高中数学专题1.3.1函数的单调性与导数试题新人教A版选修2_2

合集下载

高中数学 综合测试题3 新人教A版选修2-2

高中数学 综合测试题3 新人教A版选修2-2

高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5 答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1eB.1e - C.2e D.2e -答案:A 3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) 答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i -- 答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000 答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11 答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①②B.②④C.①③D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( ) A.12cm/s B.13cm/sC.14 cm/s D.15cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[的函数共有( ) (1)(sin )(cos )y x x ''=+(2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( )A.23 B.43 C.83D.123答案:C 二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 . 答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 . 答案:72m 三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数. 证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+,由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±,故123z z -为实数.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<, 即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 31.8m .19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线. 证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾.所以AB C ,,三点不共线. 20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围. 解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明. 解:满足的不等式为21212111()(2)n nx x x n n x x x ⎛⎫++++++ ⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++ ⎪⎝⎭2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()S a 的最小值. 解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β=,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S aax a dx x a xββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a⎡=-=⎢⎣· (2)()S a =3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x '<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( )(A )1 (B (C (D )54.若函数3()y a x x =-的递减区间为(,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=(B)26.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( ) (A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数 9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

1.2.2 基本初等函数的导数公式及导数的运算法则(二)[A 基础达标]1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D.y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)(x -1)+(x +1)2=3x 2+2x -1, 所以y ′|x =1=4.2.函数y =cos(-x )的导数是( ) A .cos x B .-cos x C .-sin xD .sin x解析:选C.法一:[cos(-x )]′=-sin(-x )·(-x )′=sin(-x )=-sin x . 法二:y =cos(-x )=cos x ,所以[cos(-x )]′=(cos x )′=-sin x .3.(2018·郑州高二检测)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C.因为f ′(x )=2x -2-4x =2(x -2)(x +1)x,又x >0,所以f ′(x )>0即x-2>0,解得x >2.4.对于函数f (x )=e xx 2+ln x -2kx,若f ′(1)=1,则k 等于( )A.e 2B.e 3 C .-e 2D .-e 3解析:选A.因为f ′(x )=e x(x -2)x 3+1x +2kx2,所以f ′(1)=-e +1+2k =1,解得k =e2,故选A. 5.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2e xf ′(1)+3ln x ,则f ′(1)=( )A .-3B .2eC.21-2eD.31-2e解析:选D.因为f ′(1)为常数, 所以f ′(x )=2e xf ′(1)+3x,所以f ′(1)=2e f ′(1)+3, 所以f ′(1)=31-2e.6.若f (x )=log 3(2x -1),则f ′(2)=________. 解析:因为f ′(x )=[log 3(2x -1)] ′= 1(2x -1)ln 3(2x -1)′=2(2x -1)ln 3,所以f ′(2)=23ln 3.答案:23ln 37.已知函数f (x )=ax 4+bx 2+c ,若f ′(1)=2,则f ′(-1)=________. 解析:法一:由f (x )=ax 4+bx 2+c ,得f ′(x )=4ax 3+2bx .因为f ′(1)=2, 所以4a +2b =2, 即2a +b =1.则f ′(-1)=-4a -2b =-2(2a +b )=-2. 法二:因为f (x )是偶函数, 所以f ′(x )是奇函数, 所以f ′(-1)=-f ′(1)=-2. 答案:-28.已知f (x )=exx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:因为f ′(x )=(e x )′x -e x x ′x 2=e x(x -1)x2(x ≠0). 所以由f ′(x 0)+f (x 0)=0, 得e x0(x 0-1)x 20+e x0x 0=0. 解得x 0=12.答案:129.求下列函数的导数: (1)y =cos(1+x 2); (2)y =sin 2⎝ ⎛⎭⎪⎫2x +π3; (3)y =ln(2x 2+x ); (4)y =x ·2x -1.解:(1)设u =1+x 2,y =cos u ,所以y ′x =y ′u ·u ′x =(cos u )′·(1+x 2)′ =-sin u ·2x =-2x sin(1+x 2). (2)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin v ·cos v=2sin 2v =2sin ⎝ ⎛⎭⎪⎫4x +2π3. (3)设u =2x 2+x ,则y ′x =y ′u ·u ′x =(ln u )′·(2x 2+x )′ =1u ·(4x +1)=4x +12x 2+x. (4)y ′=x ′·2x -1+x ·(2x -1)′. 先求t =2x -1的导数. 设u =2x -1,则t =u 12,t ′x =t ′u ·u ′x =12·u -12·(2x -1)′=12×12x -1×2=12x -1 . 所以y ′=2x -1+x 2x -1=3x -12x -1. 10.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:因为曲线y =ax 2+bx +c 过点P (1,1), 所以a +b +c =1.① 因为y ′=2ax +b ,所以4a +b =1.②又因为曲线过点Q (2,-1), 所以4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9.[B 能力提升]11.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选 C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.12.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x解析:选D.若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-xe-x,则f ″(x )=2e-x-x e-x=(2-x )e -x,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )>0,不是凸函数.13.已知曲线y =e 2x·cos 3x 在点(0,1)处的切线与直线l 的距离为5,求直线l 的方程.解:因为y ′=(e 2x)′·cos 3x +e 2x·(cos 3x )′=2e 2x·cos 3x -3e 2x·sin 3x , 所以y ′|x =0=2,所以经过点(0,1)的切线方程为y -1=2(x -0), 即y =2x +1.设符合题意的直线方程为y =2x +b ,根据题意,得5=|b -1|5,解得b =6或-4. 所以符合题意的直线方程为y =2x +6或y =2x -4. 14.(选做题)已知函数f (x )=ax 2+ln x 的导数为f ′(x ). (1)求f (1)+f ′(1);(2)若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围. 解:(1)由题意,函数的定义域为(0,+∞), 由f (x )=ax 2+ln x , 得f ′(x )=2ax +1x,所以f (1)+f ′(1)=3a +1.(2)因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x存在零点,即f ′(x )=0⇒2ax +1x=0有正实数解,即2ax 2=-1有正实数解,故有a <0,所以实数a 的取值范围是(-∞,0).。

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

1.3.1 函数的单调性与导数 课件(人教A版选修2-2) (1)

1.3.1 函数的单调性与导数 课件(人教A版选修2-2) (1)

A.[3,+∞)
B.[-3,+∞)
C.(-3,+∞)
D.(-∞,-3)
解析:f′(x)=3x2+a,
令3x2+a≥0,则a≥-3x2[x∈(1,+∞)].∴a≥-3.
答案:B
练习题:1.已知函数f(x)=kx3-3(k+1)x2-k2+1(k> 0).若f(x)的单调递减区间为(0,4),单调递增区间为(-∞,0) 与(4,+∞),求k的值.
x ( 1 ,1) 3
.
3.已知函数f(x)= x +ln x,则有( )
A.f(2)<f(e)<f(3)
B.f(e)<f(2)<f(3)
C.f(3)<f(e)<f(2)
D.f(e)<f(3)<f(2)
解析:在(0,+∞)内,f′(x)=
2
1
x+1x
>0,
所以f(x)在(0,+∞)内是增函数,所以有f(2)<f(e)<f(3).
1
234Fra bibliotekhh
h
h
o A t o B t o C t o D t
分析 以容器2为例,由于容器
上细下粗,所以水以恒速注入时, 开始阶段高度增加得慢,以后高 度增加得越来越快.反映在图象
上,A 符合上述变化情况.同理
可知其他三种容器的情况.
解 1→B, 2→A, 3→D, 4→C.
2 h
o A t
思考 例 3 表明,通过函数图象 ,不仅可以看出函 数的增与减 ,还可以看出其增减的快慢.结合图象, 你能从导数的角度解释增减快慢的情况吗?
一般地,如果一个函
y
数在 某一范围内导 数 的绝对值较大,那 么函数 在 这个范围

人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。

高中数学人教A版选修2-2(课时训练):第一章 导数及其应用 章末复习 Word版含答案

高中数学人教A版选修2-2(课时训练):第一章 导数及其应用 章末复习 Word版含答案

章末复习1.对于导数的定义,必须明确定义中包含的基本内容和Δx→0的方式,导数是函数的增量Δy与自变量的增量Δx的比ΔyΔx的极限,即limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.2.曲线的切线方程利用导数求曲线过点P的切线方程时应注意:(1)判断P点是否在曲线上;(2)如果曲线y=f(x)在P(x0,f(x0))处的切线平行于y轴(此时导数不存在),可得方程为x=x0;P点坐标适合切线方程,P点处的切线斜率为f′(x0).3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.4.判断函数的单调性(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f ′(x )>0(或f ′(x )<0)是函数f (x )在该区间上为增(或减)函数的充分条件.5.利用导数研究函数的极值要注意(1)极值是一个局部概念,是仅对某一点的左右两侧领域而言的.(2)连续函数f (x )在其定义域上的极值点可能不止一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(3)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号.6.求函数的最大值与最小值(1)函数的最大值与最小值:在闭区间[a ,b ]上连续的函数f (x ),在[a ,b ]上必有最大值与最小值;但在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小值,例如:f (x )=x 3,x ∈(-1,1).(2)求函数最值的步骤一般地,求函数y =f (x )在[a ,b ]上最大值与最小值的步骤如下: ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数关系),如果函数在区间内只有一个点x 0,使f ′(x 0)=0,则f (x 0)是函数的最值.题型一 应用导数解决与切线相关的问题根据导数的几何意义,导数就是相应切线的斜率,从而就可以应用导数解决一些与切线相关的问题.例1 (2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),∴f (1)=1,f ′(1)=-1,∴y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0.①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a ;∵x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0∴f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.跟踪演练1 已知曲线C 的方程是y =x 3-3x 2+2x . (1)求曲线在x =1处的切线方程;(2)若l 2:y =kx ,且直线l 2与曲线C 相切于点(x 0,y 0)(x 0≠0),求直线l 2的方程及切点坐标. 解 (1)∵y ′=3x 2-6x +2, ∴y ′|x =1=3×1-6×1+2=-1. ∴l 1的斜率为-1,且过点(1,0). ∴直线l 1的方程为y =-(x -1), 即l 1的方程为x +y -1=0.(2)直线l 2过原点,则k =y 0x 0(x 0≠0),由点(x 0,y 0)在曲线C 上,得y 0=x 30-3x 20+2x 0,∴y 0x 0=x 20-3x 0+2. ∵y ′=3x 2-6x +2,∴k =3x 20-6x 0+2.又k =y 0x 0,∴3x 20-6x 0+2=y 0x 0=x 20-3x 0+2, 整理得2x 20-3x 0=0.∵x 0≠0,∴x 0=32, 此时y 0=-38,k =-14,因此直线l 2的方程为y =-14x ,切点坐标为⎝⎛⎭⎫32,-38. 题型二 利用导数求函数的单调区间在区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在区间(a ,b )内单调递增;在区间(a ,b )内,如果f ′(x )<0,那么函数y =f (x )在区间(a ,b )内单调递减. 例2 已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.解 由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0即a =22时,仅对x =2,有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x )、f (x )的变化情况如下表:在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.跟踪演练2 求下列函数的单调区间: (1)f (x )=(x -3)e x ,x ∈(0,+∞); (2)f (x )=x (x -a )2.解 (1)f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,又x ∈(0,+∞),所以函数的单调增区间(2,+∞),函数的单调减区间(0,2). (2)函数f (x )=x (x -a )2=x 3-2ax 2+a 2x 的定义域为R , 由f ′(x )=3x 2-4ax +a 2=0,得x 1=a3,x 2=a .①当a >0时,x 1<x 2.∴函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,a 3,(a ,+∞),单调递减区间为⎝⎛⎭⎫a 3,a . ②当a <0时,x 1>x 2,∴函数f (x )的单调递增区间为(-∞,a ),⎝⎛⎭⎫a 3,+∞, 单调递减区间为⎝⎛⎭⎫a ,a3. ③当a =0时,f ′(x )=3x 2≥0,∴函数f (x )的单调区间为(-∞,+∞),即f (x )在R 上是递增的.综上,a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,a 3,(a ,+∞),单调递减区间为⎝⎛⎭⎫a3,a . a <0时,函数f (x )的单调递增区间为(-∞,a ),⎝⎛⎭⎫a 3,+∞,单调递减区间为⎝⎛⎭⎫a ,a3. a =0时,函数f (x )的单调递增区间为(-∞,+∞). 题型三 利用导数求函数的极值和最值 1.利用导数求函数极值的一般步骤 (1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧f ′(x )的符号. 若左正右负,则f (x )在此根处取得极大值; 若左负右正,则f (x )在此根处取得极小值; 否则,此根不是f (x )的极值点.2.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以断定f (x )在该点处取得最大(最小)值, 这里(a ,b )也可以是(-∞,+∞). 例3 已知函数f (x )=12x 2-a ln x (a ∈R ),(1)若f (x )在x =2时取得极值,求a 的值; (2)求f (x )的单调区间;(3)求证:当x >1时,12x 2+ln x <23x 3.(1)解 f ′(x )=x -a x ,因为x =2是一个极值点,所以2-a 2=0,则a =4.此时f ′(x )=x -4x =(x +2)(x -2)x ,因为f (x )的定义域是(0,+∞),所以当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞),f ′(x )>0,所以当a =4时,x =2是一个极小值点,故a =4.(2)解 因为f ′(x )=x -a x =x 2-ax ,所以当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x +a )(x -a )x,所以函数f (x )的单调递增区间(a ,+∞);递减区间为(0,a ).(3)证明 设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,因为当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,所以g (x )在x ∈(1,+∞)上是增函数,所以g (x )>g (1)=16>0,所以当x >1时,12x 2+ln x <23x 3.跟踪演练3 已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.解 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为:f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2.所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2得,f ′(x )=3x 2-6x . 由f ′(x )=0得,x =0或x =2.①当0<t ≤2时,在区间(0,t )上f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2, f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x )、f (x )的变化情况如下表:min max f (t )-f (0)=t 3-3t 2=t 2(t -3)<0. 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , g ′(x )=3x 2-6x =3x (x -2).在x ∈[1,2)上,g ′(x )<0;在x ∈(2,3]上,g ′(x )>0.要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (3)≥0,解得-2<c ≤0.题型四 导数与函数、不等式的综合应用利用导数研究函数是高考的必考内容,也是高考的重点、热点.考题利用导数作为工具,考查求函数的单调区间、函数的极值与最值,参数的取值范围等问题,若以选择题、填空题出现,以中低档题为主;若以解答题形式出现,则难度以中档以上为主,有时也以压轴题的形式出现.考查中常渗透函数、不等式等有关知识,综合性较强.例4 设函数f (x )=-13x 3+2ax 2-3a 2x +b (0<a <1).(1)求函数f (x )的单调区间和极值;(2)若当x ∈[a +1,a +2]时,恒有|f ′(x )|≤a ,试确定a 的取值范围;(3)当a =23时,关于x 的方程f (x )=0在区间[1,3]上恒有两个相异的实根,求实数b 的取值范围.解 (1)f ′(x )=-x 2+4ax -3a 2=-(x -a )(x -3a ). 令f ′(x )=0,得x =a 或x =3a .当x 变化时,f ′(x )、f (x )的变化情况如下表:值,f (x )极小值=f (a )=b -43a 3;当x =3a 时,f (x )取得极大值,f (x )极大值=f (3a )=b .(2)f ′(x )=-x 2+4ax -3a 2,其对称轴为x =2a . 因为0<a <1,所以2a <a +1.所以f ′(x )在区间[a +1,a +2]上是减函数.当x =a +1时,f ′(x )取得最大值,f ′(a +1)=2a -1; 当x =a +2时,f ′(x )取得最小值,f ′(a +2)=4a -4.于是有⎩⎪⎨⎪⎧2a -1≤a ,4a -4≥-a ,即45≤a ≤1.又因为0<a <1,所以45≤a <1.(3)当a =23时,f (x )=-13x 3+43x 2-43x +b .f ′(x )=-x 2+83x -43,由f ′(x )=0,即-x 2+83x -43=0,解得x 1=23,x 2=2,即f (x )在⎝⎛⎭⎫-∞,23上是减函数, 在⎝⎛⎭⎫23,2上是增函数,在(2,+∞)上是减函数. 要使f (x )=0在[1,3]上恒有两个相异实根, 即f (x )在(1,2),(2,3)上各有一个实根,于是有⎩⎪⎨⎪⎧f (1)≤0,f (2)>0,f (3)≤0,即⎩⎪⎨⎪⎧-13+b ≤0,b >0,-1+b ≤0,解得0<b ≤13.跟踪演练4 证明:当x ∈[-2,1]时,-113≤13x 3-4x ≤163.证明 令f (x )=13x 3-4x ,x ∈[-2,1],则f ′(x )=x 2-4.因为x ∈[-2,1],所以f ′(x )≤0, 即函数f (x )在区间[-2,1]上单调递减.故函数f (x )在区间[-2,1]上的最大值为f (-2)=163,最小值为f (1)=-113.所以,当x ∈[-2,1]时,-113≤f (x )≤163,即-113≤13x 3-4x ≤163成立.题型五 定积分及其应用定积分的几何意义表示曲边梯形的面积,它的物理意义表示做变速直线运动物体的位移或变力所做的功,所以利用定积分可求平面图形的面积以及变速运动的路程和变力做功等问题.利用定积分解决问题时要注意确定被积函数和积分上下限. 例5 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围成图形的面积.解所求面积S =∫54π-π2||sin x d x=-⎠⎛0-π2sin x d x +⎠⎛0πsin x d x -∫54ππsin x d x =1+2+⎝⎛⎭⎫1-22=4-22. 跟踪演练5 求由曲线y =e x ,y =e -x及x =1所围成的图形面积.解如图,由⎩⎪⎨⎪⎧y =e x,y =e -x,解得交点为(0,1).所求面积为S =⎠⎛01(e x -e -x )d x =(e x+e -x)⎪⎪10=e +1e-2.1.求函数中参数的取值范围问题,可以有两种类型:一是已知函数单调性(或极值),求参数范围;二是已知函数最值(或恒成立)等性质,求参数范围.这两种类型从实质上讲,可以统一为:已知函数值的变化规律,探求其参数变化范围.2.在解决问题的过程中主要处理好下面的问题:(1)注意定义域;(2)函数在某区间上递增(或递减)的充要条件是:f ′(x)≥0(或f ′(x)≤0),且f ′(x)不恒为零;(3)与函数最值有关问题要注意最值能否取得的情况,一般我们可以研究临界值取舍即可.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2
复习课件
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选 修2-2
1.3.2 函数的极值与导数
目标定位
重点难点
1.了解函数在某点取得极值的必要条 重点:求函数极值的
件和充分条件 方法和步骤
2.理解极大值和极小值的概念 难点:函数极值的概
3.掌握求可导函数极大值和极小值的 念的理解
设f(x)在x0处连续且f′(x0)=0,判别f(x0)是极大(小)值的方 法:
(1)若在x0两侧f′(x)符号相同,则x0不是f(x)的极值点; (2)若在x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)是极 大值;
(3)若在x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)是极 小值.
解得ab==4-,11 或ab==3-. 3, 故a+b=-7或a+b=0.
【错因分析】可导函数在一点的导数值为0是函数在这 一点取得极值的必要条件,而非充分条件,本题忽略了对所得 两组解进行检验,从而出现了错误.
【正解】(接错解)当a=4,b=-11时, f(x)=x3+4x2-11x+16, 得f′(x)=3x2+8x-11=(3x+11)(x-1). 当x∈-131,1时,f′(x)<0; 当x∈(1,+∞)时,f′(x)>0.
(3) 如 果 f′(x) 在 点 x0 的 左 右 两 侧 符 号 不 变 , 则 f(x0) _不__是__极__值___.
1.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1
B.b<0
C.b>0 【答案】A
D.b<12
2.已知函数y=x3-3x+2,则( ) A.y无极小值,也无极大值 B.y有极小值0,但无极大值 C.y有极小值0,极大值4 D.y有极大值4,但无极小值 【答案】C

11-12学年高中数学 1.1.3 导数的几何意义同步练习 新人教A版选修2-2

11-12学年高中数学 1.1.3 导数的几何意义同步练习 新人教A版选修2-2

导数的几何意义一、选择题1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 [答案] B[解析] 切线x +2y -3=0的斜率k =-12,即f ′(x 0)=-12<0.故应选B. 2.曲线y =12x 2-2在点⎝⎛⎭⎪⎫1,-32处切线的倾斜角为( ) A .1B.π4C.54π D .-π4 [答案] B[解析] ∵y ′=li m Δx →0 [12(x +Δx )2-2]-(12x 2-2)Δx=li m Δx →0 (x +12Δx )=x ∴切线的斜率k =y ′|x =1=1.∴切线的倾斜角为π4,故应选B. 3.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0)B .(2,4) C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭⎪⎫12,14 [答案] D [解析] 易求y ′=2x ,设在点P (x 0,x 20)处切线的倾斜角为π4,则2x 0=1,∴x 0=12,∴P ⎝ ⎛⎭⎪⎫12,14. 4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -5[答案] B[解析] y ′=3x 2-6x ,∴y ′|x =1=-3.由点斜式有y +1=-3(x -1).即y =-3x +2.5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2[答案] B[解析] lim x →0 f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f(1)-2x=-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1,故选B.6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交[答案] B[解析] 由导数的几何意义知B 正确,故应选B.7.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)及f ′(5)分别为( )A .3,3B .3,-1C .-1,3D .-1,-1[答案] B[解析] 由题意易得:f (5)=-5+8=3,f ′(5)=-1,故应选B.8.曲线f (x )=x 3+x -2在P 点处的切线平行于直线y =4x -1,则P 点的坐标为( )A .(1,0)或(-1,-4)B .(0,1)C .(-1,0)D .(1,4)[答案] A[解析] ∵f (x )=x 3+x -2,设x P =x 0,∴Δy =3x 20·Δx +3x 0·(Δx )2+(Δx )3+Δx ,∴ΔyΔx =3x 20+1+3x 0(Δx )+(Δx )2,∴f ′(x 0)=3x 20+1,又k =4,∴3x 20+1=4,x 20=1.∴x 0=±1,故P (1,0)或(-1,-4),故应选A.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为() A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫56π,πC.⎣⎢⎡⎭⎪⎫23π,πD.⎝ ⎛⎦⎥⎤π2,56π[答案] A[解析] 设P (x 0,y 0),∵f ′(x )=li m Δx →0 (x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx=3x 2-3,∴切线的斜率k =3x 20-3,∴tan α=3x 20-3≥- 3. ∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π.故应选A. 10.(2010·福州高二期末)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( ) A .[-1,-12] B .[-1,0] C .[0,1]D .[12,1] [答案] A[解析] 考查导数的几何意义.∵y ′=2x +2,且切线倾斜角θ∈[0,π4], ∴切线的斜率k 满足0≤k ≤1,即0≤2x +2≤1,∴-1≤x ≤-12. 二、填空题11.已知函数f (x )=x 2+3,则f (x )在(2,f (2))处的切线方程为________.[答案] 4x -y -1=0[解析] ∵f (x )=x 2+3,x 0=2∴f (2)=7,Δy =f (2+Δx )-f (2)=4·Δx +(Δx )2∴Δy Δx =4+Δx .∴li m Δx →0 Δy Δx =4.即f ′(2)=4. 又切线过(2,7)点,所以f (x )在(2,f (2))处的切线方程为y -7=4(x -2)即4x -y -1=0.12.若函数f (x )=x -1x,则它与x 轴交点处的切线的方程为________. [答案] y =2(x -1)或y =2(x +1)[解析] 由f (x )=x -1x=0得x =±1,即与x 轴交点坐标为(1,0)或(-1,0).∵f ′(x )=li m Δx →0 (x +Δx )-1x +Δx -x +1x Δx =li m Δx →0 ⎣⎢⎡⎦⎥⎤1+1x (x +Δx )=1+1x 2. ∴切线的斜率k =1+11=2. ∴切线的方程为y =2(x -1)或y =2(x +1). 13.曲线C 在点P (x 0,y 0)处有切线l ,则直线l 与曲线C 的公共点有________个.[答案] 至少一[解析] 由切线的定义,直线l 与曲线在P (x 0,y 0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________.[答案] 3x -y -11=0[解析] 设切点P (x 0,y 0),则过P (x 0,y 0)的切线斜率为,它是x 0的函数,求出其最小值. 设切点为P (x 0,y 0),过点P 的切线斜率k ==3x 20+6x 0+6=3(x 0+1)2+3.当x 0=-1时k 有最小值3,此时P 的坐标为(-1,-14),其切线方程为3x -y -11=0.三、解答题 15.求曲线y =1x -x 上一点P ⎝⎛⎭⎪⎫4,-74处的切线方程. [解析] ∴y ′=lim Δx →0 ⎝ ⎛⎭⎪⎫1x +Δx -1x -(x +Δx -x )Δx=lim Δx →0 -Δx x (x +Δx )-Δx x +Δx +x Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x . ∴y ′|x =4=-116-14=-516, ∴曲线在点P ⎝⎛⎭⎪⎫4,-74处的切线方程为: y +74=-516(x -4).即5x +16y +8=0.16.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于点P 的直线方程y =g (x ).[解析] (1)y ′=li m Δx →0 (x +Δx )3-3(x +Δx )-3x 3+3x Δx=3x 2-3. 则过点P 且以P (1,-2)为切点的直线的斜率 k 1=f ′(1)=0,∴所求直线方程为y =-2.(2)设切点坐标为(x 0,x 30-3x 0),则直线l 的斜率k 2=f ′(x 0)=3x 20-3,∴直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0)又直线l 过点P (1,-2),∴-2-(x 30-3x 0)=(3x 20-3)(1-x 0),∴x 30-3x 0+2=(3x 20-3)(x 0-1),解得x 0=1(舍去)或x 0=-12. 故所求直线斜率k =3x 20-3=-94, 于是:y -(-2)=-94(x -1),即y =-94x +14. 17.求证:函数y =x +1x图象上的各点处的切线斜率小于1. [解析] y ′=li m Δx →0 f (x +Δx )-f (x )Δx=li m Δx →0⎝ ⎛⎭⎪⎫x +Δx +1x +Δx -⎝ ⎛⎭⎪⎫x +1x Δx =li m Δx →0x ·Δx (x +Δx )-Δx (x +Δx )·x ·Δx =li m Δx →0 (x +Δx )x -1(x +Δx )x=x 2-1x 2=1-1x 2<1, ∴y =x +1x图象上的各点处的切线斜率小于1. 18.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.[解析] (1)y ′|x =1=li m Δx →0 (1+Δx )2+(1+Δx )-2-(12+1-2)Δx=3, 所以l 1的方程为:y =3(x -1),即y =3x -3.设l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),y ′|x =b =li m Δx →0 (b +Δx )2+(b +Δx )-2-(b 2+b -2)Δx=2b +1,所以l 2的方程为:y -(b 2+b -2)=(2b +1)·(x -b ),即y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以3×(2b +1)=-1,所以b =-23,所以l 2的方程为:y =-13x -229. (2)由⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎪⎨⎪⎧ x =16,y =-52,即l 1与l 2的交点坐标为⎝ ⎛⎭⎪⎫16,-52. 又l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫-223,0. 所以所求三角形面积S =12×⎪⎪⎪⎪⎪⎪-52×⎪⎪⎪⎪⎪⎪1+223=12512.。

新人教A版选修2-2《1.2.1几个常用的函数的导数》同步练习及答案

新人教A版选修2-2《1.2.1几个常用的函数的导数》同步练习及答案

选修2-2 1.2 第1课时 几个常用的函数的导数一、选择题1.下列结论不正确的是( ) A .若y =0,则y ′=0 B .若y =5x ,则y ′=5 C .若y =x -1,则y ′=-x -2[答案] D2.若函数f (x )=x ,则f ′(1)等于( ) A .0 B .-12C .2D.12[答案] D[解析] f ′(x )=(x )′=12x ,所以f ′(1)=12×1=12,故应选D.3.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0[答案] A[解析] ∵f (x )=14x 2,∴f ′(2)=li m Δx →0f (2+Δx )-f (2)Δx=li m Δx →0 ⎝ ⎛⎭⎪⎫1+14Δx =1.∴切线方程为y -1=x -2.即x -y -1=0. 4.已知f (x )=x 3,则f ′(2)=( ) A .0 B .3x 2C .8D .12[答案] D[解析] f ′(2)=lim Δx →0 (2+Δx )3-23Δx=lim Δx →0 6Δx 2+12Δx Δx =lim Δx →0 (6Δx +12)=12,故选D. 5.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3[答案] A[解析] 若α=2,则f (x )=x 2,∴f ′(x )=2x ,∴f ′(-1)=2×(-1)=-2适合条件.故应选A. 6.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] ∵y =x 3+x 2-x -1∴Δy Δx =(1+Δx )3+(1+Δx )2-(1+Δx )-1Δx =4+4Δx +(Δx )2,∴y ′|x =1=li m Δx →0 Δy Δx =li m Δx →0[4+4·Δx +(Δx )2]=4. 故应选D.7.曲线y =x 2在点P 处切线斜率为k ,当k =2时的P 点坐标为( ) A .(-2,-8) B .(-1,-1) C .(1,1)D.⎝ ⎛⎭⎪⎫-12,-18[答案] C[解析] 设点P 的坐标为(x 0,y 0), ∵y =x 2,∴y ′=2x .∴k ==2x 0=2,∴x 0=1,∴y 0=x 20=1,即P (1,1),故应选C. 8.已知f (x )=f ′(1)x 2,则f ′(0)等于( ) A .0 B .1 C .2D .3[答案] A[解析] ∵f (x )=f ′(1)x 2,∴f ′(x )=2f ′(1)x ,∴f ′(0)=2f ′(1)×0=0.故应选A.9.曲线y=3x上的点P(0,0)的切线方程为( )A.y=-x B.x=0 C.y=0 D.不存在[答案] B[解析] ∵y=3 x∴Δy=3x+Δx-3x=x+Δx-x(3x+Δx)2+3x(x+Δx)+(3x)2=Δx(3x+Δx)2+3x(x+Δx)+(3x)2∴ΔyΔx=1(3x+Δx)2+3x(x+Δx)+(3x)2∴曲线在P(0,0)处切线的斜率不存在,∴切线方程为x=0.10.质点作直线运动的方程是s=4t,则质点在t=3时的速度是( )A.14433B.14334C.12334D.13443[答案] A[解析] Δs=4t+Δt-4t=t+Δt-t4t+Δt+4t=t+Δt-t(4t+Δt+4t)(t+Δt+t)=Δt(4t+Δt+4t)(t+Δt+t)∴li m Δt →0 Δs Δt=124t ·2t =144t 3, ∴s ′(3)=14433 .故应选A.二、填空题11.若y =x 表示路程关于时间的函数,则y ′=1可以解释为________. [答案] 某物体做瞬时速度为1的匀速运动[解析] 由导数的物理意义可知:y ′=1可以表示某物体做瞬时速度为1的匀速运动. 12.若曲线y =x 2的某一切线与直线y =4x +6平行,则切点坐标是________. [答案] (2,4)[解析] 设切点坐标为(x 0,x 20),因为y ′=2x ,所以切线的斜率k =2x 0,又切线与y =4x +6平行,所以2x 0=4,解得x 0=2,故切点为(2,4).13.过抛物线y =15x 2上点A ⎝ ⎛⎭⎪⎫2,45的切线的斜率为______________. [答案] 45[解析] ∵y =15x 2,∴y ′=25x∴k =25×2=45.14.(2010·江苏,8)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.[答案] 21[解析] ∵y ′=2x ,∴过点(a k ,a 2k )的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.三、解答题15.过点P (-2,0)作曲线y =x 的切线,求切线方程. [解析] 因为点P 不在曲线y =x 上, 故设切点为Q (x 0,x 0),∵y ′=12x ,∴过点Q 的切线斜率为:12x 0=x 0x 0+2,∴x 0=2,∴切线方程为:y -2=122(x -2),即:x -22y +2=0.16.质点的运动方程为s =1t 2,求质点在第几秒的速度为-264.[解析] ∵s =1t2,∴Δs =1(t +Δt )2-1t2=t 2-(t +Δt )2t (t +Δt )=-2t Δt -(Δt )2t (t +Δt )∴li m Δt →0 Δs Δt =-2t t 2·t 2=-2t 3.∴-2t 3=-264,∴t =4. 即质点在第4秒的速度为-264.17.已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程; (3)求满足斜率为-13的曲线的切线方程.[解析] ∵y =1x ,∴y ′=-1x2.(1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数y =1x在P (1,1)点导数.即k =f ′(1)=-1.所以曲线在P (1,1)处的切线方程为y -1=-(x -1),即为y =-x +2.(2)显然Q (1,0)不在曲线y =1x上.则可设过该点的切线的切点为A ⎝⎛⎭⎪⎫a ,1a ,那么该切线斜率为k =f ′(a )=-1a2.则切线方程为y -1a =-1a2(x -a ).①将Q (1,0)坐标代入方程:0-1a =-1a2(1-a ).解得a =12,代回方程①整理可得:切线方程为y =-4x +4.(3)设切点坐标为A ⎝ ⎛⎭⎪⎫a ,1a ,则切线斜率为k =-1a 2=-13,解得a =±3,那么A ⎝⎛⎭⎪⎫3,33,A ′⎝ ⎛⎭⎪⎫-3,3-3.代入点斜式方程得y -33=-13(x -3)或y +33=-13(x +3).整理得切线方程为y =-13x +233或y =-13x -233.18.求曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.[解析] 两曲线方程联立得⎩⎪⎨⎪⎧y =1x,y =x 2,解得⎩⎪⎨⎪⎧x =1y =1.∴y ′=-1x2,∴k 1=-1,k 2=2x |x =1=2,∴两切线方程为x +y -2=0,2x -y -1=0,所围成的图形如上图所示. ∴S =12×1×⎝ ⎛⎭⎪⎫2-12=34.。

2020学年高中数学近年年数学高考真题新人教A版选修2-2(2021-2022学年)

2020学年高中数学近年年数学高考真题新人教A版选修2-2(2021-2022学年)

2019年数学高考真题剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.虽然难度上会有一些差异,但在试卷结构、命题方向上基本都是相同的.试题稳中求新、稳中求变.与往年相比,三角、数列、立体几何、圆锥曲线、函数与导数等依然是考查的重点,注重基础知识,凸显主干知识.试卷结构、题型保持一致,各题型所占分值与分值分布没有变化,试题顺序有较大变化,考查方式有所改变,难度明显增加,客观题与去年的难度相当,主观题难易梯度明显增加,解决了区分度低的诟病.今年试题立足学科素养,落实关键能力,加强数学应用,渗透数学文化.以真实情境为载体,贴近生活,联系社会实际,注重能力考查,增强综合性、应用性,在各部分内容的布局和考查难度上都进行了调整和改变,这在一定程度上有助于考查学生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重点知识和重点内容,同时有助于打破考试题的僵硬化,更好地提升学生的综合分析能力,打破了传统的应试教育.全国Ⅰ、Ⅱ、Ⅲ卷对选修2-2推理与证明、数系的扩充与复数的引入的考查,相对来说比较常规、难度不大、变化小、综合性低,属于基础类必得分试题;对导数及其应用的考查,难度大、综合性强、运算能力要求高、得分比较困难,主要考查导数的计算、几何意义,利用导数研究函数的单调性、极值、最值、零点、不等式等.其他省市试题和全国卷类似,难度相当.要想学好这部分知识不仅要有扎实的基础知识、基本能力,还要注意一些数学思想的培养,比如分类讨论思想、数形结合思想、转化与化归思想等!下面列出了2019年全国Ⅰ、Ⅱ、Ⅲ卷及各地区对选修2-2所考查的全部试题,请同学们根据所学知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性地试做!)穿越自测一、选择题1.(2019·全国卷Ⅰ,理2)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( )ﻬA.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1ﻩD.x2+(y+1)2=1答案C解析由已知条件,可得z=x+y i。

新人教A版选修2-2《1.3.3函数的最值与导数》同步练习及答案

新人教A版选修2-2《1.3.3函数的最值与导数》同步练习及答案

选修2-2 1.3.3 函数的最值与导数一、选择题1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0D .以上都有可能[答案] A[解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A.2.设f (x )=14x 4+13x 3+12x 2在[-1,1]上的最小值为( )A .0B .-2C .-1D.1312[答案] A[解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0.∴f (-1)=512,f (0)=0,f (1)=1312∴f (x )在[-1,1]上最小值为0.故应选A.3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.2227B .2C .-1D .-4[答案] C[解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =13或x =-1当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =2227;当x =1时,y =2.所以函数的最小值为-1,故应选C.4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34B .最大值为1,最小值为4C .最大值为13,最小值为1D .最大值为-1,最小值为-7 [答案] A[解析] ∵y =x 2-x +1,∴y ′=2x -1,令y ′=0,∴x =12,f (-3)=13,f ⎝ ⎛⎭⎪⎫12=34,f (0)=1.5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0D .不存在[答案] A[解析] y ′=12x -121-x =12·1-x -xx ·1-x由y ′=0得x =12,在⎝ ⎛⎭⎪⎫0,12上y ′>0,在⎝ ⎛⎭⎪⎫12,1上 y ′<0.∴x =12时y 极大=2,又x ∈(0,1),∴y max = 2.6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值 [答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1) ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.7.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( ) A .5,-15B .5,4C .-4,-15D .5,-16[答案] A[解析] y ′=6x 2-6x -12=6(x -2)(x +1), 令y ′=0,得x =2或x =-1(舍). ∵f (0)=5,f (2)=-15,f (3)=-4, ∴y max =5,y min =-15,故选A.8.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a 等于( )A .-32B.12 C .-12D.12或-32[答案] C[解析] y ′=-2x -2,令y ′=0得x =-1. 当a ≤-1时,最大值为f (-1)=4,不合题意. 当-1<a <2时,f (x )在[a,2]上单调递减, 最大值为f (a )=-a 2-2a +3=154,解得a =-12或a =-32(舍去).9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数 [答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.10.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞)D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立即a ≥-3x 2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x 2)max =-3 ∴a ≥-3,故应选B. 二、填空题11.函数y =x 32+(1-x )32,0≤x ≤1的最小值为______.[答案]22由y ′>0得x >12,由y ′<0得x <12.此函数在⎣⎢⎡⎦⎥⎤0,12上为减函数,在⎣⎢⎡⎦⎥⎤12,1上为增函数,∴最小值在x =12时取得,y min =22.12.函数f (x )=5-36x +3x 2+4x 3在区间[-2,+∞)上的最大值________,最小值为________.[答案] 不存在;-2834[解析] f ′(x )=-36+6x +12x 2,令f ′(x )=0得x 1=-2,x 2=32;当x >32时,函数为增函数,当-2≤x ≤32时,函数为减函数,所以无最大值,又因为f (-2)=57,f ⎝ ⎛⎭⎪⎫32=-2834,所以最小值为-2834.13.若函数f (x )=xx 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为________. [答案]3-1[解析] f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2令f ′(x )=0,解得x =a 或x =-a (舍去) 当x >a 时,f ′(x )<0;当0<x <a 时,f ′(x )>0; 当x =a 时,f (x )=a 2a =33,a =32<1,不合题意. ∴f (x )max =f (1)=11+a =33,解得a =3-1.14.f (x )=x 3-12x +8在[-3,3]上的最大值为M ,最小值为m ,则M -m =________. [答案] 32[解析] f ′(x )=3x 2-12 由f ′(x )>0得x >2或x <-2, 由f ′(x )<0得-2<x <2.∴f (x )在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增. 又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,∴最大值M =24,最小值m =-8, ∴M -m =32. 三、解答题15.求下列函数的最值:(1)f (x )=sin2x -x ⎝ ⎛⎭⎪⎫-π2≤x ≤π2;(2)f (x )=x +1-x 2.[解析] (1)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴2x ∈[-π,π], ∴2x =±π3,∴x =±π6.∴函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的两个极值分别为f ⎝ ⎛⎭⎪⎫π6=32-π6,f ⎝ ⎛⎭⎪⎫-π6=-32+π6. 又f (x )在区间端点的取值为f ⎝ ⎛⎭⎪⎫π2=-π2,f ⎝ ⎛⎭⎪⎫-π2=π2. 比较以上函数值可得f (x )max =π2,f (x )min =-π2.(2)∵函数f (x )有意义,∴必须满足1-x 2≥0,即-1≤x ≤1, ∴函数f (x )的定义域为[-1,1].f ′(x )=1+12(1-x 2)-12·(1-x 2)′=1-x 1-x2. 令f ′(x )=0,得x =22. ∴f (x )在[-1,1]上的极值为f ⎝⎛⎭⎪⎫22=22+1-⎝⎛⎭⎪⎫222= 2. 又f (x )在区间端点的函数值为f (1)=1,f (-1)=-1,比较以上函数值可得f (x )max =2,f (x )min =-1.16.设函数f (x )=ln(2x +3)+x 2.求f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值和最小值.[解析] f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞. f ′(x )=2x +22x +3=4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当-32<x <-1时,f ′(x )>0;当-1<x <-12时,f ′(x )<0;当x >-12时,f ′(x )>0,所以f (x )在⎣⎢⎡⎦⎥⎤-34,14上的最小值为 f ⎝ ⎛⎭⎪⎫-12=ln2+14.又f ⎝ ⎛⎭⎪⎫-34-f ⎝ ⎛⎭⎪⎫14=ln 32+916-ln 72-116=ln 37+12=12⎝ ⎛⎭⎪⎫1-ln 499<0, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值为 f ⎝ ⎛⎭⎪⎫14=ln 72+116.17.(2010·安徽理,17)设a 为实数,函数f (x )=e x-2x +2a ,x ∈R . (1)求f (x )的单调区间及极值;(2)求证:当a >ln2-1且x >0时,e x>x 2-2ax +1.[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.[解析] (1)解:由f (x )=e x-2x +2a ,x ∈R 知f ′(x )=e x-2,x ∈R . 令f ′(x )=0,得x =ln2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减单调递增故f (x )(ln2,+∞),f (x )在x =ln2处取得极小值,极小值为f (ln2)=e ln 2-2ln2+2a =2(1-ln2+a ).(2)证明:设g (x )=e x-x 2+2ax -1,x ∈R ,于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln2-1时,g ′(x )最小值为g ′(ln2)=2(1-ln2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 18.已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.[解析] (1)对函数f (x )求导,得f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2令f ′(x )=0解得x =12或x =72.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x ∈(0,2)时,f (x )是减函数;当x ∈⎝ ⎛⎭⎪⎫12,1时,f (x )是增函数. 当x ∈[0,1]时,f (x )的值域为[-4,-3]. (2)g ′(x )=3(x 2-a 2).因为a ≥1,当x ∈(0,1)时,g ′(x )<0.因此当x ∈(0,1)时,g (x )为减函数,从而当x ∈[0,1]时有g (x )∈[g (1),g (0)]. 又g (1)=1-2a -3a 2,g (0)=-2a ,即x ∈[0,1]时有g (x )∈[1-2a -3a 2,-2a ]. 任给x 1∈[0,1],f (x 1)∈[-4,-3],存在x 0∈[0,1]使得g (x 0)=f (x 1)成立, 则[1-2a -3a 2,-2a ]⊇[-4,-3].即⎩⎪⎨⎪⎧1-2a -3a 2≤-4,①-2a ≥-3.②解①式得a ≥1或a ≤-53;解②式得a ≤32.又a ≥1,故a 的取值范围为1≤a ≤32.。

人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件

人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件

重点:导数的几何意义及曲线的切线方程. 难点:对导数几何意义的理解.
导数的几何意义
新知导学 1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当
Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的 直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的 __________.
[解析] (1)将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2=Δlixm→0
ΔΔyx=Δlixm→0
132+Δx3+43-13×23-43 Δx
=Δlixm→0[4+2·Δx+13(Δx)2]=4. ∴k=y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y
)
A.1
B.π4
C.54π
D.-π4
[答案] B
[解析] ∵y=12x2-2,
∴y′= lim Δx→0
12x+Δx2-2-12x2-2 Δx
= lim Δx→0
12ΔxΔ2+x x·Δx=Δlixm→0
x+12Δx=x.
∴y′|x=1=1.
∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.
数f(x)的导函数__________.
(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0 处的函数值,f即′(xf)′(x0)=__________.
f′(x)|x=x0
牛刀小试
1.(2014·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线 方程为( )
A.y=2x
B.y=2x-1
C.y=2x+1 D.y=-2x
[答案] B

人教新课标版(A)高二选修1-1 3.3.1函数的单调性与导数同步练习题

人教新课标版(A)高二选修1-1 3.3.1函数的单调性与导数同步练习题

人教新课标版(A )高二选修1-1 3.3.1 函数的单调性与导数同步练习题【基础演练】题型一:函数单调性的定义一般地,函数的单调性与其导函数的正负有关,如在某个区间(a ,b )内,如果()0x f >',那么()x f 在这个区间上单调递增,如果()0x f <',则递减,请根据以上知识解决以下1~4题。

1. 函数()x ax x f 3-=在R 上为减函数,则A. 0a ≤B. 1a <C. 2a <D. 31a ≤2. 函数()x sin x 1x f -+=在(0,π2)上是A. 增函数B. 减函数C. 在(0,π)上递增,在(π,π2)上递减D. 在(0,π)上递减,在(π,π2)上递增3. 已知()()0a d cx bx ax x f 23>+++=为增函数,则A. 0ac 4b 2>-B. 0b >,0c >C. 0b =,0c >D. 0ac 3b 2<-4. x ln x y =在(0,5)上是A. 单调增函数B. 单调减函数C. 在⎪⎭⎫ ⎝⎛e 1,0上是减函数,在⎪⎭⎫⎝⎛5,e 1上是增函数D. 在⎪⎭⎫ ⎝⎛e 1,0上是增函数,在⎪⎭⎫⎝⎛5,e 1上是减函数题型二:求函数的单调区间利用导数求函数单调区间时注意:①确定定义域;②求()0x f >'、()<'x f 0的区间从而确定增区间、减区间;③如果在多个区间上单调性相同,不能并起来,请根据以上知识解决以下5~7题。

5. 函数5x 2x y 24+-=的单调减区间为A. ()1,-∞-和(0,1)B. []0,1-和),1[∞+C. []1,1-D. ()1,-∞-和),1[∞+6. 函数x cos x y =在下面哪个区间是增函数A. ⎪⎭⎫ ⎝⎛ππ23,2B. ()ππ2,C. ⎪⎭⎫ ⎝⎛ππ25,23D. ()ππ3,27. 已知函数()d cx bx x x f 23+++=的图象过点P (0,2),且在点M (-1,()1f -)处的切线方程为07y x 6=+-, (1)求函数()x f y =的解析式;(2)求函数()x f y =的单调区间。

第1章导数及其应用专解3 求函数的单调区间-人教A版高中数学选修2-2专题考点训练(必备知识点)

第1章导数及其应用专解3 求函数的单调区间-人教A版高中数学选修2-2专题考点训练(必备知识点)

【必备知识点】1.函数的单调性与导数的关系我们知道,如果函数()f x在某个区间是增函数或减函数,那么就说()f x在这一区间具有单调性.已知函数2()43f x x x=-+的图象如图所示,由函数的单调性易知,当2x<时,()f x是减函数;当2x>时,()f x是增函数.现在我们看看各个单调区间内任意一点的切线情况:考虑到曲线()y f x=的在某点处切线的斜率就是函数()f x在改点的导数值,从图象可以看到:在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x=<时,()f x为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x=>时,()f x为增函数.导数的符号与函数的单调性:一般地,设函数()y f x=在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数; (2)若()0f x '<,则()f x 在这个区间上为减函数; (3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).2.利用导数研究函数的单调性利用导数判断函数单调性的基本方法: 设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.【典例展示】例1. 确定函数32()267f x x x =-+的单调区间.【解析】第一步:确定函数的定义域: ()f x 的定义域为R ;第二步:求导:2'()6126(2)f x x x x x =-=-, 第三步:方法一:解不等式'()0f x >确定函数的单调增区间: 令'()0f x >,解得x <0或x >2, 则函数()f x 在x <0或x >2时是增函数; 方法二:列表法:令'()=0f x ,解得x =0或x =2.当x 变化时,()f x '、()f x 的变化状态如下表:第四步:确定单调区间:因此,函数()f x 的单调增区间为(-∞,0)和(2,+∞),而单调减区间为(0,2).例2 求函数22ln y x x =-的单调区间.【解析 】第一步:确定函数的定义域:函数22ln y x x =-的定义域为(-∞,0)∪(0,+∞);第二步:求导:222(1)2(1)(1)()2x x x f x x x x x --+'=-==;第三步:方法一:解不等式()0f x '>确定单调增区间:令2(1)(1)x x x -+>,利用穿线法解不等式,得1<0x < 或1x >.方法二:令()=0f x '得,=1x ±.当x 变化时,()f x '、()f x 的变化状态如下表:第四步:确定单调区间:函数()f x 的单调增区间是(-1,0)和(1,+∞),减区间是(-∞,-1)和(0,1).例3. 已知函数22()(1)(1)x bf x x x -=≠-,求导函数'()f x ,并确定()f x 的单调区间.【解析】第一步:确定函数的定义域:()f x 的定义域为(,1)(1,)-∞+∞;第二步:求导:2432(1)(2)2(1)2[(1)]'()(1)(1)x x b x x b f x x x ---⋅----==--; 第三步:解不等式'()0f x >,求单调增区间: 令'()0f x >,得32[(1)]0(1)x b x --->-,同解于[(1)](1)0x b x ---<.当11b ->,即2b >,不等式的解为11x b <<-; 当11b -=,即2b =,不等式的解为空集; 当11b -<,即2b <,不等式的解为11b x -<<.综上,当2b >时,()f x 的单调增区间为(1,1)b -,单调减区间为(,1)(1,)b -∞-+∞和; 当2b =时,()f x 的单调减区间为(,1)(1,)-∞+∞和,无增区间;当2b <时,()f x 的单调增区间为(1,1)b -,单调减区间为(,1)(1,)b -∞-+∞和.例4.证明不等式2(1)ln 1x x x ->+,其中1x >.【解析】设2(1)()ln ,(1)1x f x x x x -=->+,214'()(1)f x x x =-+,1,'()0x f x >∴>,()f x ∴在(1,)+∞内为单调增函数.又(1)0f =,当1x >时,()(1)0f x f ∴>=,即2(1)ln 01x x x -->+,2(1)ln 1x x x -∴>+.【思路总结与方法】1. 思路:求函数的单调区间即为求使其导函数为正(或负)的x 值的范围,先正确求出函数的导函数,然后再在函数的定义域内解导函数的不等式即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1 函数的单调性与导数
1.函数的单调性与其导数的关系
在某个区间内,如果___________,那么函数在这个区间内单调递增;如果___________,那么函数在这个区间内单调递减.
注意:在某个区间内,()是函数在此区间内单调递增(减)的充分条件,而不是必要条件.函数在内单调递增(减)的充要条件是()在内恒成立,且在的任意子区间内都不恒等于0.
2.函数图象与之间的关系
一般地,如果一个函数在某一范围内导数的绝对值较___________,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.
K知识参考答案:
1.2.大
不要忽略
利用导数判断函数的单调性
(1)利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()在给定区间上恒成立.一般步骤如下:
①求导数;②判断的符号;③给出单调性结论.
(2)在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,
定义域为实数集可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.
(3)当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接.
求下列函数的单调区间:
(1);(2).
【答案】(1)函数的单调递增区间为和,单调递减区间为;(2)函数的单调递增区间为,单调递减区间为.
令,解得.
当时,函数为减函数.
故函数的单调递增区间为和,单调递减区间为.(2)函数的定义域为..
令,解得;令,解得.
故函数的单调递增区间为,单调递减区间为.
【名师点睛】由于在某区间上,个别点使导数为零不影响函数的单调性,故单调区间也可以写为闭区间的。

相关文档
最新文档