2016年苏科版七年级下数学期中试卷及答案

合集下载

新苏科版七年级下数学期中试卷及答案

新苏科版七年级下数学期中试卷及答案

O D FB AP E C ED C B A 4321初一数学期中考试试卷 2016年4月一、选择题(下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把正确结论代号填在后面的括号内每题2分,共16分)1. 如图,A 、B 、C 、D 中的哪幅图案可以通过图案(1)平移得到 ( )2.下列三条线段能构成三角形的是 ( ) A .1 ,2,3 B .20,20,30 C .30,10,15 D .4,15,73.下列等式正确的是 ( ) A .()32x -=-x 5B .x 8÷x 4=x 4C .()2222b ab a b a ++=+-D .(2xy)3=2x 3y 34.若2294b kab a ++是完全平方式,则常数k 的值为 ( ) A. 6 B. 12 C. 6± D. 12±5.下列各式中,不能用平方差公式计算的是 ( ) A .))((y x y x --- B .))((y x y x --+- C .))((y x y x +-+ D .))((y x y x +--6. 如下图所示,点E 在AC 的延长线上,下列条件中不能判断....AC BD //( ) A.43∠=∠ B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D7.如下图, AB ∥CD, OE 平分∠BOC, OF ⊥OE, OP ⊥CD, ∠ABO =a °, 则下列结论: ①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF. 其中正确的个数有多少个? A .1 B .2 C .3 D .4 ( )8. 为求1+2+22+23+…+22008的值,可令S =1+2+22+23+…+22008,则2S =2+22+23+24+…+22009,因此2S -S =22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是 ( )第6题图 第7题图绿化第17题图C 'A 'A BCB 'A .32015-1 B . 32014-1 C .2015312- D .2014312-二、填空题(每空2分,共22分)9.已知二元一次方程432-=-y x ,用含x 代数式表示y = 10.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m 11.计算(-12a 2b )3=_______.()()2332a a -+-= .()2323x x -⋅= ;12.把多项式y x x 234016+-提出一个公因式28x -后,另一个因式是 . 13.若228,3,x y x y a a a -==则= .14.如右图,一块六边形绿化园地,六角都做有半径为R 的圆形喷水池,则这六个喷水池占去的绿化园地的面积为 (结果保留π)15.如下图,在△ABC 中,∠B=600,∠C=400,AD ⊥BC 于D , AE 平分∠BAC ;则∠DAE= .16.如下图,在长方形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是 。

2016年自考试题及答案 苏科版度七年级下期中考试数学试题及答案

2016年自考试题及答案 苏科版度七年级下期中考试数学试题及答案

20XX年自考试题及答案苏科版2015-2016学年度七年级下期中考试数学试题及答案导读:就爱阅读网友为您分享以下“苏科版2015-2016学年度七年级下期中考试数学试题及答案”的资讯,希望对您有所帮助,感谢您对的支持!第二学期期中考试……………………………………………… 装…… 订…… 线…………………………………………………七年级数学试卷及答案一、慎重选一选(每题3分,共24分) 1.下列计算正确的是()A. a?a?aB. x?x?xC.(?c)?(?c)?cD.(?x?y)(?x?y)??x2?y22.我们身处在自然环境中,一年接受的宇宙射线及其他天然辐射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗)用科学记数法表示为A. 3.1?10西弗B. 3.1?10西弗C. 3.1?10西弗D. 3.1?10西弗3.下图中,?1与?2是同位角的()班级姓名考试号84223535863?3?64.如图,直线AB//CD,AF交CD于点E,?CEF?140o,则?A 等于() A. 35o B. 40 C. 45o D. 50o_ C_ A_ E_ D第_ 4题_ B第5题?5.用两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成下图,通过用不同的方法计算这个图形的面积,可以得到哪一个等式() A. (a?b)?a?2ab?b222B. (a?b)(a?b)?a2?b2C. a?b?cD. c2?a2?(c?a)(c?a)6.有这样一个多边形,它的内角和是它的外角和的2倍,则它是() A. 四边形 B. 五边形 C. 六边形 D. 八边形7.若a??(0.2),b??2,c?(?2),则a、b、c大小为()A. a?b?cB. a?c?bC. b?c?aD. c?b?a 8. 计算22012222?22?22013的结果为()A. -2 B. D.20122012MC. ?22013BCD1 22N二、细心填一填(每题3分,共30分)9.已知△ABC的面积为3 cm,AD是此三角形的中线,则△ADB的面积为cm。

七年级数学下学期期中试卷(含解析) 苏科版5

七年级数学下学期期中试卷(含解析) 苏科版5

江苏省盐城市东台市八校2015-2016学年联考七年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算正确的是()A.x﹣2x=x B.x6÷x3=x2 C.(﹣x2)3=﹣x6D.(x+y)2=x2+y22.已知是方程kx﹣y=3的一个解,那么k的值是()A.2 B.﹣2 C.1 D.﹣13.下列能平方差公式计算的式子是()A.(a﹣b)(b﹣a)B.(﹣x+1)(x﹣1)C.(﹣a﹣1)(a+1)D.(﹣x﹣y)(﹣x+y)4.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=25°,则∠BDC等于()A.44°B.60°C.67°D.70°5.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b26.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣47.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数是()A.88°B.92°C.98°D.112°8.若M=(a+3)(a﹣4),N=(a+2)(2a﹣5),其中a为有理数,则M、N的大小关系是()A.M>N B.M<N C.M=N D.无法确定二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.展开计算:(x+3)2=______.10.一个正多边形的内角和是1440°,则这个多边形的边数是______.11.已知AD是△ABC的中线,且△ABC的面积为3cm2,则△ADB的面积为______cm2.12.若4x2+kx+9是完全平方式,则k=______.13.写出二元一次方程3x+y﹣8=0的正整数解共有______对.14.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=______°.15.若a﹣b=﹣2,则(a2+b2)﹣ab=______.16.今年植树节那天,学校组织七年级(2)班的11名同学去公园植树,规定男生每人植4棵,女生每人植3棵,李老师分给第一小组40棵树的任务.已知该组有男生x人,女生y人,列出关于x、y的二元一次方程组为:______.17.已知x2+x﹣1=0,则x3﹣2x+4的值为______.18.有3张边长为a的正方形纸片,4张边长分别为a,b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无隙、无重叠拼接),则拼成的正方形的边长最长可以为______.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.化简:(1)(m﹣2n)(m+2n)(2)(x+3)(x﹣3)﹣(x﹣2)2.20.分解因式:(1)﹣36x2+12xy﹣y2(2)(a+b)2﹣25(a﹣b)2.21.(10分)(2016春•东台市期中)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:______;(4)能使S△ABQ=S△ABC的格点Q,共有______个,在图中分别用Q1、Q2、…表示出来.22.先化简,再求值:(1),其中x=﹣3.(2),其中a=2,b=1.23.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,请求出∠BFD的度数.24.已知3x+2•5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值.25.(10分)(2013秋•胶州市期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b 反射出的光线n与光线m平行,且∠1=50°,则∠2=______°,∠3=______°;(2)在(1)中,若∠1=55°,则∠3=______°,若∠1=40°,则∠3=______°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=______°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.26.(10分)(2012•珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×______=______×25;②______×396=693×______.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.2015-2016学年江苏省盐城市东台市八校联考七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算正确的是()A.x﹣2x=x B.x6÷x3=x2 C.(﹣x2)3=﹣x6D.(x+y)2=x2+y2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据合并同类项,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可安段C,根据完全平方公式,可判断D.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.已知是方程kx﹣y=3的一个解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】二元一次方程的解.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k的一元一次方程,从而可以求出k的值.【解答】解:把代入方程kx﹣y=3,得:2k﹣1=3,解得k=2.故选:A.【点评】解题的关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程,利用方程的解的定义可以求方程中其它字母的值.3.下列能平方差公式计算的式子是()A.(a﹣b)(b﹣a)B.(﹣x+1)(x﹣1)C.(﹣a﹣1)(a+1)D.(﹣x﹣y)(﹣x+y)【考点】平方差公式.【分析】由能平方差公式计算的式子的特点为:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、(a﹣b)(b﹣a)中两项均互为相反数,故不能平方差公式计算,故本选项错误;B、(﹣x+1)(x﹣1)中两项均互为相反数,故不能平方差公式计算,故本选项错误;C、(﹣a﹣1)(a+1)中两项均互为相反数,故不能平方差公式计算,故本选项错误;D、(﹣x﹣y)(﹣x+y)=x2﹣y2,故本选项正确.故选D.【点评】此题考查了平方差公式的应用条件.此题难度不大,注意掌握平方差公式:(a+b)(a﹣b)=a2﹣b2.4.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=25°,则∠BDC等于()A.44°B.60°C.67°D.70°【考点】直角三角形的性质;翻折变换(折叠问题).【分析】由△ABC中,∠ACB=90°,∠A=25°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=65°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:∵△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°,由折叠的性质可得:∠CED=∠B=65°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=40°,∴∠BDC=(180°﹣∠ADE)=70°.故选D.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【考点】多项式乘多项式.【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.6.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【考点】因式分解的意义.【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.7.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数是()A.88°B.92°C.98°D.112°【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可求得与∠AED相邻的外角,从而求解.【解答】解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×68=88°,∴∠AED=180﹣∠5=180﹣88=92°.故选:B.【点评】本题主要考查了多边形的外角和定理:多边形的外角和等于180°.8.若M=(a+3)(a﹣4),N=(a+2)(2a﹣5),其中a为有理数,则M、N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】多项式乘多项式.【分析】把M与N代入M﹣N中计算,判断差的正负即可得到结果.【解答】解:∵M﹣N=(a+3)(a﹣4)﹣(a+2)(2a﹣5)=a2﹣a﹣12﹣2a2+a+10=﹣a2﹣2≤﹣2<0,∵M<N.故选:B.【点评】此题考查了多项式乘多项式,以及非负数的性质,熟练掌握运算法则是解本题的关键.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.展开计算:(x+3)2= x2+6x+9 .【考点】完全平方公式.【分析】原式利用完全平方公式展开即可得到结果.【解答】解:(x+3)2=x2+6x+9,故答案为:x2+6x+9.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.一个正多边形的内角和是1440°,则这个多边形的边数是10 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式列式求解即可.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=1440°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角和公式,熟记公式是解题的关键.11.已知AD是△ABC的中线,且△ABC的面积为3cm2,则△ADB的面积为 1.5 cm2.【考点】三角形的面积.【分析】根据三角形的中线将三角形分成面积相等的两部分,可得△ADB的面积是△ABC的面积的一半,据此用三角形△ABC的面积除以2,求出△ADB的面积为多少即可.【解答】解:如图:,因为AD是△ABC的中线,所以△ADB的面积是△ABC的面积的一半,即△ADB的面积为:3÷2=1.5(cm2).故答案为:1.5.【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的含义,要熟练掌握,解答此题的关键是要明确:三角形的中线将三角形分成面积相等的两部分.12.若4x2+kx+9是完全平方式,则k= ±6 .【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:∵4x2+kx+9是完全平方式,∴2k=±12,解得:k=±6.故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.写出二元一次方程3x+y﹣8=0的正整数解共有 2 对.【考点】二元一次方程的解.【分析】把方程化为用一个未知数表示成另一个未知数的形式,再根据x、y均为正整数求解即可.【解答】解:方程3x+y﹣8=0可化为y=8﹣3x,∵x、y均为正整数,∴8﹣3x>0,当x=1时,y=5,当x=2时,y=2,∴方程3x+y﹣8=0的正整数解共有2对,故答案为:2.【点评】本题主要考查方程的特殊解,用一个未知数表示成另一个未知数是解题的关键.14.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1= 56 °.【考点】平行线的性质.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.15.若a﹣b=﹣2,则(a2+b2)﹣ab= 2 .【考点】提公因式法与公式法的综合运用.【分析】原式提取,利用完全平方公式分解,把已知等式代入计算即可求出值.【解答】解:∵a﹣b=﹣2,∴原式=(a2+b2﹣2ab)=(a﹣b)2=2.故答案为:2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.今年植树节那天,学校组织七年级(2)班的11名同学去公园植树,规定男生每人植4棵,女生每人植3棵,李老师分给第一小组40棵树的任务.已知该组有男生x人,女生y人,列出关于x、y的二元一次方程组为:.【考点】由实际问题抽象出二元一次方程组.【分析】设该组有男生x人,女生y人,根据男生与女生植树棵数的数量关系列出方程组求解即可.【解答】解:设该组有男生x人,女生y人,由题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17.已知x2+x﹣1=0,则x3﹣2x+4的值为 3 .【考点】因式分解的应用.【分析】根据x2+x﹣1=0,得出x2+x=1,x2=1﹣x,再将所求的代数式前两项提取公因式x,再把已知条件整理后整体代入法求解即可.【解答】解:∵x2+x﹣1=0,∴x2=1﹣x,x2+x=1,∵x3﹣2x+4,=x(x2﹣2)+4=x(1﹣x﹣2)+4=x(﹣1﹣x)+4=﹣x2﹣x+4,=﹣(x2+x)+4=3.故答案为:3.【点评】此题主要考查整体代入思想的运用,对所求代数式部分项提取公因式后整理成已知条件的形式是解题的关键,也是求解的难点.18.有3张边长为a的正方形纸片,4张边长分别为a,b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无隙、无重叠拼接),则拼成的正方形的边长最长可以为a+2b .【考点】完全平方公式的几何背景.【分析】根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.【解答】解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故答案为:a+2b.【点评】此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.化简:(1)(m﹣2n)(m+2n)(2)(x+3)(x﹣3)﹣(x﹣2)2.【考点】平方差公式;完全平方公式.【分析】(1)直接套用平方差公式展开即可;(2)用平方差公式和完全平方公式展开,再去括号、合并同类项可得.【解答】解:(1)原式=m2﹣(2n)2=m2﹣4n2;(2)原式=x2﹣9﹣(x2﹣4x+4)=x2﹣9﹣x2+4x﹣4=4x﹣13.【点评】本题主要考查平方差公式和完全平方公式,熟练掌握公式是解题的关键.20.分解因式:(1)﹣36x2+12xy﹣y2(2)(a+b)2﹣25(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】(1)先提取公因式,再用完全平方公式即可,(2)直接用平方差公式分解即可.【解答】解:(1)﹣36x2+12xy﹣y2=﹣(36x2﹣12xy+y2)=﹣(6x﹣y)2,(2)(a+b)2﹣25(a﹣b)2=[(a+b)+5(a﹣b)][(a+b)﹣5(a﹣b)]=4(3a﹣2b)(2b﹣3a),【点评】此题是提公因式和公式法的综合运用,主要用到提取公因式法,平方差公式,完全平方公式分解因式,解本题的关键是熟练掌握分解因式的方法.21.(10分)(2016春•东台市期中)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:平行且相等;(4)能使S△ABQ=S△ABC的格点Q,共有 4 个,在图中分别用Q1、Q2、…表示出来.【考点】作图-平移变换;三角形的面积.【分析】(1)根据中线的定义得出AB的中点即可得出△ABC的AB边上的中线CD;(2)平移A,B,C各点,得出各对应点,连接得出△A1B1C1;(3)利用平移的性质得出AC与A1C1的关系;(4)首先求出S△ABC的面积,进而得出Q点的个数.【解答】解:(1)如图所示:;(2)如图所示:;(3)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(4)如图所示:能使S△ABQ=S△ABC的格点Q,共有4个.故答案为:平行且相等;4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC的面积进而得出Q点位置是解题关键.22.先化简,再求值:(1),其中x=﹣3.(2),其中a=2,b=1.【考点】整式的加减—化简求值.【分析】两式去括号合并得到最简结果,将字母的值代入计算即可求出值.【解答】(1)解:原式=2x3+4x﹣x2﹣x+3x2﹣2x3=x2+3x,把x=﹣3代入上式得:原式=×(﹣3)2+3×(﹣3)=24﹣9=15;(2)解:原式=6a2+4ab﹣6a2﹣2ab+b2=2ab+b2,把a=2,b=1代入上式得:原式=2×2×1+1=5.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,请求出∠BFD的度数.【考点】平行线的性质.【分析】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=(∠ABE+∠CDE)÷2=110°”,再依据四边形内角和为360°结合角的计算即可得出结论.【解答】解:过点E作EG∥AB,如图所示.则可得∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=140°,∴∠ABE+∠CDE=220°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)÷2=110°,∵四边形的BFDE的内角和为360°,∴∠BFD=110°.【点评】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解题的关键是找出∠FBE+∠EDF=110°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.24.已知3x+2•5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值.【考点】幂的乘方与积的乘方.【分析】首先由3x+2•5x+2=153x﹣4,可得3x+2•5x+2=(15)x+2=153x﹣4,即可得方程x+2=3x ﹣4,解此方程即可求得x的值,然后化简(x﹣1)2﹣3x(x﹣2)﹣4,再将x=3代入,即可求得答案.【解答】解:∵3x+2•5x+2=(15)x+2=153x﹣4,∴x+2=3x﹣4,解得:x=3,∴(x﹣1)2﹣3x(x﹣2)﹣4=x2﹣2x+1﹣3x2+6x﹣4=﹣2x2+4x﹣3=﹣2×9+4×3﹣3=﹣9.【点评】此题考查了积的乘方的性质与化简求值问题.此题难度适中,注意由3x+2•5x+2=153x ﹣4,得到方程x+2=3x﹣4是解此题的关键.25.(10分)(2013秋•胶州市期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b 反射出的光线n与光线m平行,且∠1=50°,则∠2= 100 °,∠3= 90 °;(2)在(1)中,若∠1=55°,则∠3= 90 °,若∠1=40°,则∠3= 90 °;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3= 90 °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.【考点】平行线的判定与性质;三角形内角和定理.【分析】根据入射角与反射角相等,可得∠1=∠4,∠5=∠6.(1)根据邻补角的定义可得∠7=80°,根据m∥n,所以∠2=100°,∠5=40°,根据三角形内角和为180°,即可求出答案;(2)结合题(1)可得∠3的度数都是90°;(3)证明m∥n,由∠3=90°,证得∠2与∠7互补即可.【解答】解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°,根据m∥n,所以∠2=180°﹣∠7=100°,所以∠5=∠6=(180°﹣100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°﹣∠4﹣∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°(2分)理由:因为∠3=90°,所以∠4+∠5=90°,又由题意知∠1=∠4,∠5=∠6,所以∠2+∠7=180°﹣(∠5+∠6)+180°﹣(∠1+∠4),=360°﹣2∠4﹣2∠5,=360°﹣2(∠4+∠5),=180°.由同旁内角互补,两直线平行,可知:m∥n.【点评】本题是数学知识与物理知识的有机结合,充分体现了各学科之间的渗透性.26.(10分)(2012•珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×275 = 572 ×25;②63 ×396=693×36 .(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【考点】规律型:数字的变化类.【分析】(1)观察规律,左边,两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可.【解答】解:(1)①∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,②∵左边的三位数是396,∴左边的两位数是63,右边的两位数是36,63×369=693×36;故答案为:①275,572;②63,36.(2)∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明:左边=(10a+b)×[100b+10(a+b)+a],=(10a+b)(100b+10a+10b+a),=(10a+b)(110b+11a),=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a),=(100a+10a+10b+b)(10b+a),=(110a+11b)(10b+a),=11(10a+b)(10b+a),左边=右边,所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).【点评】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.。

七年级数学下学期期中试卷(含解析)苏科版6.doc

七年级数学下学期期中试卷(含解析)苏科版6.doc

2015-2016学年江苏省盐城市射阳外国语学校七年级(下)期中数学试卷一、精心选一选(本大题共10个小题,每小题3分,共30分)1.下列从左到右的变形是因式分解的是()A.C.2.2(X+1 ) (X - 1) =x - 1ab - a - b+1= ( a- 1)在方程(x=2|3y- x=lB. (a - b) (rn- n)二(b ・ a) (n - m)(b - 1)(x+y=013x - y=532 —D m - 2m - 3=m ( m- 2 - m )fxy=l (1 J _i ( X=1lx+2y=3 \ * y (y=l中,是二元一次方程组lx+y=l的有( )A. 2个B・3个C 4个D・5个2 - 4彤的是( )3. 下列各式中,计算结果为mA. (- m- 2n) 2n B・(m- 2n) (2n 一m) C・(m- 2n) (-m- 2n) D・ C2n - nri) (-m -2n)2 24. 若|a - b|=1,则b - 2ab+a 的佢为( )A. 1B. - 1 G ± 1 D. 士显定l尸25. T列二尹T次方刊糾朽二以1 为解的是( )13x+y=5 (3x+y= - 5A. B・(x _ y=3 Jx _ 3尸 _ 513x ~ 尸1 13x+y=5C. D.6.某校运动员分组训练,若每组x人7y+5 二x口 _ 「7人,余3人;若每组8人,则缺5人;设运动员人数为了励橢组为()8y- 5二xA. B.7y=x - 3 8y=x+5 7y=x+3 8尸x+5C. D.7.A. 若(x+3)-3 B. Ikx - 15,贝U k+m 的值为( x - i=7rfe)D,28.若方程组]的解也是二元一次方程3x+5y=10的解一则m的值应为()2A. -2B. 1 C D. 29已知A=a " 9+4B二3a-仁则A、B的大小关系为()A. A>BB・A=B C A<B D.不能确定10.我校举行春季运动会系列赛中,舫级 1)班、(2)班的竞技实力相当,关于比赛结 果,甲同学说:(1)班与(2)班的得分旳5;乙同学说:(1)班的得分比(2)班的得分的2倍少40分;若设(1)班的得分妁分,(2)班的得分为分,根据题意所列方程组西)(6x=5y(6x=5yA. I x=2y 一 40B. I x 二2y+40二、填空题(共10小题,每小题3分,满分30分)― …2- b2=9, a+b=9,则 a - b= ・ "•若a忆若(a - 2) x'al"3円是二元一次方程,则a=—-13. 将方程5x - 2y=7变形成用x 的代数式表示y,则y= ___________ •14. 在一个M^.75cm 的正方形内挖去一个趙內25cm 的正方形,则剩下部分的面2积 ____ cm” 社2+ (m- 3) x+16可直接用完全平方公式分解因式,则 m 的值等于 ______ ・17. 右 x2+b2+4a- 6b+13=0,贝9 压的值 _____ ・18. 已知a19. 若 a 、b 满足(2a+2b+3) (2a+2b - 3) =55,贝ij a+b 的值 ______ ・ 20. 初枝铅笔、3块橡皮、2本日记本需32元;羽枝铅笔、5块橡皮、3本日记本共需58元;则头枝铅笔、5块橡皮、5本日记本共需 _________ 元.(5x=6y C. I x=2y+40(5x=6y D [x=2y ■ 4015. 16. 二元一次方程 x+3y±$0:的非俱整数解共 ________ 个. \ 2x+y=k中的X 、y 的值相等,则若二元一次方程组k 等于三、用心做一做(本大题共有小题,共60分)21. 计算:22.把下列各式分解因式: (1) (m- n) +n ( n - m)(2) 3 - -6a 2+3a3a2 -2x) 2+2 (x2 - 2x) +1(3)3尸5(4)&瞬1严5 23.解下列方程组:(3)2232422014 2(4) (1 - ) (1 - (1 - )X243(x+y) ■ 4(x ■ y)=45的展开式.(1)根据上面的规律,写出(a+b )(2)利用上面的规律计算:2&X24+1OX23WX22+5X2K 26. 小明的妈妈在菜橱斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说「今天买这两样菜共花45元,上月买同重量的这两种菜要 36元”;爸爸说:“报纸上说萝卜的单价上SO%,排骨单价上涨)%”;小明说:爸爸、妈妈,我想知道今天买的萝卜和排 骨的单价分别是多少请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).27. 阅读下面材料,解答下列题厂屮小 匸N 的式子中,我们已经研究过已知a 和b,求N,这种运算就是乘方运算・(2)x+y 2x 一 y=1J2x+y 二6m24. 已知关于x, y 的二元一次方程鲍解極三旳网市程,求ml ■—討的值.25.我国古代数学的许多发现都曾位居世界前, 其中“杨辉三角”就是一例.如图 这个 三角形的构造法则:两腰上的数都是 1,其余每个数均为其上方左右两数之和,它给出了(a+b ) n(n 为正整数)的展开式(期(勺次数由大到小的顺序排列)的系数规律•例如,在三角形中第三行的三个数1, 2, 1,恰好对应(a+b ) 2二a2+2ab+"展开式中的系数;第四等. 行的四个数 1, 3, 3,1,恰好对应着 3二a3+3a2b+3aU+b3展开式中的系数等 a+b ) 1 】..... ...... * ......... (cr^b) 11 2 1 .................................... (D 2\/\z1 3 」 1 ................................................................ (a^b) •在形如a现在我们研究另一种情况:已知 a 和N,秀b ]我们把这种运射]做型数运算.匸N (a>0, a*1, N>0) 2则 网做以a 为孵的两数;feb=logN定义:如果a B 83二&所以log 28=3;因为,所以例如:因为2(1)根据定义计算: ① log 38仁 ____ ② log s3=_④如果log x16=4,那么x=x=M, ay 二N,贝a M=x, log a N=y (a>0, a* 1, IVk N 均为正数), log(2)談 x?ay 二ax+y,所以 ax+y 二M?N 所以 aMN=x+v, A log 心裁 因为a 即 log aMN=log a M+logaN.这是对数运算的重要性质之一,进一步,我们扌;③log 3仁log aMMM …M n = _____(其中M、M、M、…、M均为正数,a>0, a*1)(a>0, ai, IVL N均为正数).(3)结合上面的知识你能求岀3"诃小8i&20+log /-贬〃的值吗?直接写出答案即可.2015-2016学年江苏省盐城市射阳外国语学校七年级(下)期中数学试卷参考答案与试题解析一、精心选一选(本大题共10个小题,每小题 3分,共30分)1. 下列从左到右的变形是因式分解的是()2A. (x+1) (x - 1) =x - 1B. (a - b) (m — n)二(b — a) (n - m);32 —C. ab - a - b+1= ( a - 1) (b - 1) D m - 2m - 3=m ( m- 2 - m )【考点】因式分解的意义.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解. 【解答】解:A 、是多项式乘法,故 A 选项错误;B 、 不是把多项式化成几个整式积的形式,故 B 选项错误;U 是分组分解法,故 C 选项正确;Q 不是整式积的形式,应为m_ 2m _ 3=( m+1)故选:C.(x=2 Jx+y=0 (xy=lI3y " x=l I3x -尸5 Ix+2y=32. 在方程、'、、的有( )A. 2个B. 3个 C 4个 D. 5个【考点】二元一次方程组的定义. 【分析】根据二元一次方程组的条件: 仁只含有两个未知数;2、含未知数的项的最高次数是1; 3、都是整式军樂:理一判断陣僦.r x=1(3y- x=l 1 3x - y=5 I y=l【解答】解:方程、、符合二元一次方程组的定义,f «y=i方程1 x+2y 二3中xy 是二次项,不符合二元一次方程组的定义,方程[x+尸1中+胡是分式方程,不符合二元一次方程组的定义,(m- 3),故D 选项错误.丄』x+y=l 、x=l y=l中,是二元一次方程组故以上方程中是二元一次方程组的有3个,故选:B.2 23. 下列各式中,计算结果为的是( )A. (- m- 2n) 2n B・(m—2n) (2n - m) C・(m- 2n) (-m- 2n) D・ C2n - rri) (-m -2n)【考点】平方差公式;完全平方公式.【分析】A利用单项式乘以多项式计算;B:提负号后运用完全平方公式计算;C:直接运用平方差公式计算;D直接运用平方差公式计算.J所以选项A错误;【解答】解:A: ( -m- 2n) 2n=・2mn・4n2= - rr?+4mn - 4n2B: (m- 2n) (2n ・ rri) = - (m- 2n) ,所以选项B 错误;2+4r )2,所以选项C 错 误;G (m- 2n) (-m- 2n) = - m2 2D : (2n ・ rri) (-m- 2n) =m - 4n,所以选项 D 正确; 故选D 4. 若|a - b|=1 ,则 b 2-2ab+a2的值为()A. 1B. - 1 C ± 1 D.无法确定【考点】完全平方公式.【分析】先把b ・2ab+a 化成完全平方式,然后讨论2 2= (a - b) 2【解答】解:b - 2ab+a ' 又・.・|a - b|=1/.a - b=1 或-4, 22= (a - b) 2=1..\b - 2ab+a故选A.a -b 的正负性,最后求解.p 二 1 ly=2为解的是(A. $-y 二3 B .I3x-y=lfx - 3尸-5 (3x+y=5c.【考点】二元一次方程组的解.所谓“彳零舉"的解,指的是该数值满足方程组中的每一方程.将 足此解的方程组即Wi ・ 【分析】(x=l (y=2代入,满【解菲期声5A, 物榊合,代入各个方程组,5刚好满足,解是故选D.6. *擁琥分组”1除"嚼组 X 人]细技为y y 组U 则列肴襁且为(7人,余3人;若每组 )8人,则缺5人;设运动员人数为A . f7y=x*%.(8y=x+5(7尸 x+3\8y=x+5c.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意中的两种分法,分别找到等量关系: ①组数X级7人二总人数-3人;②组数X銀8人二总人数+5人.【解答】解:根据组数x经7人二总人数・3人,得方程7y=x - 3;根据组数x爼8人二总人数+5人,得方程8y=x+5.f7y=x - 3列方程组为|8y=x+5• 故选:C7.若(x+3) (x+m)/kx-15,船n 的值为()A. - 3B. 5 C - 2 D. 2【考点】多项式乘多项式.【分析】已知等式左边利用多项式乘以多项式法则算,利用多项式相等的条件知一次项系数相等可得答案.2+ ( 3+m) x+3m=x2 - kx -15,【解答】解:T ( x+3) (x+m) =x.\3+m= - k,. .k+m二-3,故选:A(x+y= 3nO | x ~ y=7rt©&若方程组的解也是二元一次方程3x+5y=10的解,岬的值应为( )12A - 2 B. 1 G D. 2【考点】二元一次方程组的解.【分析】把m看做已知数表示出方程组的解,將与y代入已知方程计算即可求岀m的值. 【解答】解:①+②得:2x=10m,即x=5m,①-②得:2y= - 4m,即y二-2m,把x=5m, y= - 2m 代入方程得:15m - 10m=10,解得:m=2,故选DA. A>B B・A=B C A<B D・不能确定【考点】【分析】配方法的应用;非负数的性质:偶次方. 利用作差法比鮫与B的大小即可.【解答】解:, A=a2-a+4>吐3a-1,AA_B=a2-a+4-3a+1=a2-4a+4+1=(a-2)2+1. 1>0,m>B,故选A10・我校举行春季运动会系列赛中,死级1)班、(2)班的竞技实力相当,关比赛结果,9.已知A=a _ 3+4B二3a - 1, M1] B的大小关系为(甲同学说:(1)班与(2)班的得分为6: 5;乙同学说:(1)班的得分比(2)班的得分的2倍少40分;若设(1)班的得分为x 分,(2)班的得分为y 分,根据题意所列方程组应为((6x=5yf6x=5yA ・ | x=2y - B. i x-2y+40【考点】由实际问题抽象出二元一次方程组.【分析】 设(1)班得x 分,(2)班得y 分,根据:(1)班与(2)班得分比为6: 5; (1) 班得分比(2)班得分的2倍少39分列岀方程组.f5x=6y【解答】解:设(1)班得X 分,(2)班得y 分,由题意得 \ X=2y - 40・ 故选:D.二、填空题(共10小题,每小题3分,满分30分) 22二9, a+b 二9,贝【J a - b ----- 1 . "•若 a - b【考点】因式分解-运用公式法.【分析】直接将已知条件利用平方差公式分解因式,进而求出即可.22= (a+b ) (a - b ) =9, a+b=9,【解答】解:•/ a - b/.a - b=1・故答案为;1.12.若(a- 2) x'…彳円是二元一次方程,贝9J5x=6y C ・ I x=2y+40 a= - 2【考点】二元一次方程的定义;绝对值.【分析】根据二元一次方程的定义知,未知数x的次数|a| .\|a| - 1=1 且a- 2 工0,解得,a= - 2 ;故答案是:-2.13.将方程5x - 2y=7变形成用x的代数式表示y,则y=【考点】卑三帝次方程.【分析】匹第做已知数求出y即可.【解答】解%程5x- 2y=7,5x-7解得:y= 2・故答案为:•・1=1,且系数a - 2工0.【解答】解:・・・(…)x1…勢1是二元一次方程,14•在一个边长为 12.75cm 的正方形内挖去一个边长为7.25cm 的正方形,则剩下部分的面2积为 _110—cm【考点】因式分解的应用.【分析】根据正方形的面积公式,即可得到剩下部分的面积可表示为 用平方差公式分解求值比较简单.【解答】解:12.75 2- 7.25 J =(12.75+7.25 ) (12.75 - 7.25 ),=20x 5.5 ,二"0・ 故答案为:110.15.二元一次方程 x+3y=10的非负整数解共有4 个.【考点】解二元一次方程. 将-X 看做已知数表示出x+3y=10,3解得:y=当 X =1 时,y=3;当 x=4 时,y=2;当 x=7 时,y=1;当 xhO 时,y=0, 则方程的非负整数解共有 4个.故答案为:4., 鼻J 3x- y=4 \ 2x+y=k一16•若二元一次方程组中的x 、y 的值相等,则k 等于 6【考点】二元一次方程组的解.【分析】把x=y 代入方程3x - y=4得出3x - x=4,求出x 的值,得出y 的值,最后代入k=2x+y 求出即可. 【解答】解:把x 二y 代入方程3x-y=4得:3x - x=4, 解得:x=2, 即 y=x=2,2 212.75 _ 7.25,再利y,确定出方程的非负整数解即可. 【分析】把x=y=2代入方程2x+y=k 得:k=6, 故答案为:6.” 牡+ (m- 3) x+16可直接用完全平方公式分解因式,则 m 的值等于 -5或"17 •右 x【考点】因式分解■运用公式法.【分析】直接利用完全平方公式的基本形式分解因式,进而得出答案. [解姣]解 (x)2+ (m_ 3) x+16可直接用完全平方公式分解因式,/.m- 3=± 2x 4,解得:m= - 5或"・故答案为:-5或"・1【考点】配方法的应用;非负数的性质:偶次方.18.已知a2+b2+4a- 6b+13=0,则 压的值为[分析]先将a2+b2+4a " 6b+13=0,整理成平方和的形式,再根据非负数的性质可求粗y x的值.的值,进而可求州2+b2+4a・ 6b+13=0= (a+2) 2+ (b - 3) 2=0,【解答】解:由题意得:a由非负奎的性质得a= - 2, b=3.9a 二別• 1故答案为:;19.若a、b 满足(2a+2b+3) (2a+2b - 3) =55,则•!?的值为±4 ・【考点】多项式乘多项式.【分析】先把2a+2b看作一个整体,利用平方差公式进行计算,即可解答.【解答】解:(2a+2b+3) (2a+2b- 3) =55,2 - 32=55(2a+2b)2=64(2a+2b)2a+2b=±& a+b=±4,故答案为:士4.20.酣枝铅笔、3块橡皮、2本日记本需32元;旳枝铅笔、5块橡皮、3本日记本共需58元;躺枝铅笔、5块橡皮、5本日记本共需30 元.【考点】三元一次方程组的应用.分析】门设铅等的单饬x元,橡皮的单角y元, 纠痴#2碰?从而得禹5枝铅笔、5块橡皮、辆命5埔醪较屣的单谕%元,橡皮的单的y解得:x+y+z=6,M+5y+5z=30 ・日记本的单角z元,根据题意列方程5本日记本共需的钱数.元,日记本的单伽Z元,根据题意得:答:熹枝铅笔、5块橡皮、5本日记本共需30元; 故答案为:30.【考点】整式的混合运算.【分析】(1)先根据平方差公式,单项式乘多项式,完全平方公式计算,再合并同类项计算 即可求解;(2) 先根据完全平方公式,平方差公式计算,再合并同类项计算即可求解;三、用心做一做(本大题共有小题,共60分)21 •计算: (2p+b) ( - tj+2a(1)(2) 4 (a -lb) (3) 223242(4) (1 -)(1 - ) (1 -(3) 先算乘方,再算乘除法,再计算加减法即可求解,注意先算括号里面的和绝繼以 及乘法分配律的灵活应用;(4) 根据平方差公式计算,再约分计算即可求解.2【解答】解:(1) (a+b) (a - b) - a (a+b) - ( a - b)2- b2 - a2 - ab - a?+2ab - b?2- 8ab+4b 2- 4a 2+b 2=4a- 2^(-4)-1-1- ■ 3|X =-8ab+5b1 9 7 (3)§ ■3(2) 4 (a- b)2_( 2a+b )b+2a )切2讥琲*青■晋)X2415 T=8 - 1+27+5&- 9011 1 32422014 2=022丄1丄1 1(4)(12-)(12 )(1 -3 )… (B-=-32- ( - 4) - 4x x24+ x 24 - x241(1 - 2014( 1 +)X(1 -)x(1 + )x(11 32 43 5 2013 2015 2 1+23)34 4 2014 201420154028xXXXx・ (X)X)x(1+ ) X …X (1 -1 2014)22.把下列各式分解因式: (1) (2) (3) (m- n) +n ( n - m) c 3 - 6a 2+3a 3a 2 - 2x) 2+2 (x 2 - 2x) (x 2 (x - 2) +4 (2 - x) a +1 (4)【考点】提公因式法与公式法的综合运用. 【分析】(1)直接提取公因式(m- n), 进而分解因式即可; (2) 直接提取公因式 3a,进而利用完全平方公式分解因式即可; (3) 首先把(x?+2x )看做整体,利用完全平方公式分解因式,进而再次利用完全平方公式 分解得出答案; (4)直接提取公因式(x - 2),进而利用平方差公式分解因式即可. 【解答】 解:(1) (m- n) +n (n - rrO 二(m- n) (1 - n); (2) Sa 3' 6a2+3a=3a(a 2'2a+1)=3a (a - 1) S2 - 2x) 2+2 (X2 - 2x) +1 (3) (x1 1/ 2 -2X+1 ) 2=(x4=(X - 1 )2(4) a (x - 2) +4 (2- x) 2- 4)(x- 2)=(a=(a+2) (a - 2) (x- 2). 23.解倫I 芳I®, [4x+6y=14(2)【考点】解二元一次方程组.【分析】(1)②-闿得出9y=9,出y,把y 的值代入①求出x 即可;(2) 整理后①x 2羁标B 力f 丽斗彳,求出y,①-②x 7得出-15x=- 17,求出x 即可.l4x+6y=14②【解答】解:(1)②-①得:9y=9, 解得:y=1.所以原方程组的解为:(1)3(x+y) - 4(x - y)=4 把y=1代入①得: 解得:x=2,4x- 3=5,7X =2I y=lf - x+7尸4(1)I2x+y二3②(2)整理得:①x 2+②凳15y=11,15解得:y二,①-②x 橹:-15x=- 17,解得:x= ( 17x=l5i所以原方程组的解为:尸(2x+y 二6m24.已知关于x, y 的二元一次方程组j 3x - 2y=2ir 的解满足二元一次方程的值.【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把 齐討求出m 的值.【解答】解:由题意得三元一次方程组:① +②-③得:2y=8m - 60, y=4m - 30 ④, ② x 2-①x 3 得:7y=14m, y=2m ⑤, 由④⑤得:4m - 30=2m, 2m=30,/.m=15. 25.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角"就是一例.如图, 这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b) n(n 为正整数)的展开式(按 a 的次数由大到小的顺序排列)的系数规律.例如’ 在三角形中第三行的三个数1, 2, 1,恰好对应(a+b) 2=a2+2ab+b2展开式中的系数;第四3=a 3+3a 2b+3ab 2+b3行的四个数1, 3, 3, 1,恰好对应着(a+b)展开式中的系数等等.x, y 用m 表示出来,代入方程 2x+y=6m 3x - 2y=2n化简得2x+y=6m ① 3x - 2y=2m ② 5x - 3尸60③(cr^b)【考点】规律型:数字的变化类.【分析】(1)由(a+b)二a+b, (a+b) 2=a 2+2ab+b2, (a+b) 3=a 3+3a 2b+3ab2+b3可得(a+b) “的其余各项系数都等于(a+b) ° 1的相邻两个系数的 仁4、6、4、1;因此(a+b) 5的各项系数依次为2+5x 2 - 1写成“杨辉三角"的展开式形式,逆推可得结-10x 2式.5的展开 a+b) (3)( a^b) 1. 2+5x 10x 22-各项展开式的系数除首尾两项都是 1外, 和,由此可得(a+b)"的各项系数依次为1、 5、 10、 10、 5、 「54+1 Ox 23果.(2)将 2 - 5x 21(1)来据上面的规律,写出1 1 ................................. .\ / 4+1 Ox 2(2)'利用上面的规律计算:2 -5x 213(2)原式=2 =(20) =126. 小明的妈妈在菜簡斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说「今天买这两样菜共花45元,上月买同重量的这两种菜婆36元”;爸爸说:结艮纸上说萝卜的单价上册%,排骨单价上游%”;小明说:爸爸、妈妈,我想知道今天买的萝卜和排 骨的单价分别是多少 请你通过列一元一次方程求解这天萝卜、排骨的单价(单位元 /斤).【分析】设上月萝卜的单价是 X 元/斤,则排骨的单价 2 元/斤,根据小明的爸爸和妈 妈的对话找到等量关系列出方程求解即可.cc C36 ・ 3x【解答】解:设上月萝卜的单价是 X 元/斤,则排骨的单价 ―2 — 元/斤,根据题意得36 - 3x3 (1+50%) x+2 ( 1+20%) (—2 —)=45,解弓6% 36-3X2 则 2=2=15.所以这天萝卜的单价是(1+50%) X 2=3 (元/斤),这天排骨的单价是(1+20%) X 15= ( 1+20%) x 15=18 (元/斤)• 答:这天萝卜的单价是 3元/斤,排骨的单价是18元/斤.27•阅读下面材料,解答下列题:在形如a=N的式子中’我们已经研究过已知 舁°求N,这种运算就是乘方运算. 现在我们研究另一种情况:已知 a 和N,求b,我们把这种运算叫做对数运算.(D 根据定义计算: --------- --------------b 二N (a>0, a*1, N> 0),定义:如果a2 3=8,所以log 28=3;因为例如:因为2処b 甲做以a 为底的护数,惟b=log 「P 所以皿右28N.【考点】一元一次方程的应用.36 - 3x① log 38仁4 ② log 33= -4——③log 31= 0 ;④如果log x16=4,那么x= 2・x二M, ay二N,贝0 aM=x, log aN=y (a>0, a* 1, M> N 均为正数),log(2)设ax?ay二ax+y,所以a x+v=M?N 所以aMN=x+y, _log n M因为工_______________ ___ loSajj- __________________________________________________即log a MN=logaM+log a N.这是对数运算的重要性质之一,进一步,我们斑以得出:logaMMM…Mn=log aM+log a M+••- +log a l\4 •(其申3为矗豉厂atBD[強1)= log a M log N (a>0, a n M N均为正数)・a(3) 结合上面的知识你能求岀的值吗?直接爵答案即可.14【考点】整式的混合运算.【分析】(1)原式各项根据题中的新定义计算即可得鎳(2)根据对数的运算性质化简即可得镰(3)原式利用对数的运算性质化简,计算即可得鎳仁4;②log 33=1;③log 31=0;④如果log x16=4,那么x=2;【解答】解:⑴①log 38仁log 33(2) log aMMM・. M=log aM+log aM+…+log a M; Iog9 =log a Mleg a N ( a>0, a*1, M N 均为正数);§(4) 原式=log I52X20X *4=log I515=1.故答案为:(1)①4;②1;③0;④2; ( 2) log aM+log al\4+…+log aM; log aMleg a N。

苏科版2015-2016学年初一下数学期中测试卷及答案

苏科版2015-2016学年初一下数学期中测试卷及答案

2015-2016学年第二学期期中考试初一数学试卷(考试时间:100分钟满分:100分)一、选择题:(请把每题的答案填在答题卷...相应的表格中,每题2分,共20分)1.下列计算中正确的是( )A.a2+a3=2a5 B.a2·a3=a5 C.a2·a3=a6D.a2+a3=a5 2.下列各式中与2mn-m2-n2相等的是( )A.(m+n)2B.-(m+n)2C.(m-n)2D.-(m-n)2 3.以下列各组线段为边,能组成三角形的是( )A.2cm、2cm、4cm B.8cm、6cm、3cmC.2cm、6cm、3cm D.11cm、4cm、6cm4.氢原子中电子和原子核之间的距离为0.00000000529厘米,用科学记数法表示这个距离为( )A.5.29×10-8 cm B.5.29×10-9cmC.0.529×10-8 cm D.52.9×10-10 cm5.下列各多项式中,能用公式法分解因式的是 ( )A.a2-b2+2ab B.a2+b2+ab C.4a2+12a+9 D.25n2+15n+9 6.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为2:3,则这个多边形为( )A.三角形B.四边形 C.五边形 D.六边形7.如果a=(-0.1)0,b=(-0.1)-1,c=253-⎛⎫- ⎪⎝⎭,那么a,b,c的大小关系为( )A.a>b>c B.c>a>b C.c>b>a D. a>c>b 8.在如下图的△ABC中,正确画出AC边上的高的图形是 ( ) .9.如图,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2; (3)∠3=∠4;(4)∠B =∠5;能判定AB//CD 的条件个数有( ) A .1 B .2 C .3 D .410. 如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .3212A ∠=∠-∠B .32(12)A ∠=∠-∠C .212A ∠=∠-∠D .12A ∠=∠-∠二、填空(请把每题的答案填在答.题卷..相应的横线上每小题2分,共20分) 11.某人从P 点出发,向前走5米后即向右转向30°,按转后方向再走5米后又向右转30°,如此反复,当他回到P 点时,共走了_______米. 12. 多项式233342-39-6x y z x y z x yz +的公因式是 . 13.若2236x ax ++是完全平方式,则a = .14.一个等腰三角形周长是16,其中一边长是6,则另外两条边长分别 是 .15.已知2320x y --=,则23(10)(10)x y ÷=_______.16.如果)5)(1(2a ax x x +-+的乘积中不含2x 项,则a 为 .17.计算:20142013)5.1()32(-⨯-= .18.将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有 (填序号).19.如图,在四边形ABCD 中,∠A=45°,直线l 与边AB 、AD 分别相交于点M 、N 。

2015-2016学年第二学期期中教学调研卷七年级数学(苏科版)及答案

2015-2016学年第二学期期中教学调研卷七年级数学(苏科版)及答案

2015-2016学年第二学期期中教学调研卷七年级数学(苏科版)2016.4.29 一、选择题(每小题2分,共20分)1、下列图形可由平移得到的是 ( )2、甲型H7N9.流感病毒的直径大约为0.00000008米,用科学记数法表示为( ) A .0.8×10-7米 B .8×10-8米 C .8×10-9米 D .8×10-7米3、下列4个算式中,计算错误的有 ( )(1)()()-=-÷-24c c 2c (2)336)()(y y y -=-÷-(3)303z z z =÷ (4)44a a am m=÷A.4个B.3个C.2个D.1个4、下列命题中,不正确的是( ).A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行B .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行C .两条直线被第三条直线所截,那么这两条直线平行D .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 5、△ABC 的高的交点一定在外部的是( ). A .锐角三角形 B .钝角三角形C .直角三角形D .有一个角是60°的三角形 6、下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B 一3∠C B .∠A+∠B=2∠CC .∠A 一∠B=30°D .∠A=12∠B=13∠C7、在四边形的4个内角中,钝角的个数最多为( ).A .1B .2C .3D .4 8、如图,已知直线AB ∥CD ,∠C =115°,∠A=25°,∠E=( ). A .70° B .80° C .90° D .100°(第8题)9、若△ABC 的三边长分别为整数,周长为11,且有一边长为4,则这个三角形的最大边长为( ).A .7B .6C .5D .410、若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b二、填空题(每小题2分,共16分)11、一个凸多边形的内角和与外角和相等,它是_________边形.12、已知a 、b 、c 为△ABC 的三边,化简:||a +b -c +||a -b -c -||a -b +c = . 13、已知2m +5n -3=0,则4m ×32n 的值为 .14、若22(32)(32)x y x y A +=-+,则代数式A 为 . 15、如图:∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数为_________第15题 16、如图,边长为4cm 的正方形ABCD 先向上平移2cm ,再向右平移1cm ,得到正方形A ’B ’C ’D ’,此时阴影部分的面积为cm2.17、如图,在△ABC 中,∠ABC =∠ACB ,∠A =40°,P 是△ABC 内一点,且∠ACP =∠PBC ,则∠BPC = .18、如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =30°,当∠A = 时,△AOP 为直角三角形. 三、解答题(共10题,共64分)19、(共12分)计算(1) 错误!未找到引用源。

七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x52.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣13.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,55.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±208.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=______.12.一种细菌的半径是0.000039m,用科学记数法表示这个数是______m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=______度.14.已知x2+y2=10,xy=2,则(x﹣y)2=______.15.已知x m=4,x2n=6,则x m+2n=______.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段______是△ABC中AC边上的高.17.一个多边形的内角和是它外角和的2倍,则它的边数是______.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m=______n=______.19.已知是方程组的解,则a﹣b=______.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为______.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.24.解下列方程组:(1)(2).25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是______.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(______)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=______.②(x﹣1)(x10+x9+…+x+1)=______.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=______.②1+2+22+23+24+…+22007=______.2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)参考答案与试题解析一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x5【考点】单项式乘单项式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:2x3•3x2=6x5.故选D.2.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的除法;合并同类项;完全平方公式;平方差公式.【分析】分别利用整式的除法运算法则以及合并同类项法则和完全平方公式、平方差公式计算得出即可.【解答】解:A、(2a3﹣2a2)÷(2a2)=a﹣1,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a+b)2=a2+b2+2ab,正确;D、(2a+1)(2a﹣1)=4a2﹣1,故此选项错误;故选:C.3.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°【考点】平行线的性质.【分析】根据邻补角的定义求出∠B+∠O+∠D=360°,再根据已知角的度数即可求出答案.【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.5.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°【考点】平行线的性质.【分析】先根据平行线的性质得∠1=∠C=50°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵直线a∥b,∴∠1=∠C=50°,∵∠1=∠A+∠B,∴∠A=50°﹣16°=34°.故选C.7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±20【考点】完全平方式.【分析】符和a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方,进而求出即可.【解答】解:∵关于x的二次三项式4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故选:D.8.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:①3m﹣2n=5是二元一次方程;②是二元一次方程;③是分式方程;④2x+z=3是二元一次方程;⑤3m+2n是多项式;⑥p+7=2是一元一次方程;故选:C.9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设甲分得x千元,乙分得y千元,根据甲、乙二人的比例为3:2,甲分得的利润比乙分得的利润的2倍少3千元,列方程组即可.【解答】解:设甲分得x千元,乙分得y千元,由题意得,,故选C.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=.【考点】解二元一次方程.【分析】把方程2x﹣y﹣3=0写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含y的式子表示x的形式:x=【解答】解:移项得2x=y+3系数化为1得:x=12.一种细菌的半径是0.000039m,用科学记数法表示这个数是×10﹣5m.【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣5m.×10﹣5m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54 度.【考点】平行线的性质;角平分线的定义.【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.14.已知x2+y2=10,xy=2,则(x﹣y)2= 6 .【考点】完全平方公式.【分析】利用(x﹣y)2=x2+y2﹣2xy求解即可.【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.15.已知x m=4,x2n=6,则x m+2n= 24 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,即可解答.【解答】解:x m+2n=x m•x2n=4×6=24,故答案为:24.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段BE 是△ABC中AC边上的高.【考点】三角形的角平分线、中线和高.【分析】根据过三角形的一个顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE17.一个多边形的内角和是它外角和的2倍,则它的边数是 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m= ﹣n= 4 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:﹣,4.19.已知是方程组的解,则a﹣b= ﹣1 .【考点】二元一次方程组的解.【分析】根据方程组解的定义,把解代入方程组得到关于a、b的方程,然后求解得到a、b 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,,解得,所以a﹣b=2﹣3=﹣1.故答案为:﹣1.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为﹣.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x2的项,求出a的值即可.【解答】解:原式=4x3+(4a+2)x2+2ax,由结果中不含x2的项,得到4a+2=0,解得:a=﹣.故答案为:﹣.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零次幂、乘方定义、绝对值性质、负整数指数幂计算,再计算乘法可得;(2)将原式变形运用平方差公式计算,再根据完全平方公式计算即可.【解答】解:(1)原式=1+4×1×9=1+36=37;(2)原式=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣y2+4yz﹣4z2;22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把x﹣y=2代入计算即可求出值.【解答】解:∵x﹣y=2,∴原式=(x2﹣2xy+y2+2y2﹣2xy﹣x2+y2)÷2y=(﹣4xy+4y2)÷2y=﹣2x+2y=﹣2(x﹣y)=﹣4.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.24.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】作图-平移变换.【分析】(1)利用平移规律得出平移后对应点位置进而求出即可;(2)利用平移的性质得出两条线段之间的关系.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是:平行且相等.故答案为:平行且相等.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由FD⊥BC以及∠F=6°利用三角形内角和定理即可求出∠DEF的度数,再利用三角形的外角性质即可求出∠CAE的度数,结合角平分线的性质以及三角形内角和定理即可得出∠B的度数.【解答】解:∵FD⊥BC,∠F=6°,∴∠DEF=90°﹣6°=84°,∴∠CAE=∠DEF﹣∠C=84°﹣30°=54°,∵AE平分∠BAC,∴∠BAC=2∠CAD=108°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣108°﹣30°=52°.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【考点】二元一次方程组的应用.【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)= 1﹣x n+1.②(x﹣1)(x10+x9+…+x+1)= x11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= ﹣63 .②1+2+22+23+24+…+22007= 22008﹣1 .【考点】平方差公式.【分析】(1)仿照已知等式得到一般性规律,写出即可;(2)利用得出的规律化简两式即可;(3)利用得出的规律化简两式即可.【解答】解:(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8;(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;②(x﹣1)(x10+x9+…+x+1)=x11﹣1;(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②1+2+22+23+24+…+22007=﹣(1﹣2)(1+2+22+23+24+…+22007)=22008﹣1.故答案为:(1)1+x+x2+x3+x4+x5+x6+x7;(2)①1﹣x n+1;②x11﹣1;(3)①﹣63;②22008﹣1.。

七年级数学下学期期中试卷(含解析)苏科版2.doc

七年级数学下学期期中试卷(含解析)苏科版2.doc

2015-2016学年江苏省扬州市江都区国际学校七年级(下)期数学试卷1.下列运算不正确的是()5) 2=a io B ・ 2a 2? ( - 3a 3) = - 6a 5A. ( aC. b?b 3=b 4D ・ b 5?b 5=b 25A. 50°B. 30°C. 20° D ・ 15°7若(X 2+P x- 1> (x+1)的结果中不倉项,贝9 p 的值为 )选择题 3分,共24分)2. 下列各式能用平方差公式进行计算的是(A. (x- 3)(・ x+3) B ・(a+2b) (2a ・ b) C. (a ・ 4) (- a- 1) D. 现有两根长度分别和6cm 的木棒,若要从长度分别2©m, 3cm,2(x - 3) 3. 的5根木棒中选一个钉成三角形的木框,那么可选择的木棒有(A.5cm, 7cm, 9cm4. A.5.下列各式中与 2B ・ (m- n )二元一次方程C 3根D. 4根o2-"相等的是(2nm - m-(m-n )2 C ・-(x+2y=8的非负整数解(m+n) 2D. (m+n)3的度数等A. 1B. 2 G - 1 D. - 28. 如图,△ ABC 的面稠.第一次操:分别延 AB, BC, CA 至点A, Bi, G,使AB 二AB, ^7^ A, B2, C2,使 A2B1二AiB, BzG =BiG> QA 二C1A1,顺次^B2, G,得到△ A2B2G,… 扌町比规律,要使得到的三角形的面超辿16,最少经过)次操作.A 6B ・ 5C 4 D. 3Bi C=BC, GA 二CA,顺次撫,Bi, G,得到△ ABG ・第二次操作:分别延AiBi ? BiCi ?GA二、填空题(题 3分,共30分)9. 用科学记数法表示 0.0000907为 _______ ・10. 已知二元一次方程 2x- 3y -仁0,请用倉的代数式表示y 得: ___________… 亠x n =2, (x*0), 求 xm+n=・"•右x12•如图,小漩从点出发前进Im 后,向右帏。

苏科版2015-2016学年七年级下学期期中考试数学试题及答案

苏科版2015-2016学年七年级下学期期中考试数学试题及答案

苏科版2015-2016学年七年级下学期期中考试数学试题时间:120分钟 满分:100分 2016.4.29 一、选择题:(每小题3分,共24分.)1.下列图形中,不能通过其中一个四边形平移得到的是 ( )2.下列各式中计算正确的是 ( )A .(-a2)5 =-a10B .(x4)3= x7C .b5·b5= b25D .a6÷a2=a3 3.下列等式由左边到右边的变形中,属于因式分解的是( )A .1)1)(1(2-=-+a a aB .22)3(96-=+-a a a C .1)2(122++=++x x x x D .y x y x y x 222343618∙-=- 4.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5, 能判定AB ∥CD 的条件为 ( )A .①②③④B .①②④C .①③④D .①②③5.有4根小木棒,长度分别为3cm 、5cm 、7cm 、9 cm ,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为 ( ) A .5个 B .4个 C .3个 D .2个6. 如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( ) A .7 B .8 C .9 D .10 7.从边长为的大正方形纸板中挖去一个边长为的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式( )A .222()2a b a ab b -=-+ B .222()2a b a ab b +=++ C .22()()a b a b a b -=+- 第6题 A BC E D1 234 5 第4题 ▲ ▲ ▲▲第7题▲ ▲▲第8题D .22(2)()2a b a b a ab b +-=+-8.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 为 ( ) A . 75° B . 76° C . 77° D . 78° 二、填空题:(本大题共10小题,每空2分,合计22分)9. 近年来,我国大部分地区饱受“四面霾伏”的困扰,霾的主要成分是指直径小于或等于0.0000025m 的粒子,数0.0000025用科学记数法可表示为__▲___. 10. 多项式n m mn n m 32462-+的公因式是 ▲ .11. 如果要使)2)(1(22a ax x x +-+的乘积中不含2x 项,则a =_▲. 12.已知: ,3,6==n m a a 则=+n m a▲ ,=-n m a 2__▲__. 13. 如果三角形的两边分别为2和7,且它的周长为偶数,那么第三边的长等于 ▲ .14.已知m>0,如果16)1(22+-+x m x 是一个完全平方式,那么m 的值为 ▲ . 15.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=125°,则∠3等于▲ °.16.如图,在△ABC 中,已知∠ABC=50°,∠ACB=60°,BE 是AC 边上的高,CF 是AB 边上的高,H 是BE 和CF 的交点,则∠BHC= ▲ °.第16题 第17题 第18题 17. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若S 四边形AEOH =3,S 四边形BFOE =4,S 四边形CGOF =5,则S 四边形DHOG =__▲___. 18. 如图,长方形ABCD 中,AB=4cm ,BC=3cm ,点E 是CD 的中点,动点P 从A 点出发,以 每秒1cm 的速度沿A →B →C →E 运动,最终到达点E .若点P 运动的时间为x 秒,那么 当x=_ ▲__时,△APE 的面积等于52cm .三、解答题:(本大题共8题,合计54分)19. 计算或化简:(前3题,每题3分,第4题4分,共13分)(1) 1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭ (2)2244223)2()(a a a a a ÷+∙--(3) (2a ﹣3b )2﹣4a (a ﹣3b )(4) (3﹣2x )(3+2x) + 4 (2﹣x )2 (本题先化简,再求值,其中x=﹣0.25) 20.因式分解:(前2题,每题2分,第3题3分,共7分)(1) )()(2a b b a x --- (2)2732-a (3)9)1(6)1(222+-+-y y . 13 2第15题▲21. (本题4分)如右图,在每个小正方形边长为1的方格纸中, △ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格, 再向上平移4格.(1)请在图中画出平移后的△A ´B ´C ´; (2)再在图中画出△ABC 的高CD ; (3)在右图中能使ABC PBCS∆∆=S的格点P 的个数有 个(点P 异于A).22. (本题5分) 填写证明的理由:已知:如右图,AB ∥CD ,EF 、CG 分别是∠AEC 、∠ECD 的角平分线.求证:EF ∥CG . 证明:∵ AB ∥CD (已知)∴ ∠AEC=∠DCE ( ① ) 又 ∵ EF 平分∠AEC (已知)∴ ∠1= 21∠ ② ( ③ ) 同理 ∠2= 21∠ ④∴ ∠1=∠2∴ EF ∥CG ( ⑤ ) 23. (每题3分,共6分) 若x 、y 满足2254x y +=,12xy =-,求下列各式的值.(1)()2x y + (2) 44x y +24.(本题5分)如图,∠1=70°,∠2=110°,∠C=∠D ,试探索∠A 与∠F 有怎样的数量关系, 并说明理由.25.(本题6分) 阅读材料: 求l+2+22+32+42+…+22013的值.解:设S= l+2+22+32+42+…+ 20122+22013…①,将等式两边同时乘2,得2S=2+22+32+42+52+…+22013+22014…②.将②减去①,得2S-S=22014一l即S=22014一l ,即1+2+ 22+32+42+…+22013= 22014一l仿照此法计算:(1)1+3+2333++…+1003 (2)231111222+++…+10012图3图4图5A26.(本题8分)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C +∠D . (2)阅读下面的内容,并解决后面的问题:如图2, AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=36°,∠ADC=16°,求∠P 的度数. 解:∵AP 、CP 分别平分∠BAD 、∠BCD ∴∠1=∠2,∠3=∠4由(1)的结论得: 3124P B P D ∠+∠=∠+∠⎧⎨∠+∠=∠+∠⎩①②①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P =21(∠B+∠D)=26°.如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°, ∠ADC=16°,请猜想∠P 的度数,并说明理由.②在图4中,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论,无需说明理由.③在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论,无需说明理由.图1AC图2A七年级(下)数学期中考试 答卷 2016.4时间:120分钟 满分:100分 (请在密封线内写姓名等)得分二、填空题(本题共10题,每空2分,共22分)三、解答题(本大题共8题,共班级___________姓名______________考试① ④∠ ;⑤ _____考试号_______________七年级(下)数学期中考试参考答案和评分标准2016.4一、选择题(每题3分,共24分)1. D 2 . A 3 . B 4 . C 5 . C 6. A 7. C 8.D二、填空题(每空2分,共22分)9. 2.5×10-6 ;10. 2mn ;11. 0.5;12. 18, 2/3 ;13. 7 14. 5;15. 25 16 . 1100 17. 4 18. 10/3或5三、解答题(本大题共8题,合计54分)19. 计算(前3题,每题3分,第4题4分,共13分)(1)原式= —3—9+1……2’ (2)原式= a6—a6+4a6……2’ =—11……3’ = 4a6……3’(3)原式=4a2-12ab+9b2-4a2+12ab ……2’ (4)原式=9-4x2+4(4-4x+x2)……2’ =9b2……3’ =25-16x ……3’ 当x=-0.25时,原式=29 ……4’20.因式分解(前2题每题2分,第3题3分,共7分)(1)原式=2x(a -b)+ (a -b)……1’ (2)原式=3(a2-9)…………1’ =(2x+1)(a -b)………2’ = 3(a+3)(a -3)……2’ (3)原式=(y2-1)2-6(y2-1)+9……1’ =(y2-4)2…………2’ =(y+2)2(y -2)2……3’ 21、4个(画图略1+1+2)22、两直线平行,内错角相等; AEC ; 角平分线的定义; ECD ; 内错角相等,两直线平行. 23.(每题3分,共6分)(1) 22=2 (11)=.................34x xy y ++原式分分(2) 22222=)2..................11 =1..................316x y x y +-原式(分分24. (本题5分)证明:∠A=∠F ………………1’ 理由:∵∠1=70°,∠2=110° ∴∠1+∠2=180°∴CE ∥DB ………………2’ ∴∠C=∠ABD ………………3’ ∵∠C=∠D∴∠ABD=∠D ………………4’ ∴AC ∥DF∴∠A=∠F ………………5’25.(每小题3分) (1)101312- (2)101100212-26. (本题8分)(1)∵∠A+∠B+∠AOB=180° ∠C+∠D+∠COD=180゜∴∠A+∠B+∠AOB=∠C+∠D+∠COD ∵∠AOB=∠COD∴∠A+∠B=∠C+∠D 2分 (2) ∠P=26゜ 3分∵AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠, ∴12∠=∠,34∠=∠由(1)的结论得:∠PAD+∠P= ∠PCD+∠D ①∠PAB+∠P= ∠PCB+∠B ② ∵∠PAB=∠1,∠1=∠2 ∴∠PAB=∠2图3∴∠2+∠P= ∠3+∠B ③+③得∠2+∠P +∠PAD+∠P = ∠3+∠B +∠PCD+∠D 即2∠P +180° = ∠B+∠D+180°∴∠P = (21∠B+∠D )=26° 6分(其他方法酌情给分)(3)∠p=180゜-(21∠B+∠D ) 7分 (4)∠p=90゜+(21∠B+∠D ) 8分。

苏科版2015-2016学年七年级下数学期中试卷含答案

苏科版2015-2016学年七年级下数学期中试卷含答案

第10题图2015-2016学年第二学期期中考试试卷初一数学一、 选择题(每小题2分,共20分) 1.下列计算正确的是 ( )A .a 2•a 3=a 5B . a 2+a 3=a 5C . (a 3)2=a 5D . a 3÷a 2=12.下列各式中,计算结果为x 2-1的是 ( )A .(x +1)2B .(x +1)(x -1)C .(-x +1)(x -1)D .(x -1)(x +2)3.若一个多边形的每个内角都为135°,则它的边数为( ) A .6B .8C .5D .104. 已知等腰三角形的一边长为8,另一边长为5,则它的周长为 ( ) A .18 B .21 C .13或21 D .18或21 5.若2x =3,4y =5,则2x-2y的值为 ( )A .35B .-2C .53D .656.下列计算中,正确的是( )A .(2x +1)(2x -1)=2x 2-1B .(x -4)2= x 2 –16C .(x +5)(x -6)=x 2-x -30D .(x +2y )2=x 2+2xy +4y 27.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是 ( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b 8.计算(-2)2013+(-2)2014的结果是 ( ) A .-2 B .2C .22013D .-220139. 如图,若AB ∥CD ,则αβγ、,之间的关系为( )A.︒=++360γβαB.︒=+-180γβαC.︒=-+180γβαD.︒=++180γβα 10.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A .(a +b )(a +2b )=a 2+3ab +2b 2B .(3a +b )(a +b )=3a 2+4ab +b 2C .(2a +b )(a +b )=2a 2+3ab +b2 D .(3a +2b )(a +b )=3a 2+5ab +2b 2二、 填空题(每小题2分,共20分)11. a 2·(-a 3)= ;12. 某红外线波长为0.00 000 094m ,用科学记数法把0.00 000 094m 可以写成 m13.(-0.25)2014³42013=γβαE DCBA第9题图第10题图第20题图14. 3³9m ³27m ÷81=313,则m 的值为15. 已知x +y =4,x -y =-2,则x 2-y 2=___ _______. 16. 若4x 2+kx +9是完全平方式,则k = .17. (a -2b )2=(a +2b )2+M ,则M = .18.如果(x +1)(x 2-5ax +a )的乘积的展开式中不含x 2项,则a = .19.如图,在△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于 度. 20.如图,把一张长方形纸片ABCD 沿EF 折叠,C 点落在C'处,D 点落在D'处,ED'交BC 于点G .已知∠EFG = 50°. 则∠BGD'的度数为 .三、解答题(解答题(共7大题,共 60分.解答应写出必要的计算过程、推理步骤等.) 21.计算(每题3分,共24分)(1)|-1|+(—2)3+(7-π)0-(13)-1;(2)(-2a )3·(a 2)2÷a 3(3)(-2x )²(2x 2y -4xy 2) (4) (2x -y )(x +4y )(5) (3a +b -2)(3a -b +2) (6)10002-1002³998(7) (x +1)(x 2+1)(x 4+1)(x -1)(8)(3a +2)2(3a -2)2第19题图34342x x --≤622.(本题满分4分)先化简,再求值:4(a +2)2-6(a +3)(a -3)+3(a -1)2, 其中a =-1.23.(本题满分4分)解不等式 ,并写出它的所有非正整数解.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (2)图中AC 与A 1C 1的关系是:_____________. (3)画出△ABC 的AB 边上的高CD ;垂足是D ; (4)图中△ABC 的面积是_______________.25.(本题满分4分)已知a +b =2,ab =-1,求下面代数式的值: (1) 6a 2+6b 2; (2)(a -b )2.26.(本题满分6分) 如图,点E 在直线D F 上,点B 在直线AC 上,已知∠1=∠2, ∠C=∠D .请问∠A=∠F 吗?为什么?12 ABC①②27.(本题满分6分) 已知:△ABC 中,∠C>∠B ,AE 平分∠BAC . (1)如图①AD ⊥BC 于D ,若∠C =70°,∠B =40°求∠DAE 的度数;(2)若△ABC 中,∠B =α,∠C =β.(α<β).请根据第一问的结果,大胆猜想∠DAE 与α、β的等量关系(不必说理);(3)如图②所示,在△ABC 中,AD ⊥BC ,AE 平分∠BAC .F 为AE 延长线上任一点,过F 点作FG ⊥BC 于G . ∠B =40°,∠C =80°.请你运用②中的结论,求∠EFG 的度数。

苏科版2015-2016学年七年级下册期中数学试题及答案

苏科版2015-2016学年七年级下册期中数学试题及答案

2015~2016学年度第二学期期中测试七年级数学试题(时间:120分钟 满分:150分)一、精心选一选(每题3分,共18分)1.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .2.下列计算中,正确的是( )A .235a b ab +=B .()23636a a =C .623a a a ÷=D .325a a a +=3.如果一个正多边形的一个内角是144°,则这个多边形是( )A .正十边形B .正九边形C .正八边形D .正七边形4.如图,AD 是∠EAC 的平分线,AD∥BC,∠B=28°,则∠C 为( )A .28°B .56°C .14°D .124°5.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 6.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A .4种 B .3种 C .2种 D .1种二、细心填一填(每题3分,共30分)7.某种感冒病毒的直径是0.00000012米,用科学记数法表示为___________米.8.一个三角形的两边长分别是2和4,第三边长为偶数,则这个三角形的周长是______.9.5,8=-=+b a b a 如果,则=-22b a .10.如图,一把直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =1200,则∠DBC 的度数为 .11.如图,B 处在A 处的南偏西40°方向,C 处在A 处的南偏东12°方向,C 处在B 处的北偏东80°方向,则∠ACB 的度数为 .第5题图第4题第15题图 第10题图第11题图12.已知⎩⎨⎧-==21y x 是方程4=+ny mx 的解,则2244n mn m +-的值为 . 13.若正有理数m 使得214x mx ++是一个完全平方式,则m = . 14.已知2x y -=,则224x y y --= .15.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A =68°,则∠1+∠2= °.16.若b a 2164==,则代数式b a 2+= .三、耐心解一解(共102分)17.计算(本题满分8分)(1)031)2()2()31(-⨯-+--π (2)2273(2)()a a a -÷-18.利用乘法公式计算(本题满分10分)(1)()()()2222x y x y x y -+-+ (2)()()44x y x y +++-19.因式分解(本题满分10分)(1))()(2a b b a x --- (2)22222y x 4)y x (-+20.解下列方程组(本题满分10分)(1) ⎩⎨⎧=+=-.524y x y x (2) ⎩⎨⎧-=--=-.235442y x y xM'M CB A 第21题图 (1)如图,点M 是△ABC 中AB 的中点,经平移后,点M 落在'M 处.请在正方形网格中画出△ABC 平移后的图形△'''A B C .(2)若图中一小网格的边长为1,则△ABC 的面积为 .22.(本题满分10分)某小区计划投资2.2万元种玉兰树和松柏树共50棵,已知某苗圃负责种玉兰树和松柏树的价格分别为:500元/棵,400元/棵,问可种玉兰树和松柏树各多少棵?23.(本题满分10分)在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求,的值;(2)求a 、b 、c 的值.24.(本题满分10分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为 .(2)若169)4(,9)4(22=+=-y x y x,求xy 的值.第24题图第23题图阅读材料:若m 2-2mn +2n 2-8n +16=0,求m 、n 的值.解:∵m 2-2mn +2n 2-8n +16=0,∴(m 2-2mn +n 2)+(n 2-8n +16)=0∴(m -n )2+(n -4)2=0,∴(m -n )2=0,(n -4)2=0,∴n =4,m =4. 根据你的观察,探究下面的问题:(1)已知01210622=++++b b ab a ,求b a -的值;(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足01164222=+--+b a b a ,求△ABC 的周长;(3)已知54,22=--=+z z xy y x ,求xyz 的值.26.(本题满分12分)现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图1所示,其中一块三角板的直角边AC ⊥数轴,AC 的中点过数轴原点O ,AC =6,斜边AB 交数轴于点G ,点G 对应数轴上的数是3;另一块三角板的直角边AE 交数轴于点F ,斜边AD 交数轴于点H .(1)如果点H 对应的数轴上的数是-1,点F 对应的数轴上的数是-3,则△AGH 的面积是 ,△AHF 的面积是 ;(2)如图2,设∠AHF 的平分线和∠AGH 的平分线交于点M ,若∠M =26°,求∠HAO 的大小;(3)如图2,设∠AHF 的平分线和∠AGH 的平分线交于点M ,设∠EFH 的平分线和∠FOC 的平分线交于点N ,设∠HAO=x °(0<x<60) ,试探索∠N +∠M 的和是否为定值,若不是,请说明理由;若是定值,请直接写出此值.第26题图2015~2016学年度第二学期期中测试七年级数学试题参考答案一、 精心选一选BDAADC二、 细心填一填7. 7102.1-⨯8. 109. 4010. 06011. 08812. 1613. 114. 415. 13616. 10或6三、耐心解一解17.(1)-11 (2)45a18. (1)xy y 482-- (2)16222-++y xy x19. (1))12)((+-x b a (2)22)()(y x y x -+ 20. (1)⎩⎨⎧-==13y x (2)⎪⎩⎪⎨⎧==521y x 21.(1)略(2)522. 玉兰树和松柏数分别为20、30棵23. (1)⎩⎨⎧=-=21y x (2)24.(1)ab a b a b 4)()(22=--+(2)1025.(1)4(2)7(3)-226.(1) 6 、 3 (2)07 (3)和为定值,05.97。

2015-2016学年第二学期苏教版七年级下册期中检测数学试题三及参考答案

2015-2016学年第二学期苏教版七年级下册期中检测数学试题三及参考答案

2015-2016学年第二学期苏教版七年级下册期中检测数学试题卷 2016.5.一、精心选一选(本大题共有8小题,每小题3分,共24分。

请将正确选项前的字母代号填在答题纸相应位置.......上) 1.已知一个多边形的内角和是720º,则这个多边形是…………………………( ) A .四边形 B .五边形 C .六边形 D .七边形 2.在下列四个算式:3227()()a a a -⋅-=-,326()a a -=-,3342()a a a -÷=-, 633()()a a a -÷-=-,正确的有………………………………………( ) A .0个 B .1个 C .2个 D .33.如图,下列条件中:①∠B +∠BCD =180°;②∠1=∠2;③∠3=∠4;④∠B =∠5,能判定AB ∥CD 的条件为 ……………………………………………………………… ( )A .①②③④B .①②④C .①③④D .①②③4.下列方程是二元一次方程的是………………………………………………………( ) A .2+3x y z =- B .5xy = C .153y x+= D . x y = 5.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=125°,则∠3等于( ) A .15° B .25° C .35° D .45°6.有4根小木棒,长度分别为3cm 、4cm 、5cm 、9 cm 任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为 ……………………………( ) A .0个 B .1个 C .2个 D .3个7.一个正方形和两个等边三角形的位置如图所示,若∠1= 50°,则∠2+∠3 =( ) A .190°B .130°C .100°D .80°A BCED1 2 3 4 513 2第5题图第3题图第7题图班级 姓名 考试号 座位号---------------------------------------------------------------答 题 不 得 超 出 封 卷 线--------------------------------------------------------------------------8.如图,三角形ABC 内的线段BD 、CE 相交于点O,已 知OB=OD,OC=2OE.若ΔBOC 的面积=2,则四边形AEOD 的面积等于……………………………………( ) A.4 B.5 C.6 D.7二、细心填一填(本大题共12空,每空2分,共24分,请将正确答案填在答卷上)9.等腰三角形的两边长分别为3cm 、4cm ,则该三角形的周长是 cm.10.我国雾霾天气多发,PM 2.5颗粒物被称为大气的元凶.PM 2.5是指直径小于或等于0.0025毫米的颗粒物,用科学记数法表示0.0025毫米为 米.11.计算:5x x ∙= ;20142015122⎛⎫-⨯= ⎪⎝⎭.12.把多项式 321640x x y -+ 提出一个公因式 28x -后,另一个因式是 13.已知4x y +=,2-=-y x ,则=-22y x .14.已知⎩⎨⎧=-=12y x 是二元一次方程3=+y mx 的解,则m 的值是________.15.如图,把ΔABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =48°, 则∠BDF =______.16.把一副常用的三角板如图所示拼在一起,点B 在AE 上,那么图中∠ABC = .17.已知多项式216x mx ++是关于x 的完全平方式,则m = 。

最新【苏科版】七年级下期中数学试卷(含答案解析)

最新【苏科版】七年级下期中数学试卷(含答案解析)

最新教学资料·苏教版数学七年级(下)期中数学试卷一、选择题1.如图,若a∥b,∠1=115°,则∠2=()A.55° B.60° C.65° D.75°2.下列计算正确的是()A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a33.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a4.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A.1个B.2个C.3个D.4个5.下列方程是二元一次方程的是()A.2x+y=z﹣3 B.xy=5 C.+5=3y D.x=y6.在以下现象中,属于平移的是()(1)在荡秋千的小朋友;(2)打气筒打气时,活塞的运动;(3)自行车在行进中车轮的运动;(4)传送带上,瓶装饮料的移动.A.(1)(2)B.(2)(4)C.(2)(3)D.(1)(3)7.若一个多边形的每个内角都为135°,则它的边数为()A.8 B.9 C.10 D.128.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即x i=x1+x2+x3+…+x n.则(i2﹣1)表示()A.n2﹣1 B.12+22+32+…+i2﹣iC.12+22+32+…+n2﹣1 D.12+22+32+…+n2﹣(1+2+3+…+n )二、填空题9.某种生物细胞的直径约为0.000056米,用科学记数法表示为米.10.7x+2y=11的正整数解是.11.如果x+4y﹣3=0,那么2x•16y=.12.已知等腰三角形的两条边长分别是7和3,则此三角形的周长为.13.若4x2+mx+25是一个完全平方式,则m的值是.14.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E的度数为度.15.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=°.16.如图,已知△ABC的∠ABC和∠ACB的平分线BE,CF交于点G,若∠BGC=115°,则∠A=.17.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD=.18.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是2,那么△A1B1C1的面积是.三、解答题19.计算(1)|﹣2|﹣(2﹣π)0++(﹣2)3(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)(x+y)2(x﹣y)2(4)(x﹣2y+3z)(x+2y﹣3z)20.因式分解:(1)3a2﹣27(2)a3﹣2a2+a(3)(x2+y2)2﹣4x2y2(4)a2(x﹣y)+16(y﹣x)21.先化简,再求值:(2a+b)2+5a(a+b)﹣(3a﹣b)2,其中a=3,b=﹣.22.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A'对应,得到△A′B′C′;(2)线段AA′与BB′的关系是:;(3)求△ABC的面积.23.BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=72°,求∠BED的度数.24.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.(1)若∠ABC=60°,则∠ADC=°,∠AFD=°;(2)BE与DF平行吗?试说明理由.25.一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A、B、C、D、E、F分别藏在六张大纸牌的后面,如图,A、B、C、D、E、F所持的纸牌的前面分别写有六个算式:66;63+63;(63)3;(2×62)×(3×63);(22×32)3;(64)3÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A来找他的朋友,他可以找谁呢?说说你的看法.26.你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:(1)(x﹣1)(x+1)=;(2)(x﹣1)(x2+x+1)=;(3)(x﹣1)(x3+x2+x+1)=;由此我们可以得到(x﹣1)(x99+x98+…+x+1)=;请你利用上面的结论,完成下面两题的计算:(1)299+298+…+2+1;(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.27.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:(2)要拼出一个长为a+3b,宽为2a+b的长方形,需要如图所示的块,块,块.(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下关系式:(1)(2)x+y=m(3)x2﹣y2=m•n(4)其中正确的有A.1个B.2个C.3个D.4个.28.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有个以线段AC为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数.(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠D、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.2015-2016学年江苏省扬州市江都区邵樊片七年级(下)期中数学试卷参考答案与试题解析一、选择题1.如图,若a∥b,∠1=115°,则∠2=()A.55° B.60° C.65° D.75°【考点】平行线的性质.【分析】由a∥b,∠1=115°,根据两直线平行,同旁内角互补,即可求得∠2的度数.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=115°,∴∠2=65°.故选C.【点评】此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同旁内角互补定理的应用是解此题的关键.2.下列计算正确的是()A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的知识求解即可求得答案.注意排除法在解选择题中的应用.【解答】解:A、a与a2不能合并,故本选项错误;B、a2•a3=a5,故本选项错误;C、(2a4)4=16a16,故本选项错误;D、(﹣a)6÷a3=a6÷a3=a3,故本选项正确.故选D.【点评】此题考查了合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的知识.注意掌握指数的变化是解此题的关键.3.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】分别计算出a、b、c的值,然后比较有理数的大小即可.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c==,故可得b<c<a.故选C.【点评】此题考查了负整数指数幂及零指数幂的知识,属于基础题,解答本题的关键是掌握负整数指数幂的运算法则,难度一般.4.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边进行判断.【解答】解:可围成不同的三角形为:2cm、3cm、4cm;3cm、4cm、6cm共2个.故选B.【点评】本题主要考查了三角形的三边关系.注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边;当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.5.下列方程是二元一次方程的是()A.2x+y=z﹣3 B.xy=5 C.+5=3y D.x=y【考点】二元一次方程的定义.【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程进行分析即可.【解答】解:A.2x+y=z﹣3有3个未知数,故此选项错误;B.xy=5是二元二次方程,故此选项错误;C.+5=3y是分式方程,不是整式方程.故此项错误;D.x=y是二元一次方程,故此选项正确.故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.6.在以下现象中,属于平移的是()(1)在荡秋千的小朋友;(2)打气筒打气时,活塞的运动;(3)自行车在行进中车轮的运动;(4)传送带上,瓶装饮料的移动.A.(1)(2)B.(2)(4)C.(2)(3)D.(1)(3)【考点】生活中的平移现象.【分析】判断生活中的现,是否是平移,要根据平移的定义,进行判断,图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:(1)在荡秋千的小朋友,是旋转,故此选项错误;(2)打气筒打气时,活塞的运动,是平移,故此选项正确;(3)自行车在行进中车轮的运动,是旋转,故此选项错误;(4)传送带上,瓶装饮料的移动,是平移,故此选项正确;故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.7.若一个多边形的每个内角都为135°,则它的边数为()A.8 B.9 C.10 D.12【考点】多边形内角与外角.【分析】由一个正多边形的每个内角都为135°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.【解答】解:∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°﹣135°=45°,∴这个多边形的边数为:360°÷45°=8,故选:A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的内角和与外角和定理是关键.8.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即x i=x1+x2+x3+…+x n.则(i2﹣1)表示()A.n2﹣1 B.12+22+32+…+i2﹣iC.12+22+32+…+n2﹣1 D.12+22+32+…+n2﹣(1+2+3+…+n )【考点】有理数的加法.【专题】新定义.【分析】根据求和公式x i=x1+x2+x3+…+x n,可得答案.【解答】解:(i2﹣1)=12﹣1+22﹣1+32﹣1+…n2﹣1,故选:C.【点评】本题考查了有理数的加法,利用了求和公式.二、填空题9.某种生物细胞的直径约为0.000056米,用科学记数法表示为 5.6×10﹣5米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000056=5.6×10﹣5,故答案为:5.6×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.7x+2y=11的正整数解是.【考点】解二元一次方程.【专题】计算题.【分析】将x看做已知数表示出y,即可确定出正整数解.【解答】解:方程7x+2y=11,解得:y=,当x=1时,y=2,则方程的正整数解为.故答案为:【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.11.如果x+4y﹣3=0,那么2x•16y=8.【考点】幂的乘方与积的乘方;同底数幂的乘法.【专题】计算题.【分析】由x+4y﹣3=0,即可得x+4y=3,又由2x•16y=2x•24y=2x+4y,即可求得答案.【解答】解:∵x+4y﹣3=0,∴x+4y=3,∴2x•16y=2x•24y=2x+4y=23=8.故答案为:8.【点评】此题考查了同底数幂的乘法与幂的乘方.此题难度适中,注意整体思想的应用是解此题的关键.12.已知等腰三角形的两条边长分别是7和3,则此三角形的周长为17.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分两种情况讨论:当3是腰时或当7是腰时,利用三角形的三边关系进行分析求解即可.【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.13.若4x2+mx+25是一个完全平方式,则m的值是±20.【考点】完全平方式.【分析】先根据平方项确定出这两个数,再根据完全平方公式:(a±b)2=a2±2ab+b2.利用乘积二倍项列式求解即可.【解答】解:∵4x2+mx+25是完全平方式,∴这两个数是2x和5,∴mx=±2×5×2x,解得m=±20.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,根据平方项确定出这两个数是求解的关键.14.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E的度数为12度.【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【解答】解:∵AB∥CD,∴∠BFC=∠ABE=66°,在△EFD中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC﹣∠D=12°.【点评】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.15.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=110°.【考点】平行线的性质;翻折变换(折叠问题).【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【解答】解:由折叠可得∠3=180°﹣2∠2=180°﹣110°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=110°,故答案为:110.【点评】此题主要考查了翻折变换和平行线的性质,关键是掌握两直线平行,同旁内角互补.16.如图,已知△ABC的∠ABC和∠ACB的平分线BE,CF交于点G,若∠BGC=115°,则∠A=50°.【考点】三角形内角和定理.【分析】根据三角形内角和定理求出∠GBC+∠GCB,根据角平分线的定义求出∠ABC+∠ACB,根据三角形内角和定理计算即可.【解答】解:∵∠BGC=115°,∴∠GBC+∠GCB=180°﹣115°=65°,∵BE,CF是△ABC的∠ABC和∠ACB的平分线,∴∠GBC=ABC,∠GCB=ACB,∴∠ABC+∠ACB=130°,∴∠A=180°﹣130°=50°,故答案为:50°.【点评】本题考查的是三角形内角和定理和角平分线的定义,掌握三角形内角和是180°是解题的关键.17.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD= 80°.【考点】多边形内角与外角.【分析】由多边形的内角和公式,即可求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=440°,即可求得∠GBC+∠C+∠CDG的度数,继而求得答案.【解答】解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC+∠C+∠CDG=720°﹣440°=280°,∴∠BGD=360°﹣(∠GBC+∠C+∠CDG)=80°.故答案为:80°.【点评】此题考查了多边形的内角和公式.此题难度不大,注意掌握整体思想的应用,解题的关键是根据多边形的内角和的计算公式求得多边形的内角和.18.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是2,那么△A1B1C1的面积是14.【考点】三角形的面积.【分析】连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,然后相加即可得解.【解答】解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC=2,S△A1AB1=S△ABB1=2,∴S△A1BB1=S△A1AB1+S△ABB1=2+2=4,同理:S△B1CC1=4,S△A1AC1=4,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=4+4+4+2=14.故答案为:14.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.三、解答题19.计算(1)|﹣2|﹣(2﹣π)0++(﹣2)3(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)(x+y)2(x﹣y)2(4)(x﹣2y+3z)(x+2y﹣3z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)直接利用绝对值以及零指数幂的性质和负整数指数幂分别化简求出答案;(2)直接利用积的乘方运算法则以及结合同底数幂的乘除法运算法则求出答案;(3)直接利用积的乘方运算法则求出答案;(4)直接利用多项式乘法运算法则求出答案.【解答】解:(1))|﹣2|﹣(2﹣π)0++(﹣2)3=2﹣1+3﹣8=﹣4;(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3=﹣4x8÷x6=﹣4x2;(3)原式=[(x+y)(x﹣y)]2=(x2﹣y2)2=x4﹣2x2y2+y4;(4)(x﹣2y+3z)(x+2y﹣3z)=x2﹣(2y﹣3z)2=﹣x2﹣4y2+12yz﹣9z2.【点评】此题主要考查了整式的混合运算以及幂的乘方运算和积的乘方运算法则等知识,正确掌握整式的混合运算法则是解题关键.20.因式分解:(1)3a2﹣27(2)a3﹣2a2+a(3)(x2+y2)2﹣4x2y2(4)a2(x﹣y)+16(y﹣x)【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式3,进而利用平方差公式分解因式得出答案;(2)首先提取公因式a,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(4)首先提取公因式(x﹣y),进而利用平方差公式分解因式得出答案.【解答】解:(1)3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3);(2)a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2;(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2;(4)a2(x﹣y)+16(y﹣x)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.21.先化简,再求值:(2a+b)2+5a(a+b)﹣(3a﹣b)2,其中a=3,b=﹣.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(2a+b)2+5a(a+b)﹣(3a﹣b)2=4a2+4ab+b2+5a2+5ab﹣9a2+6ab﹣b2=15ab,当a=3,b=﹣时,原式=15×3×(﹣)=﹣30.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,题目比较好,难度适中.22.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A'对应,得到△A′B′C′;(2)线段AA′与BB′的关系是:平行且相等;(3)求△ABC的面积.【考点】作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点B、C平移后的对应点B′、C′的位置,再与点A′顺次连接即可;(2)根据平移的性质解答;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A′B′C′如图所示;(2)AA′与BB′平行且相等;故答案为:平行且相等.(3)△ABC的面积=3×3﹣×2×3﹣×1×3﹣×1×2,=9﹣3﹣1.5﹣1,=9﹣5.5,=3.5.【点评】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=72°,求∠BED的度数.【考点】平行线的性质.【分析】直接利用三角形外角的性质得出∠ABD的度数,再利用角平分线的性质得出∠DBC的度数,进而利用平行线的性质得出∠BED的度数.【解答】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=72°﹣45°=27°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=27°,∵DE∥BC,∴∠BDE=27°,∴∠BED=180°﹣∠BDE﹣∠DBE=180°﹣27°﹣27°=126°.【点评】此题主要考查了平行线的性质以及三角形外角以及角平分线的性质,正确得出∠BDE的度数是解题关键.24.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.(1)若∠ABC=60°,则∠ADC=120°,∠AFD=30°;(2)BE与DF平行吗?试说明理由.【考点】平行线的判定与性质.【专题】常规题型.【分析】(1)根据四边形内角和为360°可计算出∠ADC=120°,再根据角平分线定义得到∠FDA=ADC=60°,然后利用互余可计算出∠AFD=30°;(2)先根据BE平分∠ABC交CD于E得∠ABE=∠ABC=30°,而∠AFD=30°则∠ABE=∠AFD,于是可根据平行线的判定方法得到BE∥DF.【解答】解:(1)∵∠A=∠C=90°,∠ABC=60°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=120°,∵DF平分∠ADC交AB于F,∴∠FDA=ADC=60°,∴∠AFD=90°﹣∠ADF=30°;故答案为120,30;(2)BE∥DF.理由如下:∵BE平分∠ABC交CD于E,∴∠ABE=∠ABC=×60°=30°,∵∠AFD=30°;∴∠ABE=∠AFD,∴BE∥DF.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.25.一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A、B、C、D、E、F分别藏在六张大纸牌的后面,如图,A、B、C、D、E、F所持的纸牌的前面分别写有六个算式:66;63+63;(63)3;(2×62)×(3×63);(22×32)3;(64)3÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A来找他的朋友,他可以找谁呢?说说你的看法.【考点】有理数的乘方.【专题】图表型.【分析】根据合并同类项法则;幂的乘方,底数不变指数相乘;积的乘方的性质以及同底数幂相除,底数不变指数相减对B、C、D、E、F分别进行计算即可得解.【解答】解:B:63+63=2×63;C:(63)3=69;D:(2×62)×(3×63)=6×102+3=66;E:(22×32)3=[(2×3)2]3=66;F:(64)3÷62=64×3﹣2=610;所以,A应找到D、E.【点评】本题考查了有理数的乘方,幂的乘方,积的乘方的性质,同底数幂的除法的性质,熟记各性质并理清指数的变化是解题的关键.26.你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:(1)(x﹣1)(x+1)=x2﹣1;(2)(x﹣1)(x2+x+1)=x3﹣1;(3)(x﹣1)(x3+x2+x+1)=x4﹣1;由此我们可以得到(x﹣1)(x99+x98+…+x+1)=x100﹣1;请你利用上面的结论,完成下面两题的计算:(1)299+298+…+2+1;(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.【考点】整式的混合运算.【专题】规律型.【分析】根据平方差公式,立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1,根据上述结论计算下列式子即可.【解答】解:根据题意:(1)(x﹣1)(x+1)=x2﹣1;(2)(x﹣1)(x2+x+1)=x3﹣1;(3)(x﹣1)(x3+x2+x+1)=x4﹣1;故(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1.根据以上分析:(1)299+298+297+…+2+1=(2﹣1)(299+298+297+…+2+1)=2100﹣1;(2)(﹣3)50+(﹣3)49+(﹣3)48+…(﹣3)+1=﹣(﹣3﹣1)[(﹣3)50+(﹣3)49+(﹣3)48+…(﹣3)+1]=﹣(﹣351﹣1)=.【点评】此题考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.27.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+5ab+2b2(2)要拼出一个长为a+3b,宽为2a+b的长方形,需要如图所示的2块,7块,3块.(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下关系式:(1)(2)x+y=m(3)x2﹣y2=m•n(4)其中正确的有BA.1个B.2个C.3个D.4个.【考点】整式的混合运算.【分析】(1)求出长方形的长和宽,根据面积公式求出即可;(2)求出长方形的面积,即可得出答案;(3)根据长方形的长和宽,结合图形进行判断,即可得出选项.【解答】解:(1)图③可以解释为等式是(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2,故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)(a+3b)(2a+b)=2a2+7ab+3b2,故答案为:2,7,3.(3)∵m2﹣n2=4xy,∴(1)正确;∵x+y=m,∴(2)正确;(3)(4)错误,即正确的有2个,故选B.【点评】本题考查了长方形的面积,整式的混合运算的应用,主要考查学生的计算能力和观察图形的能力.28.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有3个以线段AC为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数.(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠D、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【考点】多边形内角与外角;三角形内角和定理.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【解答】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点评】本题考查了三角形内角与外角的关系,以及多边形内角和.也考查了角平分线的定义,关键是掌握三角形的外角等于与它不相邻的两个内角的和.。

苏科版七年级下学期期中数学试题含答案解析

苏科版七年级下学期期中数学试题含答案解析

-第二学期期中考试七年级数学试卷 2016.4本试卷满分100分,考试时间为100分钟.一.选择题:(每题3分,共24分)1.下列各组图形,可由一个图形平移得到另一个图形的是 ( )2.下列各式从左到右的变形,是因式分解的是:( )A 、x x x x x 6)3)(3(692+-+=+- B 、()()103252-+=-+x x x xC 、()224168-=+-x x x D 、623ab a b =⋅3.下列算式① (3x )3=9x 3,② (-4)3×0.252=4,③ x 5÷(x 2÷x )=x 4,④(x +y )2=x 2+y 2, ⑤ (a -b )(a 2+2ab +b 2)=a 3-b 3,其中正确的有 ( )(A) 1个(B) 2个 (C) 3个 (D) 4个4.如图,已知∠1=∠2,则 ( )(A) ∠3=∠4(B) AB ∥CD (C) AD ∥BC (D) 以上结论都正确 (第4题)5.计算(x -y +3)(x +y -3)时,下列各变形中正确的是( ) (A) [(x -y )+3][(x +y )-3] (B) [(x +3)-y ][(x -3)+y ] (C) [x -(y +3)][ x +(y -3)] (D) [x -(y -3)][ x +(y -3)] 6.若x 2+kxy +16y 2是一个完全平方式,那么k 的值为 ( )(A) 4 (B) 8 (C) ±8 (D) ±167. 如图:内、外两个四边形都是正方形,阴影部分的宽为3,且面积为51,则内部小正方形的面积是( )A 、47B 、49C 、51D 、53(第7题)8. 若m =2125,n =375,则m 、n 的大小关系正确的是 ( )A .m > nB .m < nC .m = nD .大小关系无法确定二、填空题(每空2分,共24分)9、生物具有遗传多样性,遗传信息大多储存在DNA 分子上。

七年级数学下学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

七年级数学下学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

2015-2016学年某某省某某市洪泽县新区中学七年级(下)期中数学试卷一、选择题1.化简()0的结果为()A.2 B.0 C.1 D.2.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10 B.10、4、6 C.4、6、9 D.3、1、13.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.如图,下列判断正确的是(A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠A+∠ADC=180°,则AD∥BC5.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°6.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C.D.﹣7.下列各对数中,是二元一次方程3x﹣y=﹣7的解的是()A.B.C.D.8.算式(2+1)•(22+1)•(24+1)…(232+1)+1计算结果的个位数字是()A.4 B.6 C.2 D.8二、填空题9.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.10.若x2+mx+9是一个完全平方式,则m的值是.11.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.12.若一个多边形的内角和为1080°,则这个多边形边形.13.已知方程4x+3y=12,用x的代数式表示y为.14.计算:(﹣0.125)2016×82017=.15.若a m=2,则4(a3)m=.16.若x3=﹣8a9b6,则x.17.若a2+a+1=2,则(5﹣a)(6+a)=.18.如图,把一个长方形纸条ABCD沿EF折叠,若∠EFG=55°,则∠AEG=.三、解答题(本题共7小题,共66分)19.计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.分解因式(1)x2﹣36(2)2x3y﹣4x2y2+2xy3.21..22.如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)△A′B′C′的面积为.23.已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2;(2)x2+y2;(3)(x﹣y)2.24.如图,BD平分∠ABC,ED∥BC,∠1=28°.求∠2、∠3的度数.25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?2015-2016学年某某省某某市洪泽县新区中学七年级(下)期中数学试卷参考答案与试题解析一、选择题1.化简()0的结果为()A.2 B.0 C.1 D.【考点】零指数幂.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10 B.10、4、6 C.4、6、9 D.3、1、1【考点】三角形三边关系.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的混合运算.【专题】计算题;整式.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.如图,下列判断正确的是(A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠A+∠ADC=180°,则AD∥BC【考点】平行线的判定.【分析】分别利用平行线的判定定理判断得出即可.【解答】解:A、∵∠1=∠2,∴AB∥DC,故此选项错误;B、∵∠1=∠2,∴AB∥CD,故此选项正确;C、若∠A=∠3,无法判断AD∥BC,故此选项错误;D、若∠A+∠ADC=180°,则AB∥DC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.5.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°【考点】多边形内角与外角.【分析】利用多边形的内角和定理和外角和特征即可解决问题.【解答】解:因为n边形的内角和是(n﹣2)•180°,当边数增加一条就变成n+1,则内角和是(n﹣1)•180°,内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°;根据多边形的外角和特征,边数变化外角和不变.故选:D.【点评】本题主要考查了多边形的内角和定理与外角和特征.先设这是一个n边形是解题的关键.6.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C.D.﹣【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】运用同底数幂的乘法及负整数幂的法则计算.【解答】解:(﹣3)100×(﹣3)﹣101=(﹣3)100﹣101=﹣.故选:D.【点评】本题主要考查了同底数幂的乘法及负整数幂的知识,解题的关键是熟记法测.7.下列各对数中,是二元一次方程3x﹣y=﹣7的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将每一对x与y的值分别代入方程3x﹣y=﹣7,使方程左右两边相等的未知数的值即为二元一次方程3x﹣y=﹣7的解.【解答】解:A、把代入方程3x﹣y=﹣7,左边=3﹣4=﹣1≠右边,则不是方程3x﹣y=﹣7的解;B、把代入方程3x﹣y=﹣7,左边=6﹣3=3≠右边,则不是方程3x﹣y=﹣7的解;C、把代入方程3x﹣y=﹣7,左边=﹣3﹣4=﹣7=右边,则是方程3x﹣y=﹣7的解;D、把代入方程3x﹣y=﹣7,左边=﹣6+3=﹣3≠右边,则不是方程3x﹣y=﹣7的解.故选C.【点评】本题考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.8.算式(2+1)•(22+1)•(24+1)…(232+1)+1计算结果的个位数字是()A.4 B.6 C.2 D.8【考点】平方差公式;尾数特征.【专题】计算题.【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(232+1)+1=(22﹣1)•(22+1)•(24+1)…(232+1)+1=(24﹣1)•(24+1)…(232+1)+1=264﹣1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵64÷4=16,∴原式计算结果的个位数字为6.故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题9.一种细菌半径是0.0000036厘米,用科学记数法表示为 3.6×10﹣6厘米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.×10﹣6.×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若x2+mx+9是一个完全平方式,则m的值是±6 .【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.11.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是8ab .【考点】公因式.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是 8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.12.若一个多边形的内角和为1080°,则这个多边形8 边形.【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8,故答案为:8.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.13.已知方程4x+3y=12,用x的代数式表示y为y=.【考点】解二元一次方程.【分析】把x看做已知数求出y即可.【解答】解:4x+3y=12,解得:y=.故答案为:y=.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.计算:(﹣0.125)2016×82017= 8 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方,即可解答.【解答】解:(﹣0.125)2016×82017×8)2016×8=(﹣1)2016×8=1×8=8.故答案为:8.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方.15.若a m=2,则4(a3)m= 32 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,即可解答.【解答】解:4(a3)m=4a3m=4(a m)3=4×23=4×8=32,故答案为:32.【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方.16.若x3=﹣8a9b6,则x =﹣2a3b2.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法则进行解答即可.【解答】解:∵x3=﹣8a9b6,∴x3=(﹣2a3b2)3,∴x=﹣2a3b2.故答案为:=﹣2a3b2.【点评】本题考查的是幂的乘方与积的乘方法则,先根据题意得出x3=(﹣2a3b2)3是解答此题的关键.17.若a2+a+1=2,则(5﹣a)(6+a)= 29 .【考点】多项式乘多项式.【分析】根据题意先求出a2+a的值,再根据多项式乘以多项式的法则求出要求的式子,然后代入计算即可.【解答】解:∵a2+a+1=2,∴a2+a=1,∴(5﹣a)(6+a)=30﹣a﹣a2=30﹣(a2+a)=30﹣1=29;故答案为:29.【点评】此题考查了多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.18.如图,把一个长方形纸条ABCD沿EF折叠,若∠EFG=55°,则∠AEG= 70°.【考点】平行线的性质.【分析】此题要求∠AEG的度数,只需求得其邻补角的度数,根据平行线的性质以及折叠的性质就可求解.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=55°,由折叠的性质得:∠GEF=∠DEF=55°,∴∠AEG=180°﹣55°×2=70°.故答案为:70°.【点评】本题考查的是平行线的性质、翻折变换(折叠问题),正确观察图形,熟练掌握平行线的性质是解题的关键.三、解答题(本题共7小题,共66分)19.计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,以及同底数幂的乘除法则计算即可得到结果;(3)原式利用完全平方公式,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用平方差公式及完全平方公式化简即可得到结果.【解答】解:(1)原式=x4y2•x6y3=x10y5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.分解因式(1)x2﹣36(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)根据平方差公式分解即可;(2)先提公因式,再根据完全平方公式分解即可.【解答】解:(1)x2﹣36=(x+6)(x﹣6);(2)2x3y﹣4x2y2+2xy3=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.【点评】本题考查了分解因式的应用,能熟记分解因式的方法是解此题的关键.21..【考点】解二元一次方程组.【分析】由(2)﹣(1)即可求出x的值,然后把x的值代入方程即可求出y的值.【解答】解:由(2)﹣(1)得:x=3,把它代入(1)得:y=2,∴方程组的解为.【点评】本题主要考查用加减消元法解二元一次方程组.22.如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)△A′B′C′的面积为8 .【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)找出AB的中点D,连接CD即可;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)如图CD即为所求;(3)S△A′B′C′=×4×4=8.故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2;(2)x2+y2;(3)(x﹣y)2.【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:(1)x2y+xy2=xy(x+y)=4×6=24.(2)x2+y2=(x+y)2﹣2xy=62﹣2×4=26.(3)(x﹣y)2=(x+y)2﹣4xy=62﹣4×4=20.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.24.如图,BD平分∠ABC,ED∥BC,∠1=28°.求∠2、∠3的度数.【考点】平行线的性质.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:如图所示:∵BD平分∠ABC,∴∠4=∠1=28°,∵ED∥BC,∴∠2=∠4=28°,∴∠3=∠1+∠2=28°+28°=56°.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【考点】因式分解的应用.【专题】阅读型.【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.。

【苏科版】七年级下期中数学试卷含答案解析全套资源

【苏科版】七年级下期中数学试卷含答案解析全套资源

“超级资源 +学科”看看能搜出什么! !2015-2016 学年江苏省无锡市江阴市暨阳中学七年级(下)期中数学试卷一、选择题(共 10 小题,每题 3 分,满分 30 分)1.以下图形中,不可以经过此中一个四边形平移获得的是()A .B .C .D .2.以下计算正确的选项是( )A . a 2?a 3=a 6B . a 6÷a 3=a 2C .( a 2) 3=a 6D .( 2a )3 =6a 33. 9x 2﹣ mxy+16y 2是一个完整平方式,那么 m 的值是()A . 12B .﹣ 12C .±12D . ±244.以下各式从左到右的变形,是因式分解的是( )A . x 2﹣9+6x= ( x+3)( x ﹣ 3) +6xB . x 2﹣8x+16= (x ﹣ 4) 2 C .( x+5)( x ﹣2) =x 2+3x ﹣ 10 D . 6ab=2a?3b5.若( x ﹣5)( x+3) =x 2+mx ﹣ 15,则( )A . m=8B . m=﹣ 8C . m=2D . m=﹣ 26.以下长度的 3 条线段,能构成三角形的是()A . 1,2,3B .2, 3,4C .6,6, 12D .5, 6,12 7.如图,不必定能推出a ∥b 的条件是()A .∠ 1=∠ 3B .∠ 2=∠ 4C .∠ 1= ∠ 4D .∠ 2+∠ 3=180°8.如图,小亮从 A 点出发行进 10m ,向右转一角度,再行进10m ,又向右转一同样角度,,这样向来走下去,他回到出发点 A 时,一共走了 180m ,则他每次转动的角度是()A . 15°B . 18°C .20°D .不可以确立9.如图, AB ∥CD ,直线 EF 分别交 AB ,CD 于 E,F 两点,∠BEF 的均分线交CD 于点 G,若∠ EFG=72 °,则∠ EGF 等于()A . 36°B. 54°C.72°D.108°10.如图,在△ABC 中,∠ A=52 °,∠ ABC 与∠ ACB 的角均分线交于D1,∠ ABD 1与∠ ACD 1的角均分线交于点 D2,依此类推,∠ABD 4与∠ ACD 4的角均分线交于点D5,则∠ BD 5C 的度数是()A . 56°B. 60°C.68°D.94°二、填空题:11.计算:(﹣a)2÷(﹣ a) =,2007×(﹣4)2008=.12.遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm ,用科学记数法表示为cm.13.已知一个五边形的 4 个内角都是100°,则第 5 个内角的度数是度.14.已知 a m=6,an=3,则 am+n=.15.如图,小明从点 A 向北偏东75°方向走到 B 点,又从 B 点向南偏西30°方向走到点 C,则∠ ABC 的度数为.16.如图,是我们生活中常常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠ 1 和∠ 2,则∠ 1+∠2=度.17 2 2..已知 s+t=4,则 s ﹣ t +8t=18 .如图,长方形ABCD 中, AB=6 ,第 1 次平移将长方形ABCD 沿 AB 的方向向右平移 5 个单位,获得长方形 A 1B1C1D 1,第 2 次平移将长方形 A 1B 1C1D 1沿 A1B1的方向向右平移 5 个单位,获得长方形A B C D n次平移将长方形A﹣B﹣C﹣D﹣沿 A ﹣ B ﹣的方向平移 5 个单位,获得长方形2 2 22,第n 1 n 1 n 1 n 1 n 1 n 1A nB nC nD n( n> 2),则 AB n长为.三、解答题:(本大题共8 小题,共62 分,)19.计算:( 1)(﹣2 ﹣3 0( 2).3)﹣2 +3 ;( 3)(﹣ 2a)3+( a4)2÷(﹣ a)5(4)( 2a﹣b﹣ 1)( 1﹣ b+2a)20.把以下各式分解因式:(1) 3a 2﹣ 6a2b+2ab;( 2) a2( x﹣ y)+9b2( y﹣ x)(2 2 2 2 2 3) 2x ﹣ 8xy+8y (4)( x +9)﹣ 36x .21 .先化简,再求值( x﹣ 2 )2+2 ( x+2)( x﹣ 4)﹣( x﹣3 )( x+3),此中 x= ﹣ 1.22.如图:在正方形网格中有一个△ ABC,按要求进行以下作图(只好借助于网格).(1)画出△ ABC 中 BC 边上的高 AG 和 BC 边上的中线 AE .(2)画出先将△ ABC 向右平移 5 格,再向上平移 3 格后的△ DEF .( 3)△ ABC 的面积为.“超级资源 +学科”看看能搜出什么!!23 .关于任何实数,我们规定符号=ad﹣ bc,比如:=1×4﹣ 2×3=﹣ 2(1)依照这个规律请你计算的值;(2)依照这个规定请你计算,当a 2﹣ 3a+1=0 时,求的值.24 .如图, BD 是△ ABC 的角均分线, DE∥ BC ,交 AB 于点 E,∠ A=50 °,∠ BDC=75 °.求∠ BED 的度数.25.如图 1 是一个长为 4a、宽为 b 的长方形,沿图中虚线用剪刀均匀分红四块小长方形,而后用四块小长方形拼成的一个“回形”正方形(如图 2).①图 2 中的暗影部分的面积为;②察看图 2 请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;③依据( 2)中的结论,若x+y=5 , x?y=,则(x﹣y)2=;④ 实质上经过计算图形的面积能够探究相应的等式.如图 3,你发现的等式是.26.如图,直线OM ⊥ ON ,垂足为 O,三角板的直角极点 C 落在∠ MON 的内部,三角板的另两条直角边分别与 ON、 OM 交于点 D 和点 B.( 1)填空:∠ OBC+ ∠ ODC=;( 2)如图 1:若 DE 均分∠ ODC , BF 均分∠ CBM ,求证: DE ⊥BF:( 3)如图 2:若 BF 、 DG 分别均分∠ OBC 、∠ ODC 的外角,判断BF 与 DG 的地点关系,并说明原因.2015-2016 学年江苏省无锡市江阴市暨阳中学七年级(下)期中数学试卷参照答案与试题分析一、选择题(共10 小题,每题 3 分,满分 30 分)1.以下图形中,不可以经过此中一个四边形平移获得的是()A.B.C.D.【考点】生活中的平移现象.【剖析】依据平移与旋转的性质得出.【解答】解: A 、能经过此中一个四边形平移获得,错误;B、能经过此中一个四边形平移获得,错误;C、能经过此中一个四边形平移获得,错误;D、不可以经过此中一个四边形平移获得,需要一个四边形旋转获得,正确.应选 D.【评论】本题考察了图形的平移,图形的平移只改变图形的地点,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,致使误选.2.以下计算正确的选项是()A . a 2?a3=a6B. a6÷a3=a2C.( a2)3=a6D.( 2a)3=6a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【剖析】依据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.2 3 5【解答】解: A 、a ?a =a ,错误;63 3B、 a ÷a =a ,错误;2 3 6C、( a ) =a ,正确;D、( 2a)3=8a3,错误;应选 C【评论】本题考察同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方,重点是依据法例进行计算.3. 9x 2﹣ mxy+16y 2是一个完整平方式,那么 m 的值是()A . 12B .﹣ 12C .±12D . ±24【考点】完整平方式.【剖析】依据( 3x ±4y 2 2 2能够求出 m 的值.) =9x ±24xy+16y 【解答】解:∵( 3x ±4y ) 2=9x 2±24xy+16y 2,∴在 9x 2+mxy+16y 2中, m=±24.应选答案 D .【评论】本题是完整平方公式的应用,两数的平方和,再加上或减去它们积的2 倍,就构成了一个完整平方式.注意积的 2 倍的符号,防止漏解.4.以下各式从左到右的变形,是因式分解的是( )A . x 2﹣9+6x= ( x+3)( x ﹣ 3) +6xB . x 2 ﹣8x+16= (x ﹣ 4)22C .( x+5)( x ﹣2) =x +3x ﹣ 10D . 6ab=2a?3b【考点】因式分解的意义.【剖析】依据因式分解就是把一个多项式化为几个整式的积的形式的定义,利用清除法求解.【解答】解: A 、右侧不是积的形式,故本选项错误;B 、是运用完整平方公式,x 2﹣ 8x+16= ( x ﹣ 4) 2,故本选项正确;C 、是多项式乘法,不是因式分解,故本选项错误;D 、 6ab 不是多项式,故本选项错误.应选 B .【评论】本题考察了因式分解的定义,切记定义是解题的重点.5.若( x ﹣5)( x+3) =x 2+mx ﹣ 15,则()A . m=8B . m=﹣ 8C . m=2D . m=﹣ 2【考点】多项式乘多项式.【专题】计算题.【剖析】已知等式左侧利用多项式乘多项式法例计算,利用多项式相等的条件即可求出m 的值.【解答】解:依据题意得:(x ﹣ 5)( x+3) =x 2﹣2x ﹣ 15=x 2+mx ﹣ 15,则 m= ﹣【评论】本题考察了多项式乘多项式,娴熟掌握运算法例是解本题的重点.6.以下长度的 3 条线段,能构成三角形的是()A. 1,2,3 B.2, 3,4 C.6,6, 12 D.5, 6,12【考点】三角形三边关系.【剖析】依据“三角形随意两边之和大于第三边,随意两边之差小于第三边”对各选项进行进行逐个剖析即可.【解答】解:依据三角形的三边关系,得A 、 1+2=3,不可以构成三角形,不切合题意;B、 2+3> 4,能够构成三角形,切合题意;C、 6+6=12,不可以够构成三角形,不切合题意;D、 5+6< 12,不可以够构成三角形,不切合题意.应选: B.【评论】本题主要考察了三角形三边关系,判断可否构成三角形的简易方法是看较小的两个数的和能否大于第三个数.7.如图,不必定能推出a∥ b 的条件是()A .∠ 1=∠ 3 B.∠ 2=∠ 4 C.∠ 1= ∠ 4 D.∠ 2+∠ 3=180°【考点】平行线的判断.【剖析】在复杂的图形中拥有相等关系或互补关系的两角第一要判断它们是不是同位角、内错角或同旁内角,被判断平行的两直线能否由“三线八角”而产生的被截直线.【解答】解: A 、∵∠ 1 和∠ 3 为同位角,∠ 1=∠ 3,∴ a∥ b,故 A 选项正确;B、∵∠ 2 和∠ 4 为内错角,∠ 2=∠4,∴ a∥ b,故 B 选项正确;C、∵∠ 1=∠ 4,∠3+∠ 4=180°,∴∠ 3+∠ 1=180°,不切合同位角相等,两直线平行的条件,故C选项错误;D、∵∠ 2 和∠ 3 为同位角,∠2+∠3=180 °,∴ a∥b,故 D 选项正确.应选: C.【评论】正确辨别“三线八角”中的同位角、内错角、同旁内角是正确答题的重点,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.如图,小亮从 A 点出发行进10m,向右转一角度,再行进10m,又向右转一同样角度,,这样向来走下去,他回到出发点 A 时,一共走了180m,则他每次转动的角度是()A. 15°B. 18°C.20°D.不可以确立【考点】多边形内角与外角.【剖析】第一次回到出发点 A 时,所经过的路线正好构成一个的正多边形,用180÷10=18,求得边数,再依据多边形的外角和为360°,即可求解.【解答】解:∵第一次回到出发点 A 时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:180÷10=18 ,依据多边形的外角和为360°,∴则他每次转动的角度为:360°÷18=20°,应选: C.【评论】本题考察了多边形的内角与外角,解决本题的重点是明确第一次回到出发点 A 时,所经过的路线正好构成一个正多边形.9.如图, AB ∥CD ,直线 EF 分别交 AB ,CD 于 E,F 两点,∠BEF 的均分线交CD 于点 G,若∠ EFG=72 °,则∠ EGF 等于()A. 36°B. 54°C.72°D.108°【考点】平行线的性质;角均分线的定义.【专题】计算题.【剖析】依据平行线及角均分线的性质解答.【解答】解:∵ AB ∥CD ,∴∠ BEF+ ∠ EFG=180°,∴∠ BEF=180 ﹣ 72=108°;∵EG 均分∠ BEF,∴∠ BEG=54 °;∵AB ∥ CD,∴∠ EGF= ∠ BEG=54 °.应选 B.【评论】平行线有三个性质,其基本图形都是两条平行线被第三条直线所截,解答此类题重点是在复杂图形之中辨识出应用性质的基本图形,进而利用其性质和已知条件计算.10.如图,在△ABC 中,∠ A=52 °,∠ ABC 与∠ ACB 的角均分线交于D1,∠ ABD 1与∠ ACD 1的角均分线交于点 D2,依此类推,∠ABD 4与∠ ACD 4的角均分线交于点D5,则∠ BD 5C 的度数是()A. 56°B. 60°C.68°D.94°【考点】三角形内角和定理;角均分线的定义.【专题】规律型.【剖析】依据角均分线的性质和三角形的内角和定理可得.【解答】解:∵∠ A=52 °,∴∠ ABC+ ∠ ACB=180 °﹣ 52°=128 °,又∠ ABC 与∠ ACB 的角均分线交于 D 1,∴∠ ABD =∠CBD =∠ABC,∠ACD1=∠BCD =∠ACB,1 1 1∴∠ CBD 1+∠ BCD 1= (∠ ABC+ ∠ ACB )= ×128 °=64 °,∴∠ BD 1C=180°﹣(∠ ABC+∠ ACB)=180°﹣64°=116°,同理∠ BD 2C=180°﹣(∠ ABC+∠ ACB)=180°﹣96°=84°,依此类推,∠BD 5C=180°﹣(∠ ABC+∠ ACB)=180°﹣124°=56°.应选 A.【评论】本题主要考察角均分线的性质和三角形的内角和定理.二、填空题:22007200811.计算:(﹣ a ) ÷(﹣ a ) = ﹣ a , ×(﹣ 4) = ﹣ 4 .【剖析】依据同底数幂的除法底数不变指数相减,可得答案;依据同底数幂的乘法底数不变指数相加,可得积的乘方,依据积的乘方,可得答案.【解答】解:(﹣ a )2a20074 20084 2007 = 4a =4, ÷(﹣ ) ﹣ ,×(﹣ )×(﹣ )] ×(﹣ ) ﹣故答案为:﹣ a ,﹣ 4.【评论】本题考察了同底数幂的除法,熟记法例并依据法例计算是解题重点.12.遗传物质脱氧核糖核酸( DNA )的分子直径为 0.000 0002cm ,用科学记数法表示为2×10 ﹣ 7cm .【考点】科学记数法 —表示较小的数.【剖析】绝对值小于 1 的正数也能够利用科学记数法表示,一般形式为 a ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左侧起第一个不为零的数字前方的0 的个数所决定,小数点移动的位数的相反数即是n 的值.【解答】解: 0.000 0002=2 ×10﹣7.故答案为: 2×10﹣7.【评论】本题主要考察用科学记数法表示较小的数,一般形式为a ×10﹣ n,此中 1≤|a|< 10, n 为由原数左侧起第一个不为零的数字前方的0 的个数所决定.13.已知一个五边形的4 个内角都是 100°,则第5 个内角的度数是 140 度.【考点】多边形内角与外角.【剖析】利用多边形的内角和定理即可求出答案.【解答】解:因为五边形的内角和是(5﹣ 2) 180°=540°, 4 个内角都是100°,因此第 5 个内角的度数是540﹣ 100×4=140°.【评论】本题主要考察了多边形的内角和公式,是一个比较简单的问题.mnm+n14.已知 a =6,a =3,则 a = 18 .【剖析】依据同底数幂的乘法底数不变指数相加,可得答案.【解答】解: a m+n =a m ?a n=6×3=18,【评论】本题考察了同底数幂的乘法,利用同底数幂的乘法底数不变指数相加是解题重点.15.如图,小明从点 A 向北偏东75°方向走到 B 点,又从 B 点向南偏西30°方向走到点 C,则∠ ABC 的度数为45° .【考点】方向角;平行线.【专题】计算题.【剖析】依据题意画出方向角,利用平行线的性质解答.【解答】解:如图,∠1=75 °,∵N1A∥N2B,∴∠ 1=∠ 2+∠ 3=75°,∵∠ 3=30°,∴∠ 2=75°﹣∠ 3=75°﹣ 30°=45 °,即∠ ABC=45 °.【评论】解答此类题需要从运动的角度,正确画出方向角,依据平行线的性质解答即可.16.如图,是我们生活中常常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片刻会形成∠ 1 和∠ 2,则∠ 1+∠2= 90 度.【考点】平行线的性质.【专题】计算题;转变思想.【剖析】抽象出数学图形,奇妙结构协助线:平行线.依据平行线的性质商讨角之间的关系.【解答】解:以下图,过M 作 MN ∥ a ,则 MN ∥ b ,依据平形线的性质:两条直线平行,内错角相等.得∠ 1=∠ AMN ,∠ 2=∠ BMN , ∴∠ 1+∠ 2=∠ 3=90°.故填 90.【评论】本题设计情境新奇,考察了简单的平行线的性质知识.经过做本题,提升了学生用数学解决实质问题的能力.17.已知 s+t=4,则 s 2﹣ t 2+8t=16 .【考点】完整平方公式.【剖析】 依据平方差公式可得s 2﹣ t 2+8t= s+ts t +8t ,把 s+t=4 代入可得原式 =4 s t +8t=4 s+t),( )(﹣) ( ﹣ ) (再代入即可求解.【解答】解:∵ s+t=4,22∴ s ﹣ t +8t=( s+t )( s ﹣ t ) +8t=4( s ﹣ t ) +8t=4( s+t )=16.故答案为: 16.【评论】考察了平方差公式,以及整体思想的运用.18.如图,长方形ABCD 中, AB=6 ,第 1 次平移将长方形 ABCD 沿 AB 的方向向右平移 5 个单位,获得“超级资源 +学科”看看能搜出什么!!A 2B2C2D2,第 n 次平移将长方形 A n﹣1B n﹣1C n﹣1D n﹣1沿 A n﹣1B n﹣1的方向平移 5 个单位,获得长方形A nB nC nD n( n> 2),则 AB n长为5n+6 .【考点】平移的性质.【专题】规律型.【剖析】每次平移 5 个单位, n 次平移 5n 个单位,加上AB 的长即为 AB n的长.【解答】解:每次平移 5 个单位, n 次平移 5n 个单位,即BN 的长为 5n,加上 AB 的长即为AB n的长.AB n=5n+AB=5n+6 ,故答案为: 5n+6 .【评论】本题考察了平移的性质:① 平移不改变图形的形状和大小;② 经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三、解答题:(本大题共8 小题,共62 分,)19.计算:( 1)(﹣2 ﹣3 0( 2).3)﹣2 +3 ;(3)(﹣ 2a)3+( a4)2÷(﹣ a)5(4)( 2a﹣b﹣ 1)( 1﹣b+2a)【考点】整式的混淆运算;零指数幂;负整数指数幂.【剖析】( 1)依据零指数幂和负整数指数幂计算即可;(2)依据单项式与多项式的乘法计算即可;(3)依据整式的混淆计算解答即可;(4)依据完整平方公式计算即可.【解答】解:(1)(﹣ 3)2﹣2﹣3+3=9 ﹣+1=9( 2)= .3 4 2 5 3 3 3 ( 3)(﹣ 2a) +( a )÷(﹣ a)=﹣ 8a ﹣ a =﹣ 9a( 4)( 2a﹣b﹣ 1)( 1﹣ b+2a) =( 2a﹣ b)2﹣ 1=4a2﹣4ab+b2﹣ 1.【评论】本题考察整式的混淆计算,重点是依据整式混淆计算的次序解答.20.把以下各式分解因式:( 1) 3a 2﹣ 6a 2b+2ab ;(2) a 2( x ﹣ y ) +9b 2( y ﹣ x )( 3) 2x 2﹣ 8xy+8y 2(4)( x 2+9) 2﹣ 36x 2.【考点】提公因式法与公式法的综合运用.【剖析】( 1)提取公因式a 即可分解;( 2)提公因式( x ﹣ y ),而后利用平方差公式分解;( 3)第一提公因式 2,而后利用公式法分解;( 4)利用平方差公式分解,而后利用完整平方公式分解即可.【解答】解:( 1)原式 =a ( 3a ﹣2ab+2b );( 2)原式 =( x ﹣ y )( a 2﹣ 9b 2)=( x ﹣ y )( a+3b )( a ﹣ 3b ); ( 3)原式 =2( x 2﹣ 4xy+4y 2) =2( x ﹣ 2y ) 2;( 4)原式 =( x 2+9+6x )( x 2+9﹣6x ) =(x+3 ) 2( x ﹣ 3) 2.【评论】本题考察了提公因式法与公式法分解因式,要求灵巧使用各样方法对多项式进行因式分解,一般来说,假如能够先提取公因式的要先提取公因式,再考虑运用公式法分解.21.先化简,再求值( x ﹣ 2)2+2( x+2)( x ﹣ 4)﹣( x ﹣3)( x+3),此中 x= ﹣ 1.【考点】整式的混淆运算 —化简求值.【专题】计算题.【剖析】原式利用完整平方公式,平方差公式,以及多项式乘以多项式法例计算,去括号归并获得最简结果,把 x 的值代入计算即可求出值.【解答】解:原式 =x24x+4+2x 2 4x 16 x 2﹣ ﹣ ﹣ ﹣ +9= ﹣8x ﹣ 3, 当 x= ﹣ 1 时,原式 =8﹣ 3=5 .【评论】本题考察了整式的混淆运算﹣化简求值,娴熟掌握运算法例是解本题的重点.22.如图:在正方形网格中有一个△ ABC ,按要求进行以下作图(只好借助于网格).( 1)画出 △ ABC 中 BC 边上的高 AG 和 BC 边上的中线 AE .( 2)画出先将 △ ABC 向右平移 5 格,再向上平移 3 格后的 △ DEF .( 3) △ ABC 的面积为 3 .【考点】作图-平移变换.【剖析】( 1)过点 A 向线段 CB 的延伸线作垂线,垂足为G,找出线段BC 的中点 E,连结 AE ,则线段AG , AE 即为所求;(2)依据图形平移的性质画出△ DEF 即可;(3)依据三角形的面积公式即可得出结论.【解答】解:( 1)如图,线段 AG , AE 即为所求;(2)以下图;(3) S△ABC = ×3×2=3 .故答案为: 3.【评论】本题考察的是作图﹣平移变换,熟知图形平移不变性的性质是解答本题的重点.23.关于任何实数,我们规定符号=ad﹣ bc,比如:=1×4﹣ 2×3=﹣ 2( 1)依照这个规律请你计算的值;( 2)依照这个规定请你计算,当a 2﹣ 3a+1=0 时,求的值.【考点】整式的混淆运算—化简求值;有理数的混淆运算.【专题】新定义.【剖析】( 1)依据已知睁开,再求出即可;( 2)依据已知睁开,再算乘法,归并同类项,变形后辈入求出即可.【解答】解:( 1)原式 =﹣ 2×5﹣ 3×4=﹣ 22;( 2)原式 =( a+1)( a ﹣ 1)﹣ 3a ( a ﹣ 2)=a 2﹣ 1﹣ 3a 2+6a=﹣ 2a 2+6a ﹣ 1,∵ a2﹣3a+1=0, ∴ a 2﹣ 3a=﹣ 1,∴原式 =﹣2( a 2﹣ 3a )﹣ 1=﹣ 2×(﹣ 1)﹣ 1=1.【评论】本题考察了整式的混淆运算和求值的应用,解本题的重点是能依据整式的运算法例睁开,难度适中.24.如图, BD 是 △ ABC 的角均分线, DE ∥ BC ,交 AB 于点 E ,∠ A=50 °,∠ BDC=75 °.求∠ BED 的度数.【考点】平行线的性质.【剖析】由 DE ∥ BC ,依据平行线的性质可得出 “∠ C=∠ ADE ,∠ AED= ∠ABC ,∠ EDB= ∠ CBD ”,依据角平行线的性质可设∠ CBD= α,则∠ AED=2 α,经过角的计算得出 α=25 °,再依照互补角的性质可得出结论.【解答】解:∵ DE ∥ BC ,∴∠ C=∠ ADE ,∠ AED= ∠ ABC ,∠ EDB= ∠ CBD ,又∵ BD 均分∠ ABC ,∴∠ CBD= ∠ ABD= ∠ EDB ,设∠ CBD= α,则∠ AED=2 α.∵∠ A+ ∠ AED+ ∠ ADE=180 °,∠ ADE+ ∠ EDB+ ∠ BDC=180 °,∴∠ A+ ∠ AED= ∠ EDB+ ∠BDC ,即 50°+2 α=α+75°,解得: α=25°.又∵∠ BED+ ∠ AED=180 °,∴∠ BED=180 °﹣∠ AED=180 °﹣ 25°×2=130°.当你的经济还撑不起你的梦想时,那你就应当扎实的去做!【评论】本题考察了平行线的性质、三角形内角和定理以及角的计算,解题的重点是计算出∠AED=50 °.本题属于基础题,难度不大,解决该题型题目时,依据平行线的性质得出相等(或互补)的角是重点.25.如图 1 是一个长为4a、宽为 b 的长方形,沿图中虚线用剪刀均匀分红四块小长方形,而后用四块小长方形拼成的一个“回形”正方形(如图 2).①图 2 中的暗影部分的面积为( b﹣ a)2;②察看图 2 请你写出( a+b)2、( a﹣ b)2、 ab 之间的等量关系是( a+b)2﹣( a﹣b)2=4ab ;③依据( 2)中的结论,若x+y=5 , x?y=216 ;,则( x﹣ y) =④ 实质上经过计算图形的面积能够探究相应的等式.如图 3,你发现的等式是( a+b) ?( 3a+b) =3a 2+4ab+b2.【考点】完整平方公式的几何背景.【剖析】① 表示出暗影部分正方形的边长,而后依据正方形的面积公式列式即可;② 依据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可;③将( x﹣ y)2变形为( x+y )2﹣ 4xy,再代入求值即可;④ 依据大长方形的面积等于各部分的面积之和列式整理即可.【解答】解:① (b﹣a)2;②(a+b)2﹣( a﹣ b)2=4ab;③当 x+y=5 ,x?y=时,(x﹣ y)2=( x+y )2﹣4xy =52﹣ 4×=16;④(a+b) ?(3a+b) =3a 2+4ab+b2.故答案为:①( b﹣ a)2;②( a+b)2﹣( a﹣ b)2=4ab;③ 16;④( a+b)?( 3a+b)=3a2+4ab+b2.【评论】本题考察了完整平方公式的几何背景,此类题目重点在于同一个图形的面积用两种不一样的方法表示.26.如图,直线OM ⊥ ON ,垂足为 O,三角板的直角极点 C 落在∠ MON 的内部,三角板的另两条直角边分别与 ON、 OM 交于点 D 和点 B.(1)填空:∠ OBC+ ∠ ODC= 180°;(2)如图 1:若 DE 均分∠ ODC , BF 均分∠ CBM ,求证: DE ⊥BF:( 3)如图 2:若 BF 、 DG 分别均分∠ OBC 、∠ ODC 的外角,判断BF 与 DG 的地点关系,并说明原因.【考点】垂线;平行线的判断.【剖析】( 1)先利用垂直定义获得∠MON=90 °,而后利用四边形内角和求解;(2)延伸 DE 交 BF 于 H,如图,因为∠ OBC+ ∠ ODC=180 °,∠ OBC+ ∠CBM=180 °,依据等角的补角相等获得∠ ODC= ∠CBM ,因为 DE 均分∠ ODC , BF 均分∠ CBM ,则∠ CDE= ∠ FBE ,而后依据三角形内角和可得∠ BHE= ∠ C=90 °,于是 DE ⊥ BF;(3)作 CQ∥ BF,如图 2,因为∠ OBC+ ∠ ODC=180 °,则∠ CBM+ ∠ NDC=180 °,再利用 BF 、 DG 分别平分∠ OBC、∠ ODC 的外角,则∠GDC+ ∠ FBC=90 °,依据平行线的性质,由CQ∥BF 得∠ FBC= ∠BCQ ,加上∠ BCQ+ ∠ DCQ=90 °,则∠ DCQ= ∠GDC ,于是可判断CQ∥ GD,因此 BF ∥ DG.【解答】( 1)解:∵ OM ⊥ ON,∴∠ MON=90 °,在四边形 OBCD 中,∠ C= ∠ BOD=90 °,∴∠ OBC+ ∠ ODC=360 °﹣ 90°﹣ 90°=180°;故答案为180°;(2)证明:延伸 DE 交 BF 于 H,如图 1,∵∠ OBC+ ∠ ODC=180 °,而∠ OBC+ ∠ CBM=180 °,∴∠ ODC= ∠ CBM ,∵ DE 均分∠ ODC , BF 均分∠ CBM ,“超级资源 +学科”看看能搜出什么!!∴∠ CDE= ∠ FBE ,而∠ DEC= ∠ BEH ,∴∠ BHE= ∠ C=90 °,∴DE⊥ BF;(3)解: DG∥ BF.原因以下:作 CQ∥ BF,如图 2,∵∠ OBC+ ∠ ODC=180 °,∴∠ CBM+ ∠ NDC=180 °,∵ BF、 DG 分别均分∠ OBC、∠ ODC 的外角,∴∠ GDC+ ∠ FBC=90 °,∵ CQ∥ BF,∴∠ FBC= ∠ BCQ,而∠ BCQ+ ∠ DCQ=90 °,∴∠ DCQ= ∠ GDC ,∴CQ∥ GD,∴BF∥ DG .【评论】本题考察了垂线的定义:当两条直线订交所成的四个角中,有一个角是直角时,就说这两条直线相互垂直,此中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.也考察了平行线的判断与性质.当你的经济还撑不起你的梦想时,那你就应当扎实的去做!。

七年级数学下学期期中试卷(含解析) 苏科版 (2)

七年级数学下学期期中试卷(含解析) 苏科版 (2)

江苏省南京市六合中学2015-2016学年七年级(下)期中数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面四个图形中,∠1与∠2是对顶角的图形有()A.1个B.2个C.3个D.4个2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()A.B.C.D.3.下列说法中,不正确的是()A.10的立方根是 B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.14.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.45.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)7.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)8.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1 B.任何数C.2 D.1或29.若方程组中的x是y的2倍,则a等于()A.﹣9 B.8 C.﹣7 D.﹣610.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2二、填空题:本大题共10小题,共30分,只要求填写最后结果,每小题填对得3分.11.的平方根是.12.若直线AB、CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.14.如果=1.732,=5.477,那么0.0003的平方根是.15.把方程x+y=2改写成用x表示y的式子是.16.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个钝角;④在同一平面内,同平行于一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中正确命题的序号是.17.已知(x﹣1)2=3,则x=.18.已知和是关于x,y的二元一次方程2ax﹣by=2的两个解,则a=,b=.19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.21.(6分)计算:(﹣)2﹣﹣+﹣|﹣6|.22.(8分)解方程组:(1)(2).23.(8分)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.24.(8分)在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.25.(10分)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN∴∠GMN=∠BMN同理∠GNM=∠DNM.∵AB∥CD,∴∠BMN+∠DNM=∴∠GMN+∠GNM=∵∠GMN+∠GNM+∠G=∴∠G=∴MG与NG的位置关系是(2)把上面的题设和结论,用文字语言概括为一个命题:.26.(10分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.27.(10分)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.2015-2016学年江苏省南京市六合中学七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面四个图形中,∠1与∠2是对顶角的图形有()A.1个B.2个C.3个D.4个【考点】对顶角、邻补角.【分析】根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,即可解答.【解答】解:根据对顶角的定义可知:只有第3个图中的是对顶角,其它都不是.故选:A.【点评】本题考查对顶角的定义,解决本题的关键是熟记对顶角的定义.2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()A.B.C.D.【考点】生活中的平移现象.【分析】找到平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【解答】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、形状不同,不能通过平移得到,不符合题意;C、对应点的连线相交,不能通过平移得到,不符合题意;D、能通过平移得到,符合题意;故选D.【点评】用到的知识点为:平移前后对应点的连线平行且相等,并且不改变物体的形状与大小.3.下列说法中,不正确的是()A.10的立方根是 B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.1【考点】立方根;平方根;算术平方根.【分析】根据立方根,平方根的定义,即可解答.【解答】解:A.10的立方根是,正确;B.﹣2是4的一个平方根,正确;C.的平方根是±,故错误;D.0.01的算术平方根是0.1,正确;故选C.【点评】本题考查了平方根,立方根,解决本题的关键是熟记立方根,平方根的定义.4.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.5.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】分a﹣1>0和a﹣1<0两种情况讨论,即可得到a的取值范围,进而求出M所在的象限.【解答】解:当a﹣1>0时,a>1,点M可能在第一象限;当a﹣1<0时,a<1,点M在第三象限或第四象限;所以点M不可能在第二象限.故选B.【点评】本题考查象限点的坐标的符号特征,根据第三象限为(﹣,﹣)第二象限为(﹣,+),判断点M的符号不可能为(﹣,+).记住横坐标相同的点在一四象限或二三象限是关键.6.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)【考点】坐标确定位置.【分析】根据平移规律,由A的坐标变化情况确定B的坐标.【解答】解:当飞机A从A(﹣1,2),飞到指定位置的坐标是(2,﹣1)时,飞机在平面直角坐标系中是向x轴正方向,及y轴的负方向飞行的,飞机的横坐标移动的距离=|2﹣(﹣1)|=3,纵坐标移动的距离=|﹣1﹣2|=3;由于是平行飞行,同理飞机B的坐标也是这样移动的,横坐标向x轴正方向加3,变为﹣2+3=1,纵坐标向y轴负方向减3变为3﹣3=0;∴飞机B的坐标变为(1,0).故选C.【点评】本题考查了一个点在平面直角坐标系中的平移,解题关键要明白是向那个方向移动,及移动多少单位.7.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)【考点】坐标确定位置.【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.8.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1 B.任何数C.2 D.1或2【考点】二元一次方程的定义.【分析】根据二元一次方程的定义列式进行计算即可得解.【解答】解:根据题意得,|2m﹣3|=1且m﹣2≠0,所以,2m﹣3=1或2m﹣3=﹣1且m≠2,解得m=2或m=1且m≠2,所以m=1.故选A.【点评】本题考查了二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程,要注意未知项的系数不等于0.9.若方程组中的x是y的2倍,则a等于()A.﹣9 B.8 C.﹣7 D.﹣6【考点】解三元一次方程组.【分析】根据三元一次方程组解的概念,列出三元一次方程组,解出x,y的值代入含有a 的式子即求出a的值.【解答】解:由题意可得方程组,把③代入①得,代入②得a=﹣6.故选D.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.10.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2【考点】二元一次方程组的应用.【分析】根据题意可知,本题中的相等关系是“周长为34cm”和“小长方形的5个宽等于2个长”,列方程组求解即可.【解答】解:设小长方形的长为ycm,宽为xcm,则,解得,所以长方形ABCD的面积为7×10=70cm2.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题:本大题共10小题,共30分,只要求填写最后结果,每小题填对得3分.11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若直线AB、CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为80°.【考点】对顶角、邻补角.【分析】利用对顶角相等和邻补角计算即可.【解答】解:若直线AB,CD相交于O,则∠AOC=∠BOD,∠AOD=BOC,∵∠AOC与∠BOD的和为200°,∴∠AOC=100°,∴∠AOD=180°﹣100°=80°;故答案为:80°.【点评】本题考查了对顶角、邻补角;熟练掌握对顶角相等是解决问题的关键.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=40°.【考点】平行线的性质.【分析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.【解答】解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.【点评】本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.14.如果=1.732,=5.477,那么0.0003的平方根是=±0.01732.【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根.【解答】解:∵0.0003=,∴±=±=±=±0.01732.【点评】此题考查了算术平方根的概念,解决本题的关键利用小数点的移动规律解答.15.把方程x+y=2改写成用x表示y的式子是y=.【考点】解二元一次方程.【分析】由已知方程通过移项,系数化为1,把方程改写成用含x的式子表示y的形式.【解答】解:由方程x+y=2移项得两边乘以∴.【点评】本题考查的是方程的定义和方程移项,合并同类项,系数化为1等基本运算技能.16.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个钝角;④在同一平面内,同平行于一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中正确命题的序号是④⑤.【考点】命题与定理.【分析】根据所学基础知识对各小题分析判断后利用排除法求解.【解答】解:①相等的角是对顶角,错误,因为对顶角既要考虑大小,还有考虑位置;②互补的角就是平角,错误,因为互补的角既要考虑大小,还有考虑位置;③互补的两个角一定是一个为锐角,另一个为钝角,错误,两个直角也可以;④在同一平面内,同平行于一条直线的两条直线平行,是平行公理,正确;⑤邻补角的平分线互相垂直,正确.所以只有④⑤命题正确,故答案为:④⑤.【点评】本题考查了命题与定理,解决本题的关键是熟记对顶角相等、互为补角的定义、平行线的平行公理.17.已知(x﹣1)2=3,则x=+1.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:(x﹣1)2=3,x﹣1=x=+1,故答案为:+1.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.已知和是关于x,y的二元一次方程2ax﹣by=2的两个解,则a=3,b=4.【考点】二元一次方程的解.【分析】知道了方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值.【解答】解:把和代入关于x,y的二元一次方程,得,解得.【点评】主要考查了方程的解的意义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.【考点】平行线的性质.【分析】先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.【解答】解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为(1008,0).【考点】坐标与图形变化-平移.【分析】观察不难发现,每四个点为一个循环组依次循环,前两个点的纵坐标都是1,第二、三个点的横坐标相同,第三、四个点都在x轴上,每一个循环组向右2个单位,用2016除以4,然后根据商和余数的情况确定即可.【解答】解:由图可知,4个点为一个循环组依次循环,∵2016÷4=504,∴点A2016是第504循环组的最后一个点,504×2=1008,∴点A2016的坐标为(1008,0).故答案为:(1008,0).【点评】本题考查了坐标与图形变化﹣平移,仔细观察图形,发现每四个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.21.计算:(﹣)2﹣﹣+﹣|﹣6|.【考点】实数的运算.【分析】原式利用算术平方根、立方根定义,以及绝对值的代数意义计算即可得到结果.【解答】解:原式=3﹣﹣(﹣0.5)+4﹣6=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.解方程组:(1)(2).【考点】解二元一次方程组.【分析】利用消元法即可求出答案.【解答】解:(1)将y=1﹣x代入5x+2y=8,∴5x+2(1﹣x)=8,∴5x+2﹣2x=8,∴x=2,将x=2代入y=1﹣x,得:y=﹣1,∴该二元一次方程组的解为:(2)由m﹣=2可得:n=2m﹣4,把n=2m﹣4代入2m+3n=12,∴2m+3(2m﹣4)=12∴m=3,将m=3代入n=2m﹣4,得n=2,∴该二元一次方程组的解为:【点评】本题考查二元一次方程组的解法,涉及代入消元法,属于基础题型.23.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【考点】点的坐标.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.24.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.【考点】坐标与图形性质.【分析】本题应分别过C、D向x轴作垂线,四边形ABCD的面积分割为过D、C两点的直角三角形和直角梯形.【解答】解:作CE⊥x轴于点E,DF⊥x轴于点F.则四边形ABCD的面积=S△ADF+S△BCE+S梯形CDFE=×(2﹣1)×4+×(5﹣3)×3+×(3+4)×(3﹣2)=8.5.【点评】当告诉一些具体点时,应把所求四边形的面积分为容易算面积的直角梯形和直角三角形.25.(10分)(2015春•宿州期末)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN已知∴∠GMN=∠BMN角平分线的定义同理∠GNM=∠DNM.∵AB∥CD已知,∴∠BMN+∠DNM=180°∴∠GMN+∠GNM=90°∵∠GMN+∠GNM+∠G=180°∴∠G=90°∴MG与NG的位置关系是MG⊥NG(2)把上面的题设和结论,用文字语言概括为一个命题:两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.【考点】平行线的性质;命题与定理.【分析】(1)根据平行线的性质进行填空即可;(2)根据MG、NG的特点作出结论.【解答】解:∵MG平分∠BMN(已知)∴∠GMN=∠BMN(角平分线的定义),同理∠GNM=∠DNM.∵AB∥CD(已知),∴∠BMN+∠DNM=180°,∴∠GMN+∠GNM=90°,∵∠GMN+∠GNM+∠G=180°,∴∠G=90°,∴MG与NG的位置关系是MG⊥NG;故答案为:已知;角平分线的定义;已知;180°;90°;180°;90°;MG⊥NG;(2)两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.【点评】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,熟记性质并准确识图是解题的关键.26.(10分)(2015秋•太康县期末)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.【考点】垂线;余角和补角.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数【解答】解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.27.(10分)(2016春•六合区校级期中)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】二元一次方程组的应用.【分析】(1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.【解答】解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【点评】此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.文本仅供参考,感谢下载!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期中试题 2016.4.28
(考试时间:120分钟 满分100分)
请注意:考生须将本卷所有答案答到答题纸上,答在试卷上无效! 一、选择题(本大题共10小题,每小题2分,共20分) 1. 计算1
4-的结果是( ) A .4
B .
4
1 C .-4
D .4
1-
2. 下列实例属于平移的是 ( )
A .分针的运行
B .转动的摩天轮
C .直线行驶的火车
D .地球自转 3. 下列计算正确的是( )
A.6
3
2
a a a =⋅ B. 5
3
8
a a a += C. 15
5=÷a a (a ≠0) D . ()
52
3a a =
4. 下列长度的3条线段,能构成三角形的是( )
A. 1cm,2cm,3cm
B. 2cm,3cm,4cm
C. 4cm,4cm,8cm
D. 5cm,6cm,12cm 5. 二元一次方程12=-y x 有无数个解,下列4组值中不是..
该方程解的是( ) A. ⎩⎨⎧==32y x B.⎩⎨⎧-=-=11y x
C. ⎩
⎨⎧==01
y x
D.⎪⎩
⎪⎨⎧-==210
y x
6. 下列多项式能用平方差公式因式分解的是( )
A.2
22y x - B.22
--x x
C.442
+-a a D.2
1a +-
7. 若()()B y x A y x y x +-=++=+2
2
22,则A ,B 各等于( )
A .xy xy 2,2-
B .xy xy 2,2--
C .xy xy 2,2-
D .xy xy 2,2 8. 若用同一种正多边形瓷砖铺地面,能铺满地面的正多边形是( )
A .正五边形
B .正六边形
C .正七边形
D .正八边形 9. 已知AB ∥CD ,点P 是AB 上方一点,∠1=60°,∠2=35°,则∠3的度数是( )
A .30°
B .35°
C .20°
D .25°
10. 如图,AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠CGE 相等的角共有( )个
A .3
B .4
C .5
D .
6
第9题
第10题
二、填空题(本大题共10小题,每小题2分,共20分) 11. 因式分解:ab a -2
=______.
12. 一张纸的厚度为0.0007814m ,将0.0007814用科学记数法表示为_____________. 13. 已知2,3==n m a a ,则n
m a +=___________.
14. 计算:3
2)2
1(y x -
=________. 15. ()()623222-+=-+mx x x x ,则m =__________.
16. 若162
++kx x (其中k 为常数)是一个完全平方式,则k 的值是 . 17. 写出一个解为⎩⎨
⎧=-=1
2
y x 的二元一次方程组:_____________.
18. 将一副直角三角板如图放置,已知AE ∥BC ,则∠AFD=__________°.
19. 小明同学在社团活动中给发明的机器人设置程序:()n a ,。

机器人执行步骤是:向正
前方走a m 后向左转︒n ,再依次执行相同程序,直至回到原点。

现输入a =6,n =40,那么机器人回到原点共走了_________m.
20. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,且AB=6, BC=5,AC=3,OF=2,
则四边形ADOE 的面积是___________. 三、解答题(共60分)
21. 计算(每小题2分,共8分)
⑴ ()0
2
2
2311--⎪⎭
⎫ ⎝⎛+--π ⑵ ()25332a a a ÷-
⑶ ()()()y x y x y x +--+2
⑷ ()()33-++-y x y x
第18题
第20题 第19题
22. 解二元一次方程组(每小题3分,共6分)
⑴ ⎩⎨
⎧=-=+13
48
3y x y x
⑵ ⎪⎪⎩⎪⎪⎨⎧=+=-53
632
3y x y
x
23. 因式分解(每小题3分,共12分) ⑴a a -3
⑵2422
+-m m
⑶()()2
2
916y x y x --+
⑷()x x x -+-112
24. 先化简,再求值:(本题6分)
已知:()()12-+x a x 的结果中不含关于字母x 的一次项,求)1)(1()2(2----+a a a
的值.
25. (本题6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶
点的位置如图所示,将△ABC 先向右平移5个单位得△A 1B 1C 1,再向上平移2个单位得△A 2B 2C 2。

(1) 画出平移后的△A 1B 1C 1及△A 2B 2C 2;
(2) 平移过程中,线段AC 扫过的面积是
____________.
26. (本题6分)已知:如图,AC ⊥BC ,CD ∥FG ,∠1=∠2。

试说明: DE ⊥AC .
27. (本题6分)下面是某同学对多项式()()
122222++--x x x x 进行因式分解的过程. 解:设y x x =-22 原式
请你模仿以上方法对多项式()()
4642422++-+-x x x x 进行因式分解.
28. (本题10分)已知如图①,BP 、CP 分别是△ABC 的外角∠CBD 、∠BCE 的角平分线, BQ 、CQ 分别是∠PBC 、∠PCB 的角平分线,BM 、CN 分别是∠PBD 、∠PCE 的角平 分线,∠BAC=α。

(1) 当α=40°时,∠BPC=______°,∠BQC=______°; (2) 当α=___________°时,BM ∥CN ;
(3) 如图②,当α=120°时,BM 、CN 所在直线交于点O ,求∠BOC 的度数;
(4) 在α>60°的条件下,直接写出∠BPC 、∠BQC 、∠BOC 三角之间的数量关系:______。

()()
(
)
()[
]
()
4
2
22
22
2111211212-=-=+-=+=++=++⋅=x x x x y y y y y 图①
图②
初一数学期中试题 2015.4.28
参考答案及评分标准
一、选择题(每题2分,共20分)
二、填空题(每题2分,共20分)
(11)()b a a - (12) 4
10814.7-⨯ (13) 6 (14) 3
68
1y x -
(15) 1 (16)8±=k (17)(答案不唯一) 如:⎩
⎨⎧-=--=+31
y x y x (18) 75°
(19) 54 (20) 5 三、解答题(共60分)
21.计算:(每小题2分,共8分)
(1)7 ⑵3
5a (3)222y xy + (4)962
2-+-y y x 22.解二元一次方程组:(每小题3分,共6分)
(1)⎩⎨⎧-==13y x (2)⎩⎨
⎧==6
18y x
23.因式分解(每小题3分,共12分)
⑴()()11-+a a a ⑵()2
12-m ⑶()()y x y x 77++ ⑷()()112
+-x x
24.(本题6分)2
1
=
a ……2/ 化简得54+a ……4/ 最后结果7………6/ 25.(本题6分)(1)画对一个得2分……………4/ (2)面积是28……………6/ 26. (本题6分)略
27. (本题6分) ……………3/
()4
2-=x ……………6/
28.(本题10分)(1)∠BPC=70°………2/,∠BQC=125°………4/ (2)α=60°………6/
(3)∠BOC=45°………9/ (4)∠BPC+∠BQC+∠BOC=180°………10/
()()()
(
)()[
]
2
22
222244416
8462-=+-=+=++=++⋅+=x x x y y y y y。

相关文档
最新文档