6分)∴△≌△.(7分)20.(本小题满分7分)解:设车队走西线所用的时间为小时,依题意得:,(3分)解这个方程,得.(6分)经检验,是原方程的解.答:车队走西线所用的时间为20小时.(7分)21.(本小题满分7分)解:(1)∵等腰Rt△ABC中,∠90°,∴∠A=∠B,(1分)∵四边形DEFG是正方形,∴DE=GF,∠DEA=∠GFB=90°,(2分)∴△ADE≌△BGF,∴AE=BF.(3分)(2)∵∠DEA=90°,∠A=45°,∴∠ADE=45°.(4分)∴AE=DE.同理BF=GF.(5分)∴EF=AB===cm,(6分)∴正方形DEFG的边长为.(7分)22.(本小题满分8分)解:(1)设所求的反比例函数为,依题意得: 6 =,∴k=12.(2分)∴反比例函数为.(4分)(2)设P(x,y)是线段AB上任一点,则有2≤x≤3,4≤y≤6.(6分)∵m =,∴≤m≤.所以m的取值范围是≤m≤3.(8分)23.(本小题满分8分)解: (1)==9.8.(2分)==9.8 .(4分)(2)∵=[(10-9.8)2+(10.1-9.8)2+(9.6-9.8)2+(9.8-9.8)2+(10.2-9.8)2+(8.8-9.8)2+(10.4-9.8)2+(9.8-9.8)2+(10.1-9.8)2+(9.2-9.8)2]=0.214.(6分)=[(9.7-9.8)2+(10.1-9.8)2+(10-9.8)2+(9.9-9.8)2+(8.9-9.8)2+(9.6-9.8)2+(9.6-9.8)2+(10.3-9.8)2+(10.2-9.8)2+(9.7-9.8)2]=0.146.∴>,∴乙运动员的发挥比较稳定.(8分)24.(本小题满分10分)证明:(1)连接DE,∵∠ABC=90°∴∠ABE=90°,∴AE是⊙O直径.(1分)∴∠ADE=90°,∴DE⊥AC.(2分)又∵D是AC的中点,∴DE是AC的垂直平分线.∴AE=CE.(3分)(2)在△ADE和△EFA中,∵∠ADE=∠AEF=90°,∠DAE=∠FAE,∴△ADE∽△EFA.(4分)∴,∴.(5分)∴AE=2cm.(6分)(3)∵AE是⊙O直径,EF是⊙O的切线,∴∠ADE=∠AEF=90°,∴Rt△ADE∽Rt△EDF. ∴.(7分)∵,AD=CD,∴CF=nCD,∴DF=(1+n)CD,∴DE=CD.(8分)在Rt△CDE中,CE=CD+DE=CD+(CD)=(n+2)CD.∴CE=CD.(9分)∵∠CAB=∠DEC,∴sin∠CAB=sin∠DEC ===.(10分)25.(本小题满分10分)解:(1)由5=0,(1分)得,.(2分)∴抛物线与x轴的交点坐标为(0,0)、(,0).(3分)(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),(4分)分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有=S - - (5分)=-- (6分)=5(个单位面积)(7分)(3)如:.(8分)事实上, =45a2+36a.3()=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.(9分)∴.(10分)。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
2008年初二数学竞赛试题(定稿)
2008年初二数学竞赛试题答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.可以用计算器一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.设x =x 的值为 ( ) A .正数 B .负数 C .非负数 D .零 2.已知312=-yx ,则x y xy xy y x 3652-+--的值 ( )A .71 B . 71- C . 72 D . 72- 3.方程(1)132=--+x x x 的所有整数解的个数是 ( )A .2B .3C .4D .5 4.若直线b ax y +=与直线2521+=x y 关于x 轴对称,则b a +的值是 ( ) A .-3 B .-2 C .2 D .35.口袋中有20个球,其中白球9个,红球5个,黑球6个,现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是 ( ) A .14 B .16 C . 18 D .206. 如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是 ( )主视图 左视图 俯视图 A.7个 B.8个 C.9个 D.10个7.在凸四边形ABCD 中,∠C=1200, ∠B=∠D=900,AB=6,BC=23,则AD= ( ) A. 23 B.6 C. 43 D.638.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们的顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则 ( ) A . P 一定是奇数. B .P 一定是偶数.C .当n 是偶数时,P 是奇数.D .当n 是奇数时,P 是偶数二、填空题(共6小题,每小题5分,满分30分)9.已知20082006,20082007,20082008a x b x c x =+=+=+,则多项式222a b c ab bc ca ++---的值 .10.将5个整数从大到小排列,中位数是4,如果这个样本中的唯一众数是7,则这5个整数的和的最大值是 . 11.在图8中每个小方格内填入一个数,使每一行、每一列都有1、 2、3、4、5,那么,右上角的小方格内填入x 的数应是 .12.在△ABC 中,AB =15cm ,AC =13cm ,BC 边上高A D =12cm ,则三角形ABC 的面积为 .132353145x13.如图,有一种动画程序,屏幕上方正方形区域ABCD表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 )D ( 1,2 ),用信号枪沿直线b x y +=3发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为 ______时,甲能由黑变白.14.如果正整数n 有以下性质:n 的八分之一是平方数,n 的九分之一是立方数,n 的二十五分之一是五次方数,那么n 就称为“希望数”,则最小的希望数是 .三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.已知四个实数,,,a b c d ,且,a b c d ≠≠.若四个关系式:24a ac +=,2224,8,8b bc c ac d ad +=+=+= 同时成立,(1)求c a +的值; (2)分别求d c b a ,,,的值.每辆车乘坐28名人,出发开出一段时间后,发现有一学生迟到没上车.现决定开一辆空车去接他,接回后为赶时间就把这辆空车开走,让所有的人员重新分配,则刚好平均分乘余下的汽车,已知每辆车的载客量不能多于32人,那么原有几辆汽车,这批春游的学生共有多少人?图1FEDC BA图2FEABCD 17.在△ABC 中,∠C=90︒,D 是AB 的中点,E 、F 分别在BC 、AC 上,且∠EDF=90︒.(1)如图1,若E 是BC 的中点,,EF 与AF 、BE 有怎样的数量关系?并说明理由;(2)如图2,当F 在AC 上运动时,点E 在BC 上随之运动,问在运动过程中,EF 与AF 、BE 有怎样的数量关系?并说明理由.18.已知直线)1(142k y ≠--+=k k k x(1)说明无论k 取不等于1并求出此定点的坐标;(2)若点B(5,0) , 点P 在y 轴上,点A 为(1)中确定的定点,要使△PAB 为等腰三角形,求直线PA 的解析式.2008年初二数学数学竞赛试题参考答案及评分建议二、填空题(共6小题,每小题5分,满分30分)9. 3 10.23 11. 1 12.84cm 2或24 cm 2(答对一个得2分) 13. -5≤b ≤-1 14. 215·320·512三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:(1)由)(2ac a ++)(2ac c +=4+8=12,得12)(2=+c a ,∴ 32±=+c a . …… 4分(2)由)(2ac a +(-)2bc b +=4-4=0,-+)(2ac c )(2ad d +=8-8=0得 0))((=++-c b a b a ,)((d c -0)=++d c a ∵b a ≠,d c ≠,∴0=++c b a ,0=++d c a . ∴)(c a d b +-==. …… 2分 又)(2ac a +-)(2ac c +=4-8=-4, 得,4))((-=+-c a c a . …… 2分 当32=+c a 时,332-=-c a , 解得334=a ,332=c , 32-==d b . …… 2分当32-=+c a ,332=-c a , 解得334,332-=-=c a , 32==d b . …… 2分16.(12分)解:设原有k 辆汽车,开走一辆空车后,留下的每辆车乘坐n 个人,显然k ≥2,GFEABC Dn ≤32.易知旅客人数等于128+k ,当一辆空车开走以后,这批春游的学生的人数可以表示为)1(-k n ,由此列出方程)1(128-=+k n k . …… 2分所以 12928129)1(221128-+=-+-=-+=k k k k k n . …… 4分 因为n 为正整数数,所以129-k 必为正整数,但由于29是质数,因数只有1和29两个,且k ≥2,所以11=-k ,或291=-k . …… 2分如果11=-k ,则2=k ,57=n ,不满足n ≤32的条件. 如果291=-k ,则30=k ,29=n ,符合题意. …… 2分 所以旅客人数等于)1(-k n =29×29=841(人). …… 2分 答:原有车辆30辆,这批春游的学生共有841人.17.(12分)解:(1)EF 2= AF 2+BE 2. …… 1分 ∵E D ,分别是AB,BC 的中点, ∴DE ∥AC ,且DE=21AC . ∵∠C=90︒,∠EDF=90︒, ∴ 四边形CFDE 是矩形, ∴DE=CF=AF,DF=CE=BE. …… 3分又∵∠EDF=90︒,∴EF 2=DF 2+DE 2=AF 2+BE 2. …… 1分 (2) EF 2= AF 2+BE 2. …… 1分延长FD 至G,使得DG=DF,连结BG,EG. 则△AFD ≌△BGD. …… 2分 ∴BG=AF=CF, DF=DG , ∠GBD=∠A . ∵∠EDF=90︒, ∴EF=EG. …… 1分 又∠GBD=∠A , ∴BG ∥AC,∴∠GBE=∠C=900, …… 1分 ∴EG 2=BE 2+BG 2=BE 2+AF 2∴ EF 2=AF 2+BE 2. …… 2分18.(14分)解:(1)由题意知1≠k ,若取,1-=k 得62=+-y x ①, 若取,2=k 得02=-y x ②. 解①②得⎩⎨⎧==42y x . 所以,不论k 取任何实数此直线都经过一定点,其坐标为(2,4). …… 5分 (2)分三种情况讨论:① 设P 1(0,m 1) ,满足P 1B=P 1A, 由勾股定理得, 2222)4(25m m -+=+,解得85-=m ,即P 1(0,85-),符合题意, 直线P 1A 的解析式: 851637-=x y . …… 2分② 设P 2(0,m 2),满足P 2B=AB, 易求得AB=5, 所以点P 2(0,0), 直线P 2A 的解析式: x y 2=. …… 2分 ③设P 3(0,m 3),满足P 1A=AB, 由勾股定理得,2225)4(2=-+m ,解得214±=m ,即P 3(0,)214+,P 4(0,)214-,直线P 3A 的解析式:214221++-=x y , …… 2分 直线P 3A 的解析式:214221-+=x y . …… 2分 综上所述,直线PA 的解析式为:851637-=x y ,或x y 2=,或214221++-=x y ,或214221-+=x y . …… 1分。
2008全国初中数学竞赛试题以及参考答案
“ 《数学周报》杯”2008年全国初中数学竞赛试题参考答案及评分标准一、选择题(共5小题,每小题6分,满分30分.每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)(1)已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( A ). (A )7 (B )113+ (C )713+ (D )5 解:因为20x >,2y ≥0,由已知条件得2124443113x ++⨯⨯+==, 21143113y -++⨯-+==, 所以444y x +=22233y x ++-2226y x=-+=7. (2)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为n m ,,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( C ).(A )512 (B )49 (C )1736 (D )12解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. (3)有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( B ).(A )6条 (B ) 8条 (C )10条 (D )12条解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(4)已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( B ).(A 5 (B )1 (C 3(D )a 解:如图,连接OE ,OA ,OB . 设D α∠=,则120ECA EAC α∠=︒-=∠. 又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-, 所以ACE △≌ABO △,于是1AE OA ==. (5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( D ).(A )2种 (B )3种 (C )4种 (D )5种解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)(6)对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=, 依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以 4=xs . 即18路公交车总站发车间隔的时间是4分钟.(8)如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 .【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9. (9)△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC相交于点D ,E ,则DE 的长为 . 【答】163.解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的高为a h , 则11()22a ABC ah S abc r ==++△, 所以 a r a h a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此 a a h r DE h BC-=, 所以(1)(1)a a a h r r a DE a a a h h a b c -=⋅=-=-++()a b c a b c +=++, 故879168793DE ⨯+==++(). (10)关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,b a ,都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是22(13)(13)s t -++=2213⨯,其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<. 所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.有62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,故 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 三、解答题(共4题,每题15分,满分60分)(11)在直角坐标系xOy 中,一次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的面积值等于3OA OB ++.(Ⅰ)用b 表示k ;(Ⅱ)求△OAB 面积的最小值.解:(Ⅰ)令0=x ,得0y b b =>,;令0=y ,得00b x k k=-><,. 所以A ,B 两点的坐标分别为0)(0)bAB b k-(,,,, 于是,△OAB 的面积为)(21kb b S -⋅=. 由题意,有 3)(21++-=-⋅b k b k b b , 解得 )3(222+-=b b b k ,2b >. …………………… 5分 (Ⅱ)由(Ⅰ)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=⋅-==--21027)72b b =-++=++-1027+,当且仅当1022b b -=-时, 有S =即当102+=b ,1-=k 时,不等式中的等号成立.所以,△OAB 面积的最小值1027+. ……………… 15分(12)已知一次函数12y x =,二次函数221y x =+. 是否存在二次函数23y ax bx c =++,其图象经过点(-5,2),且对于任意实数x 的同一个值,这三个函数所对应的函数值1y ,2y ,3y ,都有1y ≤3y ≤2y 成立?若存在,求出函数3y 的解析式;若不存在,请说明理由.解:存在满足条件的二次函数.因为 2122(1)y y x x -=-+221x x =-+-2(1)x =--≤0,所以,当自变量x 取任意实数时,1y ≤2y 均成立.由已知,二次函数23y ax bx c =++的图象经过点(-5,2),得2552a b c -+=. ①当1x =时,有122y y ==,3y a b c =++.由于对于自变量x 取任意实数时,1y ≤3y ≤2y 均成立,所以有2 ≤a b c ++≤2,故2a b c ++=. ②由①,②,得 4b a =,25c a =-,所以234(25)y ax ax a =++-.……… 5分当1y ≤3y 时,有 2x ≤24(25)ax ax a ++-,即 2(42)(25)ax a x a +-+-≥0,所以二次函数2(42)(25)y ax a x a =+-+-对于一切实数x ,函数值大于或等于零, 故20(42)4(25)0a a a a >⎧⎨---≤⎩,. 即20(31)0,a a >⎧⎨-≤⎩,所以13a =.……………… 10分 当3y ≤2y 时, 有 24(25)ax ax a ++-≤21x +, 即2(1)4(51)a x ax a --+-≥0,所以二次函数2(1)4(51)y a x ax a =--+-对于一切实数x ,函数值大于或等于零, 故210(4)4(1)(51)0a a a a ->⎧⎨----≤⎩,. 即21(31)0,a a <⎧⎨-≤⎩,所以 13a =. 综上,13a =,443b a ==, 1253c a =-=. 所以,存在二次函数23141333y x x =++,在实数范围内,对于x 的同一个值,都有1y ≤3y ≤2y 成立. ……………… 15分(13)是否存在质数p ,q ,使得关于x 的一元二次方程20px qx p -+=有有理数根?解:设方程有有理数根,则判别式为平方数.令2224q p n ∆=-=,其中n 是一个非负整数.则2()()4q n q n p -+=. ……………… 5分 由于1≤q n -≤q +n ,且q n -与q n +同奇偶,故同为偶数.因此,有如下几种可能情形:222q n q n p -=⎧⎨+=⎩,, 24q n q n p -=⎧⎨+=⎩,, 4q n p q n p -=⎧⎨+=⎩,, 22q n p q n p -=⎧⎨+=⎩,, 24.q n p q n ⎧-=⎨+=⎩, 消去n , 解得22251222222p p p q p q q q p q =+=+===+, , , , . ……………… 10分对于第1,3种情形,2p =,从而q =5;对于第2,5种情形,2p =,从而q =4(不合题意,舍去);对于第4种情形,q 是合数(不合题意,舍去).又当2p =,q =5时,方程为22520x x -+=,它的根为12122x x ==,,它们都是有理数.综上所述,存在满足题设的质数. ……………… 15分(14)如图,△ABC 的三边长BC a CA b AB c ===,,,a b c ,,都是整数,且a b , 的最大公约数为2.点G 和点I 分别为△ABC 的重心和内心,且90GIC ∠=︒.求△ABC 的周长.解:如图,延长GI ,与边BC CA ,分别交于P Q ,.设重心G 在边BC CA ,上的投影分别为E F ,,△ABC 的内切圆的半径为r ,BC CA ,边上的高的长分别为a b h h ,,易知CP =CQ ,由PQC GPC GQC S S S =+△△△, 可得()123a b r GE GF h h =+=+, 即 222123ABC ABC ABC S S S a b c a b ⎛⎫⨯=⨯+ ⎪++⎝⎭△△△, 从而可得 6ab a b c a b++=+. ……………… 10分因为△ABC 的重心G 和内心I 不重合,所以,△ABC 不是正三角形,且b a ≠,否则,2a b ==,可得2c =,矛盾. 不妨假设a b >,由于()2a b =,,设()1111221a a b b a b ===,,,,于是,有1111126a b ab a b a b =++为整数, 所以有11()12a b +,即()24a b +.于是只有1410a b ==,时,可得11c =,满足条件.因此有35a b c ++=.所以,△ABC 的周长为35. ……………… 15分。
初二数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514- 4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ).A .a b c d >>>B .a b d c >>>C .b a c d >>>D .a d b c >>>6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小(第4题图)DCB值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b cb c a b c a a a+-=--≠=,且,则 .12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 .以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数.G(第8题图)HOFEDCBA(第15题图)EDCBA四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD . 求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
2008年全国 初中数学联赛(含答案)
12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
八年级数学竞赛试题及答案
鸣玉中学校2008年上期八年级数学竞赛试题(本试卷共6页,满分150分,考试时间:120分钟)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1. 若a 为实数,则化简2a 的结果是A . -aB . aC . ±aD . |a | 2.如果1)1(2++-x m x 是完全平方式,则m 的值为A .-1B .1C .1或-1D . 1或-3 3. 如图1,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件A .AB =12 B .BC =4 C .AM =5D . CN =24.在平面直角坐标系y o x 内,已知A (3,-3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有A .2个B .3个C .4个D . 5个5.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是A .负数B .正数C .非负数D .非正数 6.一次函数)1(-=x k y 的图像经过点M (-1,-2),则其图像与y 轴的交点是 A .(0,-1) B .(1,0) C .(0,0) D .(0,1)图1N MCB l7.如图2,在线段AE 同侧作两个等边三角形△ABC 和△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,则△CPM 是A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形8.某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该队伍有20名同学,统计表如下表.由于不小心弄脏了表格,有两个数据看不到.下列说法中正确的是A .这组数据的中位数是40,众数是39B .这组数据的中位数与众数一定相等C .这组数据的平均数P 满足39<P <40D .以上说法都不对9. 已知△ABC 的三个内角的比是m ∶(m +1) ∶(m +2),其中是m 大于1的正整数,那么△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形10. 某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称A .4次B .5次C .6次D . 7次二、填空题(本大题共7小题,每小题5分,满分45分)11.如果不等式组⎩⎨⎧<->-001a x x 无解,则a 的取值范围是____________.12.已知1=-b a ,122-=-b a ,则=-20082008b a_________.13.分解因式:=+++++2)6)(3)(2)(1(x x x x x . 14.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪子、布、锤子”的方式确定.那么在一个回合中三个人都出“布”的概率是_________.15.已知a 、b 为实数,且1=b a ,1≠a ,设11+++=b b a a M ,1111+++=b a N ,则N M -的值等于________.图2 ABCDPM16. 已知511=+y x ,则y xy x y xy x +++-2252= .17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图6所示,要摆成这样的图形,至少需用______块小正方体18. 若在凸n (n 为大于3的自然数)边形的内角中,最多有M 个锐角,最少有m 个锐角,则M= ; m= .19.计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数(1101)2转换成十进制数是1³23+1³22+0³21+1³20=13,那么二进制数212005)111111( 个转换成十进制数是 ___________.三、解答题(本大题满分45分,每小题15分)20. 某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?图6主视图左视图21. 如图7,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E .(1)求证: AF =DF +BE .(2)设DF =x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S . 若不存在,请说明理由.图7ABC DEF22、⑴如果a 是小于20的质数,且a 1可化为一个循环小数,那么a 的取值有哪几个? ⑵如果a 是小于20的合数,且a 1可化为一个循环小数,那么a 的取值有哪几个?参考答案一、1. D 2. D 3. A 4. C 5. D 6. A 7. C 8. C 9.A 10. B二、11. a ≤1 12. -1 13. 14.271 15. 0 16. 75 17. 5218.3 ; 0 19. 22005-1 解答提示:1.∵ 当a <0时,2a =|a |=-a . 故选D . 2.21±=+m ,解得1=m 或3-=m . 故选D .3.()AB BC AC BC AC NC MC MN 21212121=-=-=-=,∴只要已知AB 即可.故选A . 4. 分别以点A 、O 、P 三点为等腰三角形的顶点三种情况考虑.5. 关于x 的方程01)2(=-+x b a 无解,则02=+b a . ∴有0==b a 或者a 、b 异号,故选D .6. ∵一次函数)1(-=x k y 的图像经过点M (-1,-2),则有()211-=--k ,解得1=k .所以函数解析式为1-=x y .令0=x 代入得1-=y .故其图像与y 轴的交点是(0,-1).故选A .7.易得△ACD ≌△BCE .所以△BCE 可以看成是△ACD 绕着点C 顺时针旋转60°而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP =CM 且,∠PCM =60°,故△CPM 是等边三角形,选C .8.(1)由中位数及众数的意义以及表格可知当这组数据的中位数是40时,众数必然是40,所以A 错误.(2)当39码与40码的人数都是5时,中位数与众数不等,所以B 错误.(3)假设剩余10人全部穿39码鞋,可得平均数为39.35;假设剩余10人全部穿40码鞋,可得平均数为39.85.可以判断C 正确.(或者设穿39码鞋的有x 人,且由0≤x ≤10也可得解) 故选C .9. ∵ 62121OC OD 21OCAD ==⋅=⋅=k y x S A A 正方形,∴ 62121OF OE 21B B OCAD ==⋅=⋅=k y x S 长方形 ,故选B . 10.拿出任意三袋,假设它们的重量分别为x 千克、y 千克、z 千克,两两一称,记录下相应的重量,若分别等于a 千克、b 千克、c 千克,则有方程组⎪⎩⎪⎨⎧=+=+=+c x z b z y ay x 容易求出x 、y 、z ;另外两袋分别与已知重量的其中一袋一起称,即可求出其重量.所以需要称5次,故选B .11.解不等式组⎩⎨⎧<->-01a x x 得⎩⎨⎧<>a x x 1,因为原不等式组无解,所以必有a ≤1.12.∵ ()()122-=-+=-b a b a b a ,又1=-b a ,则1-=+b a∴ ⎩⎨⎧=--=+11b a b a ,解得⎩⎨⎧-==1b a . 故()1102008200820082008-=--=-b a .13. 设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =2,所以BE =x -2,因为AE ⊥BC 于E ,所以在Rt △ABE 中, cosB x x 2-=,又cosB 54=,于是542=-x x ,解得x =10,即AB =10.所以易求BE =8,AE =6,当EP ⊥AB 时,PE 取得最小值. 故由三角形面积公式有:21AB ²PE =21BE ²AE ,求得PE 的最小值为4.8 .14.用树状图列出一个回合中三个人所出手势的各种结果.上面只画出树状图的一部分(列出9种结果),把图中小丁的“剪”改为“布”重复上述画法,可再列出9种结果,最后改为“锤”同样也列出9种结果,所以共有27种结果,故求得P (布,布,布)=27115.∵1=b a ,1≠a ,∴ =+++=+++=+++=)1()1(11a b b b a a b a b b b a a a b b a a M N b a =+++1111. ∴ N M -=0.17.小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块.三、19.因为100³0.9=90<94.5<100,300³0.9=270<282.8,所以有两种情况:设小美第二次购物的原价为x 元,则(x -300)³0.8+300³0.9=282.8解得,x =316 情况1: 小美第一次购物没有优惠,第二次购物原价超过300元 则小丽应付(316+94.5-300)³0.8+300³0.9=358.4(元)情况2: 小美第一次购物原价超过100元,第二次购物原价超过300元; 则第一次购物原价为:94.5÷0.9=105(元)所以小丽应付(316+105-300)³0.8+300³0.9=362.8(元).20.(1)证明: 如图,延长CB 至点G ,使得BG =DF ,连结AG . 因为ABCD 是正方形,所以在Rt △ADF 和Rt △ABG 中,AD =AB ,∠ADF =∠ABG =90°,DF =BG . ∴ Rt △ADF ≌Rt △ABG (SAS ),∴AF =AG ,∠DAF =∠BAG . 又 ∵ AE 是∠BAF 的平分线俯视图 2 1 2剪 剪 剪 布 锤布 剪 布 锤 锤 剪 布 锤 小丁 小明 小倩 A B CE P∴∠EAF =∠BAE , ∴ ∠DAF +∠EAF =∠BAG +∠BAE 即∠EAD =∠GAE .∵ AD ∥BC ,∴∠GEA =∠EAD ,∴∠GEA =∠GAE ,∴ AG =GE . 即AG =BG +BE .∴ AF =DF +BE ,得证.(2)AB BE AD DF S S S ABE ADF ⋅+⋅=+=∆∆2121∵ AD =AB =1, ∴ )(21BE DF S +=由(1)知,AF =DF +BE , 所以AF S 21=.在Rt △ADF 中,AD =1,DF =x , ∴12+=x AF ,∴1212+=x S .由上式可知,当x 2达到最大值时,S 最大.而0≤x ≤1,所以,当x =1时,S 最大值为2211212=+x .22、⑴小于20的质数有2,3,5,7,11,13,17,19 (2分) 除了2和5以外,其余各数的倒数均可化为循环小数, (4分) 所以a 可以取:3,5,7,11,13,17,19。
广东省肇庆市八年级数学竞赛试卷
广东省肇庆市八年级数学竞赛试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七下·衢州期末) 下列多项式中,不能用乘法公式进行因式分解的是A .B .C .D .2. (2分) (2018七下·于田期中) 如果7年2班记作,那么表示()A . 7年4班B . 4年7班C . 4年8班D . 8年4班3. (2分)(2019·江北模拟) 有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的()A . 平均数B . 中位数C . 众数D . 方差4. (2分) (2020九下·无锡月考) 下列图形中,是轴对称图形的是()A .B .C .D .5. (2分) (2016八下·番禺期末) 若正比例函数y=kx的图象经过点(2,1),则k的值为()A . ﹣B .C . ﹣2D . 26. (2分) (2017八下·盐城开学考) 下列各点中,位于直角坐标系第二象限的点是()A . (2,1)B . (﹣2,﹣1)C . (2,﹣1)D . (﹣2,1)7. (2分) (2019九上·湖州月考) 如图,先将一张边长为4的正方形纸片ABCD沿着MN对折,然后,分别将 C, D沿着折痕BF,AE对折,使得C,D两点都落在折痕MN上的点O处,则的值为()A .B .C .D .8. (2分)(2017·浙江模拟) 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A . 64B . 77C . 80D . 85二、填空题 (共8题;共9分)9. (1分) (2020七下·枣阳期末) 方程组解是________.10. (1分)(2018·正阳模拟) +(﹣2)0=________.11. (1分)(2017·苏州) 因式分解: ________.12. (1分) (2019七上·杨浦月考) 当________时,分式有意义;13. (1分)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的顶点C恰好落在量角器的直径MN上,顶点A,B恰好落在量角器的圆弧上,且AB∥MN.若AB=8,则量角器的直径MN=________.14. (2分)已知2x=3y﹣1,用含x的代数式表示y,则y=________,当x=0时,y=________.15. (1分) (2018八上·沈河期末) 如图所示,已知四边形ABCD是等边长为2的正方形,AP=AC,则数轴上点P所表示的数是________.16. (1分)(2017·湖州竞赛) 设一次函数y=kx+2k-3(k≠0),对于任意两个k的值k1,k2,分别对应两个一次函数值y1,y2,若k1k2<0,当x=m时,取相应y1,y2,中的较小值p,则p的最大值是________.三、解答题 (共10题;共72分)17. (15分) (2019七上·长沙期中) 如图,在数轴上点A表示的有理数为,点B表示的有理数为6.点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点P出发以每秒1个单位长度的速度由运动,当点Q到达点A时两点停止运动,设运动时间为t(单位:秒).(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.18. (5分) (2019九上·上海月考) 已知,,求:代数式的值.19. (10分) (2017八下·宁德期末) 课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1 .请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2 ,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2 ,并描述旋转过程;(2)小红通过研究发现,△A BC只要通过一次旋转就能得到△A1B1C1 .请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.20. (2分) (2015八上·北京期中) 阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6求BC的长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请回答:(1)△BDE是________三角形.(2) BC的长为________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.21. (5分)若x3+x2+x=-1,求多项式x2009+x2008+…+x2+x+1的值.22. (5分) (2020八下·泰兴期中) 新春佳节来临之际,某商铺用1600元购进一款畅销礼盒,由于面市后供不应求,决定再用6000元购进同款礼盒,已知第二次购进的数量是第一次的3倍,但是第二次的单价比第一次贵2元.求第一次与第二次各购进礼盒多少个?23. (10分)(2018·毕节) 如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.24. (3分)如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有________盆花,图5中,应该有________盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数________.25. (10分) (2019八下·长宁期末) 如图,直线与轴交于点,点是该直线上一点,满足 .(1)求点的坐标;(2)若点是直线上另外一点,满足,且四边形是平行四边形,试画出符合要求的大致图形,并求出点的坐标.26. (7分) (2011八下·建平竞赛) 为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛成绩分别选出了10名同学参加决赛(满分为100分)如表所示:决赛成绩(单位:分)(1)请你填写下表:平均数众数中位数七年级85.5________87八年级85.585________九年级________________84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:从平均数和众数相结合看(分析哪个年级成绩好些):________;从平均数和中位数相结合看(分析哪个年级成绩好些):________;(3)如果在每个年级参加决赛的选手中分别选出三人参加决赛,你认为哪个年级的实力更强一些。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ).A .a b c d >>>B .a b d c >>>C .b a c d >>>D .a d b c >>>(第4题图)DCB6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b cb c a b c a a a+-=--≠=,且,则 .12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 .以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参G(第8题图)HOFEDCBA(第15题图)EDCBA加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数.四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD . 求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
奥数-2008学年第二学期八年级数学全科竞赛试卷(含答案)-
2008学年第二学期八年级数学全科竞赛试卷(满分120分,考试时间90分钟)一、仔细选一选 (共30分)1.下列计算正确的是( )A .(13-)2=-13B .32-22=1C .-35+5=-25 D.36=±62.李师傅在检验一座雕塑底座(如图)正面时,测得CD=AB=40cm, AD=BC=30cm,AC=DB=50cm,那么可以判断四边形ABCD 是( )A.平行四边形B.矩形C.菱形D.正方形3.下列命题中,真命题的是( )A.两条对角线相等的四边形是矩形;B.两条对角线垂直且相等的四边形是正方形;C.两条对角线垂直的四边形是菱形;D.两条对角线相等的平行四边形是矩形.4.剪纸是中国的民间艺术,剪纸方法很多,下面是一咱剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四幅图案,不能用上述方法剪出的是:5.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )A.若2,42==x x 则 B.方程()1212-=-x x x 的解是1=x C.若直角三角形有两边长分别是3和4,则第三边的长为5.D.若分式23221x x x x -+=-的值为零,则6.一次统计八(1)班若干名学生每分钟跳绳次数的频数分布直方图如上图所示.由这个直方图可知;这若干名学生平均每分钟跳绳的次数(结果精确到个位)是( ).个A.数据不全无法计算B.103C.104D.1057.如图,以正方形ABCD 的对角线AC 为边,延长AB 到E,使AE=AC,以AE 为一边作菱形AEFC,若正方形的边长为2,则菱形AEFC 的面积为( ).A.24B.4C.22D.28.用反证法证明:已知在Rt △ABC 中,∠C=90°,求证: ∠A, ∠B 中至少有一个角不大于45°,应假设 ( )A.∠A > 45°B.∠B > 45°C.∠A > 45°,∠B > 45°D.∠A< 45°,∠B <45°9.在平面直角坐标系中,直线l 分别交x 轴、y 轴的正半轴于点N 、M ,正方形ABCD 内接于 Rt △MON ,点A 、B 分别在线段MO 、NO 上,点C 、D 在线段MN 上。
初二数学竞赛试题及参考答案
初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。
7. 一个数的绝对值是它本身,这个数可以是______。
8. 一个数的相反数是它本身,这个数是______。
9. 一个数的倒数是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。
12. 解释什么是有理数和无理数,并给出一个例子。
13. 解释什么是因式分解,并给出一个例子。
14. 解释什么是二次方程,并给出一个例子。
四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。
16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。
17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。
五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
奥数-2008学年第二学期八年级数学全科竞赛试卷(含答案)-题卷
2008学年第二学期八年级数学全科竞赛试卷满分120分,考试时间90分钟一、仔细选一选(每题3分,共30分)1 2345678910二、仔细填一填(每题4分,共24分)11. ; 12. ; 13. ; 14. ;15. ; 16. , , ,;三、解答题(共66分)17. (6分)计算: (1)18232;- (2) (4827)362 3.-÷+⨯18. (6分)解方程(1) ()9142=-x (2) 03422=-+x x19.(8分)(1)频数分布表中的a= ,b= ,c= ,d= .请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效(2)(3)20.( 8分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效21.(8分) ⑴⑵22.(8分) (1)2008年的客流量预计 万人次,比2007年增加 万人次,在2006年、2007年、2008年这三年中,客流量增加最多的是 年; (2)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效班级 姓名 试场 考号请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效23.(10分)(1)(2)24.(12分)(1)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效(2)(3)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请勿在此区域内作答请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效yx 第24题。
2008年肇庆市八年级数学竞赛及答案
2008年肇庆市八年级数学竞赛(初赛)试题(竞赛时间:2008年3月7日下午4∶00—5∶00)(每小题3分,共60分)把正确答案序号填在以下表格中1、计算(-2008)-(-2008)的结果是( ) A .0 B .4016 C .4016 D .20082、a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )11(1)0 (2)0 (3) (4)11(5)ab b c b c c b a bb c>->->->>A .4个B .3个C .2个D .1个3、一个多边形的内角和与外角和的总和为1800°,则这个多边形的边数是( ) A .8 B .10 C .12 D .144、如图所示,已知AB=AC ,AE=AF ,AE ⊥EC 于E ,AF ⊥BF 于F ,则图中全等的三角形共有( )A .4对B .3对C .2对D .1对5、小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入:…1 2 3 4 5 …输出: (12345)25101726… 那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .8676、关于x y 、的方程组352 2 23x y a x y a x y a+=+⎧⎨+=⎩中的与的和是,则的值是()A .4B .-4C .0D .不能确定7、如图,是佳乐商场某个月甲、乙、丙三种品牌彩电的销售 统计图,则甲、丙两种品牌彩电该月的销售之和为( ) A .50台 B .65 C .75台 D .95台 8、已知32223x x a b b a ++==<<,,且满足,那么x 的取值范围是( ) A .1x > B .4x < C .14x << D .14x x <>或9、当0a <( )A .a -B .aC .aD .没有意义10、计算3212a b ⎛⎫- ⎪⎝⎭的结果正确的是( )A .4214a b B .6318a b C .6318a b -D . 5318a b - 11、不等式732122x x --+<的负整数解有( ) A .1个 B .2个 C .3个 D .4个 12、如图,△ABC 中,∠BAC=120°,P 是△ABC 内一点,则( ) A .PA+PB+PC<AB+ACB .PA+PB+PC>AB+AC C .PA+PB+PC=AB+AC D .以上结论均不对13、设是大于1的实数,若22133a a a ++、、在数轴上的对应点分别记作M 、N 、P ,设M 、N 、P 三点在数轴上自左至右的顺序是( )A .M、N 、P B .P 、M 、N C .P 、N 、M D .N 、P 、M14、若221022008m m m m +-=++3,则的值为( ) A .2006 B .2007 C .2008 D .200915、已知方程1x ax =+有一个负根而没有正根,则a 的取值范围是( ) A .1a >- B .1a < C .11a -<< D .1a ≥甲 乙 丙 品牌C16、检修一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天。
广东省肇庆市八年级数学竞赛(决赛)试题(Word版,含答案)
广东省肇庆市八年级数学竞赛(决赛)试题(竞赛时间: 4月13日上午9:30—11:30)一、选择题(每小题5分,共30分) 1.若四个有理数a b c d 、、、满足11112006200720082009a b c d ===-+-+,则a b c d 、、、的大小关系是( )A .>>>a c b dB .b d a c >>>C .c a b d >>>D .d b a c >>>2、如图1,已知AB ∥EF ,∠BAC=p ,∠ACD=x ,∠CDE=y ,∠DEF=q ,则用p 、q 、y 来表示x.得( )A .x=p+y-q+180°B .x=p+q-y+180°C .x=p+q+yD .x=2p+2q-y+90°3、计算22221111(1)(1)(1)(1)23910----= ( ) A .1021 B .1321C .920D .11204、若22221078 51M N M a b a N a b a =+-+=+++-,,则的值( ) A .一定是负数B .一定是正数C .一定不是正数D .不能确定5、不等边三角形ABC 的两条高分别是4和12,若第三边上的高也是整数,那么这条高最长的可能是( )A .4B .5C .6D .76、如果一条直线l 经过不同的三点(,),(,),(,)A a b B b a C a b b a --,那么直线l 经过( )(图1)AFA .第二、四象限B .第一、二象限C .第二、三、四象限D .第一、三、四象限二、填空题(每小题5分,共30分)7、方程200920092009x -=的解是 .8、如图2,AB 、CD 相交于E ,CF 、BF 分别是∠ACD 和∠ABD 的平分线,它们相交于点F ,若∠A+∠D=130°,则∠F= 度.9、一个自然数n 的所有数字之和记为S (n ),若n+S (n )=2009,则n= .10、某校参加数学竞赛有120名男生,80名女生,参加英语竞赛有120名女生,80名男生,已知该校总共有260名学生参加竞赛,其中75名男生都参加了,那么参加数学竞赛而没有参加英语竞赛的女生有 人.11、如图3,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是 .12、若2222007 2008 200924,a x b x c x abc +=+=+==,,,且则111a b c bc ac ab a b c++---的值为 . 以下三、四、五题要求写出解题过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年肇庆市八年级数学竞赛(决赛)试题
(竞赛时间:2008-4-6上午9:30—11:30)
一、选择题(每小题5分,共30分)
1.已知2220082008,2c
a b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .1
4
-
2.若方程组31
2433
x y k x y k x y x y +=+⎧<<-⎨
+=⎩的解为,,且,则的取值范围是( )
. A .1
02
x y <-<
B .01x y <-<
C .31x y -<-<-
D .11x y -<-<
3.计算:2399100
155555++++++=
( ).
A .101
5
1- B .100
5
1-
C .101514-
D .100514
-
4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶
点E 、F 分
别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°
(第4题图)
D
C
B
5.已知55443322
22335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数
97的分子、分母分别加上正整数9
13
a b 、,结果等于,那么a b +的最小 值是( ).
A .26
B .28
C .30
D .32
二、填空题:(每小题5分,共30分)
7.方程组200820092007
200720062008x y x y -=⎧⎨-=⎩
的解是 .
8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠
GOH= .
9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第
二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是
千米.
10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= . 11.已知
21()()()04b c
b c a b c a a a
+-=--≠=,且,则 . 12.设p q ,均为正整数,且
711
1015
p q <<,当q 最小时,pq 的值为 . G
(第8题图)
H
O
F
E
D C
B
A
以下三、四、五题要求写出解题过程. 三、(本题满分20分)
13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分) 14.已知2
2
11x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求5
5
x y +的值.
五、(本题满分20分)
15.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.
求证:∠BAD=1
2
∠C.
(第15题图)
E
D
C
B
A
2008年肇庆市八年级数学竞赛(决赛)试题
参考答案
一、选择题1.A 2.B 3.C 4.A 5.A 6.B
二、填空题: 7、2
1x y =⎧⎨=⎩
8、72.5° 9、11 10、175° 11、2 12、682
13、解:依题意得:A+B=16,B+C=20,C+D=34
∵A <B <C <D ,
∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7
答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
14、⑴ 证明:∵2
2
11x x y y =+=+,,
∴2
2
x y x y -=- ∴ 1 ()x y x y +=≠
⑵ 解:∵2
2
11x x y y =+=+,,∴3
2
3
2
x x x y y y =+=+,, 432432x x x y y y =+=+,,543543x x x y y y =+=+,, ∴5
5
4
3
4
3
3
2
2
3
2
2
x y x x y y x x x x y y y y +=+++=+++++++ 2
2
2
2
2
2
x x x x x y y y y y =+++++++++
2
2
3()2()3(11)2()33211x y x y x y x y =+++=+++++=⨯+=
15、证明:作∠OBF=∠OAE交AD于F
∵∠BAD=∠ABE
∴OA=OB
又∠AOE=∠BOF
∴△AOE≌△BOF (ASA)
∴AE=BF
∵AE=BD
∴BF=BD
∴∠BDF=∠BFD
∵∠BDF=∠C+∠OAE
∠BFD=∠BOF+∠OBF
∴∠BOF=∠C
∵∠BOF=∠BAD+∠ABE=2∠BAD
∴∠BAD=1
2
∠C
(第15题图)
D
C
B。