2020_2021学年高中数学第二章函数单元质量评估二含解析北师大版必修1
2021学年新教材高中数学第二章函数章末综合测评含解析北师大版必修第一册
章末综合测评(二) 函数(满分:150分 时间:120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f ()x =x +12-x的定义域为( ) A .[-1,2)∪(2,+∞) B .(-1,+∞) C .[-1,2)D .[-1,+∞)A [由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得x ≥-1,且x ≠2.]2.函数f (x )=x|x |的图象是( )A B C DC [因为f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.]3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1 ,则f (f (3))=( )A .15B .3C .23D .139D [因为f (3)=23,所以f (f (3))=f (23)=(23)2+1=49+1=139,故选D.]4.函数f (x )=||x 3+1+||x 3-1,则函数f (x )图象( ) A .关于原点对称 B .关于直线y =x 对称 C .关于x 轴对称D .关于y 轴对称D [函数f (-x )=|(-x )3+1|+|(-x )3-1|=|1-x 3|+|-x 3-1|=|x 3+1|+|x 3-1|=f (x ),∴函数f (x )为偶函数,由函数性质知选项D 正确.]5.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A .⎝⎛⎭⎫13,23B .⎣⎡⎭⎫13,23 C .⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23A [由题意得|2x -1|<13⇒-13<2x -1<13⇒23<2x <43⇒13<x <23,故选A.]6.函数f (x )=11-x (1-x )的最大值是 ( )A .45B .54C .34D .43D [∵1-x (1-x )=x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴11-x (1-x )≤43.]7.已知函数f (x )=ax 2-x ,若对任意x 1,x 2∈[2,+∞),且x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A .⎝⎛⎭⎫12,+∞B .⎣⎡⎭⎫12,+∞C .⎝⎛⎭⎫14,+∞D .⎣⎡⎭⎫14,+∞D [不妨设x 2>x 1≥2,则f (x 1)-f (x 2)x 1-x 2=(ax 21-x 1)-(ax 22-x 2)x 1-x 2=a (x 21-x 22)-(x 1-x 2)x 1-x 2=a (x 1-x 2)(x 1+x 2)-(x 1-x 2)x 1-x 2=a (x 1+x 2)-1.∵对任意x 1,x 2∈[2,+∞),且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2>0恒成立,∴x 2>x 1≥2时,a (x 1+x 2)-1>0,即a >1x 1+x 2恒成立.∵x 2>x 1≥2,∴1x 1+x 2<14.∴a ≥14,即a 的取值范围为⎣⎡⎭⎫14,+∞.故选D.] 8.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a (x <1),-ax (x ≥1)是定义在(-∞,+∞)上的减函数,则a 的取值范围是( )A .⎣⎡⎭⎫18,13 B .⎝⎛⎦⎤18,13 C .⎝⎛⎭⎫0,13 D .⎝⎛⎦⎤-∞,13A [由题意可得⎩⎪⎨⎪⎧3a -1<0,-a <0,-a ≤3a -1+4a ,解得18≤a <13,故选A.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.下列函数中与函数y =x 不相同的是( ) A .y =x 2 B .y =3t 3 C .y =x 2D .y =x 2xACD [y =3t 3=t ,t ∈R ,故只有B 选项相同,故选ACD.] 10.下列函数中,是奇函数( ) A .y =x +1 B .y =-x 2 C .y =1xD .y =x |x |CD [根据奇函数的定义知:C 、D 中函数是奇函数.]11.设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数0,x 为无理数 ,则下列结论正确的是( )A .D ()x 的定义域为RB .D ()x 的值域为{0,1}C .D ()x 是偶函数 D .D ()x 是单调函数ABC [A ,B ,C 正确,由D ()0=D ()1知,D ()x 不是单调函数.]12.二次函数y =ax 2+bx +c 的图象如图所示,则下列结论中正确的是( )A .b =-2aB .a +b +c <0C .a -b +c >0D .abc <0AD [由图象知a <0,对称轴x =-b2a =1,则b =-2a ,则b >0.由x =0时,y =c >0,∴abc <0,由x =-1时,y <0,即a -b +c <0, 由x =1时,y >0,则a +b +c >0, 故选AD.]三、填空题:本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上. 13.已知幂函数y =xm 2-2m -3(m ∈N +)的图象关于y 轴对称,且在(0,+∞)上是减少的,则m =________.1 [由题意知m 2-2m -3为负的偶数, 由m 2-2m -3=(m -1)2-4<0⇒|m -1|<2. ∴-1<m <3.又m ∈N +,∴m =1或m =2.代入m 2-2m -3使其为偶数,只有m =1.] 14.函数f ()x =x +1-x -1的值域为________.(]0,2[由f ()x =2x +1+x -1,知f ()x 是减函数.又f ()x 的定义域是[)1,+∞,所以,f ()x 的最大值是f ()1=2,又f ()x >0, 所以,f ()x 的值域为 (]0,2 .]15.若函数f ()x =2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.[]-1,0 [函数f ()x 的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即x 2+2ax-a ≥0恒成立,因此有Δ=()2a 2+4a ≤0,解得-1≤a ≤0.]16.设函数f (x )=(x +1)2+a 2xx 2+1,a ∈R 的最大值为M ,最小值为m ,则M +m =________.2 [f (x )=(x +1)2+a 2x x 2+1=1+(2+a 2)xx 2+1,令g (x )=(2+a 2)xx 2+1,则y =g (x )是奇函数,所以g (x )max +g (x )min =0.所以M +m =[1+g (x )max +[1+g (x )min ]=2.]四、解答题:本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知f (x )是奇函数,且当x >0时,f (x )=x 2-2x +1,求f (x )在x ∈R 上的表达式.[解] 因为f (x )是定义域在R 上的奇函数,所以f (0)=0, 当x <0时,-x >0,由已知得,f (-x )=(-x )2-2(-x )+1=x 2+2x +1=-f (x ), 所以f (x )=-x 2-2x -1, 所以f (x )=⎩⎪⎨⎪⎧x 2-2x +1,x >0,0,x =0,-x 2-2x -1,x <0.18.(本小题满分12分)设函数f (x )=x +ax 的图象过点A ⎝⎛⎭⎫2,52. (1)求实数a 的值;(2)证明函数f (x )在(0,1)上是减函数.[解] (1)因为函数f (x )=x +a x 的图象过点A ⎝⎛⎭⎫2,52,所以52=2+a2⇒a =1. 于是,f (x )=x +1x.(2)证明:设x 1,x 2是(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=x 1-x 2+x 2-x 1x 1x 2=(x 1-x 2)x 1x 2-1x 1x 2.由x 1,x 2∈(0,1),得0<x 1x 2<1,x 1x 2-1<0,又由x 1<x 2,得x 1-x 2<0, 于是f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以函数f (x )在(0,1)上是减函数.19.(本小题满分12分)已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3-x )=f (x ),且有最小值是74.(1)求f (x )的解析式;(2)求函数h (x )=f (x )-(2t -3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[-1,3]上,y =f (x )的图象恒在函数y =2x +m 的图象上方,试确定实数m 的范围.[解] (1)由题知二次函数图象的对称轴为x =32,又最小值是74,则可设f (x )=a ⎝⎛⎭⎫x -322+74(a ≠0).又图象过点(0,4),则a ⎝⎛⎭⎫0-322+74=4,解得a =1, ∴f (x )=⎝⎛⎭⎫x -322+74=x 2-3x +4. (2)h (x )=f (x )-(2t -3)x =x 2-2tx +4=(x -t )2+4-t 2,其对称轴x =t . ①t ≤0时,函数h (x )在[0,1]上单调递增,最小值为h (0)=4; ②当0<t <1时,函数h (x )的最小值为h (t )=4-t 2;③当t ≥1时,函数h (x )在[0,1]上单调递减,最小值为h (1)=5-2t ,所以h (x )min=⎩⎨⎧4,t ≤0,4-t 2,0<t <1,5-2t ,t ≥1.(3)由已知,f (x )>2x +m 对x ∈[-1,3]恒成立, ∴m <x 2-5x +4对x ∈[-1,3]恒成立, ∴m <(x 2-5x +4)min (x ∈[-1,3]).∵g (x )=x 2-5x +4在x ∈[-1,3]上的最小值为-94,∴m <-94.20.(本小题满分12分)如图所示,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,且上底CD 的端点在圆周上,写出梯形周长y 关于腰长x 的函数关系式,并求出它的定义域.[解] AB =2R ,C 、D 在⊙O 的半圆周上,设腰长AD =BC =x ,作DE ⊥AB , 垂足为E ,连接BD ,则∠ADB 是直角,∴Rt △ADE ∽Rt △ABD .AD 2=AE ×AB ,即AE =x 22R,∴ CD =AB -2AE =2R -x 2R ,所以y =2R +2x +⎝⎛⎭⎫2R -x2R , 即y =-x 2R+2x +4R .再由⎩⎪⎨⎪⎧x >0x 22R >02R -x 2R >0,解得0<x <2R .所以y =-x 2R+2x +4R ,定义域为(0,2R ).21.(本小题满分12分)已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f ()x 1-f ()x 2,且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. [解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f ⎝⎛⎭⎫x 1x 2=f ()x 1-f ()x 2得f ⎝⎛⎭⎫93=f ()9-f ()3,而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数, 由f (|x |)<f (9),得|x |>9,∴x >9或x <-9. 因此不等式的解集为{x |x >9或x <-9}.22.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .(1)当a =2时,求f (x )的定义域、值域;(2)若存在x 1≠x 2,使f (x 1)=f (x 2),求a 的取值范围. [解] (1)f (x )的定义域为(-∞,a ]∪(a ,+∞)=R . 当a =2时,y =x 3在(-∞,2]上是增加的, ∴x 3∈(-∞,8].y =x 2在(2,+∞)上是增加的,∴x 2∈(4,+∞). ∴f (x )的值域为(-∞,8]∪(4,+∞)=R . (2)当a <0时,f (x )在(a ,+∞)上不单调, ∴存在x 1≠x 2使f (x 1)=f (x 2). 当a =0时,f (x )在R 上是增函数, ∴不存在x 1≠x 2,使f (x 1)=f (x 2).当a >0时,f (x )在(-∞,a ],(a ,+∞)上都是增加的, 要使x 1≠x 2时,f (x 1)=f (x 2), 需a 3>a 2,即a >1.综上,a 的取值范围是(-∞,0)∪(1,+∞).。
新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]
高中数学必修1第二章《函数》单元测试题一、选择题〔本大题共12小题,每小题5分,共60分 1.若()f x =则(3)f = 〔A 、2B 、4 C、 D 、10 2.对于函数()y f x =,以下说法正确的有 〔①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来.A 、1个B 、2个C 、3个D 、4个 3.下列各组函数是同一函数的是 〔①()f x =()g x =()f x x =与()g x =③0()f x x =与1()g x x=;④2()21f x x x =--与2()21g t t t =--. A .①② B 、①③ C 、③④ D 、②④ 4.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 〔 A 、7- B 、1 C 、17 D 、25 5.函数y =的值域为 〔A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6.下列四个图像中,是函数图像的是 〔A 、〔1B 、〔1、〔3、〔4C 、〔1、〔2、〔3D 、〔3、〔4 7.若:f A B →能构成映射,下列说法正确的有 〔〔1A 中的任一元素在B 中必须有像且唯一;〔2B 中的多个元素可以在A 中有相同的原像;〔3B 中的元素可以在A 中无原像;〔4像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个xx〔1〔2〔3〔48.)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是< > A 、()()0f x f x -+=B 、()()2()f x f x f x --=-C 、()()0f x f x -≤D 、()1()f x f x =-- 9.若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,则实数a 的取值范围是〔A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥510.设函数x xxf =+-)11(,则)(x f 的表达式为〔 A .x x -+11B . 11-+x x C .x x +-11D .12+x x11.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有〔A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12.下列所给4个图像中,与所给3件事吻合最好的顺序为 〔〔1我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; 〔2我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; 〔3我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
2021-2022学年高中数学北师大版必修1 第二章函数测评含解析
第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列函数中与函数y=x相同的是()A.y=x2B.y=C.y=D.y=解析:y==t,t∈R.答案:B2.函数f(x)=的图像是()解析:因为f(x)=所以其图像为C.答案:C3.函数f(x)=的定义域为()A.[-1,2)∪(2,+∞)B.(-1,+∞)C.[-1,2)D.[-1,+∞)解析:由解得x≥-1,且x≠2.答案:A4.已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有()A.3个B.4个C.5个D.6个解析:令x2=0,1,4,解得x=0,±1,±2.故选C.答案:C5.(2017·山东高考)设f(x)=若f(a)=f(a+1),则f=()A.2B.4C.6D.8解析:f(x)的图像如图所示.又f(a)=f(a+1),所以0<a<1,a+1>1,=2(a+1-1),所以a=.所以f=f(4)=2×(4-1)=6.答案:C6.已知二次函数f(x)=m2x2+2mx-3,则下列结论正确的是()A.函数f(x)有最大值-4B.函数f(x)有最小值-4C.函数f(x)有最大值-3D.函数f(x)有最小值-3解析:由题知,m2>0,所以f(x)的图像开口向上,函数有最小值f(x)min==-4,故选B.答案:B7.(2017·全国1高考)函数f(x)在(-∞,+∞)单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]解析:因为f(x)为奇函数,所以f(-1)=-f(1)=1,于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,所以-1≤x-2≤1,即1≤x≤3.所以x的取值范围是[1,3].答案:D8.偶函数f(x)在[0,+∞)单调递增,若f(-2)=1,则f(x-2)≤1的x的取值范围是()A.[0,2]B.[-2,2]C.[0,4]D.[-4,4]解析:因为函数f(x)是偶函数,f(-2)=1,所以f(2)=1.因为f(x-2)≤1,所以-2≤x-2≤2,解得0≤x≤4.故选C.答案:C9.函数f(x)=满足f(f(x))=x,则常数c等于()A.3B.-3C.3或-3D.5或-3解析:f(f(x))==x,即x[(2c+6)x+9-c2]=0,所以解得c=-3.故选B.答案:B10.已知函数f(x)=ax3+bx+7(其中a,b为常数),若f(-7)=-17,则f(7)的值为()A.31B.17C.-17D.15解析:令g(x)=ax3+bx,则g(x)为奇函数.因为f(-7)=g(-7)+7=-17,所以g(-7)=-17-7=-24,g(7)=24,f(7)=g(7)+7=31.答案:A11.已知函数f(x)=ax2-x,若对任意x1,x2∈[2,+∞),且x1≠x2,不等式>0恒成立,则实数a的取值范围是()A.B.C.D.解析:不妨设x2>x1≥2,则=a(x1+x2)-1.∵对任意x1,x2∈[2,+∞),且x1≠x2,>0恒成立,∴x2>x1≥2时,a(x1+x2)-1>0,即a>恒成立.∵x2>x1≥2,∴.∴a≥,即a的取值范围为.故选D.答案:D12.已知f(x)=是定义在(-∞,+∞)上的减函数,则a的取值范围是()A. B.C. D.解析:由题意可得解得≤a<,故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数y=(m∈N+)的图像关于y轴对称,且在(0,+∞)上是减少的,则m=.解析:由题意m2-2m-3为负的偶数,由m2-2m-3=(m-1)2-4<0⇒|m-1|<2.∴-1<m<3.又m∈N+,∴m=1或m=2.代入m2-2m-3使其为偶数,只有m=1.答案:114.已知函数f(x+3)的定义域为[-2,4),则函数f(2x-3)的定义域为.解析:因为函数f(x+3)的定义域为[-2,4),所以x∈[-2,4),所以1≤x+3<7.对于函数f(2x-3),则1≤2x-3<7,即2≤x<5,所以函数y=f(2x-3)的定义域为[2,5).答案:[2,5)15.(2017·全国2高考)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.解析:因为f(x)是奇函数,所以f(-x)=-f(x).又因为当x∈(-∞,0)时,f(x)=2x3+x2,所以f(2)=-f(-2)=-[2×(-8)+4]=12.答案:1216.函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2,已知定义在R上的函数g(x)=[x]+[2x],若A={y|y=g(x),0≤x≤1},则A中所有元素的和为.解析:当x∈时,0≤2x<1,g(x)=[x]+[2x]=0;当x∈时,1≤2x<2,g(x)=[x]+[2x]=1;当x=1时,2x=2,g(x)=[x]+[2x]=3,∴A={y|y=g(x),0≤x≤1}={0,1,3}.∴A中所有元素的和为4.答案:4三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知f(x)是奇函数,且当x>0时,f(x)=x2-2x+1,求f(x)在x∈R上的表达式.解:因为f(x)是定义域在R上的奇函数,所以f(0)=0,当x<0时,-x>0,由已知得,f(-x)=(-x)2-2(-x)+1=x2+2x+1=-f(x),所以f(x)=-x2-2x-1,所以f(x)=18.(12分)设函数f(x)=-5x+a为定义在(-∞,0)∪(0,+∞)上的奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性,并用定义法证明f(x)在(0,+∞)上的单调性.解:(1)∵f(x)是奇函数,x≠0,∴f(-x)=-f(x).∴-+5x+a=-+5x-a,∴2a=0,∴a=0.经检验a=0为所求.(2)f(x)=-5x的单调减区间为(-∞,0)与(0,+∞),没有单调增区间,证明:当x>0时,设0<x1<x2,则f(x1)-f(x2)=+5(x2-x1)=(x2-x1)+5>0,∴f(x1)>f(x2),∴f(x)在(0,+∞)上是减函数.19.(12分)函数f(x)的图像如图所示,曲线BCD为抛物线的一部分.(1)求f(x)解析式;(2)若f(x)=1,求x的值;(3)若f(x)>f(2-x),求x的取值范围.解:(1)当-1≤x≤0时,函数f(x)的图像为直线且过点(-1,0),(0,3),设函数f(x)的解析式为y=kx+b,则所以y=3x+3.当0≤x≤3时,函数f(x)的图像为抛物线,设函数f(x)的解析式为y=a(x-1)(x-3),当x=0时,y=3a=3,解得a=1,所以y=(x-1)(x-3)=x2-4x+3.所以y=(2)当x∈[-1,0]时,令3x+3=1,解得x=-;当x∈(0,3]时,令x2-4x+3=1,解得x==2±.因为0<x≤3,所以x=2-.所以x=-或x=2-.(3)当x=-1或x=3时,f(x)=f(2-x)=0;当-1<x<0时,2<2-x<3,由图像可知f(x)>0,f(2-x)<0,所以f(x)>f(2-x)恒成立;当0≤x≤2时,0≤2-x≤2,f(x)在[0,2]上单调递减,所以当x<2-x,即x<1时,f(x)>f(2-x),所以0≤x<1;当2<x<3时,-1<2-x<0,此时f(x)<0,f(2-x)>0,不合题意.所以x的取值范围为{x|-1<x<1}. 20.(12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x元,则租赁公司的月收益为f(x)=(x-150)-×50,整理,得f(x)=-+162x-21000=-(x-4050)2+307050.所以当x=4050时,f(x)最大,最大值为f(4050)=307050元,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元. 21.(12分)已知f(x)对任意的实数m,n都有f(m+n)=f(m)+f(n)-1,且当x>0时,有f(x)>1.(1)求f(0);(2)求证:f(x)在R上为增函数;(3)若f(1)=2,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.(1)解:令m=n=0,则f(0)=2f(0)-1,∴f(0)=1.(2)证明:任取x1,x2∈R且x1<x2,则x2-x1>0,f(x2-x1)>1.∵f(m+n)=f(m)+f(n)-1,∴f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1>1+f(x1)-1=f(x1),∴f(x2)>f(x1),∴f(x)在R上为增函数.(3)解:∵f(ax-2)+f(x-x2)<3,即f(ax-2)+f(x-x2)-1<2,∴f(ax-2+x-x2)<2.∵f(1)=2,∴f(ax-2+x-x2)<f(1).又f(x)在R上为增函数,∴ax-2+x-x2<1,∴x2-(a+1)x+3>0对任意的x∈[1,+∞)恒成立.令g(x)=x2-(a+1)x+3,当≤1时,g(1)>0,得a<3,∴a≤1;当>1时,Δ<0,即(a+1)2-3×4<0,∴-2-1<a<2-1,∴1<a<2-1.综上,实数a的取值范围为(-∞,2-1).22. (12分)已知二次函数f(x)的图像过点(0,4),对任意x满足f(3-x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)-(2t-3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[-1,3]上,y=f(x)的图像恒在函数y=2x+m的图像上方,试确定实数m的范围.解:(1)由题知二次函数图像的对称轴为x=,又最小值是,则可设f(x)=a(a≠0).又图像过点(0,4),则a=4,解得a=1,∴f(x)==x2-3x+4.(2)h(x)=f(x)-(2t-3)x=x2-2tx+4=(x-t)2+4-t2,其对称轴x=t.①t≤0时,函数h(x)在[0,1]上单调递增,最小值为h(0)=4;②当0<t<1时,函数h(x)的最小值为h(t)=4-t2;③当t≥1时,函数h(x)在[0,1]上单调递减,最小值为h(1)=5-2t, 所以h(x)min=(3)由已知,f(x)>2x+m对x∈[-1,3]恒成立,∴m<x2-5x+4对x∈[-1,3]恒成立,∴m<(x2-5x+4)min(x∈[-1,3]).∵g(x)=x2-5x+4在x∈[-1,3]上的最小值为-,∴m<-.。
北师大版高中数学必修一第二单元《函数》测试(有答案解析)(2)
一、选择题1.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④ B .②④C .①③D .①②③2.若函数()218f x x ax =-++在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .233.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33- B .11(,)63-C .(0,3)D .7(,1)2-4.方程2x y +=所表示的曲线大致形状为( )A .B .C .D .5.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,46.已知定义在R 上的函数()2||·x f x x e =, (5a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>7.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .48.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[13]x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对9.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,10.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦11.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.14.关于函数()f x =的性质描述,正确的是_________.①()f x 的定义域为[-1,0)∪(0,1]; ②()f x 的值域为R ; ③在定义域上是减函数; ④()f x 的图象关于原点对称.15.设函数()x f x e =()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________.16.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.17.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.18.若()22f x x ax =-+与()ag x x=在区间[]1,2上都是减函数,则a 的取值范围是______. 19.函数()f x =的单调递增区间为__________.20.若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4--,则m 的取值范围______.三、解答题21.已知定义域为R 的函数()y f x =和()y g x =,它们分别满足条件:对mn R ∀∈,,都有()()()f m n f m f n +=+和()()()g m n g m g n +=⋅,且对0,()1x g x ∀>>. (1)求(0),(0)f g 的值; (2)证明函数()y f x =是奇函数;(3)证明0x <时,0()1g x <<,且函数()y g x =在R 上是增函数; (4)试各举出一个符合函数()y f x =和()y g x =的具体函数.22.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 23.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由. 24.已知函数()2x x f x e ke -=--为偶函数. (1)求k 的值及函数()f x 的最小值;(2)设()(2)2(()2)g x f x m f x =-+,当0x >时,()0>g x ,求m 的取值范围. 25.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值; (3)求函数()22f x x x =-的所有的“和谐区间”. 26.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax ≥-对任意[]1,3x ∈恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点,所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确; 由图象可得(3)0f -=,根据函数的对称性,可得()10f =, 所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.2.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2ax =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.3.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.4.D解析:D 【分析】先利用方程得到图像的对称性,再作0y ≥,0x ≥时的图像,利用对称性即得结果. 【详解】 由方程2x y +=可知图像关于原点中心对称,也关于坐标轴对称.20,44x y y =-≥-≤≤,20,22y x x =-≥-≤≤.当0y ≥,0x ≥时,方程2x y +=转化成()22y x =-,作图如下:再利用对称性即得图像为 D.故选:D. 【点睛】本题解题关键是利用绝对值的性质得到图像的对称性,就只需要画0y ≥,0x ≥部分图像,即突破问题.5.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.6.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>, ∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.8.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .9.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围.【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.10.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.11.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =, 令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2) 【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.14.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()f x ==,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.15.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .16.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++,因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .17.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>, 因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f aa a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭.【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.18.【分析】根据二次函数和分式函数的单调性求解即可【详解】根据与在区间上都是减函数又的对称轴为所以又在区间上是减函数所以所以即的取值范围为故答案为:【点睛】本题考查了已知函数的单调性求参数问题考查了数学解析:(]01, 【分析】根据二次函数和分式函数的单调性求解即可. 【详解】根据2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数, 又()f x 的对称轴为x a =,所以1a ≤, 又()ag x x=在区间[1,2]上是减函数,所以0a > 所以01a <≤,即a 的取值范围为(]01,. 故答案为:(]01,【点睛】本题考查了已知函数的单调性求参数问题,考查了数学运算能力.属于中档题.19.【分析】先求出函数的定义域在利用复合函数单调性得解【详解】因为或所以函数的定义域为由在上单减在单增由复合函数单调性质得函数在单增故答案为:【点睛】复合函数单调性同增异减注意定义域属于基础题 解析:(,1)-∞-【分析】先求出函数的定义域,在利用复合函数单调性得解. 【详解】因为22303x x x -->⇒>或1x <- 所以函数的定义域为(,1)(3,)-∞-+∞由223t x x =--在(,1)-∞-上单减,在(3,)+∞单增 由复合函数单调性质得函数()f x =在(,1)-∞-单增故答案为:(,1)-∞- 【点睛】复合函数单调性“同增异减”,注意定义域.属于基础题20.;【分析】根据函数的函数值结合函数的图象即可求解【详解】又故由二次函数图象可知:要使函数的定义域为值域为的值最小为;最大为3的取值范围是:故【点睛】本题考查了二次函数的定义域值域特别是利用抛物线的对解析:332m ≤≤; 【分析】根据函数的函数值325()24f =-,()(0)34f f ==-,结合函数的图象即可求解.【详解】22325()34()24f x x x x =--=--,325()24f ∴=-,又()(0)34f f ==-,故由二次函数图象可知:要使函数234y x x =--的定义域为[0,]m ,值域为25[,4]4-- m 的值最小为32;最大为3.m 的取值范围是:332m . 故332m【点睛】本题考查了二次函数的定义域、值域,特别是利用抛物线的对称特点进行解题,考查了数形结合思想,属于基础题.三、解答题21.(1)(0)0f =,()0g x =;(2)证明见解析;(3)证明见解析;(4)()2;()2x f x x g x ==.(只要是正比例函数和指数函数均可).【分析】(1)通过赋值,令0m n ==,求()0f 和()0g 的值;(2)通过赋值,令,==-m x n x ,结合奇函数的定义,即可证明;(3)首先判断0x <时,()01g x <<,0x R g x ∀∈>,(),方法一,利用函数单调性的定义,证明当12x x <时,()()120g x g x -< ;方法二,证明()()121g x g x <, 【详解】解:(1)令0m n ==,则00000f f f f =+⇒=()()()()00000g g g g =⋅⇒=()()()()或01g =(), 若00g =(),则0g x =(),与条件矛盾.故0g x =()(也可令01a b ==,,则不需要检验) (2)f x ()的定义域为R ,关于数0对称,令m x n x ==-,,则f x f x -=-()().故f x ()为奇函数.(3)当0x <时,01x g x ->->,(),又0101g x g x g g x ⋅-==⇒<<()()()() 故0x R g x ∀∈>,() 证法一:设12x x ,为R 上任意两个实数,且12x x <,则120x x -<,121g x x -<() 121222122[1]0[]g x g x g x x x g x g x x g x -=-+-=--⋅<()()()()()().故g x ()为R 上的增函数.证法二:设12x x ,为R 上任意两个实数,且12x x <,()()()()()122112221g x x x g x g x x g x g x -+⎡⎤⎣⎦==-<∴g x ()为R 上的增函数.(4)()2;()2xf x xg x ==.(只要是正比例函数和1a >的指数函数均可)【点睛】关键点点睛:本题判断奇偶性时,运用赋值法,注意结合奇函数的定义,分别赋值x -和x ,判断奇偶性,判断单调性时,需结合函数值的分布区间,经常类似变形()2211x x x x =-+,再结合已知条件和单调性的定义,证明单调性.22.(1)()2f x x x =+;(2)不存在,理由见解析.【分析】(1)令1y =,根据题设条件和()10f =,得到()()132f x x x +=++,再结合换元法,即可求得函数的解析式;(2)由(1)得()1112442x x m g x m -⎛⎫+- ⎪⎝⎭=,令12xt ⎛⎫= ⎪⎝⎭,设()()21124y h t t m t m ==+--,其中[]1,2t ∈,结合二次函数的图象与性质,分类讨论,即可得到结论. 【详解】(1)由题意,函数()f x 满足()()()212f x y f y x x y +-=+++成立, 令1y =,可得()()()1132f x f x x +-=⋅++, 因为()10f =,所以()()132f x x x +=++令1t x =+,则1x t =-,可得()()()221312f t t t t t =-+-+=+ 所以函数()f x 的解析式为()2f x x x =+.(2)由(1),可得()2111(1)()241124242x x xx xx m m g x m m +⎛⎫=+-⋅- ⎪⎝⎭-⎛⎫=+- ⎪⎝⎭令12xt ⎛⎫= ⎪⎝⎭,因为[]1,0x ∈-,所以[]1,2t ∈,设函数()()21124y h t t m t m ==+--,[]1,2t ∈, 由函数()y h t =的开口向上,且对称轴()21t m =--, ①当()211m --≤,即12m ≥时,函数()y h t =在区间[]1,2上单调递增, 当1t =时,函数取得最小值,最小值为()min 314y h m ==--, 令3144m --=,解答1m =-,不符合题意(舍去); ②当()212m --≥,即0m ≤时,函数()y h t =在(]1,2单调递减, 当2t =时,函数取得最小值,最小值为()min 1214y h ==-≠,无解; ③当()1212m <--<,即102m <<时, 当2(1)x m =--时,函数取得最小值,最小值为()2min 221y h m m =-+=--, 令2114m --=,此时方程无解, 综上可得,不存在实数m 使得()g x 的最小值14.【点睛】研究二次函数的最值问题的求解方法和策略:二次函数的最值问题常见类型:(1)轴定区间定的最值;(2)轴动区间定的最值;(3)轴定区间动的最值;影响二次函数的闭区间上的最值的要素和求法:(1)最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关;(2)常结合二次函数在该区间上的单调性或图象求解,在区间的端点或二次函数图象的顶点处取得最值.当开口方向或对称轴位置或区间不确定时要分情况讨论求解.23.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩.【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解. 【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()21400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =,将1b =代入20a b +=得12a =-, 所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33fm m fn n ⎧=⎪⎨=⎪⎩,22132132m m mn n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩,因为m n <,所以40m n =-⎧⎨=⎩, 故存在40m n =-⎧⎨=⎩满足条件.【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 24.(1)1k =-,()f x 的最小值为0;(2)[0,)+∞ 【分析】(1)根据函数()2x xf x e ke -=--为偶函数.由()()f x f x -=恒成立求解.进而得到()2x x f x e e -=+-,再利用对勾函数的性质求最小值.(2)由(1)得到()()2()24xx x x g x e em e e --=+-+-,根据0x >时,()0>g x ,由()()42,0x x x xm e e x e e --<+->+恒成立求解. 【详解】(1)因为函数()2x xf x e ke -=--为偶函数.所以()()f x f x -=恒成立,即22x x x x e ke e ke ----=--恒成立, 即()()10xx k ee --+=恒成立,解得1k =-, 所以1()22xxx x f x e ee e -=+-=+-,令0x m e =>, 由对勾函数的性质得:12y m m=+≥, 所以函数()f x 的最小值为0; (2)()()()222()2224xxxxxx x x g x eem e e eem e e ----=+--+=+-+-,因为当0x >时,()0>g x , 所以()()2240,0xx x x e em e e x --+-+->>恒成立,即()()42,0x xx xm e e x e e --<+->+恒成立, 令()()()4x xx x h x e e e e --=+-+,令2x xt e e-+>=, 因为4y t t=-,在()2,+∞上递增,所以()0h x >,所以20m ≤,即0m ≤,所以m 的取值范围是[0,)+∞.【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.25.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-.【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果.【详解】(1)函数()3f x x =是增函数,定义域为R , 令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-. (2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩, 因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意,故m 的值为2.(3)函数()22f x x x =-,定义域为R , 令22x x x -=,解得0x =或3,如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.26.(1)(2,2)-;(2)(,23-∞.【分析】(1)由已知得210x ax ++>的解集为R ,只需∆<0可得答案;(2)由已知得230x ax -+≥对任意[]1,3x ∈恒成立,可分别讨论对称轴的位置,然后利用单调性和二次函数的性质可得答案.【详解】(1)()4f x >-即234x ax +->-,即210x ax ++>,由不等式()4f x >-的解集为R ,可得∆<0,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)()26f x ax ≥-即2326x ax ax +-≥-,即230x ax -+≥,由不等式()26f x ax ≥-对任意[]1,3x ∈恒成立, 可得当12a ≤,即2a ≤时,10f ≥(),即40a -≥,得4a ≤,从而2a ≤; 当132a <<,即26a <<时,0∆≤,即2120a -≤,得a -≤≤2a <≤ 当32a ≥,即6a ≥时,(3)0f ≥,即1230a -≥,得4a ≤,此时无解.综上,a 的取值范围是(,-∞.【点睛】对于一元二次不等式的恒成立的问题,可结合二次函数图象,利用函数的单调性和二次函数的性质处理,也可以利用参数分离求最值.。
高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析
阶段性检测卷二(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}答案 D2.已知(x ,y )在映射f 作用下的像是(x +y ,x -y ),则(1,2)关于f 的原像是( )A .(1,2)B .(3,-1)C.⎝ ⎛⎭⎪⎫32,-12 D.⎝ ⎛⎭⎪⎫-12,32 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =2.得⎩⎪⎨⎪⎧x =32,y =-12.故选C.答案 C3.下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13答案 A4.下列函数中,是同一函数的是( ) A .y =(x -1)0与y =1 B .y =x 与y =xC .y =|x |与y =⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0D .y =x 2与y =(x -1)2解析 A 中y =(x -1)0的定义域为{x |x ∈R ,且x ≠1},y =1的定义域为R ,定义域不同,故不是同一函数;B 中y =x 的定义域为[0,+∞),y =x 的定义域为R ,定义域不同,故不是同一函数,D 中的对应法则不同.答案 C5.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析 由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12. 答案 B6.若在[1,+∞)上,函数y =(a -1)x 2+1与y =ax 均单调递减,则a 的取值范围是( )A .a >0B .a >1C .0≤a ≤1D .0<a <1解析 显然a ≠1,且a ≠0,由题意得⎩⎪⎨⎪⎧a -1<0,a >0,得0<a <1.答案 D7.设f (x )是定义在R 上的增函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (2a )D .f (a 2+1)>f (a )解析 ∵a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0∴a 2+1>a ,由函数的单调性可知f (a 2+1)>f (a ).答案 D8.函数y =x 53的图像大致是下图中的( )解析 y =x 53为奇函数,定义域为R ,且53>1,∴x >0时图像是下凸的,故选B.答案 B9.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 1)-f (x 2)x 1-x 2<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析 由已知f (x 1)-f (x 2)x 1-x 2<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (3)<f (-2)<f (1),故选A.答案 A10.已知偶函数f (x )在区间[0,+∞)上是增加的,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .[13,23)B .(13,23)C .(12,23)D .[12,23)解析 作出示意图可知:f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇒-13<2x -1<13,即13<x <23,故选B.答案 B二、填空题(本大题共5小题,每题5分,共25分.将答案填在题中横线上.)11.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≤2),2x(x >2),)则f (-4)=________,若f (x 0)=8,则x 0=________.解析 f (-4)=(-4)2+2=18,由f (x 0)=8,得⎩⎪⎨⎪⎧ x 0≤2,x 20+2=8,或⎩⎪⎨⎪⎧x 0>2,2x 0=8,得x 0=-6,或x 0=4. 答案 18 -6或4 12.函数y =(m 2-m -1)·xm 2-2m -3是幂函数,且当x ∈(0,+∞)时为减函数,则m =________.解析 由题意得m 2-m -1=1,得m =2,或m =-1,当m =-1时,y =x 0不合题意,当m =2时,y =x -3,符合题意.答案 213.将y =1x 的图像沿x 轴向右平移1个单位,再向上平移两个单位得到的函数的解析式为________.答案 f (x )=2x -1x -114.函数f (x )=x 2+2mx +1在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,则实数m =________.解析 由于f (x )在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,知f (x )的对称轴为x =-1,即-m =-1得m =1.答案 115.函数y =x 2-2x +5,在x ∈[1,2]上的最大值是________,最小值是________.解析 ∵函数y =x 2-2x +5在[1,2]上单调递增,∴当x =1时,y min =1-2+5=4,当x =2时,y max =4-4+5=5.答案 5 4三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(12分)求函数f (x )=3x +1x 2-x -2的定义域.解 欲使该函数有意义,需⎩⎪⎨⎪⎧3x +1≥0,x 2-x -2≠0,得⎩⎨⎧x ≥-13,x ≠-1且x ≠2,即x ≥-13,且x ≠2.∴该函数的定义域为⎣⎢⎡⎭⎪⎫-13,2∪(2,+∞).17.(12分)已知幂函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式.解 由题意得-2m 2+m +3>0,得-1<m <32, 又m ∈Z ,m =0,或m =1,又f (x )为偶函数, ∴m =1,f (x )=x 2.18.(12分)已知函数f (x )=x 2+ax +b ,(1)若对于任意的实数x ,都有f (1+x )=f (1-x )成立,求实数a 的值;(2)若f (x )为偶函数,求a 的值. 解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )关于x =1对称,∴-a2=1, ∴a =-2.(2)∵f (x )为偶函数,∴f (-x )=f (x ), ∴x 2-ax +b =x 2+ax +b , ∴a =0.19.(13分)如图所示,函数的图像是由两条射线及抛物线的一部分组成,求函数的解析式.解 设左侧射线对应的解析式为y =kx +b (x ≤1), ∵(1,1),(0,2)在射线上.∴⎩⎪⎨⎪⎧ k +b =1,b =2,得⎩⎪⎨⎪⎧k =-1,b =2.∴x ≤1时,f (x )=-x +2.设右侧射线对应的解析式为y =k 1x +b 1(x ≥3),∵(3,1),(4,2)在射线上,∴⎩⎪⎨⎪⎧3k 1+b 1=1,4k 1+b 1=2,得⎩⎪⎨⎪⎧k 1=1,b 1=-2.∴当x ≥3时,f (x )=x -2. 设1≤x ≤3时f (x )=a (x -2)2+2,将(1,1)代入上式得a =-1.∴当1≤x ≤3时,f (x )=-(x -2)2+2=-x 2+4x -2. 综上得f (x )=⎩⎪⎨⎪⎧-x +2,x <1,-x 2+4x -2,1≤x ≤3,x -2,x >3.20.(13分)求函数f (x )=(4-3a )x 2-2x +a 在区间[0,1]上的最大值.解 (1)当4-3a =0,即a =43时,f (x )=-2x +43在[0,1]上为减函数,∴f (x )max =f (0)=43.(2)当a >43时,4-3a <0,开口向下,对称轴为x =14-3a <0,则二次函数在区间[0,1]上为减函数∴f (x )max =f (0)=a .(3)当a <43时,4-3a >0,开口向上,对称轴为x =14-3a >0,①当0<14-3a ≤12时,即a ≤23时,f (x )max =f (1)=2-2a , ②当14-3a >12时,即23<a <43时,f (x )max =f (0)=a ,综上所述,当a >23时,f (x )max =a ; 当a ≤23时,f (x )max =2-2a .21.(13分)已知函数f (x )=ax +b1+x 2是定义域为(-1,1)的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)求实数a ,b 的值.(2)判断f (x )在(-1,1)上的单调性,并用定义证明. (3)解不等式:f (t -1)+f (t )<0.解(1)有⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,解得a =1,b =0.(2)f (x )在(-1,1)上是增函数,证明如下:在(-1,1)上任取两数x 1和x 2且-1<x 1<x 2<1,则f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 故f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)<0, ∴f (x 1)<f (x 2),∴f (x )在(-1,1)上为增函数.(3)f (x )为奇函数,定义域为(-1,1),由f (t -1)+f (t )<0得f (t -1)<-f (t )=f (-t ),∵f (x )在(-1,1)上为增函数, ∴-1<t -1<-t <1,解得0<t <12. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫t |0<t <12.。
最新北师大版高中数学必修一第二单元《函数》测试(包含答案解析)(2)
一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a --≤≤C .2a ≤-D .0a < 3.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .804.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-6.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞D .()1,3- 7.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .68.已知定义在R 上的函数()2||·x f x x e =,(a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>9.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 10.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]11.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3B .3或134C .3D .13412.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3二、填空题13.函数()2f x x a =- 在区间[]1,1-上的最大值()M a 的最小值是__________.14.已知函数()31f x ax bx =-+,若()25f =,则()2f -=______.15.若函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,且它的值域为(,1]-∞,则a=_____. 16.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.17.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.18.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .19.若关于x 的不等式2222x x a +-<在(),0-∞上有解,则实数a 的取值范围是______.20.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.三、解答题21.已知函数()()12f x x x =+-. (1)作出函数()f x 的图象.(2)判断直线y a =与()()12f x x x =+-的交点的个数; (3)已知方程()1221x x m +-=-有三个实数解.求m 的取值范围.22.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 23.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 24.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <⋅,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--,且()F x 在[0,1]上单调递增,求实数m 的取值范围.25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 26.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.6.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增,又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.7.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.8.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>,∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.9.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -,故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.10.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.11.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.12.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.二、填空题13.【分析】由题意函数为偶函数分和去掉绝对值然后根据单调性求出最大值再根据单调性求出的最小值【详解】解:由题意函数为偶函数①当时在上单调递增则;②当时当即时在上单调递减则;当即时在上单调递减在上单调递增解析:12【分析】由题意,函数()2f x x a =-为偶函数,分0a ≤和0a >去掉绝对值,然后根据单调性求出最大值()M a ,再根据单调性求出()M a 的最小值. 【详解】解:由题意,函数()2f x x a =-为偶函数,①当0a ≤时,()2f x x a =-,()f x 在[]0,1上单调递增,则()()()111M a f f a ==-=-;②当0a >时,()22,,x a x x f x a x x ⎧-≤≥⎪=⎨-<<⎪⎩或1即1a ≥时,()f x 在[]0,1上单调递减,则()()0M a f a ==;1<即01a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增,∵()0f a =,()11f a =-, 由1a a 得112a <<,此时()M a a =; 由1a a ≤-得102a <≤,此时()1M a a =-; ∴()11,21,2a a M a a a ⎧-≤⎪⎪=⎨⎪>⎪⎩,∴()min 1122M a M ⎛⎫== ⎪⎝⎭,故答案为:12. 【点睛】关键点点睛:本题主要考查利用函数的单调性求函数的最值,本题的关键在于分类讨论去掉绝对值,然后再根据单调性求出最值,属于中档题.14.【分析】根据题意令从而得到得到为奇函数整理得到将代入求得的值【详解】设则即为奇函数故即即【点睛】方法点睛:该题考查的是有关函数值的求解问题解题方法如下:(1)构造奇函数;(2)利用奇函数的性质得到进 解析:3-【分析】根据题意,令()()31g x f x ax bx =-=-,从而得到()()3g x ax bx g x -=-+=-,得到()g x 为奇函数,整理得到()()2121f f --=--⎡⎤⎣⎦,将()25f =代入求得()2f -的值.【详解】设()()31g x f x ax bx =-=-,则()()3g x ax bx g x -=-+=-,即()g x 为奇函数,故()()22g g -=-,即()()2121f f --=--⎡⎤⎣⎦, 即()()222523f f -=-+=-+=-. 【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下: (1)构造奇函数()()31g x f x ax bx =-=-;(2)利用奇函数的性质得到()()22g g -=-,进而求得()()222f f -=-+,得到结果.15.【分析】根据函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数利用得到进而得到或然后分类讨论即可求解【详解】函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数明显可知该函数定义域 解析:±1【分析】根据函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,利用()()f x f x -=,得到(1)0a b +=,进而得到0a =或1b =-,然后,分类讨论即可求解【详解】函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,明显可知,该函数定义域为x ∈R ,令1x =和1x =-得(1)(1)()f a b a =++(1)(1)()f a a b =-=--,得22a b ab a a ab a b +++=--+⇒a ab ab a +=--(1)0a b ⇒+=,可得0a =或1b =-;若0a =,则2()f x bx =,若0b >,不满足()f x 的值域为(,1]-∞,0b =,明显不成立,0b <时,不满足()f x 的值域为(,1]-∞,所以,0a =时,不符题意;若1b =-时,22()()()f x x a a x a x =+-=-,由于20x -≤,则2()f x a ≤,所以,21a =,求得1a =±故答案为:±1 【点睛】关键点睛:解题的关键在于,利用()()f x f x -=,得到(1)0a b +=,然后,分别讨论0a =和1b =-两种情况进行分类讨论,主要考查学生分类讨论的思想,难度属于中档题 16.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++, 因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =, 所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .17.【分析】由奇函数的图象关于原点对称便可得出f (x )在-50上的图象这样根据f (x )在上的图象便可得出xf (x )<0的解集【详解】奇函数图象关于原点对称作出在的图象如下:由得或由图可知或的解集为【点睛 解析:[)(]5,22,5--【分析】由奇函数的图象关于原点对称便可得出f (x )在[-5,0]上的图象,这样根据f (x )在[]5,5-上的图象便可得出xf (x )<0的解集.【详解】奇函数图象关于原点对称,作出()f x 在[]5,5-的图象如下:由()0xf x <得()00x f x <⎧⎨>⎩或()00x f x >⎧⎨<⎩,由图可知52x -≤<-或25x <≤,()0xf x ∴<的解集为[)(]5,22,5--.【点睛】本题考查函数奇偶性、函数图象的综合,解题关键是根据函数奇偶性作出函数图象,利用数形结合思想求解,属于中等题.18.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.19.【分析】由题意可知关于的不等式在上有解作出函数和函数的图象考虑直线与函数的图象相切以及直线过点数形结合可求得实数的取值范围【详解】关于的不等式在上有解即关于的不等式在上有解作出两函数图象当由与相切时解析:5,22⎛⎫- ⎪⎝⎭【分析】由题意可知关于x 的不等式2222x a x -<-在(),0-∞上有解,作出函数2y x a =-和函数222y x =-的图象,考虑直线2y x a =-与函数222y x =-的图象相切,以及直线()2y x a =--过点()0,2,数形结合可求得实数a 的取值范围.【详解】关于x 的不等式2222x x a +-<在(),0-∞上有解,即关于x 的不等式2222x a x -<-在(),0-∞上有解,作出两函数2y x a =-,222y x =-图象,当由2y x a =-与222y x =-相切时,则2222x a x -=-,即22220x x a +--=,()4828200a a ∆=++=+=,解得52a =-.由()2y x a =--过点()0,2得2a =.由图可知5142a -<<,因此,522a -<<,即实数a 的取值范围为5,22⎛⎫- ⎪⎝⎭.故答案为:5,22⎛⎫- ⎪⎝⎭. 【点睛】本题考查利用含绝对值的不等式在区间上有解求参数,考查数形结合思想的应用,属于中等题.20.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.三、解答题21.(1)图象见解析;(2)答案见详解;(3)5182m -<<. 【分析】(1)先去绝对值,化简函数成分段函数形式()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,把握关键点分段画出函数图象即可;(2)结合(1)中图象,数形结合即得结果; (3)由额(2)中结果即得92104m -<-<,即求得参数范围. 【详解】解:(1)函数()()12f x x x =+-,去绝对值可得()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,即1x ≥-时,()f x 是开口向上、对称轴为12x =、零点为-1和2的抛物线的一部分;1x <-时,()f x 是开口向下、对称轴为12x =、零点为-1和2的抛物线的一部分,作图如下:(2)由(1)中图象,数形结合知, 当0a >或94a <-时,直线y a =与()()12f x x x =+-有1个交点; 当0a =或94a =-时,直线y a =与()()12f x x x =+-有2个交点; 当904a -<<时,直线y a =与()()12f x x x =+-有3个交点; (3)方程()1221x x m +-=-有三个实数解,即21y m =-与()()12f x x x =+-有三个交点,由(2)可知92104m -<-<,即5182m -<<, 所以m 的取值范围为5182m -<<. 【点睛】本题解题关键在于去绝对值写出分段函数,根据二次函数关键点(零点、对称轴、顶点)正确作图,再数形结合,依次突破.22.(1)()2f x x x =+;(2)不存在,理由见解析.【分析】(1)令1y =,根据题设条件和()10f =,得到()()132f x x x +=++,再结合换元法,即可求得函数的解析式;(2)由(1)得()1112442x x m g x m -⎛⎫+- ⎪⎝⎭=,令12xt ⎛⎫= ⎪⎝⎭,设()()21124y h t t m t m ==+--,其中[]1,2t ∈,结合二次函数的图象与性质,分类讨论,即可得到结论. 【详解】(1)由题意,函数()f x 满足()()()212f x y f y x x y +-=+++成立, 令1y =,可得()()()1132f x f x x +-=⋅++, 因为()10f =,所以()()132f x x x +=++令1t x =+,则1x t =-,可得()()()221312f t t t t t =-+-+=+ 所以函数()f x 的解析式为()2f x x x =+.(2)由(1),可得()2111(1)()241124242x x xx xx m m g x m m +⎛⎫=+-⋅- ⎪⎝⎭-⎛⎫=+- ⎪⎝⎭令12xt ⎛⎫= ⎪⎝⎭,因为[]1,0x ∈-,所以[]1,2t ∈,设函数()()21124y h t t m t m ==+--,[]1,2t ∈, 由函数()y h t =的开口向上,且对称轴()21t m =--, ①当()211m --≤,即12m ≥时,函数()y h t =在区间[]1,2上单调递增, 当1t =时,函数取得最小值,最小值为()min 314y h m ==--, 令3144m --=,解答1m =-,不符合题意(舍去); ②当()212m --≥,即0m ≤时,函数()y h t =在(]1,2单调递减, 当2t =时,函数取得最小值,最小值为()min 1214y h ==-≠,无解; ③当()1212m <--<,即102m <<时, 当2(1)x m =--时,函数取得最小值,最小值为()2min 221y h m m =-+=--, 令2114m --=,此时方程无解, 综上可得,不存在实数m 使得()g x 的最小值14. 【点睛】研究二次函数的最值问题的求解方法和策略:二次函数的最值问题常见类型:(1)轴定区间定的最值;(2)轴动区间定的最值;(3)轴定区间动的最值;影响二次函数的闭区间上的最值的要素和求法:(1)最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关;(2)常结合二次函数在该区间上的单调性或图象求解,在区间的端点或二次函数图象的顶点处取得最值.当开口方向或对称轴位置或区间不确定时要分情况讨论求解. 23.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可;(2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增; (2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果. 24.(1)(,0)(4,)-∞+∞;(2)[1,0][2,)-⋃+∞.【分析】(1)由题意可得x R ∃∈,20x bx b -+<,所以2()40b b ∆=-->,即可求解; (2)22()1F x x mx m =-+-,然后讨论0∆≤时满足对称轴为02mx =≤,当0∆>时,讨论对称轴与区间的关系,012m <<,显然不成立,所以有212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩或202(0)10mF m ⎧≤⎪⎨⎪=-≥⎩解不等式,最后求并集即可. 【详解】(1)x R ∃∈,()()f x bg x <, 即x R ∃∈,20x bx b -+<, 所以判别式2()40b b ∆=-->, 解得:0b <或4b >. 故实数b 的取值范围为(,0)(4,)-∞+∞.(2)22()1F x x mx m =-+-,对称轴为2m x =, ()F x 在[0,1]上单调递增,当()2241m m ∆=--=254m-①当0∆≤,即55m -≤≤时,则有0255mm ⎧≤⎪⎪⎨⎪-≤≤⎪⎩解得:m 0≤≤②当0∆>,即m <m > 设方程()0F x =的根为1x ,()212x x x <.若12m ≥,则10x ≤,即212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩解得:2≥m 若02m ≤,则20x ≤,即202(0)10m F m ⎧≤⎪⎨⎪=-≥⎩解得:10m -≤≤ 若012m<<,不符合题意, 综上所述,实数m 的取值范围为[1,0][2,)-⋃+∞.【点睛】结论点睛:一元二次不等式恒成立求参数(1)对于20ax bx c ++≥对于x ∈R 恒成立,等价于00a >⎧⎨∆≤⎩, (2)对于20ax bx c ++≤对于x ∈R 恒成立,等价于00a <⎧⎨∆≤⎩. 25.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数,函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =,解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上,①当12a a +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-. 所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域.26.(1)()()20f x x x x=-+≠;(2)证明见解析;(3)()max 1f x =-,()min 235f x =-. 【分析】 (1)将点坐标代入解析式,求出,a b 的值;(2)设任意1x ,()20,x ∈+∞,且12x x <,判断()()12f x f x >即可;(3)利用函数的单调性,将端点值代入,即可得答案;【详解】(1)由()f x 的图象过A 、B ,则1212a b b a +=⎧⎪⎨+=-⎪⎩,解得12a b =-⎧⎨=⎩, ()()20f x x x x=-+≠. (2)证明:设任意1x ,()20,x ∈+∞,且12x x <, ∴()()()12122112122222f x f x x x x x x x x x ⎛⎫⎛⎫-=-+--+=-+- ⎪ ⎪⎝⎭⎝⎭ ()()()()2121122112122=2x x x x x x x x x x x x --+-+=由1x ,()20,x ∈+∞,得120x x >,1220x x +>. 由12x x <,得210x x ->. ()()12 0f x f x ∴->,即()()12f x f x >.∴函数()f x 在()0,∞+上为减函数.(3)由(2)知函数为减函数,∴()()max 21f x f ==-,()()min 2355f x f ==-. 【点睛】 利用待定系数法求函数的解析式,利用定义证明函数的单调性注意取值的任意性,及作差、因式分解、判断符号的步骤.。
2020-2021学年高一数学北师大版必修1第二章函数 单元质量评估(二) Word版含解析
第二章单元质量评估(二)时间:120分钟 满分:150分 一、选择题(每小题5分,共60分)1.下列各组中的两个函数是同一函数的是( D ) A .f (x )=(x -1)0与g (x )=1 B .f (x )=x 与g (x )=x 2 C .f (x )=1-x x 2+1与g (x )=1+xx 2+1D .f (x )=(x )4x 与g (t )=⎝ ⎛⎭⎪⎫t t 2解析:A 中的两个函数定义域不同,前者要求x ≠1,而后者的定义域为R ,因而不是同一函数;B 中的两个函数虽然定义域相同,但可以看出它们的值域明显不同,因此断定它们不是同一函数;C 中的两个函数的对应关系不同,因而也不是同一函数;D 中的两个函数的定义域都为正实数集,对应关系也一样,所以这两个函数是同一函数,即正确选项为D.2.函数f (x )=x +3+1x +2的定义域是( C )A .[-3,+∞)B .[-3,-2)C .[-3,-2)∪(-2,+∞)D .(-2,+∞)解析:⎩⎨⎧x +3≥0,x +2≠0,所以⎩⎨⎧x ≥-3,x ≠-2,即函数定义域为[-3,-2)∪(-2,+∞).故选C.3.函数f (x )=1+x2+x(x >0)的值域是( C )A .(-∞,1)B .(1,+∞) C.⎝⎛⎭⎪⎫12,1 D.⎝⎛⎭⎪⎫0,12解析:因为f (x )=x +2-1x +2=1-1x +2在(0,+∞)上为增函数,所以f (x )∈⎝ ⎛⎭⎪⎫12,1.4.函数f (x )=x 2-4x +1,x ∈[2,5]的值域是( C ) A .[1,6] B .[-3,1] C .[-3,6] D .[-3,+∞)解析:f (x )=(x -2)2-3在[2,5]上是增加的,且f (2)=-3,f (5)=6,所以函数f (x )的值域为[-3,6].故选C.5.若f (x )=x -1x ,则方程f (4x )=x 的根是( D ) A .-2 B .2 C .-12 D.12解析:依题意,有f (4x )=4x -14x ,令4x -14x =x ,解得x =12,经检验,符合题意. 6.函数f (x )=4-x 2|x -2|是( D )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数解析:f (x )的定义域是[-2,2),不关于原点对称,故f (x )是非奇非偶函数. 7.若一次函数y =ax +b 的图像经过第二、三、四象限,则二次函数y =ax 2+bx 的图像只可能是( C )解析:一次函数y =ax +b 的图像经过第二、三、四象限,则有a <0,b <0,则。
最新北师大版高中数学必修一第二单元《函数》测试卷(答案解析)(2)
一、选择题1.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R 2.下列各函数中,表示相等函数的是( )A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .804.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦5.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >6.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33- B .11(,)63-C .(0,3)D .7(,1)2-7.方程2x =所表示的曲线大致形状为( )A .B .C .D .8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知定义在R 上的函数()f x 的图像关于y 轴对称,且当0x >时()f x 单调递减,若()()()1.360.5log 3,0.5,0.7,a f b f c f -===则,,a b c 的大小关系( )A .c a b >>B .b a c >>C .a c b >>D .c b a >>10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞12.已知函数()113sin 22f x xx ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.若函数()y f x =的定义域是[]0,4,则函数() 21f x f x x =-的定义域是__________.14.设函数()y f x =的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有3()4f x >-,则m 的取值范围是_____.15.已知定义在 +R 上的函数 ()f x 同时满足下列三个条件:① ()31f =-;②对任意x y +∈R , 都有 ()()()f xy f x f y =+;③ 1x > 时 ()0f x <,则不等式()()612f x f x <-- 的解集为___________.16.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.17.已知(2)1(1)()(1)x a x x f x a x -+<⎧=⎨≥⎩满足对任意121212()(),0f x f x x x x x -≠>-都有成立,那么a 的取值范围是_______18.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.19.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-的定义域是________.20.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________三、解答题21.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.22.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围.23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.已知函数()x af x x+=(a 为常数),其中()0f x <的解集为()4,0-. (1)求实数a 的值;(2)设()()g x x f x =+,当()0x x >为何值时,()g x 取得最小值,并求出其最小值.25.已知函数1f x x +=+ (1)求函数()f x 的解析式、定义域;(2)函数()()g x f x ax =-,[]2,4x ∈,求函数()g x 的最小值.26.已知函数21.2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求(5)f -,(f ,5(())2f f -的值; (2)若()3f a =,求实数a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.4.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
2020-2021学年北师大版高中数学必修一模块综合测评(二)及答案解析
最新(新课标)北师大版高中数学必修一模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M ={y|y =2x},P ={y|y =x -1},则M ∩P =( ) A .{y|y >1} B .{y|y ≥1} C .{y|y >0}D .{y|y ≥0}【解析】 M ={y|y =2x }={y|y >0}, P ={y|y =x -1}={y|y ≥0}. 故M ∩P ={y|y >0}. 【答案】 C2.(2016·江西南昌二中高一期中)设f(x)=⎩⎪⎨⎪⎧2x +1,(x ≤1),log 2x ,(x >1).则f(1)+f(4)=( )A .5B .6C .7D .8【解析】 f(1)+f(4)=21+1+log 24=5. 【答案】 A3.(2016·天津市南开大附中高一期中)已知幂函数y =f(x)的图像经过点⎝⎛⎭⎪⎫2,22,则f(4)的值为( )A .16B .2C.12D.116【解析】 设幂函数为y =x α,∵幂函数y =f(x)的图像经过点⎝ ⎛⎭⎪⎫2,22,∴22=2α, 解得α=-12.y =x -12.f(4)=4-12=12.故选C.【答案】 C4.(2016·河南南阳市五校高一联考)已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值是( )A .1B .-1C .0或1D .-1,0或1【解析】 由题意可得,集合A 为单元素集,(1)当a =0时,A ={x|2x =0}={0},此时集合A 的两个子集是{0},∅, (2)当a ≠0时,则Δ=0解得a =±1, 当a =1时,集合A 的两个子集是{1},∅, 当a =-1,此时集合A 的两个子集是{-1},∅. 综上所述,a 的取值为-1,0,1.故选D. 【答案】 D5.(2016·河南南阳市五校高一联考)下列各组函数表示相同函数的是( ) A .f(x)=x 2,g(x)=(x)2 B .f(x)=1,g(x)=x 2C .f(x)=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,g(t)=|t|D .f(x)=x +1,g(x)=x 2-1x -1【解析】 A 选项中的两个函数的定义域分别是R 和[0,+∞),不相同;B 选项中的两个函数的对应法则不一致;D 选项中的两个函数的定义域分别是R 和{x|x ≠1},不相同,尽管它们的对应法则一致,但也不是相同函数;C 选项中的两个函数的定义域都是R ,对应法则都是g(x)=|x|,尽管表示自变量的字母不同,但它们依然是相同函数.故选C.【答案】 C6.(2016·山东滕州市高一期中)令a =60.7,b =0.76,c =log 0.76,则三个数a ,b ,c 的大小顺序是( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a【解析】 a =60.7>60=1,b =0.76>0且b =0.76<0.70=1,c =log 0.76<log 0.71=0.【答案】 D7.(2016·湖南长沙一中高一期中)当a >1时,在同一坐标系中,函数y =a-x与y =log a x 的图像( )A . B.C . D.【解析】 ∵函数y =a -x可化为y =(1a)x,其底数大于0小于1,是减函数,又y =log a x ,当a >1时是增函数,两个函数是一增一减,前减后增.故选A.【答案】 A8.设函数f(x)是定义在R 上的奇函数,当x ∈(0,+∞)时,f(x)=lg x ,则满足f(x)<0的x 的取值范围是( )A .(-∞,0)B .(0,1)C .(-∞,1)D .(-∞,-1)∪(0,1)【解析】 由题意f(x)的图像如图所示, 故f(x)<0的取值范围是(-∞,-1)∪(0,1). 【答案】 D9.已知函数f(x)=⎩⎪⎨⎪⎧|log 3x|(0<x ≤9),-x +11(x >9),若a ,b ,c 均不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )【导学号:04100087】A .(0,9)B .(2,9)C .(9,11)D .(2,11)【解析】 作出f(x)的图像:则log 3a =-log 3b , ∴ab =1.设f(a)=f(b)=f(c)=t , 则a =3-t ,b =3t , c =11-t.由图可知0<t <2, ∴abc =11-t ∈(9,11). 【答案】 C10.(2016·吉林延边州高一期末)函数f(x)=4x -3·2x +3的值域为[1,7],则f(x)的定义域为( )A .(-1,1)∪[2,4]B .(0,1)∪[2,4]C .[2,4]D .(-∞,0)∪[1,2]【解析】 设t =2x,则t >0,且y =t 2-3t +3=⎝ ⎛⎭⎪⎫t -322+34≥34.∵函数f(x)=4x -3·2x +3的值域为[1,7], ∴函数y =t 2-3t +3的值域为[1,7].由y =1得t =1或2,由y =7得t =4或-1(舍去),则0<t ≤1或2≤t ≤4,即0<2x ≤1或2≤2x ≤4,解得x <0或1≤x ≤2, ∴f(x)的定义域是(-∞,0]∪[1,2],故选D. 【答案】 D11.(2016·黑龙江哈尔滨高一期末)已知函数f(x)=2x -P ·2-x ,则下列结论正确的是( )A .P =1,f(x)为奇函数且为R 上的减函数B .P =-1,f(x)为偶函数且为R 上的减函数C .P =1,f(x)为奇函数且为R 上的增函数D .P =-1,f(x)为偶函数且为R 上的增函数【解析】 当P =1时,f(x)=2x -2-x ,定义域为R 且f(-x)=2-x -2x =-f(x),∴f(x)为奇函数.∵2x 是R 上增函数,2-x 是R 的减函数,∴f(x)=2x -2-x 为R 上的增函数.因此选项C 正确.当P =1时,f(x)=2x +2-x ,定义域为R 且f(-x)=2-x +2x =f(x),∴f(x)为偶函数.根据1<2,f(1)<f(2)可知f(x)在R 上不是减函数;根据-2<-1,f(-2)>f(-1)可知f(x)在R 上不是增函数.因此选项B 、D 不正确.故选C.【答案】 C12.若关于x 的方程⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22-a -2=0有实数根,则实数a 的取值范围是( )A .[-2,+∞)B .(-1,2]C .(-2,1]D .[-1,2)【解析】 令f(x)=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22-2,∵0<⎝ ⎛⎭⎪⎫12|x|≤1,∴-2<⎝ ⎛⎭⎪⎫12|x|-2≤-1,则1≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22<4,故f(x)∈[-1,2).由方程⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22-a -2=0有实数根,得a ∈[-1,2).故选D. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.(2016·湖南长沙一中高一期中)函数f(x)=ax 2+(b +13)x +3是偶函数,且定义域为[a -1,2a],则a +b =__________.【解析】 ∵函数f(x)=ax 2+⎝⎛⎭⎪⎫b +13x +3是偶函数,且定义域为[a -1,2a],由偶函数的定义域关于原点对称可得(a -1)+2a =0,解得a =13,所以函数f(x)=13x 2+⎝⎛⎭⎪⎫b +13x +3.由题意可得f(-x)=f(x)恒成立,即13(-x)2+(b+13)(-x)+3=13x2+⎝⎛⎭⎪⎫b+13x+3对任意的实数x都成立,所以有b+13=0,解得b=-13,所以a+b=0.【答案】014.(2016·福建龙岩高一期末)函数f(x)=log 12(x2-2x-3)的单调递增区间为________.【解析】函数f(x)的定义域为{x|x>3或x<-1}.令t=x2-2x-3,则y=log 1 2 t.因为y=log 12t在(0,+∞)单调递减,t=x2-2x-3在(-∞,-1)单调递减,在(3,+∞)单调递增,由复合函数的单调性可知函数的单调增区间为(-∞,-1).【答案】(-∞,-1)15.(2016·安徽合肥八中高一段考)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为__________. 【导学号:04100088】【解析】设正方形周长为x,则圆的周长为1-x,半径r=1-x 2π,∴S正=(x4)2=x216,S圆=π·(1-x)24π2,∴S正+S圆=(π+4)x2-8x+416π(0<x<1),∴当x=4π+4时有最小值.【答案】4π+416.(2016·内蒙古杭锦后旗奋斗中学高一月考)已知定义在实数集R 上的偶函数f(x)在区间(-∞,0]上是单调减函数,则不等式f(-1)<f(ln x)的解集是________.【解析】 由已知f(x)在区间(-∞,0]上是单调减函数,在区间(0,+∞)上是单调增函数,当ln x >0,f(1)<f(ln x),则1<ln x ,有x >e ,当ln x <0,f(-1)<f(ln x),则-1>ln x ,有0<x <1e综上,不等式f(-1)<f(ln x)的解集是⎝ ⎛⎭⎪⎫0,1e ∪(e ,+∞).【答案】 ⎝⎛⎭⎪⎫0,1e ∪(e ,+∞)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2016·山东滕州市高一期中)计算下列各式的值: (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2 (2)log 34273+lg25+lg4+7log 72.【解】(1)原式=⎝ ⎛⎭⎪⎫942-1-⎝ ⎛⎭⎪⎫278-23+⎝ ⎛⎭⎪⎫32-2 =⎝ ⎛⎭⎪⎫322×12-1-⎝ ⎛⎭⎪⎫32-3×23+⎝ ⎛⎭⎪⎫32-2=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2 =12.(2)原式=log 33343+lg(25×4)+2=log 33-14+lg102+2=-14+2+2=154.18.(本小题满分12分)(2016·江西南昌二中高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x | 2≤2x≤16,B =⎩⎨⎧⎭⎬⎫x | log 3x >1.(1)分别求A ∩B ,(∁R B)∪A ;(2)已知集合C ={x|1<x <a},若C ⊆A ,求实数a 的取值范围. 【解】 (1)由已知得A ={x|1≤x ≤4}, B ={x|x >3},∴A ∩B ={x|3<x ≤4},∴(∁R B)∪A ={x|x ≤3}∪{x|1≤x ≤4}={x|x ≤4}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,由C ⊆A 得1<a ≤4. 综上,a 的取值范围为(-∞,4].19.(本小题满分12分)(2016·河南许昌市四校高一联考)已知函数f(x)=x -2m 2+m +3(m ∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=log a [f(x)-ax](a >0且a ≠1)在区间[2,3]上为增函数,求实数a 的取值范围.【解】 (1)∵f(x)为偶函数, ∴-2m 2+m +3为偶数.又f(3)<f(5),∴3-2m 2+m +3<5-2m 2+m +3,即有⎝ ⎛⎭⎪⎫35-2m 2+m +3<1,∴-2m 2+m +3>0,∴-1<m <32.又m ∈Z ,∴m =0或m =1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数,符合题意. ∴m =1,f(x)=x 2.(2)由(1)知,g(x)=log a [f(x)-ax]=log a (x 2-ax)(a >0且a ≠1)在区间[2,3]上为增函数.令u(x)=x 2-ax ,y =log a u ,①当a >1时,y =log a u 为增函数,只需u(x)=x 2-ax 在区间[2,3]上为增函数,即⎩⎨⎧ a 2≤0,u (2)=4-2a >0,1<a <2;②当0<a <1时,y =log a u 为减函数,只需u(x)=x 2-ax 在区间[2,3]上为减函数,即⎩⎨⎧a 2≥3,u (3)=9-3a >0,a ∈∅,综上可知,a 的取值范围为(1,2).20.(本小题满分12分)(2016·江西南昌二中高一期中)设函数f(x)=a x -a -x(a>0且a ≠1),(1)若f(1)<0,试判断函数单调性并求使不等式f(x 2+tx)+f(4-x)<0恒成立的t 的取值范围;(2)若f(1)=32,g(x)=a 2x +a -2x -2mf(x)且g(x)在[1,+∞)上的最小值为-2,求m 的值.【解】 (1)f(x)=a x -a -x (a>0且a ≠1),∵f(1)<0,∴a -1a <0,又a>0,且a ≠1,∴0<a<1.∵a x 单调递减,a -x 单调递增,故f(x)在R 上单调递减. 不等式化为f(x 2+tx)<f(x -4),∴x 2+tx>x -4,即x 2+(t -1)x +4>0恒成立, ∴Δ=(t -1)2-16<0,解得-3<t<5.(2)∵f(1)=32,∴a -1a =32,2a 2-3a -2=0,∴a =2或a =-12(舍去),∴g(x)=22x +2-2x -2m(2x -2-x )=(2x -2-x )2-2m(2x -2-x )+2. 令t =f(x)=2x -2-x ,由(1)可知f(x)=2x -2-x 为增函数.∵x ≥1,∴t ≥f(1)=32,令h(t)=t 2-2mt +2=(t -m)2+2-m 2⎝ ⎛⎭⎪⎫t ≥32.若m ≥32,当t =m 时,h(t)min =2-m 2=-2,∴m =2.若m<32,当t =32时,h(t)min =174-3m =-2,解得m =2512>32,舍去.综上可知,m =2.21.(本小题满分12分)(2016·山东滕州市高一期中)设函数f(x)=log 3(9x)·log 3(3x),且19≤x ≤9.(1)求f(3)的值;(2)令t =log 3x ,将f(x)表示成以t 为自变量的函数,并由此求函数f(x)的最大值与最小值及与之对应的x 的值. 【导学号:04100089】【解】 (1)f(3)=log 327·log 39=3×2=6.(2)因为t =log 3x ,又∵19≤x ≤9,∴-2≤log 3x ≤2,即-2≤t ≤2.由f(x)=(log 3x +2)·(log 3x +1)=(log 3x)2+3log 3x +2=t 2+3t +2. 令g(t)=t 2+3t +2=⎝ ⎛⎭⎪⎫t +322-14,t ∈[-2,2].①当t=-32时,g(t)min=-14,即log3x=-32,则x=3-32=39,∴f(x)min =-14,此时x=39;②当t=2时,g(t)max =g(2)=12,即log3x=2,x=9,∴f(x)max=12,此时x=9.22.(本小题满分12分)(2016·山东青州市高一期中)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=1-g(x)m+2g(x)是奇函数.(1)确定y=f(x)和y=g(x)的解析式;(2)判断函数f(x)的单调性,并用定义证明;(3)若对于任意x∈[-5,-1],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.【解】(1)设g(x)=a x(a>0且a≠1),则a3=8,∴a=2,∴g(x)=2x.因为f(x)=1-2x2x+1+m,又f(-1)=-f(1),∴1-12m+1=1-24+m⇒m=2,经检验,满足题意,所以f(x)=1-2x2+2x+1=-12+12x+1.(2)f(x)为减函数,证明如下:由(1)知f(x)=1-2x2+2x+1=-12+12x+1.任取x1,x2∈R,设x1<x2则f(x2)-f(x1)=12x2+1=12x1+1=2x1-2x2(2x1+1)(2x2+1),因为函数y=2x在R上是增函数且x1<x2,∴2x1-2x2<0.又(2x 1+1)(2x 2+1)>0∴f(x 2)-f(x 1)<0即f(x 2)<f(x 1), ∴f(x)在(-∞,+∞)上为减函数.(3)因f(x)是奇函数,且f(x)在(-∞,+∞)上为减函数, 从而由不等式f(1-x)+f(1-2x)>0得 f(1-x)>-f(1-2x)即f(1-x)>f(2x -1), 所以⎩⎪⎨⎪⎧1-x <2x -1,-5≤1-x ≤-1,-5≤1-2x ≤-1,解得2≤x ≤3,即x 的取值范围是[2,3].。
新北师大版高中数学必修一第二单元《函数》检测题(含答案解析)(2)
一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.4⎤⎦C .[]3,4-D.⎡⎣3.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( ) A .11,5⎡⎫-+∞⎪⎢⎣⎭ B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣D .11,4⎡⎫-+∞⎪⎢⎣⎭6.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .47.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞ D .(][),43,-∞-⋃+∞8.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( )A .5-B .7-C .5D .79.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确10.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-11.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.若函数()y f x =的定义域是[0,2],则函数()1g x x =-______. 15.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.16.已知二次函数()()22,f x x ax b a b R =++∈,,M m 分别是函数()f x 在区间[]0,2的最大值和最小值,则M m -的最小值是________17.若函数211x y x -=-的值域是()[),03,-∞+∞,则此函数的定义域是____. 18.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.19.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.设函数12ax y x +=-. (1)当1a =时,在区间[)(]2,22,6-⋃上画出这个函数的图像;(2)是否存在整数a ,使该函数在[4,)+∞上是严格减函数,且当4x ≥时,都有4y ≤,如果存在,求出所有符合条件的a ,若不存在,请说明理由.24.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 25.已知函数()81f x x =-(1)求函数()f x 的定义域并求()2f -,()6f ;(2)已知()4211f a a+=+,求a 的值. 26.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
2020_2021学年高中数学模块综合评估2含解析北师大版必修1
模块综合评估(二)时间:120分钟 满分:150分一、选择题(每小题5分,共60分)1.若全集U ={1,2,3,4}且∁U A ={2},则集合A 的真子集共有( C ) A .3个 B .5个 C .7个D .8个解析:由题意知,A ={1,3,4},则A 的真子集共有23-1=7(个).2.设U 是全集,M ,P ,S 是U 的三个子集,则阴影部分所示的集合为( D )A .(M ∩P )∩SB .(M ∩P )∪(∁U S )C .(M ∩P )∪SD .(M ∩P )∩(∁U S )解析:由题图知,阴影部分在集合M 中,在集合P 中,但不在集合S 中,故阴影部分所表示的集合是(M ∩P )∩(∁U S ).3.下列函数中,既是奇函数又是增函数的为( D ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |解析:若函数为增函数,其图像为从左向右依次上升;若函数为奇函数,其图像关于原点对称.经分析,A 选项函数的图像不关于原点对称,不是奇函数,排除;B 选项函数的图像从左向右依次下降,为减函数,排除;C 选项函数的图像分别在两个单调区间里从左向右依次下降,为减函数,排除;故选D.其实对于选项D ,我们也可利用x >0,x =0,x <0分类讨论其解析式,然后画出图像,经判断符合要求.4.函数f (x )=4-x +lg(x -1)+(x -2)0的定义域为( B ) A .{x |1<x ≤4}B .{x |1<x ≤4,且x ≠2}C .{x |1≤x ≤4,且x ≠2}D .{x |x ≥4}解析:由题意得⎩⎪⎨⎪⎧4-x ≥0,x -1>0,x -2≠0,解得1<x ≤4且x ≠2,故选B .5.使函数y =log 12(x 2-5x +6)是增加的区间为( D ) A.⎝ ⎛⎭⎪⎫52,+∞ B .(3,+∞)C.⎝ ⎛⎭⎪⎫-∞,52 D .(-∞,2)6.如果偶函数f (x )在[0,+∞)上是增函数且最小值是2,那么f (x )在(-∞,0]上是( A )A .减函数且最小值是2B .减函数且最大值是2C .增函数且最小值是2D .增函数且最大值是2解析:由偶函数图像关于y 轴对称,可知偶函数在原点两侧的对称区间上单调性相反,所以函数f (x )在(-∞,0]上为减函数,且最小值为2.7.若关于x 的方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图像可以是( D )解析:因为关于x 的方程f (x )-2=0在(-∞,0)内有解,所以函数y =f (x )与y =2的图像在(-∞,0)内有交点,观察图像可知只有D 中图像满足要求.8.函数f(x )=⎩⎪⎨⎪⎧4x -4,x ≤1x 2-4x +3,x >1的图像和函数g(x )=log 2x 的图像的交点个数是( C )A .1B .2C .3D .49.若函数f(x ),g(x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x,则f (2),f (3),g (0)的大小关系是( C )A .g (0)<f (3)<f (2)B .f (2)<f (3)<g (0)C .g (0)<f (2)<f (3)D .f (3)<f (2)<g (0)解析:因为f (x ),g (x )分别是R 上的奇函数,偶函数,所以由f (-x )-g (-x )=e -x,得f (x )+g (x )=-e -x.又因为f (x )-g (x )=e x ,所以f (x )=12(e x -e -x),g (x )=-12(e x +e -x ).所以g (0)=-1,f (x )在区间(0,+∞)内是增加的,所以f (3)>f (2)>f (0)=0>-1=g (0).10.若函数f (x )=lg(10x+1)+ax 是偶函数,g (x )=4x-b2x 是奇函数,则a +b 的值是( A )A.12 B .1 C .-12D .-1解析:∵f (x )是偶函数,∴f (-x )=f (x ),即lg(10-x+1)-ax =lg(10x+1)-(a +1)x =lg(10x +1)+ax ,∴a =-(a +1),a =-12.∵g (x )是奇函数,∴g (-x )=-g (x ),即2-x-b2-x =-2x+b 2x ,∴b =1.∴a +b =12. 11.已知函数f (x )与g (x )=e x互为反函数,函数y =h (x )的图像与y =f (x )的图像关于x 轴对称,若h (a )=1,则实数a 的值为( C )A .-eB .-1eC.1eD .e解析:f (x )=ln x ,h (x )=-ln x ,h (a )=1,∴a =1e.12.已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,则a 的取值范围为( D )A .-6≤a ≤2B .-7≤a ≤73C .-7≤a ≤-4D .-7≤a ≤2二、填空题(每小题5分,共20分)13.函数y =3-2x -x 2的定义域是[-3,1].解析:要使函数有意义,必须3-2x -x 2≥0,即x 2+2x -3≤0,∴-3≤x ≤1. 14.函数f (x )对于任意函数x 满足条件f (x +2)=1f x,若f (1)=-5,则f (f (5))=-15.解析:由f (x +2)=1f x得f (x +4)=1f x +2=f (x ),所以f (5)=f (1)=-5,则f (f (5))=f (-5)=f (-1)=1f-1+2=1f 1=-15.15.已知f (x )是定义在R 上的偶函数,且f (x )在[0,+∞)上为增函数,f (2)=0,则不等式f (|log 2x |)>0的解集为⎝ ⎛⎭⎪⎫0,14∪(4,+∞).解析:由题意得f (|log 2x |)>f (2).又f (x )在[0,+∞)上为增函数,所以|log 2x |>2, 即log 2x >2或log 2x <-2.解得x >4或0<x <14.16.已知函数f (x )是定义在R 上的奇函数.当x <0时,f (x )=e x(x +1),其中e =2.718 28…,给出下列命题: ①当x >0时,f (x )=e x(1-x ); ②函数f (x )有2个零点;③f (x )>0的解集为(-1,0)∪(1,+∞). 其中所有正确的命题序号是③.解析:由f (x )是奇函数,且x <0,f (x )=e x(x +1),得x >0时,f (x )=-f (-x )=-[e-x(-x +1)]=e -x(x -1),①错;当x <0时,函数零点为-1,则x >0时,函数零点为1,又f (x )是R 上的奇函数,因此0也是函数的零点,f (x )有3个零点,②错; 由f (x )=⎩⎪⎨⎪⎧e -xx -1,x >0,0, x =0,e x x +1,x <0,则当x >0时,f (x )>0,得x >1,x <0时,由f (x )>0,得-1<x <0,即③正确.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分) 17.(10分)计算下列各式的值.(1)lg2+lg5-lg8lg50-lg40;解:(1)原式=lg 2×58lg 5040=lg54lg 54=1;(2)原式=·log 5(10-3-2)=⎝ ⎛⎭⎪⎫-14·log 55=-14.18.(12分)已知函数f (x )=ax 2-2x +1(a ≠0). (1)若函数f (x )有两个零点,求a 的取值范围;(2)若函数f (x )在区间(0,1)与(1,2)上各有一个零点,求a 的取值范围.解:(1)函数f (x )有两个零点,即方程ax 2-2x +1=0(a ≠0)有两个不等实根,令Δ>0,即4-4a >0,解得a <1.又因为a ≠0,所以a 的取值范围为(-∞,0)∪(0,1).(2)若函数f (x )在区间(0,1)与(1,2)上各有一个零点,则0<--22a <2,即a >12.由f (x )的图像可知,只需⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧1>0,a -1<0,4a -3>0,解得34<a <1.19.(12分)已知函数f (x )=2x 2-4x +a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[-1,2m ]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1). ①求实数a 的值;②设t 1=12f (x ),t 2=g (x ),t 3=2x,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.解:(1)因抛物线y =2x 2-4x +a 开口向上,对称轴为x =1, 所以函数f (x )在(-∞,1]上是减少的,在[1,+∞)上是增加的, 由函数f (x )在[-1,2m ]上不单调知,由2m >1,得m >12,所以实数m 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. (2)①因f (1)=g (1),所以-2+a =0,所以实数a 的值为2. ②因t 1=12f (x )=x 2-2x +1=(x -1)2,t 2=g (x )=log 2x ,t 3=2x,所以当x ∈(0,1)时,t 1∈(0,1),t 2∈(-∞,0),t 3∈(1,2),即t 2<t 1<t 3.20.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1),f (4),f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)由题意得,f (1)=f (1)+f (1),f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.∴f (1)=0,f (4)=2,f (8)=3.(2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8).又∵对于函数f (x ),当x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数, ∴x (x -2)≤8,且x -2>0,解得2<x ≤4. ∴x 的取值范围为(2,4].21.(12分)某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L (x )元与用电量x (度)间的函数关系.(2)老王家九月份按方案一交费35元,问老王家该月用电多少度? (3)老王家月用电量在什么范围时,选择方案一比选择方案二更好? 解:(1)当0≤x ≤30时,L (x )=2+0.5x ;当x >30时,L (x )=2+30×0.5+(x -30)×0.6=0.6x -1.L (x )=⎩⎪⎨⎪⎧2+0.5x ,0≤x ≤30,0.6x -1,x >30.(2)当0≤x ≤30时,由L (x )=2+0.5x =35得x =66,舍去.当x >30时,由L (x )=0.6x -1=35得x =60.∴老王家该月用电60度. (3)设按方案二收费为F (x )元,则F (x )=0.58x .当0≤x ≤30时,由L (x )<F (x ),得2+0.5x <0.58x ,∴x >25,∴25<x ≤30. 当x >30时,由L (x )<F (x ),得0.6x -1<0.58x ,∴x <50, ∴30<x <50.综上,25<x <50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.22.(12分)已知函数g (x )=ax 2-2ax +1+b (a ≠0,b <1),在区间[2,3]上有最大值4,最小值1,设f (x )=g xx.(1)求a ,b 的值;(2)不等式f (2x )-k ·2x≥0在x ∈[-1,1]上恒成立,求实数k 的取值范围. 解:(1)g (x )=a (x -1)2+1+b -a ,当a >0时,g (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ g2=1,g 3=4,即⎩⎪⎨⎪⎧ 4a -4a +1+b =1,9a -6a +1+b =4,解得⎩⎪⎨⎪⎧a =1,b =0.当a <0时,g (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧g2=4,g 3=1,即⎩⎪⎨⎪⎧4a -4a +1+b =4,9a -6a +1+b =1,解得⎩⎪⎨⎪⎧a =-1,b =3.∵b <1,∴a =1,b =0.(2)由(1)知,g (x )=x 2-2x +1,f (x )=x +1x-2. 不等式f (2x )-k ·2x ≥0可化为2x +12x -2≥k ·2x,1+⎝ ⎛⎭⎪⎫12x 2-22x ≥k .令12x =m ,则k ≤m 2-2m +1.∵x ∈[-1,1],∴m ∈⎣⎢⎡⎦⎥⎤12,2.记h (m )=m 2-2m +1,则h (m )min =0.∴k ≤0.。
新北师大版高中数学必修一第二单元《函数》测试卷(有答案解析)(2)
一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-3.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)4.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<5.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,46.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞ D .(][),43,-∞-⋃+∞7.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .以上都不对8.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞9.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f10.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞11.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1-C .(1,3)-D .(2,2)-12.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( ) A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.14.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.15.若()22f x x ax =-+与()ag x x=在区间[]1,2上都是减函数,则a 的取值范围是______.16.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________. 17.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.18.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).19.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.20.设函数()y f x =是定义在R 上的偶函数,2()()g x f x x =-,若函数()y g x =在区间[0,)+∞上是严格增函数,则不等式2(1)(1)2f x f x x +->+的解集为___________.三、解答题21.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围.22.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围.23.已知二次函数 ()f x 的值域为[4,)-+∞,且不等式0( )f x <的解集为(1,3)-. (1)求()f x 的解析式;(2)若对于任意的[2,2]x ∈-,都有2() f x x m >+恒成立,求实数m 的取值范围. 24.已知函数()f x 的定义域是()0,∞+,当1x >时,()0f x >,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭. (1)求()1f 的值,并证明()f x 在定义域上是增函数; (2)若112f ⎛⎫=-⎪⎝⎭的值,解不等式1(1)2f x f x ⎛⎫++≥ ⎪⎝⎭. 25.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.26.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.3.D解析:D 【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果. 【详解】任设120x x <<,则211x x >,21()1x f x <-,所以()()()()222111111111x x f x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令18,8x y ==得11(1)(8)(8)()188f f f f =⨯=++,所以(8)1124f =---=-, 又(8)(2)(4)1f f f =++(2)(2)(2)113(2)2f f f f =++++=+4=-,所以(2)2f =-,()(3)3f x f x +->-可化为()(3)12(2)f x f x f +-+>-=,所以[(3)](2)f x x f ->,所以030(3)2x x x x >⎧⎪->⎨⎪-<⎩,解得01x <<或23x <<.故选:D 【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f 是解题关键.4.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221xf x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.5.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭.故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.6.C解析:C 【分析】根据已知条件可知()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增,由不等式在[]1,0x ∈-恒成立,结合()f x 的单调性、对称性即可求m 的取值范围.【详解】对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,知:()f x 在[2,)x ∈+∞上单调递增,()2f x +是偶函数,知:()f x 关于2x =对称,∴()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增;∵不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,且3211x -≤-≤-, ∴max (1)(21)(3)f m f x f +≥-=-即可,而根据对称性有(1)(7)f m f +≥, ∴综上知:13m +≤-或17m +≥,解得(][),46,x ∈-∞-+∞,故选:C 【点睛】结论点睛:注意抽象函数单调性、对称性判断对任意的()1212,x x x x ≠:()()21210f x f x x x ->-有()f x 单调递增;()()21210f x f x x x -<-有()f x 单调递减;当()f x n +是偶函数,则()f x 关于x n =对称;思路点睛:对称型函数不等式在一个闭区间上恒成立:在对称轴两边取大于或小于该闭区间最值即可,结合函数区间单调性求解.7.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈,∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =, 不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得2x x <⎧⎨>⎩,解得02x <<,所以不等式()80f x x->的解集为()0,2. 故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.9.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.10.A解析:A 【分析】由题可得[][]1122()()0f x x f x x ---<,可构造函数()()F x f x x =-是R 上的增函数,原不等式可转化为()()213F x F ->,再结合增函数的性质可求出答案. 【详解】 由题意,[][]121211221122()()()()()()0f x f x x x f x x f x x f x x f x x -<-⇔-<-⇔---<,因为12,R x x ∈且12,x x <所以函数()()F x f x x =-是R 上的增函数.()3(3)31F f =-=,因为(21)2(21)(21)1f x x f x x ->⇔--->,所以()()213F x F ->, 则213x ->,解得2x >. 故选:A. 【点睛】本题考查了函数的单调性的应用,构造函数()()F x f x x =-是解决本题的关键,属于中档题.11.B解析:B 【详解】由()f x 在[0,)+∞上是增函数,且(2)0f = 当0x >时,()0f x <的解集[0,2]; 当时()f x 为减函数,(2)0f -=,()0f x <的解集[2,0]-.综上()0f x <的解集[2,2]-,所以(1)0f x +<满足212,31x x -≤+≤∴-≤≤. 故选:B .12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x =-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212ax x x -+成立, 即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>; ()f x m <有解min ()f x m ⇔<.14.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.15.【分析】根据二次函数和分式函数的单调性求解即可【详解】根据与在区间上都是减函数又的对称轴为所以又在区间上是减函数所以所以即的取值范围为故答案为:【点睛】本题考查了已知函数的单调性求参数问题考查了数学解析:(]01, 【分析】根据二次函数和分式函数的单调性求解即可. 【详解】根据2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数, 又()f x 的对称轴为x a =,所以1a ≤, 又()ag x x=在区间[1,2]上是减函数,所以0a > 所以01a <≤,即a 的取值范围为(]01,. 故答案为:(]01,【点睛】本题考查了已知函数的单调性求参数问题,考查了数学运算能力.属于中档题.16.2021【分析】由已知条件利用换元法求出f (x )然后代入计算即可求解【详解】已知函数f (x )在定义域(0+∞)上是单调函数且对任意x ∈(0+∞)都有ff (x )﹣=2可设f (x )﹣=c 故f (x )=+c解析:2021 【分析】由已知条件,利用换元法求出f (x ),然后代入计算即可求解. 【详解】已知函数f (x )在定义域(0,+∞)上是单调函数,且对任意x ∈(0,+∞),都有f [f (x )﹣1x]=2, 可设f (x )﹣1x =c ,故f (x )=1x +c ,且f (c )=c +1c=2(c >0),解可得c =1,f (x )=1x+1, 则f (12020)=2021. 故答案为:2021 【点睛】本题主要考查了利用函数的单调性求函数值,函数解析式的求法,注意函数性质的合理应用,属于中档题.17.【分析】采用换元法令分别在和两种情况下求得的范围进而继续通过讨论和来求得结果【详解】令则①若则解得:不满足舍去;②若则解得:即若则解得:;若则解得:综上所述:的取值范围为故答案为:【点睛】思路点睛:解析:15,48⎛⎫⎪⎝⎭【分析】采用换元法,令()0f x t =,分别在t A ∈和t B ∈两种情况下求得t 的范围,进而继续通过讨论0x A ∈和0x B ∈来求得结果. 【详解】令()0f x t =,则()f t A ∈. ①若t A ∈,则()12f t t =+,11022t ∴≤+<,解得:102t -≤<,不满足t A ∈,舍去;②若t B ∈,则()()21f t t =-,()10212t ∴≤-<,解得:314t <≤,即()0314f x <≤, 若0x A ∈,则()0012f x x =+,031142x ∴<+≤,解得:01142x <≤,011,42x ⎛⎫∴∈ ⎪⎝⎭; 若0x B ∈,则()()0021f x x =-,()032114x ∴<-≤,解得:01528x ≤<,015,28x ⎡⎫∴∈⎪⎢⎣⎭.综上所述:0x 的取值范围为15,48⎛⎫⎪⎝⎭. 故答案为:15,48⎛⎫⎪⎝⎭.【点睛】思路点睛:求解复合函数()()f g x 类型的不等式或方程类问题时,通常采用换元法,令()g x t =,通过求解不等式或方程得到t 满足的条件,进一步继续求解x 所满足的条件. 18.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增, ()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增,0a b <+, a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.19.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.20.【分析】根据题意分析可得为偶函数进而分析可得结合函数的奇偶性与单调性分析可得解可得的取值范围即可得答案【详解】解:根据题意且是定义在上的偶函数则则函数为偶函数又由为偶函数且在区间上是严格增函数则解可 解析:(,2)(0,)-∞-+∞【分析】根据题意,分析可得()g x 为偶函数,进而分析可得()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,结合函数的奇偶性与单调性分析可得|1|1x +>,解可得x 的取值范围,即可得答案. 【详解】解:根据题意,2()()g x f x x =-,且()f x 是定义在R 上的偶函数,则22()()()()()g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,又由()g x 为偶函数且在区间[0,)+∞上是严格增函数,则|1|1x +>, 解可得:2x <-或0x >, 即x 的取值范围为:(,2)(0,)-∞-+∞;故答案为:(,2)(0,)-∞-+∞.【点睛】关键点睛:解题关键在于,把题目通过转化化归思想,转化为:()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,进而分析,难度属于中档题三、解答题21.(1)(0)1f =-;()12f =;(2)4k <. 【分析】(1)令0x y ==可得(0)f ,令1x y ==可得()1f ; (2)转化条件为222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,换元后求得222x x -的最小值即可得解. 【详解】(1)令0x y ==,则(0)(0)(0)1f f f =++,所以(0)1f =-; 令1x y ==,则(2)(1)(1)15f f f =++=,所以()12f =;(2)由题意,不等式2()(21)1f kx f x +-<可转化为2()(21)12f kx f x +-+<,所以()()2211f kx x f +-<,因为函数()f x 单调递增,所以2211kx x +-<, 所以222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立, 令[]12,3t x =∈,则221122222t t t ⎛⎫-=-- ⎪⎝⎭,所以当2t =即12x =时,222t t -取最小值4, 所以4k <. 【点睛】关键点点睛:解决本题的关键是利用函数的单调性转化不等式为222k x x<-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,再转化为求222x x -的最小值即可得解.22.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增; (2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果. 23.(1)2()23f x x x =--;(2)7m <-. 【分析】(1)运用待定系数法,设2()f x ax bx c =++,由题意建立方程组,解之可得函数的解析式;(2)由(1)将问题转化为243m x x <--对[2,2]x ∈-恒成立,令()22()4327g x x x x --=--=,运用二次函数的性质求得其最值,再由不等式恒成立的思想可求得m 的取值范围. 【详解】(1)设()()20f x ax bx c a =++≠,由题意可知:(1)0(3)930(1)4f a b c f a b c f a b c -=-+=⎧⎪=++=⎨⎪=++=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,即2()23f x x x =--; (2)由(1)得243m x x <--对[2,2]x ∈-恒成立,令()22()4327g x x x x --=--=,当[2,2]x ∈-, ()[7,9]g x ∈-,故7m <-. 【点睛】常用的不等式恒成立的思想:()f x a >对一切x I ∈恒成立,等价于()min f x a >;()f x a <对一切x I ∈恒成立,等价于()max f x a >.24.(1)()10f =,证明见解析;(2)10,3⎛⎤⎥⎝⎦.【分析】(1)令1y =,可得(1)0f =,利用增函数的定义可证()f x 在()0,∞+上是增函数;(2)利用赋值法求出(4)2f =,将不等式1(1)2f x f x ⎛⎫++≥ ⎪⎝⎭化为1(4)x f f x +⎛⎫≥ ⎪⎝⎭,根据()f x 的单调性可解得结果. 【详解】(1)令1y =,则()()()1f x f x f =-,得(1)0f =, 任取210x x >>,则211x x >,210x f x ⎛⎫> ⎪⎝⎭,所以()()22110x f x f x f x ⎛⎫-=> ⎪⎝⎭, 故()f x 在()0,∞+上是增函数; (2)在()()x f f x f y y ⎛⎫=-⎪⎝⎭中,令1x =,2y =,则1()(1)(2)2f f f =-, 即10(2)f -=-得()21f =,再令2x =,4y =,则2()(2)(4)4f f f =-,即11(4)f -=-,得()42f =, ∵0x >,∴11(1)(4)2x f x f f f x x +⎛⎫⎛⎫++=≥=⎪ ⎪⎝⎭⎝⎭, 由()f x 在()0,∞+上递增得14x x +≥且0x >,得103x <≤. 所以不等式1(1)2f x f x ⎛⎫++≥ ⎪⎝⎭的解集为1(0,]3. 【点睛】 关键点点睛:在()()x f f x f y y ⎛⎫=-⎪⎝⎭中,通过赋值法求出(4)2f =是解题关键. 25.(1)12b ≤≤;(2)()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩;[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【分析】(1)先利用已知条件判断函数单调性,再根据分段函数单调性列条件计算即得结果; (2)先讨论()g x 的符号,再代入分段函数()f x 解析式中,即得[]()f g x 的解析式;利用分段函数()f x 的解析式,直接代入()g x 的解析式,即得[]()g f x 的解析式. 【详解】解:(1)因为任意的12x x ≠,都有()()12120f x f x x x ->-成立,故设任意的12x x <时,有()()12f x f x <,即分段函数()f x 在R 上单调递增,故当0x >时,()()211f x b x b =-+-单调递增,即210b ->,即12b >; 当0x ≤时,()2()2f x x b x =-+-单调递增,即对称轴202bx -=≥,即2b ≤; 且在临界点0x =处,左边取值不大于右边取值,即01b ≤-,即1b ≥ . 综上,b 的取值范围是12b ≤≤;(2)当b =2时,231,0(),0x x f x x x +>⎧=⎨-≤⎩,又()23g x x =+, 故当()230g x x =+>时,即32x >-时,()()3231610f g x x x ⎡⎤=++=+⎣⎦, 当()230g x x =+≤时,即32x ≤-时,[]()2()23f g x x =-+, 故()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩; 当0x >时,()31f x x =+,则[]()(31)2(31)365g f x g x x x =+=++=+,当0x ≤时,2()f x x =-,则[]22()()23g f x g x x =-=-+,故[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩.【点睛】 关键点点睛:本题解题关键在于:要讨论分段函数的自变量所在的取值区间确定对应的关系式,进而代入,以突破难点.26.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k的表达式. 【详解】(1)由①可得,函数14f x ⎛⎫- ⎪⎝⎭是偶函数, 将函数14f x ⎛⎫-⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象, 所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-. 于是:()223f x x x =+-;(2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+.当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---;当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增, 于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.。
2021年高中数学第二章函数质量评估卷练测评含解析北师大版必修一
第二章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞)C .[1,2)D .[1,2)∪(2,+∞)2.函数y =x 2-4x +1,x ∈[2,5]的值域是( ) A .[1,6] B .[-3,1]C .[-3,6]D .[-3,+∞)3.函数f(x)=|x -1|的图象是( )4.已知f(x)=⎩⎪⎨⎪⎧ x +1,x ≤-1,x 2,-1<x <2,2x ,x ≥2,若f(x)=3,则x 的值是( )A .2B .- 3C . 3D .325.若偶函数f(x)在(-∞,-1]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-32<f(-1)<f(2)B .f(-1)<f ⎝ ⎛⎭⎪⎫-32<f(2) C .f(2)<f(-1)<f ⎝ ⎛⎭⎪⎫-32 D .f(2)<f ⎝ ⎛⎭⎪⎫-32<f(-1) 6.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,若f (-1)=0,则不等式f (2x -1)>0的解集为( )A .(-∞,0)∪(1,+∞)B .(-6,0)∪(1,3)C .(-∞,1)∪(3,+∞)D .(-∞,-1)∪(3,+∞)8.如图,点P 在边长为1的正方形边上运动,设M 是CD 的中点,则当P 沿A -B -C -M 运动时,点P 经过的路程x 与△APM 的面积y 之间的函数y =f (x )的图象大致是( )二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分)9.有关函数单调性的叙述中,正确的是( )A .y =-2x 在定义域上为增函数B .y =1x 2+1在[0,+∞)上为减函数 C .y =-3x 2-6x 的减区间为[-1,+∞)D .y =ax +3在(-∞,+∞)上必为增函数10.f (x ),g (x )都是定义在R 上且不恒为0的函数,下列说法正确的是( )A .若f (x )为奇函数,则|f (x )|为偶函数B .若f (x )为偶函数,则y =-f (-x )为奇函数C .若f (x )为奇函数,g (x )为偶函数,则y =f [g (x )]为偶函数D .若f (x )为奇函数,g (x )为偶函数,则y =f (x )+g (x )非奇非偶11.函数f (x )=(m 2-m -1)x 23m m +-是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的是( )A .a +b >0,ab <0B .a +b >0,ab >0C .a +b <0,ab <0D .a +b <0,ab >012.已知函数f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),f (x )≥g (x ),f (x ),g (x )>f (x ),则( ) A .F (x )最小值为1 B .F (x )无最小值C .F (x )的最大值为7-27D .F (x )的最大值为3第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数f (x )=-x 2-2x +3的定义域为________,单调递减区间是________.14.奇函数f (x )在区间[3,10]上单调递增,在区间[3,9]上的最大值为6,最小值为-2,则2f (-9)+f (-3)=________.15.已知函数f (x )为定义在[2-a,3]上的偶函数,在[0,3]上单调递减,并且f ⎝ ⎛⎭⎪⎫-m 2-a 5>f (-m 2+2m -2),则m 的取值范围是________. 16.对任意的实数x 1,x 2,min{x 1,x 2}表示x 1,x 2中较小的那个数,若f (x )=2-x 2,g (x )=x ,则min{f (x ),g (x )}的最大值是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数(1)在图中画出函数f (x )的大致图象;(2)写出函数f (x )的最大值和单调递减区间.18.(本小题满分12分)已知函数f (x )=x 2+2ax -1.(1)若f (1)=2,求实数a 的值,并求此时函数f (x )的最小值;(2)若f (x )为偶函数,求实数a 的值;(3)若f (x )在(-∞,4]上单调递减,求实数a 的取值范围.19.(本小题满分12分)已知f (x )=ax x 2-1(a ≠0),x ∈(-1,1). (1)讨论f (x )的单调性;(2)若a =1,求f (x )在⎣⎢⎡⎦⎥⎤-12,12上的最大值和最小值.20.(本小题满分12分)某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:(1)确定x 与y =f (x )(注明函数定义域);(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?21.(本小题满分12分)已知函数f (x )=x 2-4x -4.(1)若x ∈[0,5],求f (x )的值域;(2)若x ∈[t ,t +1](t ∈R ),求函数f (x )的最小值g (t )的解析式.22.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1图象的上方,试确定实数m 的取值范围.第二章 单元质量评估卷1.解析:根据题意有⎩⎨⎧ x -1≥0,x -2≠0,解得x ≥1且x ≠2. 答案:D2.解析:因为y =(x -2)2-3,函数在[2,+∞)上单调递增,又f (2)=-3,f (5)=6,所以x ∈[2,5]的值域是[-3,6].答案:C3.解析:因为f (x )=|x -1|=⎩⎨⎧ x -1,x ≥11-x ,x <1,由分段函数的作图方法可知B 正确.答案:B 4.解析:由f (x )=3得⎩⎨⎧ x ≤-1x +1=3或⎩⎨⎧ -1<x <2x 2=3或⎩⎪⎨⎪⎧x ≥22x =3,解得x = 3.故选C.答案:C 5.解析:因为f (x )为偶函数,所以f (2)=f (-2),又-2<-32<-1,且函数f (x )在(-∞,-1]上是增函数,所以f (-2)<f ⎝ ⎛⎭⎪⎫-32<f (-1),即f (2)<f ⎝ ⎛⎭⎪⎫-32<f (-1),故选D. 答案:D6.解析:∵f (x )在R 上是偶函数,且x ≥0时,f (x )=x 2-2x ,∴当x <0时,-x >0,f (-x )=(-x )2+2x =x 2+2x ,则f (x )=f (-x )=x 2+2x =-x (-x -2).又当x ≥0时,f (x )=x 2-2x =x (x -2),因此f (x )=|x |(|x |-2).答案:D7.解析:∵f (-1)=0,∴不等式f (2x -1)>0等价为f (2x -1)>f (-1),∵f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,∴不等式等价于f (|2x -1|)>f (1),即|2x -1|>1,即2x -1>1或2x -1<-1,即x >1或x <0,则不等式的解集为(-∞,0)∪(1,+∞),故选A.答案:A8.解析:依题意,当0<x ≤1时,S △APM =12×1×x =12x ;当1<x ≤2时,S △APM =S 梯形ABCM -S △ABP -S △PCM =12×⎝ ⎛⎭⎪⎫1+12×1-12×1×(x -1)-12×12×(2-x )=-14x +34;当2<x ≤2.5时,S △APM =12×1×⎝ ⎛⎭⎪⎫52-x =-12x +54. ∴y =f (x )=⎩⎪⎨⎪⎧ 12x ,0<x ≤1-14x +34,1<x ≤2-12x +54,2<x ≤2.5.再结合图象知应选A.答案:A 9.解析:对于A ,其定义域为不含0的两个区间,在各自的区间上都是增函数,但不能说在整个定义域上为增函数;对于B ,在[0,+∞)上为减函数;对于C ,因为y =-3x 2-6x =-3(x +1)2+3,可求得减区间为[-1,+∞);对于D ,增减性与a 的取值有关.故选BC.答案:BC10.解析:若f (x )为奇函数,则f (-x )=-f (x ),令F (x )=|f (x )|,则|F (-x )|=|f (-x )|=|-f (x )|=|f (x )|=F (x ),所以|f (x )|为偶函数,所以A 正确;若f (x )为偶函数,则f (-x )=f (x ),令F (x )=-f (-x ),则F (-x )=-f (x )=-f (-x )=F (x ),所以y =-f (-x )为偶函数,所以B 不正确;若f (x )为奇函数,g (x )为偶函数,则f [g (-x )]=f [g (x )],所以y =f [g (x )]为偶函数,所以C 正确;若f (x )为奇函数,g (x )为偶函数,则f (-x )+g (-x )=-f (x )+g (x ),所以y =f (x )+g (x )非奇函数,非偶函数,所以D 正确,故选ACD.答案:ACD11.解析:由函数f (x )为幂函数可知m 2-m -1=1,解得m =-1或m =2.当m =-1时,f (x )=1x 3;当m =2时,f (x )=x 3.由题意可知函数f (x )在(0,+∞)上为增函数,f (x )=x 3,在R 上单调递增,且满足f (-x )=-f (x ).结合f (-x )=-f (x )以及f (a )+f (b )<0可知f (a )<-f (b )=f (-b ),所以a <-b ,即b <-a ,所以a +b <0.当a =0时,b <0,ab =0;当a >0时,b <0,ab <0;当a <0时,ab <0(0<b <-a ),ab =0(b =0),ab >0(b <0)均有可能成立.故选CD.答案:CD12.解析:由F (x )=⎩⎪⎨⎪⎧ g (x ) f (x )≥g (x )f (x ),g (x )>f (x )知, 当3-2|x |≥x 2-2x ,即当2-7≤x ≤3时,F (x )=x 2-2x ;当x 2-2x >3-2|x |,即当x <2-7或x >3时,F (x )=3-2|x |,因此F (x )=⎩⎨⎧ x 2-2x ,2-7≤x ≤33-2|x |,x <2-7或x >3=⎩⎪⎨⎪⎧ x 2-2x ,2-7≤x ≤33+2x ,x <2-73-2x ,x >3,作出其图象如图所示,观察图象可以发现,F (x )max =F (2-7)=7-27,无最小值,故选BC.答案:BC13.解析:由题意,得-x 2-2x +3≥0.解得-3≤x ≤1,所以f (x )的定义域为[-3,1]. 设t =-x 2-2x +3,y =f (x ),则y =t 为增函数;所以t =-x 2-2x +3在[-3,1]上的单调递减区间,便是f (x )在[-3,1]上的单调递减区间;t =-x 2-2x +3的对称轴为x =-1;所以f (x )的单调递减区间为[-1,1].答案:[-3,1] [-1,1]14.解析:因为函数在区间[3,10]上单调递增,所以在区间[3,9]上单调递增.所以函数在区间[3,9]上的最小值为f (3)=-2,最大值为f (9)=6.又因为函数f (x )为奇函数,所以f (-3)=-f (3)=2,f (-9)=-f (9)=-6.所以2f (-9)+f (-3)=2×(-6)+2=-10.答案:-1015.解析:由偶函数的定义可得2-a +3=0,则a =5,因为m 2+1>0,m 2-2m +2=(m -1)2+1>0,且f (-m 2-1)=f (m 2+1),f (-m 2+2m -2)=f (m 2-2m +2),所以m 2+1<m 2-2m +2≤3,解得1-2≤m <12.答案:⎣⎢⎡⎭⎪⎫1-2,12 16.解析:不妨设h (x )=min{f (x ),g (x )},当2-x 2>x ,即-2<x <1时,h (x )=x .当2-x 2≤x ,即x ≥1或x ≤-2时,h (x )=2-x 2.故h (x )=⎩⎨⎧ x ,-2<x <12-x 2,x ≥1或x ≤-2.其图象如图实线部分,当x ≤-2或x ≥1时,为抛物线的一部分,当-2<x <1时,为线段.由图象可知,当x 取1时,h (x )取最大值1.所以min{f (x ),g (x )}的最大值为1.答案:117.解析:(1)函数f (x )的大致图象如图所示.(2)由函数f (x )的图象得出,f (x )的最大值为2,函数的单调递减区间为[2,4].18.解析:(1)由题意可知,f (1)=1+2a -1=2,即a =1,此时函数f (x )=x 2+2x -1=(x +1)2-2≥-2,故当x =-1时,函数f (x )min =-2.(2)若f (x )为偶函数,则有对任意x ∈R ,f (-x )=(-x )2+2a (-x )-1=f (x )=x 2+2ax -1,即4ax =0,故a =0.(3)函数f (x )=x 2+2ax -1的单调递减区间是(-∞,-a ],而f (x )在(-∞,4]上单调递减,∴4≤-a ,即a ≤-4,故实数a 的取值范围为(-∞,-4].19.解析:(1)设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0,∴当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),f (x )在(-1,1)上是减函数;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),f (x )在(-1,1)上是增函数,(2)当a =1,f (x )=x x 2-1,由(1)知f (x )在⎣⎢⎡⎦⎥⎤-12,12上是减函数, 故f (x )的最大值为f ⎝ ⎛⎭⎪⎫-12=23,最小值为f ⎝ ⎛⎭⎪⎫12=-23. 20.解析:(1)因为f (x )是一次函数,设f (x )=ax +b ,由表格得方程组⎩⎨⎧ 45a +b =2750a +b =12,解得⎩⎨⎧ a =-3b =162,所以y =f (x )=-3x +162.又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54].(2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860=-3(x -42)2+432,x ∈[30,54].当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.21.解析:(1)f (x )=x 2-4x -4=(x -2)2-8,对称轴x =2,开口向上,f (x )在[0,2)上递减,在[2,5]上递增,∴f (x )的最小值是f (2)=-8,f (x )的最大值是f (5)=1,故f (x )的值域为[-8,1].(2)f (x )=x 2-4x -4=(x -2)2-8,即抛物线开口向上,对称轴为x =2,最小值为-8,过点(0,-4), 结合二次函数的图象可知:当t +1<2,即t <1时,f (x )=x 2-4x -4,x ∈[t ,t +1](t ∈R ), 在x =t +1处取最小值f (t +1)=t 2-2t -7;当⎩⎨⎧ t +1≥2t ≤2,即1≤t ≤2时,f (x )=x 2-4x -4,x ∈[t ,t +1](t ∈R )在x =2处取最小值-8;当t >2时,f (x )=x 2-4x -4,x ∈[t ,t +1](t ∈R )在x =t 处取最小值f (t )=t 2-4t -4.综上可得,g (t )=⎩⎨⎧ t 2-2t -7,t ∈(-∞,1),-8,t ∈[1,2],t 2-4t -4,t ∈(2,+∞).22.解析:(1)由题意设f (x )=a (x -1)2+1,将点(0,3)的坐标代入得a =2,所以f (x )=2(x -1)2+1=2x 2-4x +3.(2)由(1)知f (x )的对称轴为直线x =1,所以2a <1<a +1,所以0<a <12.即实数a 的取值范围为⎝⎛⎭⎪⎫0,12. (3)f (x )-2x -2m -1=2x 2-6x -2m +2,由题意得2x 2-6x -2m +2>0对于任意x ∈[-1,1]恒成立, 所以x 2-3x +1>m 对于任意x ∈[-1,1]恒成立, 令g (x )=x 2-3x +1,x ∈[-1,1],则g (x )min =g (1)=-1,所以m <-1,故实数m 的取值范围为(-∞,-1).。
北师大版高中数学必修一第二单元《函数》检测(有答案解析)(2)
一、选择题1.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R2.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .803.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞4.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .y =C .2x y =D .||y x x =-6.已知函数()3221x f x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<7.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .28.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.已知定义在R 上的函数()f x 的图像关于y 轴对称,且当0x >时()f x 单调递减,若()()()1.360.5log 3,0.5,0.7,a f b f c f -===则,,a b c 的大小关系( )A .c a b >>B .b a c >>C .a c b >>D .c b a >>11.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1- C .(1,3)- D .(2,2)-12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()2f x x a =- 在区间[]1,1-上的最大值()M a 的最小值是__________.14.若函数()y f x =的定义域是[]0,4,则函数()2f x f x =的定义域是__________.15.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 16.若函数2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩,满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,那么b 的取值范围是_____.17.若函数()22()42221f x x p x p p =----+在区间[]1,1-上至少存在一个实数c ,使()0f c >,则实数p 的取值范围为________.18.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.19.定义在R 上的函数()f x 满足(3)()1f x f x +=+,且[0,1]x ∈时,()6x f x =,(1,3)x ∈时,(1)()f f x x=,则函数()f x 的零点个数为__________. 20.设函数()y f x =是定义在R 上的偶函数,2()()g x f x x =-,若函数()y g x =在区间[0,)+∞上是严格增函数,则不等式2(1)(1)2f x f x x +->+的解集为___________.三、解答题21.已知函数()22f x mx mx n =-+ ()0m >在区间[]1,3上的最大值为5,最小值为1,设()()=f xg x x.(1)求m 、n 的值; (2)证明:函数()g x 在)(,n +∞上是增函数;(3)若函数F ()()22xxx g k =-⋅=0,在[]1,1x ∈-上有解,求实数k 的取值范围.22.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.23.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域; (3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 26.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由;(3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.2.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.3.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D.【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).6.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.7.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.8.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a ⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.A解析:A 【分析】函数()f x 是偶函数,判断出自变量的大小,利用函数的单调性比较大小得出答案. 【详解】函数()f x 的图像关于y 轴对称, ∴函数()f x 为偶函数, ∵0.50.5log 3log 10<=,∴()()120.52log 3log 3log 3f f f ⎛⎫== ⎪⎝⎭,∴2221log 2log 3log 42=<<=, 1.3 1.30.522-=>,600.71<<. ∵当0x >时,()f x 单调递减,∴c a b >>, 故选:A 【点睛】本题考查函数性质的综合应用,考查函数的单调性和奇偶性,考查指数和对数的单调性,属于中档题.11.B解析:B 【详解】由()f x 在[0,)+∞上是增函数,且(2)0f =当0x >时,()0f x <的解集[0,2]; 当时()f x 为减函数,(2)0f -=,()0f x <的解集[2,0]-.综上()0f x <的解集[2,2]-,所以(1)0f x +<满足212,31x x -≤+≤∴-≤≤. 故选:B .12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】由题意函数为偶函数分和去掉绝对值然后根据单调性求出最大值再根据单调性求出的最小值【详解】解:由题意函数为偶函数①当时在上单调递增则;②当时当即时在上单调递减则;当即时在上单调递减在上单调递增 解析:12【分析】由题意,函数()2f x x a =-为偶函数,分0a ≤和0a >去掉绝对值,然后根据单调性求出最大值()M a ,再根据单调性求出()M a 的最小值. 【详解】解:由题意,函数()2f x x a =-为偶函数,①当0a ≤时,()2f x x a =-,()f x 在[]0,1上单调递增,则()()()111M a f f a ==-=-;②当0a >时,()22,,x a x x f x a x x ⎧-≤≥⎪=⎨-<<⎪⎩或1即1a ≥时,()f x 在[]0,1上单调递减,则()()0M a f a ==;1<即01a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增,∵()0f a =,()11f a =-, 由1a a 得112a <<,此时()M a a =; 由1a a ≤-得102a <≤,此时()1M a a =-; ∴()11,21,2a a M a a a ⎧-≤⎪⎪=⎨⎪>⎪⎩, ∴()min 1122M a M ⎛⎫== ⎪⎝⎭, 故答案为:12. 【点睛】关键点点睛:本题主要考查利用函数的单调性求函数的最值,本题的关键在于分类讨论去掉绝对值,然后再根据单调性求出最值,属于中档题.14.【分析】求出抽象函数定义域与联立求解答可得【详解】因为函数的定义域是所以又所以故答案为:【点睛】对于抽象函数定义域的求解(1)若已知函数的定义域为则复合函数的定义域由不等式求出;(2)若已知函数的定 解析:](1,2【分析】求出抽象函数()2f x 定义域与10x ->联立求解答可得 【详解】因为函数()y f x =的定义域是[]0,4,所以02402x x ≤≤⇒≤≤,又10x -> 所以12x <≤ 故答案为:](1,2 【点睛】对于抽象函数定义域的求解(1)若已知函数()f x 的定义域为[]a b ,,则复合函数(())f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数(())f g x 的定义域为[]a b ,,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.15.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解. 【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k >⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.16.【分析】由已知得出单调增然后由及可得结论【详解】因为对任意都有成立所以为单调递增函数因此故答案为:【点睛】本题考查分段函数的单调性分段函数在定义域内单调需满足分段函数的所有段同单调及相邻段端点处的函 解析:[1,2]【分析】由已知1212()()0f x f x x x ->-得出单调增,然后由2210,02b b -->≥及10b -≥可得结论. 【详解】因为对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 为单调递增函数,因此21020210b b b ->⎧⎪-⎪≥⎨⎪-≥⎪⎩,12b ∴≤≤. 故答案为:[1,2].. 【点睛】本题考查分段函数的单调性,分段函数在定义域内单调,需满足分段函数的所有段同单调及相邻段端点处的函数值满足相应的大小关系.17.【分析】直接计算需分多种情况讨论故先求题干的否定即对于区间上任意一个x 都有只需满足列出不等式组求解即可得答案【详解】函数在区间上至少存在一个实数使的否定为:对于区间上任意一个x 都有则即整理得解得或所解析:3(3,)2-【分析】直接计算,需分多种情况讨论,故先求题干的否定,即对于区间[]1,1-上任意一个x ,都有()0f x ≤,只需满足(1)0(1)0f f ≤⎧⎨-≤⎩,列出不等式组,求解即可得答案.【详解】函数()f x 在区间[]1,1-上至少存在一个实数c ,使()0f c >的否定为:对于区间[]1,1-上任意一个x ,都有()0f x ≤,则(1)0(1)0f f ≤⎧⎨-≤⎩,即2242(2)21042(2)210p p p p p p ⎧----+≤⎨+---+≤⎩, 整理得222390210p p p p ⎧+-≥⎨--≥⎩,解得32p ≥或3p ≤-, 所以函数()f x 在区间[]1,1-上至少存在一个实数c ,使()0f c >的实数p 的取值范围是3(3,)2-.故答案为:3(3,)2- 【点睛】本题考查二次方程根的分布与系数的关系,解题的要点在于求解题干的否定,再求得答案,考查分析理解,求值计算的能力,属中档题.18.【分析】由表达式可知函数为奇函数则等价转换为解不等式即可【详解】因为当时则;同理当时又综上所述为奇函数则即当时解得;当时解得故的解集为故答案为:【点睛】方法点睛:本题考查由分段函数解不等式函数奇偶性 解析:()()2,02,-+∞【分析】由表达式可知,函数()f x 为奇函数,则()()f x f x >-等价转换为()0f x >,解不等式即可 【详解】因为2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,当0x >时,0x -<,则()()()2222f x x x x x -=----=-+,()()f x f x -=-;同理当0x <时,()()()220,22x f x x x x x ->-=---=+,()()f x f x -=-,又()00f =,综上所述()f x 为奇函数,则()()()()f x f x f x f x >-⇔>-,即()20f x >,当0x >时,()2020f x x x >⇔->,解得2x >;当0x <时,()2020f x x x >⇔-->,解得20x -<<,故()()f x f x >-的解集为()()2,02,-+∞故答案为:()()2,02,-+∞【点睛】方法点睛:本题考查由分段函数解不等式,函数奇偶性的判断,常用以下方法: (1)对于分段函数判断奇偶性可用定义法,也可采用数形结合法,结合图象判断; (2)由函数性质解不等式可采用代数法直接运算求解,也可结合函数图象求解.19.【分析】由题意首先结合所给的关系式画出函数图象结合函数图象即可确定函数图象与横轴交点个数可得函数零点的个数【详解】解:由题意可得:(1)时即:结合绘制函数图象如图所示:由图可得函数图象与横轴交点有9 解析:9【分析】由题意首先结合所给的关系式画出函数图象,结合函数图象即可确定函数图象与横轴交点个数,可得函数零点的个数. 【详解】解:由题意可得:f (1)166==,∴(1,3)x ∈时,(1)6()f f x x x==, 即:6,01()6,13x x f x x x⎧⎪=⎨<<⎪⎩,结合(3)()1f x f x +=+绘制函数图象如图所示:由图可得,函数图象与横轴交点有9个, 所以函数()f x 的零点个数为9. 故答案为:9. 【点睛】本题主要考查函数的零点,数形结合的数学思想,函数图象的绘制等知识,函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.20.【分析】根据题意分析可得为偶函数进而分析可得结合函数的奇偶性与单调性分析可得解可得的取值范围即可得答案【详解】解:根据题意且是定义在上的偶函数则则函数为偶函数又由为偶函数且在区间上是严格增函数则解可 解析:(,2)(0,)-∞-+∞【分析】根据题意,分析可得()g x 为偶函数,进而分析可得()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,结合函数的奇偶性与单调性分析可得|1|1x +>,解可得x 的取值范围,即可得答案. 【详解】解:根据题意,2()()g x f x x =-,且()f x 是定义在R 上的偶函数,则22()()()()()g x f x x f x x g x -=---=-=,则函数()g x 为偶函数, ()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,又由()g x 为偶函数且在区间[0,)+∞上是严格增函数,则|1|1x +>, 解可得:2x <-或0x >, 即x 的取值范围为:(,2)(0,)-∞-+∞;故答案为:(,2)(0,)-∞-+∞.【点睛】关键点睛:解题关键在于,把题目通过转化化归思想,转化为:()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,进而分析,难度属于中档题三、解答题21.(1)12m n =⎧⎨=⎩;(2)证明见解析;(3)1[5]2,. 【分析】(1)二次函数()f x 的对称轴为1x =,得到()f x 为[]13,上的增函数, 从而得()()11335f n m f m n ⎧=-=⎪⎨=+=⎪⎩,解得12m n =⎧⎨=⎩ 得解 (2)()()22f x g x x x x==+-,设任意的12)x x ∈+∞,且12x x <,用单调性的定义证明即可.(3)分离变量得2112()2()122x x k -=+,令 1()2x t =,换元得2112()22k t =-+ 利用函数在1[2]2,上单调递增,求得函数最大小值得解 【详解】(1)因为0m >,二次函数()f x 的对称轴为1x =, 所()f x 为[]13,上的增函数, 从而得()()11335f n m f m n ⎧=-=⎪⎨=+=⎪⎩,解得12m n =⎧⎨=⎩,所以()222f x x x =-+(2)()()22f x g x x x x==+-,设任意的12)x x ∈+∞,且12x x <, 则()()22121122(2)(2)g x g x x x x x -=+--+- ()21x x =-+2122()x x -=()21122(1)x x x x --=()()2112122x x x x x x --12211202x x x x x x ≤∴-<>>,,所以()()1221200x x g x g x ->->,, ()()12g x g x ∴> 所以g ()2x x x=+—2为)+∞上的增函数.(3)因为函数(20)()2x x F x g k =-⋅=, 在[]11x ∈-,上能成立即222202xxxk +--⋅= 在[]11x ∈-,有解 整理得2112()2()122x x k -=+ 令 1()2xt =,因为[]111[2]2x t ∈-∴∈,,, 221122(2221)k t t t =--++=在1[2]2,上单调递增,12t ∴=,时min 12k =,2,t =时max 5k =,所以k 的取值范围为1[5]2,【点睛】利用函数的单调性求解函数最值的步骤: (1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值. 22.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k=-与区间()0,4端点的大小关系得出实数k 的取值范围; (3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n=⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a bb a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+(2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k=- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k<-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭(3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =-4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围. 23.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性;(2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x x a a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201xa -<-<+, 所以21111xa -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数. 24.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭. 【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围. 【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =,再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-,∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-, 则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>, 从而()()120f x f x ->, ∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增. (2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =, ∴()f x 在11,22⎛⎫-⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①; max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②,由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值.25.(1)23,106()0,0(23),01x xxx xxf x xx⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩;(2)[){}(]5,202,5--;(3)1,12⎛⎤⎥⎝⎦.【分析】(1)利用函数为奇函数有()()f x f x-=-求(0,1]x∈上的解析式,且(0)0f=即可得()f x的解析式;(2)根据(1)所得解析式及对应定义域即可求其值域;(3)讨论10a-≤<、01a<<、1a=时不等式成立,结合()f x的区间单调性即可求得a的取值范围.【详解】(1)由题意,令(0,1]x∈,则[1,0)x-∈-,即23()236x xx xxf x---+-==+,又∵()()f x f x-=-,有(0,1]x∈时,()(23)x xf x=-+,∴23,106()0,0(23),01x xxx xxf x xx⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩.(2)由(1)解析式知:()f x在[1,0)-和(0,1]上递减,对应值域分别为(2,5]、[5,2)--,则有:()f x的值域[){}(]5,202,5--.(3)1()()0af f aa-+<,即1()(1)f a fa<-,有[1,0)(0,1]a∈-,∴当10a-≤<时,11aa>-,解得12a+<-或12a>,无解;当01a<<时,11aa>-,解得a<a>1a<<;当1a=时,1()(1)5(1)(0)0f a f f fa==-<-==成立;∴综上有1,1]2a∈.【点睛】关键点点睛:首先利用函数奇偶性求函数解析式,并依据所得解析式和定义域求值域,再由函数不等式,结合区间单调性,在区间[1,0)(0,1]-⋃上讨论参数使不等式成立,求参数范围.26.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100x x x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围.【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100x x x x m --+≥+->恒成立, 令10332,3x x t -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-, 原不等式可化为:22100t mt -≥->,由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=8t t=,即t =时等号成立,所以m ≤. 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤.【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值.。
北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(2)
一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.若关于x 的不等式342xx a +-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞3.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <4.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞5.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉6.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭7.设函数()y f x =在(),-∞+∞上有定义,对于给定的正数K ,定义函数(),()()()k f x f x K f x K f x K≤⎧=⎨>⎩,, 取函数()||()1x f x a a -=>,当1K a =时,函数()k f x 在下列区间上单调递减的是( )A .(),0-∞B .(),a -+∞C .(),1-∞-D .()1,+∞8.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a9.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .410.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 11.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.已知函数()f x 是定义在()0,∞+上的增函数,且()21f =,()()()f xy f x f y =+,则不等式()()23f x f x +-≤( )A .()1,2B .[)1,3C .()2,4D .(]2,4二、填空题13.函数()f x 的定义域是__________.14.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.15.若对任意x ,y R ∈都有()()()f x y f x f y +=⋅,且()12f =,则()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值是______. 16.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-的定义域是________.17.若()22f x x ax =-+与()ag x x=在区间[]1,2上都是减函数,则a 的取值范围是______.18.如图,是某个函数的图象,则该函数的解析式y =__________;19.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).20.若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4--,则m 的取值范围______.三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <⋅,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--,且()F x 在[0,1]上单调递增,求实数m 的取值范围.24.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值. 25.已知函数()2mf x x x=++(m 为实常数). (1)当4m =时,试判断函数在[)2,+∞上的单调性,并用定义证明; (2)设0m <,若不等式()f x kx ≤在1[,1]2x ∈有解,求实数k 的取值范围. 26.已知二次函数()2f x ax bx =+满足()20f =,且方程()f x x =有两个相等实根.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使()f x 的定义域是[],m n ,值域是[]3,3m n .若存在,求,m n 的值,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.D解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,1215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.4.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+-所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.5.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.6.C解析:C【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.7.D解析:D 【分析】作出函数()y f x =与1y a=的图象,数形结合可得()k f x ,即可得解. 【详解】 令||1()x f x aa-==,解得1x =±, 在同一直角坐标系中作出()y f x =与1y a=的图象,如图,所以,11()11,1x k x a x f x x a a x --⎧≤-⎪⎪=-<<⎨⎪⎪≥⎩,,所以函数()k f x 的单调减区间为()1,+∞. 故选:D. 【点睛】本题考查了函数图象的应用及函数单调性的求解,考查了运算求解能力与数形结合思想,属于中档题.8.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】 因为log ,0(),0a xx x f x a x >⎧=⎨≤⎩, 所以11(1)f a a --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.9.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.10.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1243a ---=,x 22433a a-+-=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值, ∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;11.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.12.D解析:D 【分析】根据()()()f xy f x f y =+且()21f =可得()42f =,83f ,则()()23f x f x +-≤可化为()()28f x x f -≤⎡⎤⎣⎦,然后根据单调性求解.【详解】根据()()()f xy f x f y =+可得,()()23f x f x +-≤可转化为()23f x x -≤⎡⎤⎣⎦, 又()()()()422222f f f f =+==,所以()()()842213f f f =+=+=,即()()28f x x f -≤⎡⎤⎣⎦,因为()f x 是定义在()0,∞+上的增函数,所以只需满足()28020x x x x ⎧-≤⎪>⎨⎪->⎩,解得:24x <≤.故选:D. 【点睛】本题考查抽象函数的应用,考查利用函数的单调性解不等式,难度一般,根据题目条件将问题灵活转化是关键.二、填空题13.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.14.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)【解析】由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .15.2014【分析】令得利用赋值法进行求解利用即可的值【详解】对任意的都有且令则故答案为:2014【点睛】本题主要考查函数值的计算利用赋值法是解决抽象函数的常用方法解析:2014 【分析】 令1y =,得(1)2()f x f x +=,利用赋值法进行求解.利用(1)2()f x f x +=,即可()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值. 【详解】对任意的x ,y R ∈都有()()()f x y f x f y +=,且(1)2f =,∴令1y =,则(1)()(1)2()f x f x f f x +==,∴(1)2()f x f x +=, ∴(2)(4)(6)(2012)(2014)222210072014(1)(3)(5)(2011)(2013)f f f f f f f f f f +++⋯++=++⋯+=⨯=. 故答案为:2014. 【点睛】本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.16.【分析】根据题意得到函数满足即可求解【详解】由题意函数的定义域为则函数满足即解得即函数的定义域为故答案为:【点睛】本题主要考查了抽象函数的定义域的求解其中解答中熟记抽象函数的定义域的求解方法是解答的解析:()0,2【分析】根据题意,得到函数()g x 满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即可求解. 【详解】由题意,函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即2202x x -<<⎧⎨<<⎩,解得02x <<, 即函数()g x 的定义域为()0,2. 故答案为:()0,2. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考查推理与运算能力,属于基础题.17.【分析】根据二次函数和分式函数的单调性求解即可【详解】根据与在区间上都是减函数又的对称轴为所以又在区间上是减函数所以所以即的取值范围为故答案为:【点睛】本题考查了已知函数的单调性求参数问题考查了数学解析:(]01, 【分析】根据二次函数和分式函数的单调性求解即可. 【详解】根据2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数, 又()f x 的对称轴为x a =,所以1a ≤, 又()ag x x=在区间[1,2]上是减函数,所以0a > 所以01a <≤,即a 的取值范围为(]01,. 故答案为:(]01,【点睛】本题考查了已知函数的单调性求参数问题,考查了数学运算能力.属于中档题.18.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可. 【详解】当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩. 故答案为:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.19.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增,()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增, 0a b <+, a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.20.;【分析】根据函数的函数值结合函数的图象即可求解【详解】又故由二次函数图象可知:要使函数的定义域为值域为的值最小为;最大为3的取值范围是:故【点睛】本题考查了二次函数的定义域值域特别是利用抛物线的对解析:332m ≤≤; 【分析】根据函数的函数值325()24f =-,()(0)34f f ==-,结合函数的图象即可求解.【详解】22325()34()24f x x x x =--=--,325()24f ∴=-,又()(0)34f f ==-,故由二次函数图象可知:要使函数234y x x =--的定义域为[0,]m ,值域为25[,4]4-- m 的值最小为32;最大为3.m 的取值范围是:332m .故332m【点睛】本题考查了二次函数的定义域、值域,特别是利用抛物线的对称特点进行解题,考查了数形结合思想,属于基础题.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。
新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(2)
一、选择题1.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,22.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞3.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,44.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭5.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞6.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .27.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M .④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .18.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞9.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3] 10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( )A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确11.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-12.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .二、填空题13.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.14.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 15.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i A B ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.16.已知函数()f x 对于任意实数x 满足条件()()12f x f x +=-,若()113f =- ,则()2019f = _________.17.若函数2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩,满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,那么b 的取值范围是_____.18.若对任意x ,y R ∈都有()()()f x y f x f y +=⋅,且()12f =,则()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值是______. 19.二次函数()222f x x x =-+在区间[]0,3上的最大值为________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.已知函数()()12f x x x =+-. (1)作出函数()f x 的图象.(2)判断直线y a =与()()12f x x x =+-的交点的个数; (3)已知方程()1221x x m +-=-有三个实数解.求m 的取值范围.22.对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由. 23.已知函数()2()01axf x a x =≠+. (1)判断函数()f x 在()1,1-上的单调性,并用单调性的定义加以证明; (2)若2a =,函数满足44()55f x -≤≤,求x 的取值范围. 24.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 25.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 26.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax ≥-对任意[]1,3x ∈恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.2.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 3.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.4.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.5.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.6.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.7.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案.对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.8.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.9.C【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立, 22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.10.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.11.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.12.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.二、填空题13.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭,()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.14.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解. 【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k>⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.15.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i Aϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.16.3【分析】根据题意求得函数的周期性得出函数的周期然后利用函数的周期和的值即可求解得到答案【详解】由题意函数对任意实数满足条件则即函数是以4为周期的周期函数又由令则即所以【点睛】本题主要考查了抽象函数解析:3 【分析】根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和()1f 的值,即可求解,得到答案. 【详解】由题意,函数()f x 对任意实数x 满足条件1(2)()f x f x +=-, 则()1(4)[(2)2](2)f x f x f x f x +=++=-=+,即函数()f x 是以4为周期的周期函数, 又由()113f =-,令1x =-,则1(12)(1)f f -+=--,即1(1)3(1)f f -==, 所以()2019(14505)(1)3f f f =-+⨯=-=. 【点睛】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.17.【分析】由已知得出单调增然后由及可得结论【详解】因为对任意都有成立所以为单调递增函数因此故答案为:【点睛】本题考查分段函数的单调性分段函数在定义域内单调需满足分段函数的所有段同单调及相邻段端点处的函 解析:[1,2]【分析】由已知1212()()0f x f x x x ->-得出单调增,然后由2210,02b b -->≥及10b -≥可得结论. 【详解】因为对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 为单调递增函数,因此21020210b b b ->⎧⎪-⎪≥⎨⎪-≥⎪⎩,12b ∴≤≤. 故答案为:[1,2].. 【点睛】本题考查分段函数的单调性,分段函数在定义域内单调,需满足分段函数的所有段同单调及相邻段端点处的函数值满足相应的大小关系.18.2014【分析】令得利用赋值法进行求解利用即可的值【详解】对任意的都有且令则故答案为:2014【点睛】本题主要考查函数值的计算利用赋值法是解决抽象函数的常用方法解析:2014 【分析】 令1y =,得(1)2()f x f x +=,利用赋值法进行求解.利用(1)2()f x f x +=,即可()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值. 【详解】对任意的x ,y R ∈都有()()()f x y f x f y +=,且(1)2f =,∴令1y =,则(1)()(1)2()f x f x f f x +==,∴(1)2()f x f x +=, ∴(2)(4)(6)(2012)(2014)222210072014(1)(3)(5)(2011)(2013)f f f f f f f f f f +++⋯++=++⋯+=⨯=. 故答案为:2014. 【点睛】本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.19.5【分析】由二次函数的图象与性质得到函数在区间递减递增即可求得在区间函数的最值得解【详解】由题意函数可得函数在区间递减递增所以函数在递减递增所以故答案为:5【点睛】熟记二次函数的图象与性质是解答的关解析:5 【分析】由二次函数的图象与性质,得到函数()f x 在区间(,1]-∞递减[1,)+∞递增,即可求得在区间[]0,3函数的最值得解. 【详解】由题意,函数()222f x x x =-+,可得函数()f x 在区间(,1]-∞递减[1,)+∞递增[]0,3,所以函数()f x 在[0,1]递减,[1,3]递增(1)1,(3)5f f ∴==所以max (3)5y f == 故答案为:5 【点睛】熟记二次函数的图象与性质是解答的关键,着重考查推理与运算能力.20.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解. 【详解】当1a >时,xy a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,xy a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.三、解答题21.(1)图象见解析;(2)答案见详解;(3)5182m -<<.【分析】(1)先去绝对值,化简函数成分段函数形式()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,把握关键点分段画出函数图象即可;(2)结合(1)中图象,数形结合即得结果; (3)由额(2)中结果即得92104m -<-<,即求得参数范围. 【详解】解:(1)函数()()12f x x x =+-,去绝对值可得()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,即1x ≥-时,()f x 是开口向上、对称轴为12x =、零点为-1和2的抛物线的一部分;1x <-时,()f x 是开口向下、对称轴为12x =、零点为-1和2的抛物线的一部分,作图如下:(2)由(1)中图象,数形结合知, 当0a >或94a <-时,直线y a =与()()12f x x x =+-有1个交点; 当0a =或94a =-时,直线y a =与()()12f x x x =+-有2个交点; 当904a -<<时,直线y a =与()()12f x x x =+-有3个交点; (3)方程()1221x x m +-=-有三个实数解,即21y m =-与()()12f x x x =+-有三个交点,由(2)可知92104m -<-<,即5182m -<<, 所以m 的取值范围为5182m -<<. 【点睛】本题解题关键在于去绝对值写出分段函数,根据二次函数关键点(零点、对称轴、顶点)正确作图,再数形结合,依次突破.22.(1)[]0,1;(2)104m ≤<. 【分析】 1)由函数2yx 在[0,)+∞上是增函数,根据“不变”区间的定义,由22a ab b⎧=⎨=⎩求解;(2)假设函数存在“不变”区间,根据函数2(0)y x m x =+≥单调递增,由22a m ab m b ⎧+=⎨+=⎩,消去m ,结合a b <,求得a 的范围,再由2m a a =-+,利用二次函数的性质求解. 【详解】 (1)因为函数2yx 在[0,)+∞上是增函数,所以22a ab b⎧=⎨=⎩,解得0a =或1a =,0b =或1b =,因为a b <, 所以 0,1a b ==,所以函数的 “不变”区间是[]0,1;(2)假设函数2(0)y x m x =+≥存在“不变”区间,因为函数2(0)y x m x =+≥单调递增,所以22a m a b m b⎧+=⎨+=⎩,消去m 得22a b a b -=-,即()()+10a b a b --=,因为a b <,所以+10a b -=,即1b a =-, 所以10a a ->≥,解得102a ≤<, 所以221124m a a a ⎛⎫=-+=--+ ⎪⎝⎭, 所以104m ≤<, 所以实数m 的取值范围是104m ≤< 【点睛】关键点点睛:本题第二问关键是由a b <,即10a a ->≥求得a 的范围. 23.(1)答案见解析;(2)(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【分析】(1)先设﹣1<x 1<x 2<1,然后利用作差法比较f (x 2)与f (x 1)的大小即可判断函数的单调性,(2)把a =2代入后,然后把分式不等式转化为二次不等式组求解即可.【详解】(1)当0a >时,函数()f x 在()1,1-上是增函数;当0a <时,()f x 在()1,1-上是减函数. 理由如下:当0a >时,任取1211x x -<<<,21212221()()11ax ax f x f x x x -=-++ 21122221()(1)(1)(1)a x x x x x x --=++. 因为111x -<<,211x -<<,∴1211x x -<<,1210x x ->,2212(1)(1)0x x ++>,210x x ->,所以21122212()(1)0(1)(1)x x x x x x -->++, 当0a >时,得21()()f x f x >,故函数()f x 在()1,1-上是增函数;同理可证,当0a <时,21()()f x f x <,所以函数()f x 在()1,1-上是减函数,得证.(2)2a =时,得22()1xf x x =+, ∴44()55f x -≤≤,即2424515x x -≤≤+,∴222520112,,2222520x x x x x x x ⎧++≥⇒≤--≤≤≥⎨-+≥⎩. 由此可得,x 的取值范围是(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【点睛】过程点睛:用定义证明单调性时,第一步,任取12,x x 并规定大小;第二步,将函数值作差并化简;第三步,判断每个因式符号进而得到函数值大小;第四步,下结论. 24.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增;(2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果.25.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.26.(1)(2,2)-;(2)(,-∞.【分析】(1)由已知得210x ax ++>的解集为R ,只需∆<0可得答案;(2)由已知得230x ax -+≥对任意[]1,3x ∈恒成立,可分别讨论对称轴的位置,然后利用单调性和二次函数的性质可得答案.【详解】(1)()4f x >-即234x ax +->-,即210x ax ++>,由不等式()4f x >-的解集为R ,可得∆<0,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)()26f x ax ≥-即2326x ax ax +-≥-,即230x ax -+≥,由不等式()26f x ax ≥-对任意[]1,3x ∈恒成立, 可得当12a ≤,即2a ≤时,10f ≥(),即40a -≥,得4a ≤,从而2a ≤; 当132a <<,即26a <<时,0∆≤,即2120a -≤,得a -≤≤2a <≤ 当32a ≥,即6a ≥时,(3)0f ≥,即1230a -≥,得4a ≤,此时无解.综上,a 的取值范围是(,-∞.【点睛】对于一元二次不等式的恒成立的问题,可结合二次函数图象,利用函数的单调性和二次函数的性质处理,也可以利用参数分离求最值.。
最新北师大版高中数学必修一第二单元《函数》检测题(包含答案解析)(2)
一、选择题1.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤< B .32a --≤≤C .2a ≤-D .0a <2.以下说法正确的有( )(1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个3.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦4.方程2x y +=所表示的曲线大致形状为( )A .B .C .D .5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .26.已知函数()()1,12,1xmx x f x n x +<⎧⎪=⎨-≥⎪⎩,在R 上单调递增,则mn 的最大值为( ) A .2B .1C .94D .147.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭8.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 9.若函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( )A .()4,+∞B .[)4,+∞C .[]4,6D .()0,∞+10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .412.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.函数222421x x y x ++=+的值域为_________.14.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-的定义域是________.15.函数2()23||f x x x =-的单调递减区间是________.16.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ . 17.下列给出的命题中:①若()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若()f x 是定义域为R 的奇函数,对于任意的x ∈R 都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③某一个函数可以既是奇函数,又是偶函数;④若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则12a >; 其中正确的命题序号是__________.18.已知函数22, 1()+1, 1x ax x f x ax x ⎧-+≤=⎨>⎩,若()f x 在定义域上不是单调函数,则实数a 的取值范围是_______.19.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________20.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________. 三、解答题21.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 22.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.23.已知函数()0ky x k x=+>在区间(单调递减,在区间)+∞单调递增.(1)求函数2y x x=+在区间(),0-∞的单调性;(只写出结果,不需要证明) (2)已知函数()()2131x ax f x a x ++=∈+R ,若对于任意的x N *∈,有()5f x ≥恒成立,求实数a 的取值范围. 24.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式.25.已知函数1()1f x x =-,()1g x x x =+-.(1)判断当()1,x ∈+∞时函数()f x 的单调性,并用定义证明; (2)用分段函数的形式表示()g x 函数,并画出函数()g x 的图像. 26.已知函数()21ax bf x x +=+是()1,1-上的奇函数,且12.25f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;(2)判断()f x 的单调性,并加以证明;(3)若实数t 满足()()10f t f t ++>,求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.2.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.3.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.4.D解析:D 【分析】先利用方程得到图像的对称性,再作0y ≥,0x ≥时的图像,利用对称性即得结果. 【详解】 由方程2x y +=可知图像关于原点中心对称,也关于坐标轴对称.20,44x y y =-≥-≤≤,20,22y x x =-≥-≤≤.当0y ≥,0x ≥时,方程2x y +=转化成()22y x =-,作图如下:再利用对称性即得图像为 D. 故选:D. 【点睛】本题解题关键是利用绝对值的性质得到图像的对称性,就只需要画0y ≥,0x ≥部分图像,即突破问题.5.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.6.D解析:D 【分析】现根据分段函数单调增,列出不等式组,得出011m n m n >⎧⎪<⎨⎪+≤⎩,再根据基本不等式即可求解.【详解】由题意可知,函数在R 上单调递增,则02112m n m n>⎧⎪->⎨⎪+≤-⎩,解得011m n m n >⎧⎪<⎨⎪+≤⎩,则由基本不等式可得2211224m n mn +⎛⎫⎛⎫≤≤= ⎪ ⎪⎝⎭⎝⎭,当且仅当m=n=12时取等号.故选:D 【点睛】本题主要考查分段函数的单调性,和基本不等式,属于中档题,解题是应注意分段函数单调递增:左边增,右边增,分界点处左边小于等于右边.7.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.8.A解析:A 【分析】由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x <的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;9.C解析:C 【分析】由题意可知二次函数282a y x x =-+在区间(],1-∞上为减函数,函数ay x =在区间()1,+∞上为减函数,且有92aa -≥,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由于函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则二次函数282ay x x =-+在区间(],1-∞上为减函数,该二次函数的图象开口向上,对称轴为直线4ax =,所以,14a ≥;函数ay x =在区间()1,+∞上为减函数,则0a >,且有92a a -≥.所以,14092a a a a ⎧≥⎪⎪>⎨⎪⎪-≥⎩,解得46a ≤≤.因此,实数a 的取值范围是[]4,6. 故选:C. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,要注意分析每支函数的单调性以及分界点处函数值的大小关系,考查计算能力,属于中等题.10.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C , 综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.11.C【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求. 【详解】因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4.易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .14.【分析】根据题意得到函数满足即可求解【详解】由题意函数的定义域为则函数满足即解得即函数的定义域为故答案为:【点睛】本题主要考查了抽象函数的定义域的求解其中解答中熟记抽象函数的定义域的求解方法是解答的 解析:()0,2【分析】根据题意,得到函数()g x 满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即可求解.【详解】由题意,函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即2202x x -<<⎧⎨<<⎩,解得02x <<,即函数()g x 的定义域为()0,2. 故答案为:()0,2. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考查推理与运算能力,属于基础题.15.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题16.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =,故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.17.①③④【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数转化为熟悉的函数判断【详解】①函数的定义域为所以函数的定义域也是即所以函数是偶函数故①正确;②对解析:①③④ 【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数,转化为熟悉的函数判断. 【详解】①函数()f x 的定义域为R ,所以函数()g x 的定义域也是R ,()()()g x f x f x -=-+,即()()g x g x -=,所以函数()g x 是偶函数,故①正确;②对应任意的x ∈R ,都有()()20f x f x +-=,即函数()f x 关于()1,0对称,并不关于1x =对称,故②不正确;③函数0y =既是偶函数又是奇函数,故③正确; ④()()212112222a x a ax af x a x x x ++-+-===++++,若函数在()2,-+∞上单调递增,则120a -<,解得:12a >,故④正确. 故答案为:①③④ 【点睛】方法点睛:函数的对称性包含中心对称和轴对称,一般判断的方法包含:1.若对函数()y f x =的定义域内的任一自变量x 的值都有()()2f x f a x =-,则()y f x =的图象关于x a =成轴对称;若对函数()y f x =的定义域内的任一自变量x 的值都有()()22f x b f a x =--,则()y f x =的图象关于(),a b 成中心对称;18.【分析】结合二次函数的图象与性质按照分类再由分段函数的单调性即可得解【详解】因为函数的图象开口朝下对称轴为且所以当时函数在上不单调符合题意;当时函数在上均单调递增若要使在定义域上不是单调函数则解得故 解析:(),1(2,)-∞+∞【分析】结合二次函数的图象与性质,按照1a <、1a ≥分类,再由分段函数的单调性即可得解.因为函数22y x ax =-+的图象开口朝下,对称轴为x a =,且22,?1()+1,?1x ax x f x ax x ⎧-+≤=⎨>⎩,所以当1a <时,函数()f x 在(],1-∞上不单调,符合题意; 当1a ≥时,函数()f x 在(],1-∞,()1,+∞上均单调递增, 若要使()f x 在定义域上不是单调函数,则2121a a -+>+,解得2a >,故2a >符合题意; 综上,实数a 的取值范围是(),1(,)2-∞⋃+∞. 故答案为:(),1(,)2-∞⋃+∞. 【点睛】解决本题的关键是将分段函数不单调转化为两种情况,分类求解.19.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和解析:1,13⎛⎫⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论. 【详解】 解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<,所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题.20.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤.故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.三、解答题21.(1)()2243f x x x =-+;(2)8m ≥或0m ≤.【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式;(2)由对称轴不在区间内可得. 【详解】(1)设函数()2f x ax bx c =++(0a ≠)∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+.(2)由(1)()()2243g x x m x =-++,其对称轴为4144m mx +==+ ∵()()g x f x mx =-在[]1,3上单调函数,∴134m +≥,或114m+≤,解得:8m ≥或0m ≤. 【点睛】方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--. 22.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭. 【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围. 【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =, 再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-,∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-, 则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>, 从而()()120f x f x ->, ∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增. (2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =, ∴()f x 在11,22⎛⎫-⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立,∴max min11112222x t x ⎛⎫⎛⎫-≤≤+⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①; max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②,由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值.23.(1)在区间(,-∞的单调递增,在区间()的单调递减;(2)2,3⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)利用对勾函数的性质,直接写出结论即可;(2)利用不等式恒成立的关系,把问题从()5f x ≥恒成立,转化为对于任意的x N *∈,21351x ax x ++≥+恒成立,利用参变分离的方法,等价于()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N ,然后,根据对勾函数的性质进行求解即可【详解】解:(1)因为函数ky x x=+()0k >在(单调递减,在)+∞单调递增,所以,当2k =时函数2y x x=+在(单调递减,在)+∞单调递增.易知函数2y x x=+为奇函数,所以函数y x x=+在区间(,-∞的单调递增;在区间()的单调递减.(2)由题意,对任意的x N *∈,有()5f x ≥恒成立,即对于任意的x N *∈,21351x ax x ++≥+恒成立,等价于()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N . 设()()8g x x x x*=+∈N , 易知,当且仅当8x x=,即x =()g x 取得最小值,由题设知,函数()g x在(0,上单调递减,在()+∞上单调递增. 又因为x N *∈,且()26g =,()1733g =,而()()23g g >, 所以当3x =时,()min 173g x =. 所以81725533x x ⎛⎫-+≤-=- ⎪⎝⎭,即23a ≥-, 故所求实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭. 【点睛】关键点睛:解题的关键在于,利用参变分离法,把问题转化为证明()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N 恒成立,进而利用对勾函数性质求解,属于中档题24.(1)(,1)(3,)-∞-+∞;(2)()222221{102,02a a a g a a a a a a ++<-=-<+<.【分析】(1)通过讨论x 的范围,去掉绝对值号,得到关于x 的不等式,解出即可; (2)通过讨论a 的范围,求出()f x 的最小值,得g (a )的解析式即可.(1)当0a =时,220()(1)||20x x f x x x x x x x ⎧=+-=⎨-<⎩, 因为f (x )>3,03x x ⎧∴⎨>⎩或203230x x x x <⎧∴>⎨-->⎩或1x <-. 所以不等式的解集为(,1)(3,)-∞-+∞. (2)由222(1)()(1)||(1)x a x a x a f x x x x a a x a x a ⎧-++<=+--=⎨+-⎩由22a a <+得2a <.①当1a <-时:122,4a a a a a +<<+>,所以函数在(2,)a a 上单调递减, 又10a +<,所以函数在(,2)a a +上单调递减, 所以函数()f x 在R 上单调递减,则g (a )2()(2)(1)(2)22min f x f a a a a a a ==+=++-=++②当10a -<时:此时22a a a <+,14a a +>,所以函数在(2,)a a 上单调递减, 又10a +≥,所以函数在(,2)a a +上单调递增,所以函数()f x 在[2x a ∈,]a 上单调递减,在[x a ∈,2]a +上单调递增,则2()()()(1)min g a f x f a a a a a ===+-=③当02a <时:此时22a a a <+,因为10a +>,所以函数()f x 在[2x a ∈,2]a +上单调递增,则2()()(2)(1)22min g a f x f a a a a a a ===+-=+综上()222221{102,02a a a g a a a a a a ++<-=-<+<.【点睛】关键点睛:解答本题的关键是通过图象分析出每一种情况下分段函数的单调性,再利用函数的单调性得到函数的最小值.25.(1)函数()f x 在()1,+∞为单调递减,证明见解析;(2)21,0()1,0x x g x x -≥⎧=⎨-<⎩,图象答案见解析.【分析】(1)利用函数单调性定义:任意()12121,()f x x f x x <><成立,即可判定()f x 在()1,+∞是单调递减;(2)讨论0,0x x ><,去掉x 的绝对值即可得到函数()g x 的解析式.解:(1)函数()f x 在()1,+∞为单调递减.证明如下:任取121x x <<,则()()()()21121212111111x x f x f x x x x x --=-=----, ∵121x x <<,110x ,210x ,210x x ->.()()120f x f x ->即()()12f x f x >,所以()f x 在()1,+∞上单调递减.(2)()1g x x x =+-所以当0x <时,()111g x x x x x =+-=--=-;所以当0x ≥时,()1121g x x x x x x =+-=+-=-;21,0()1,0x x g x x -≥⎧∴=⎨-<⎩. 函数()y g x =图形如下:【点睛】确定函数单调性的四种方法:(1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.26.(1)()2x f x x x=+,()1,1x ∈-;(2)()f x 在()1,1-上递增,证明见解析;(3)1,12⎛⎫ ⎪⎝⎭. 【分析】(1)由奇偶性知()00f =,进而结合1225f ⎛⎫= ⎪⎝⎭待定系数求解即可得函数解析式; (2)()f x 在()1,1-上递增,利用函数单调性的定义证明即可;(3)由奇偶性将问题转化为()()1f t f t ->-,再根据单调性解不等式111111t t t t-<-<⎧⎪-<<⎨⎪->-⎩即可.【详解】解:(1)因为函数()21ax bf x x +=+是()1,1-上的奇函数,12.25f ⎛⎫= ⎪⎝⎭所以()0,0012122152514b f a bf =⎧⎪⎧=⎪⎪+⇒⎨⎨⎛⎫== ⎪⎪⎪⎝⎭⎩+⎪⎩,解得10a b =⎧⎨=⎩,∴ ()2xf x x x =+,()1,1x ∈-.(2)()f x 在()1,1-上递增,证明如下:任取()12,1,1x x ∈-,且12x x >,则()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()()()()()2212121212122222121211111x x x xx x x x x x x x x x ---+-==++++,∵()12,1,1x x ∈-,∴1210x x ->,又12x x >,∴ 120x x ->,∴()()120f x f x ->,∴ ()()12f x f x >,即()f x 在()1,1-上递增.(3)()()10f t f t -+>可化为()()1f t f t ->-,∴111021*********t t t t t t t t ⎧⎪-<-<<<⎧⎪⎪-<<⇒-<<⇒<<⎨⎨⎪⎪->-⎩⎪>⎩. ∴t 的取值范围1,12⎛⎫ ⎪⎝⎭. 【点睛】(1)本题是函数性质的综合运用,在解题中要熟练掌握函数奇偶性、单调性的的判定及性质,对于单调性的证明要掌握规范的解题步骤.(2)在解含“f ”号得不等式时,首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章单元质量评估(二)时间:120分钟 满分:150分一、选择题(每小题5分,共60分)1.下列各组中的两个函数是同一函数的是( D ) A .f (x )=(x -1)0与g (x )=1 B .f (x )=x 与g (x )=x 2C .f (x )=1-x x 2+1与g (x )=1+xx 2+1D .f (x )=x 4x与g (t )=⎝⎛⎭⎪⎫t t 2解析:A 中的两个函数定义域不同,前者要求x≠1,而后者的定义域为R ,因而不是同一函数;B 中的两个函数虽然定义域相同,但可以看出它们的值域明显不同,因此断定它们不是同一函数;C 中的两个函数的对应关系不同,因而也不是同一函数;D 中的两个函数的定义域都为正实数集,对应关系也一样,所以这两个函数是同一函数,即正确选项为D.2.函数f (x )=x +3+1x +2的定义域是( C ) A .[-3,+∞)B .[-3,-2)C .[-3,-2)∪(-2,+∞)D .(-2,+∞)解析:⎩⎪⎨⎪⎧x +3≥0,x +2≠0,所以⎩⎪⎨⎪⎧x ≥-3,x ≠-2,即函数定义域为[-3,-2)∪(-2,+∞).故选C.3.函数f (x )=1+x2+x(x >0)的值域是( C )A .(-∞,1)B .(1,+∞) C.⎝ ⎛⎭⎪⎫12,1 D.⎝ ⎛⎭⎪⎫0,12 解析:因为f (x )=x +2-1x +2=1-1x +2在(0,+∞)上为增函数,所以f (x )∈⎝ ⎛⎭⎪⎫12,1.4.函数f (x )=x 2-4x +1,x ∈[2,5]的值域是( C ) A .[1,6] B .[-3,1] C .[-3,6] D .[-3,+∞)解析:f (x )=(x -2)2-3在[2,5]上是增加的,且f (2)=-3,f (5)=6,所以函数f (x )的值域为[-3,6].故选C.5.若f (x )=x -1x,则方程f (4x )=x 的根是( D )A .-2B .2C .-12 D.12解析:依题意,有f (4x )=4x -14x ,令4x -14x =x ,解得x =12,经检验,符合题意. 6.函数f (x )=4-x2|x -2|是( D )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数解析:f (x )的定义域是[-2,2),不关于原点对称,故f (x )是非奇非偶函数. 7.若一次函数y =ax +b 的图像经过第二、三、四象限,则二次函数y =ax 2+bx 的图像只可能是( C )解析:一次函数y =ax +b 的图像经过第二、三、四象限,则有a <0,b <0,则二次函数y =ax 2+bx 的图像开口向下,过原点,对称轴x =-b2a<0,故二次函数y =ax 2+bx 的图像只可能是C.故选C.8.已知函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,设F (x )=x 2·f (x ),则对F (x )描述正确的是( B )A .是奇函数,在(-∞,+∞)上递减B .是奇函数,在(-∞,+∞)上递增C .是偶函数,在(-∞,0)上递减,在(0,+∞)上递增D .是偶函数,在(-∞,0)上递增,在(0,+∞)上递减 解析:因为f (-x )=⎩⎪⎨⎪⎧-1,x >00,x =01,x <0=-f (x ),所以f (x )为奇函数.又F (x )=x 2·f (x ),所以F (-x )=(-x )2·f (-x )=-x 2·f (x )=-F (x ), 所以F (x )是奇函数,可排除C ,D.又F (x )=x 2·f (x )=⎩⎪⎨⎪⎧x 2,x >0,0,x =0,-x 2,x <0.所以F (x )在(-∞,+∞)上单调递增,可排除A ,故选B.9.函数f (x )=⎩⎪⎨⎪⎧2x -x 2,0≤x ≤3,x 2+6x ,-2≤x <0的值域是( C )A .RB .[1,+∞) C.[-8,1] D .[-9,1]解析:设g (x )=2x -x 2,0≤x ≤3,结合二次函数的单调性可知:g (x )min =g (3)=-3,g (x )max =g (1)=1;同理,设h (x )=x 2+6x ,-2≤x <0,则h (x )min =h (-2)=-8,h (x )的最大值接近于0, 所以f (x )max =g (1)=1,f (x )min =h (-2)=-8,故选C.10.已知函数y =ax +3在区间[-2,3]上有最小值0,则实数a 的值为( D ) A .-1 B .-3 C.32 D .-1或32解析:若a <0,则最小值为3a +3=0,所以a =-1;若a >0,则最小值为(-2)a +3=0,所以a =32.综上可知,选D.11.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x之和为( C )A .-3B .3C .-8D .8解析:f (x )是连续的偶函数,且x >0时是单调函数,由偶函数的性质可知,若f (x )=f ⎝⎛⎭⎪⎫x +3x +4,则只有两种情况:①x =x +3x +4;②x +x +3x +4=0.由①知x 2+3x -3=0,故两根之和为x 1+x 2=-3;由②知x 2+5x +3=0,故其两根之和为x 3+x 4=-5.所以满足条件的所有x 之和为-8.12.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f 2f 1+f 4f 3+f 6f 5+…+f 2 018f 2 017=( D ) A .1 008 B .1 009 C .2 017 D .2 018解析:因为对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,由f (2)=f (1)·f (1),得f 2f 1=f (1)=2,由f (4)=f (3)·f (1),得f 4f 3=f (1)=2,…,由f (2018)=f (2 017)·f (1),得f 2 018f 2 017=f (1)=2,所以f 2f 1+f 4f 3+f 6f 5+…+f 2 018f 2 017=1 009×2=2 018.二、填空题(每小题5分,共20分)13.函数f (x )=-x 2+2x ,x ∈[-1,2]的值域为[-3,1].解析:f (x )=-x 2+2x =-(x -1)2+1,x ∈[-1,2],当x =1时,f (x )最大=1,当x =-1时,f (x )最小=-3,所以f (x )的值域为[-3,1].14.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+3x ),则当x ∈(-∞,0)时,f (x )=x (1-3x ).解析:设x <0,则-x >0,f (-x )=(-x )(1+3-x )=-x (1-3x ), 又由题意知,f (-x )=-f (x ),所以f (x )=-f (-x )=x (1-3x ).15.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10 000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P (x )=⎩⎪⎨⎪⎧300x -12x 2,0≤x <300,45 000,x ≥300,则总利润最大时店面经营天数是200.解析:设总利润L (x ),则L (x )=⎩⎪⎨⎪⎧-12x 2+200x -10 000,0≤x <300,-100x +35 000,x ≥300,即L (x )=⎩⎪⎨⎪⎧-12x -2002+10 000,0≤x <300,-100x +35 000,x ≥300,当0≤x <300时,L (x )max =10 000,当x ≥300时,L (x )max =5 000, 所以总利润最大时店面经营天数是200.16.若函数f (x )同时满足:①对于定义域上的任意x ,恒有f (x )+f (-x )=0;②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有f x 1-f x 2x 1-x 2<0.则称函数f (x )为“理想函数”.给出下列三个函数中:(1)f (x )=1x ;(2)f (x )=x 2;(3)f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0.能被称为“理想函数”的有(3)(填相应的序号).解析:①要求函数f (x )为奇函数,②要求函数f (x )为减函数.函数(1)是奇函数但在整个定义域上不是减函数,函数(2)是偶函数而且也不是减函数,只有函数(3)既是奇函数又是减函数.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x >0,0 x =0,x 2+mx x <0为奇函数;(1)求f (-1)以及实数m 的值;(2)在给出的直角坐标系中画出函数y =f (x )的图像并写出f (x )的单调区间. 解:(1)由已知,f (1)=1,又f (x )为奇函数,所以f (-1)=-f (1)=-1.又由函数表达式可知,f (-1)=1-m ,所以1-m =-1,所以m =2. (2)y =f (x )的图像如图所示.y =f (x )的单调增区间为[-1,1].y =f (x )的单调减区间为(-∞,-1)和(1,+∞).18.(12分)已知函数f (x )=2x -1x +1,x ∈[3,5]. (1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )在区间[3,5]上的最大值和最小值. 解:(1)f (x )在区间[3,5]上单调递增,证明如下:f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,任取x 1,x 2∈[3,5],且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1=3x 2+1-3x 1+1=3·x 1-x 2x 1+1x 2+1.∵x 1,x 2∈[3,5],∴x 1+1>0,x 2+1>0,即(x 1+1)(x 2+1)>0. 又∵x 1<x 2,∴x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )=2x -1x +1在区间[3,5]上单调递增.(2)由(1)知,f (x )在区间[3,5]上单调递增,则f (x )在区间[3,5]上的最小值为f (3)=2×3-13+1=54,最大值为f (5)=2×5-15+1=32. 19.(12分)若点(2,2)在幂函数f (x )的图像上,点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图像上.(1)求f (x )和g (x )的解析式;(2)定义h (x )=⎩⎪⎨⎪⎧fx ,f x ≤g x ,g x ,f x >g x ,求函数h (x )的最大值以及单调区间.解:(1)设f (x )=x α,因为点(2,2)在幂函数f (x )的图像上,所以(2)α=2,解得α=2,即f (x )=x 2.设g (x )=x β,因为点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图像上,所以2β=12,解得β=-1,即g (x )=x -1.(2)在同一平面直角坐标系中画出函数f (x )=x 2和g (x )=x -1的图像,可得函数h (x )的图像如图所示.由题意及图像可知h (x )=⎩⎪⎨⎪⎧x -1,x <0或x >1,x 2,0<x ≤1.根据函数h (x )的解析式及图像可知,函数h (x )的最大值为1,单调递增区间为(0,1],单调递减区间为(-∞,0)和(1,+∞).20.(12分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.解:设销售价每件定为x 元,则每件利润为(x -8)元,销售量为[100-10(x -10)],根据利润=每件利润×销售量,可得销售利润y =(x -8)·[100-10(x -10)]=-10x 2+280x -1 600=-10(x -14)2+360,∴当x =14时,y 的最大值为360元,∴应把销售价格定为每件14元,可使每天销售该商品所赚利润最大,最大利润为360元.21.(12分)定义在R 上的奇函数f (x ),当x ∈(-∞,0)时,f (x )=-x 2+mx -1. (1)当x ∈(0,+∞)时,求f (x )的解析式;(2)若方程f (x )=0有五个不相等的实数解,求实数m 的取值范围. 解:(1)设x >0,则-x <0,所以f (-x )=-x 2-mx -1.又f (x )为奇函数,即f (-x )=-f (x ),所以f (x )=x 2+mx +1(x >0),又f (0)=0,所以f (x )=⎩⎪⎨⎪⎧x 2+mx +1,x >0,0,x =0,-x 2+mx -1,x <0.(2)因为f (x )为奇函数,所以函数y =f (x )的图像关于原点对称,由方程f (x )=0有五个不相等的实数解,得y =f (x )的图像与x 轴有五个不同的交点, 又f (0)=0,所以f (x )=x 2+mx +1(x >0)的图像与x 轴正半轴有两个不同的交点, 即方程x 2+mx +1=0有两个不等正根,记两根分别为x 1,x 2⇒⎩⎪⎨⎪⎧Δ=m 2-4>0x 1+x 2=-m >0⇒m <-2,x 1x 2=1>0故所求实数m 的取值范围是m <-2.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +mx 2+nx +1.(1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上是增加的;(3)若f (x )≤a 3对x ∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求实数a 的取值范围. 解:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,得m =0.f (x )=xx 2+nx +1,由f (-1)=-f (1)可得n =0.所以m =n =0.(2)证明:由(1)知f (x )=xx 2+1.任取-1<x 1<x 2<1,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+1-x 2x 21+1x 21+1x 22+1=x 1x 22-x 2x 21+x 1-x 2x 21+1x 22+1=x 1-x 21-x 1x 2x 21+1x 22+1.因为-1<x 1<1,-1<x 2<1,所以-1<x 1x 2<1,所以1-x 1x 2>0. 又x 1<x 2,所以x 1-x 2<0,所以f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2), 所以f (x )在(-1,1)上是增加的.(3)因为f (x )在(-1,1)上是增加的,所以f (x )在⎣⎢⎡⎦⎥⎤-13,13上的最大值为f ⎝ ⎛⎭⎪⎫13=310,所以a 3≥310,a ≥910,故实数a 的取值范围为⎣⎢⎡⎭⎪⎫910,+∞.。