2017年秋季学期新版新人教版九年级数学上册第二十三章、旋转单元复习卷2
九年级数学上册第二十三章旋转测评新版新人教版
第二十三章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.(2017·四川自贡中考)下列图形中,是轴对称图形,但不是中心对称图形的是()2.在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP'位置,则点P'的坐标为()A.(3,4)B.(-4,3)C.(-3,4)D.(4,-3)3.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E 处,点B落在点D处,则B,D两点间的距离为()A.10B.2 2C.3D.2 54.如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从下面四个点M(3,3),N(3,-3),P(-3,0),Q(-3,1)中选择一个点,以A,B,C及该点为顶点的四边形是中心对称图形的个数为()A.1B.2C.3D.45.如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不正确的是()A.S△ABC=S△A'B'C'B.AB=A'B',AC=A'C',BC=B'C'C.AB ∥A'B',AC ∥A'C',BC ∥B'C'D.S △A'B'O =S △ACO 6.(2017·山东聊城中考)如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B'处,此时,点A 的对应点A'恰好落在BC 边的延长线上,下列结论错误的是( ) A.∠BCB'=∠ACA' B.∠ACB=2∠B C.∠B'CA=∠B'AC D.B'C 平分∠BB'A'7.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D'E'B ,则点A 在△D'E'B 的( )A.内部B.外部C.边上D.以上都有可能8.如图,将n 个边长都为1 cm 的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的对称中心,则n 个这样的正方形重叠部分的面积和为( )A.14 cm 2B.n4 cm 2C.n-14 cm 2D. 14ncm 2二、填空题(每小题5分,共20分)9.如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△AB'C'可以由△ABC 绕点A 顺时针旋转90°得到(点B'与点B 是对应点,点C'与点C 是对应点),连接CC',则∠CC'B'的度数是 .10.一个正方形要绕它的中心至少旋转 度,才能和原来的图形重合.11.如图,将△ABC绕点A逆时针旋转得到△ADE.点C和点E是对应点.若∠CAE=90°,AB=1,则BD=.12.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4 cm,则△BCD的面积为.(第11题图)(第12题图)三、解答题(共48分)13.(12分)(2017·黑龙江中考)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.14.(12分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.15.(12分)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的圆弧构成图案,种植花草部分用阴影表示.请你运用平移、旋转、轴对称等知识,在图③、图④、图⑤中画出三种不同的设计图案(温馨提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种).16.(12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A'BC'.(1)如图②,将△ACD沿A'C'边向上平移,使点A与点C'重合,连接A'D和BC,则四边形A'BCD是形;(2)如图③,将△ACD的顶点A与A'点重合,然后绕点A沿逆时针方向旋转,使点D,A,B在同一条直线上,则旋转角为度,连接CC',则四边形CDBC'是形;(3)如图④,将AC边与A'C'边重合,并使顶点B和D在AC边的同一侧,设AB,CD相交于E点,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.参考答案第二十三章测评一、选择题 1.A 2.C3.A 连接BD.由勾股定理,得AB= A C 2+BC 2= 42+32=5,AE=AC=4,所以BE=1,又DE=3,∠DEA=∠C=90°,所以BD= 2+2= 1+9= 10. 4.C 5.D 6.C7.C 由三角板DEB 绕点B 逆时针旋转45°得到△D'E'B ,设△D'E'B 与直线AB 交于点M ,可知∠EBE'=45°,∠E'=∠DEB=90°,∵∠DEB=90°,∠D=30°,BD=10,∴BE=5,∴BE'=BE=5,∴BM=5 2.又∠ABC=90°,∠A=45°,AC=10,∴AB=5 2,∴BM=AB ,∴点A 在△D'E'B 的D'E'的边上.8.C 连接正方形的中心和其余两个顶点可证得含45°角的两个三角形全等,进而求得阴影部分面积等于正方形面积的14,即是14 cm 2.5个这样的正方形重叠部分(阴影部分)的面积和为 14×4 cm 2,n 个这样的正方形重叠部分(阴影部分)的面积和为14×(n-1)=n-14(cm 2).二、填空题 9.15° 10.9011. 因为将△ABC 绕点A 逆时针旋转得到△ADE ,所以AB=AD , 因为∠CAE=90°,所以∠DAB=90°,因为AB=1, 所以BD= 12+12= 2.12.3 cm 2过点D 作BE 的垂线,垂足为F ,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE 为平角.在Rt △ABC 中,AB=4 cm,∠ABC=30°,则AC=2 cm,BC=2 3 cm .由旋转的性质可知BD=BC=2 3 cm,DE=AC=2 cm,BE=AB=4 cm .由面积法:12DF ·BE=12BD ·DE ,求得DF= .所以△BCD 的面积为12BC ·DF=12×2 × =3(cm 2). 三、解答题13.解 (1)画出△ABC 关于y 轴对称的△A 1B 1C 1,如图所示,此时A 1的坐标为(-2,2). (2)画出△ABC 绕点B 逆时针旋转90°后得到的△A 2B 2C 2,如图所示,此时A 2的坐标为(4,0). (3)画出△A 2B 2C 2关于原点O 成中心对称的△A 3B 3C 3,如图所示,此时A 3的坐标为(-4,0).14.解 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标为 32,-1 .(3)点P 的坐标为(-2,0).15.解 答案不唯一,如下各图供参考.16.解 (1)因为AD=AB ,AA'=AC , 所以A'C 与BD 互相平分.所以四边形A'BCD是平行四边形.故答案为“平行四边”.(2)因为DA垂直于AB,又知逆时针旋转到点D,A,B在同一直线上,所以旋转角为90度.因为∠D=∠B=90°,A,D,B在同一条直线上,所以CD∥BC'.所以四边形CDBC'是直角梯形.故答案为“90直角梯”.(3)四边形ADBC是等腰梯形.理由如下:如图,过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,因为有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A'BC',所以△ACD≌△A'BC'.所以BM=ND.所以BD∥AC.因为AD=BC,所以四边形ADBC是等腰梯形.。
人教版九年级数学上册第二十三章旋转单元综合与测试题(含答案)
人教版九年级数学上册第二十三章旋转单元综合与测试题(含答案)第二十三章旋转单元复习与检测题(含答案)一、选择题1、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )2、在平面直角坐标系中,把点P(-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为( )A .(3,2)B .(2,-3)C .(-3,-2)D .(3,-2) 3、下列运动形式属于旋转的是( ) A .在空中上升的氢气球 B .飞驰的火车 C .时钟上钟摆的摆动 D .运动员掷出的标枪4、如图,将△ABC 绕点P 顺时针旋转90°得到△A ′B ′C ′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)5、在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,-3)B .(-3,3)C .(3,3)或(-3,-3)D .(3,-3)或(-3,3) 6、下列命题中的真命题是( )A 全等的两个图形是中心对称图形.B 关于中心对称的两个图形全等.C 中心对称图形都是轴对称图形.D 轴对称图形都是中心对称图形. 7、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.右图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG 可以看成是把菱形ABCD 以点 A 为中心()A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到8、在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在()A .第一象限B .第二象限C .第三象限D .第四象限 9、如图,已知△ABC 与△CDA 关于点O 对称,过O 任作直线EF 分别交AD ,BC 于点E ,F ,下面的结论:①点E 和点F ,点B 和点D是关于中心O 的对称点;②直线BD 必经过点O ;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△A OE 与△COF 成中心对称,其中正确的个数为( )A .2个B .3个C .4个D .5个10、如图,在△ABC 中,∠ACB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为()A .25 B .23 C .4 D .210二、填空题11、若点(a ,1)与(-2,b)关于原点对称,则a b=________.12、如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,则∠EAF 的度数是________.13、已知点A 的坐标为(-1,3),将点A 绕坐标原点顺时针旋转90°,则点A 的对应点的坐标为________.14、将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD=110°,则∠BOC= 。
九年级数学上册第二十三章旋转测评新版新人教版
第二十三章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.(2017·四川自贡中考)下列图形中,是轴对称图形,但不是中心对称图形的是()2.在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP'位置,则点P'的坐标为()A.(3,4)B.(-4,3)C.(-3,4)D.(4,-3)3.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E 处,点B落在点D处,则B,D两点间的距离为()A. 0B.2C.3D.24.如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从下面四个点M(3,3),N(3,-3),P(-3,0),Q(-3,1)中选择一个点,以A,B,C及该点为顶点的四边形是中心对称图形的个数为()A.1B.2C.3D.45.如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不正确的是()A.S△ABC=S△A'B'C'B.AB=A'B',AC=A'C',BC=B'C'C.AB ∥A'B',AC ∥A'C',BC ∥B'C'D.S △A'B'O =S △ACO 6.(2017·山东聊城中考)如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B'处,此时,点A 的对应点A'恰好落在BC 边的延长线上,下列结论错误的是( ) A.∠BCB'=∠ACA' B.∠ACB=2∠B C.∠B'CA=∠B'AC D.B'C 平分∠BB'A'7.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=4 °,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转4 °得到△D'E'B ,则点A 在△D'E'B 的( )A.内部B.外部C.边上D.以上都有可能8.如图,将n 个边长都为1 cm 的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的对称中心,则n 个这样的正方形重叠部分的面积和为( )A.4 cm 2B.4 cm 2C.- 4 cm 2D. 4cm 2二、填空题(每小题5分,共20分)9.如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△AB'C'可以由△ABC 绕点A 顺时针旋转90°得到(点B'与点B 是对应点,点C'与点C 是对应点),连接CC',则∠CC'B'的度数是 .10.一个正方形要绕它的中心至少旋转 度,才能和原来的图形重合.11.如图,将△ABC绕点A逆时针旋转得到△ADE.点C和点E是对应点.若∠CAE=90°,AB=1,则BD=.12.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转 0°后得到△EBD,连接CD.若AB=4 cm,则△BCD的面积为.(第11题图)(第12题图)三、解答题(共48分)13.(12分)(2017·黑龙江中考)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.14.(12分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转 80°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.15.(12分)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的圆弧构成图案,种植花草部分用阴影表示.请你运用平移、旋转、轴对称等知识,在图③、图④、图⑤中画出三种不同的设计图案(温馨提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种).16.(12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A'BC'.(1)如图②,将△ACD沿A'C'边向上平移,使点A与点C'重合,连接A'D和BC,则四边形A'BCD是形;(2)如图③,将△ACD的顶点A与A'点重合,然后绕点A沿逆时针方向旋转,使点D,A,B在同一条直线上,则旋转角为度,连接CC',则四边形CDBC'是形;(3)如图④,将AC边与A'C'边重合,并使顶点B和D在AC边的同一侧,设AB,CD相交于E点,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.参考答案第二十三章测评一、选择题 1.A 2.C3.A 连接BD.由勾股定理,得AB= 4 3 =5,AE=AC=4,所以BE=1,又DE=3,∠DEA=∠C=90°,所以BD= 9 0.4.C5.D6.C7.C 由三角板DEB 绕点B 逆时针旋转4 °得到△D'E'B ,设△D'E'B 与直线AB 交于点M ,可知∠EBE'=4 °,∠E'=∠DEB=90°,∵∠DEB=90°,∠D=30°,BD=10,∴BE=5,∴BE'=BE=5,∴BM=5 .又∠ABC=90°,∠A=4 °,AC=10,∴AB=5 ,∴BM=AB ,∴点A 在△D'E'B 的D'E'的边上.8.C 连接正方形的中心和其余两个顶点可证得含4 °角的两个三角形全等,进而求得阴影部分面积等于正方形面积的 4,即是4 cm 2.5个这样的正方形重叠部分(阴影部分)的面积和为4 4 cm 2,n 个这样的正方形重叠部分(阴影部分)的面积和为4×(n-1)=- 4(cm 2).二、填空题 9. ° 10.9011. 因为将△ABC 绕点A 逆时针旋转得到△ADE ,所以AB=AD , 因为∠CAE=90°,所以∠DAB=90°,因为AB=1,所以BD=.12.3 cm2过点D作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE= 0°可知∠CBE为平角.在Rt△ABC中,AB=4 cm,∠ABC=30°,则AC=2 cm,BC=23 cm.由旋转的性质可知BD=BC=23cm,DE=AC=2 cm,BE=AB=4 cm.由面积法:DF·BE=BD·DE,求得DF=3 cm.所以△BCD的面积为BC·DF=×233=3(cm2).三、解答题13.解 (1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(-2,2).(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0).(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(-4,0).14.解 (1)画出△A1B1C如图,画出△A2B2C2如图.(2)旋转中心坐标为3,-.(3)点P的坐标为(-2,0).15.解答案不唯一,如下各图供参考.16.解 (1)因为AD=AB,AA'=AC,所以A'C与BD互相平分.所以四边形A'BCD是平行四边形.故答案为“平行四边”.(2)因为DA垂直于AB,又知逆时针旋转到点D,A,B在同一直线上,所以旋转角为90度.因为∠D=∠B=90°,A,D,B在同一条直线上,所以CD∥BC'.所以四边形CDBC'是直角梯形.故答案为“90直角梯”.(3)四边形ADBC是等腰梯形.理由如下:如图,过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,因为有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A'BC',所以△ACD≌△A'BC'.所以BM=ND.所以BD∥AC.因为AD=BC,所以四边形ADBC是等腰梯形.。
2017秋人教版数学九年级上册第二十三章《旋转》质量评估试卷
第二十三章旋转[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1。
下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(A)2.下列图片中,哪些是由图片(1)分别经过平移和旋转得到的(A)图1A。
(3)和(4)B。
(2)和(3)C.(2)和(4)D。
(4)和(3)3。
在平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是(D)A。
(3,-2)B。
(2,3)C。
(-2,3) D。
(2,-3)【解析】关于原点对称的点的横坐标、纵坐标都互为相反数。
4。
下列四张扑克牌图案,属于中心对称图形的是(B)A B C D5.如图2,一块等腰直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到△A′B′C 的位置,使A,C,B′三点共线,那么旋转角度的大小为(B)A。
45°B。
135°C。
120° D.60°【解析】旋转角为∠AC A′=180°-45°=135°、图2图36。
如图3所示,△ABC按顺时针方向转动一定角度后成为△AB′C′,有下列等式:①BC =B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′;④AB=B′C′、其中正确的有(C)A。
1个 B.2个C。
3个D。
4个【解析】由旋转性质得①②③正确,④错误,故选C、7.如图4,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为(C)图4A。
(3,1)B。
(1,3)C。
(3,-1) D。
(1,1)【解析】根据图示可知A点坐标为(-3,-1),它绕原点O旋转180°后得到的点的坐标为(3,1),根据平移“上加下减”原则,向下平移2个单位得到的点的坐标为(3,-1).8。
如图5,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是(A)A.M或O或NB.E或O或CC。
(完整版)2017年秋人教版九年级数学上册《第23章旋转》单元测试卷(含答案),推荐文档
2017 年秋人教版九年级数学上册《第23 章旋转》单元测试卷一、选择题(每小题3 分,共30 分)1.下列图形中,是中心对称图形的是( )A.B.C.D.2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(3,-2)B. (2,3)C.(-2,-3)D. (2,-3)3.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A.20°B.30°C.40°D.50°4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是()5.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在( )A.第一象限B.第二象限C.第三象限D.第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.四边形ABCD 的对角线相交于O,且AO=BO=CO=DO,则这个四边形( )A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30︒B.45︒C.60︒D.90︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1 B.2 C.3 D.410.如图,在正方形网格中,将△ABC 绕点A 旋转后得到△ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3 分,共24 分)11.如图,在6×4 方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第象限.13.如图 4,△COD是△AOB绕点O 顺时针方向旋转40°后所得的图形,点 C 恰好在 AB 上,∠AOD=90°,则∠D的度数是.14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是.15.如图 6,四边形 ABCD 中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段 AE=5,则S=.四边形ABCD16.如图,设P 是等边三角形ABC 内任意一点,△ACP′是由△ABP 旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b 的值是.18.直线y=x+3 上有一点P(3,n),则点P 关于原点的对称点P′为.三、解答题(共66 分)19.如图,在Rt△OAB 中,∠OAB=90°,OA=AB=6,将△OAB 绕点O 沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1 的长是,∠AOB1 的度数是;(2)连接AA1,求证:四边形OAA1B1 是平行四边形;(3)求四边形OAA1B1的面积.20.(9 分)如图10,E、F 分别是正方形ABCD 的边CD、DA 上一点,且CE+AF=EF,请你用旋转的方法求∠EBF 的大小.21.(9 分)已知正方形ABCD 和正方形AEFG 有一个公共点A,点G、E 分别在线段AD、AB 上.(1)如图 11(1), 连接 DF、BF,若将正方形 AEFG 绕点A 按顺时针方向旋转,判断命题:“在旋转的过程中,线段 DF 与BF 的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG 绕点A 按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等?并以图11(2)为例说明理由.22.如图,在Rt△ABC 中,∠ACB=90°,点D、F 分别在AB、AC 上,CF=CB,连接CD,将线段CD 绕点C 按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC 的度数.23.如图,将正方形ABCD 中的△ABD 绕对称中心O 旋转至△GEF 的位置,EF 交AB 于M,GF 交BD 于N.请猜想BM 与FN 有怎样的数量关系?并证明你的结论.24.如图,△ABC 是直角三角形,延长AB 到点E,使BE=BC,在BC 上取一点F,使BF=AB,连接EF,△ABC 旋转后能与△FBE 重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC 与EF 的关系如何?答案:一、选择题(每小题3 分,共30 分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B 二、填空题(每小题3 分,共24 分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∴PA<PB+PC.16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66 分)19.(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,a 2 + 2b 2 2 1 ∴OA ∥A 1B 1,又∵OA=AB=A 1B 1,∴四边形 OAA 1B 1 是平行四边形.(3)解:▱OAA 1B 1 的面积=6×6=36.20.解:将△BCE 以 B 为旋转中心,逆时针旋转 90º,使 BC 落在 BA 边上,得△BAM ,则 ∠MBE=90º,AM=CE,BM=BE,因为 CE +AF =EF ,所以 MF =EF ,又 BF=BF,所以△FBM≌△FBE,所以∠MBF=∠EBF, 所以∠EBF= ⨯ 90º = 45º221.解:(1)解:(1)不正确.若在正方形 GAEF 绕点 A 顺时针旋转 45°,这时点 F 落在线段 AB 或 AB 的延长线上.(或将正方形 GAEF 绕点 A 顺时针旋转,使得点 F 落在线段 AB 或 AB 的延长线上).如图:设 AD=a ,AG=b ,则 DF= >a ,BF=|AB-AF|=|a- b|<a ,∴DF>BF ,即此时 DF≠BF;(2)连接 BE ,则 DG=BE .如图,(2)连接 BE ,则 DG=BE .如图,∵四边形 ABCD 是正方形,∴AD=AB,∵四边形 GAEF 是正方形,∴AG=AE,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.∵四边形 ABCD 是正方形,∴AD=AB,∵四边形 GAEF 是正方形,∴AG=AE,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.22.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE 中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD 中,BD 为对角线,O 为对称中心,∴BO=DO,∠BDA=∠DBA=45°,∵△GEF 为△ABD 绕O 点旋转所得,∴FO=DO,∠F=∠BDA,∴OB=OF,∠OBM=∠OFN,在△OMB 和△ONF 中,∴△OBM≌△OFN,∴BM=FN.24.解:(1)∵BC=BE,BA=BF,∴BC 和BE,BA 和BF 为对应边,∵△ABC 旋转后能与△FBE 重合,∴旋转中心为点B;(2)∵∠ABC=90°,而△ABC 旋转后能与△FBE 重合,∴∠ABF 等于旋转角,∴旋转了90 度;(3)AC=EF,AC⊥EF.理由如下:∵△ABC 绕点B 顺时针旋转90°后能与△FBE 重合,∴EF=AC,EF 与AC 成90°的角,即AC⊥EF.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
新人教版数学九年级上册第二十三章旋转单元达标检测试题及其答案
新人教版数学九年级上册第二十三章旋转单元达标检测试题一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1. 下列图形是中心对称图形的是( )A. B. C. D.2.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心称图形但是不是轴对称图形的是()3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)5题图6题图7题图8题图6.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种7.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是()A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°8.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC 经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移39.下面图形中,既是轴对称图形又是中心对称图形的是()10.如图,将四个“米”字格的正方形内涂上阴影,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.如图所示,把一个直角三角尺ACB绕着30角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合______次.13.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.14.点P(-3,4)关于原点对称的点Q的坐标为______.15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.15题图16题图17题图16.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= .17.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是.18.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为.18题图 19题图 20题图19.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1)、(-1,1),把正方形ABCD绕原点O逆时针旋转45°得到正方形A′B′C′D′则正方形ABCD与正方形A′B′C′D′重叠部分形成的正八边形的边长为_____________.20.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=.三、解答题(每小题10分,共90分)21.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).24.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.25.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F.(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E,F的坐标;(2)当点F落在x轴上方时,试写出一个符合条件的点B的坐标.26.矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.(1)求AD的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A、B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使S△PAM=?若存在,求出P点坐标;若不存在,请说明理由.27.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.28.如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.29.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,求的长。
人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)
人教版九年级数学上册第二十三章旋转单元检测(含答案)一、单选题1.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称2.下列图案中,是中心对称图形的是( )A.B.C.D.3.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.如图所示,ABC V 中,5AC =,中线7AD =,EDC V 是由ADB V 旋转180o 所得,则AB 边的取值范围是( )A .1<AB<29B .4<AB<24C .5<AB<19D .9<AB<196.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .△ABD =△EB .△CBE =△C C .AD △BC D .AD =BC 7.下列图形是中心对称图形,但不是轴对称图形的是( )A .正方形B .等边三角形C .圆D .平行四边形8.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到△COD ,若15AOB ∠=︒,则AOD ∠的度数是( )A .75︒B .60︒C .45︒D .30°9.如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB△A′B′,BC△B′C′C .S △ABC =S △A′B′C′D .△ABC△△A′OC′10.如图,在Rt 直角△ABC 中,△B =45°,AB =AC ,点D 为BC 中点,直角△MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△AE =CF ;△△BDE△△ADF ;△BE+CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题 11.如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.12.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若△CAE=90°,AB=1,则BD=_________.13.如图,直线443y x =+与x 轴轴分别交于A ,B 两点,把AOB ∆绕点A 逆时针旋转90︒后得到''AO B ∆,则点'B 的坐标是______.14.如图所示,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ; 将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋅⋅⋅如此进行下去,直到13C .若()37,P m 在第13段抛物线13C 上,则m =______.三、解答题15.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(1,1)A 、(5,1)B 、(4,4)C .(1)按下列要求作图:△将ABC ∆向左平移5个单位得到111A B C ∆,并写出点1A 的坐标;△将ABC ∆绕原点O 逆时针旋转90°后得到222A B C ∆,并写出点2B 的坐标;(2)111A B C ∆与222A B C ∆重合部分的面积为 (直接写出答案).16.如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,﹣1).(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕点C 逆时针旋转90°,得△A 2B 2C ,画出△A 2B 2C ,并写出点A 2的坐标;(3)直接写出△A 2B 2C 的面积.17.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.18.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由答案1.D2.D3.B4.C 。
秋九年级数学上册 第23章 旋转检测卷 新人教版(2021年整理)
2017年秋九年级数学上册第23章旋转检测卷(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年秋九年级数学上册第23章旋转检测卷(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年秋九年级数学上册第23章旋转检测卷(新版)新人教版的全部内容。
第二十三章检测卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.以下现象:①荡秋千;②转呼啦圈;③跳绳;④转陀螺.其中是旋转的有()A.①② B.②③ C.③④ D.①④2.下列A、B、C、D四幅“阿宝”图案中,能通过将图案(1)顺时针旋转180°得到的是()3.下列汽车标志中既是轴对称又是中心对称图形的是( )4.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAEC.∠EAF D.∠BAF第4题图第5题图5.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′。
已知BC=4,则E′D′等于( )A.2 B.3 C.4 D.1.56.图中的阴影旋转一个角度后,能互相重合,这个角度可以是( )A.30° B.45° C.120° D.90°第6题图第7题图7.如图所示的两个三角形是经过什么变换得到的()A.旋转 B.旋转和平移C.轴对称 D.平移和轴对称8.若点A(-2,n)在x轴上,则点B(n-1,n+1)关于原点对称的点的坐标为()A.(1,1) B.(-1,-1)C.(1,-1) D.(-1,1)9.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是( )A.(4,-2) B.(-4,-2)C.(-2,-3) D.(-2,-4)10.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为()A.6 B.5 C.3 D.2第9题图第10题图11.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.① B.② C.③ D.④第11题图第12题图12.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′的位置,则图中阴影部分的面积为()A。
新版人教版九年级数学(上册)第二十三章_旋转测试题(卷)(含答案)
N1M1新版人教版九年级数学上册第二十三章旋转测试卷(时间:45分钟,满分:100分)一、选择题(每小题5分,共30分)1.时钟上的分针匀速旋转一周需要60min,则经过10min,分针旋转了()A. 10°B. 20°C. 30°D. 60°2.平面直角坐标系内与点P(-2,3)关于原点对称的点的坐标是()A. (3,-2)B. (2,3)C. (2,-3)D. (-2,-3)3.如图,把菱形ABOC绕点O顺时针旋转到菱形DFOE,则下列角中不是旋转角的是()A. ∠BOFB. ∠AODC. ∠COED. ∠COF(第3题)4.如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围城的,其中菱形AEFG可以看成是把菱形ABCD以点A为中心()A.逆时针旋转120°得到B.逆时针旋转60°得到C.顺时针旋转120°得到D.顺时针旋转60°得到5.下列图形中,是轴对称图形而不是中心对称图形的是()A.等边三角形B.矩形C.平行四边形D.菱形6.如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,其旋转中心是()A. 点AB. 点BC. 点CD. 点D.(第6题)二、填空题(每小题5分,共20分)B的坐标是(1,3),则点M 和点N 的坐标分别是_____________________.(第8题) (第10题)8.如图,在△ABC 中,∠CAB=70°.在同一平面内,将△ABC 绕点A 旋转到△C B A ''的位置,使得C C '∥AB ,则∠B BA '等于________________.9. 如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称次图形为旋转对称图形.那么下列图形中,是旋转对称图形,且有一个旋转角为60°的是_______________________.①正三角形;②正方形;③正六边形;④正八边形.10. 如图,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC ,垂足是E ,若线段AE=5,则S 四边形ABCD =______________.三、解答题(第11题,12题每题12分,第13题、第14题每题13分工50分)11.如图,不用量角器,在方格纸中画出△ABC 绕点B 顺时针旋转90°得到的△A 1BC 1.12.如图,画出△ABC 关于原点O 对称的△A 1B 1C 1,并求出A 1,B 1,C 1三点的坐标.(第12题)A E DBA C13.如图,∠ABC=90°,P 为射线BC 上任意一点(点P 与点B 不重合),分别以AB ,AP 为边在∠ABC 的内部作等边△ABE 和△APQ ,连接QE 并延长交BP 于点F ,求证:BF=EF.(第13题)14.如图,在等腰Rt △ABC 中,∠C=90°,点O 是AB 的中点,边AC 的长为a ,将一块边长足够大的三角板的直角顶点放在点O 处,将三角板绕点O 旋转,始终保持三角板的直角边与AC 相交,交点为点D ,另一条直角边与BC 相交,交点为点E.求证:等腰直角三角形ABC 的边被三角板覆盖部分的两条线段CD 与CE 长度之和为定值a.(第14题)四、附加题(10分)15.如图是一个由5个相同的正方形组成的十字形的纸片.把这一纸片沿一条直线截成两部分,然后把其中的一部分再沿着另一条直线截成两部分,使所得的三部分纸片通过适当的拼接能组成两个并列的全等的正方形.请在图中画出分割线及拼接后的图形.(第15题)A 1(3,-2) ,B 1(2,1),C 1(-2,-3)A参考答案:1.D.2.C.3.D.4.A.5.A.6.B.7. M(-1,-3),N(1,-3)8. 40°9. ③10. 2511. 如图 (第 11题) 12.(第12题)13.提示:由△ABP ≌△AEQ ,得到∠ABC=∠AEQ=90°,进而得到∠EBF=∠BEF=30°,∴BF=EF.(第13题)E D B AC F14.(第14题)解:CD+CE=BC=a.提示:连接CO ,证明△COD ≌△BOE ,得到CD=BE. 15.。
九年级数学上册 第二十三章 旋转单元综合检测试卷(含解析)(新版)新人教版-(新版)新人教版初中九年
第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A .60°B .72°C .90°D .144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点B 、A 、B 1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180°10.如图,在△ABC 中,∠ACB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .25B .23C .4D .210二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12.如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11 B 'C 'C BA图1213.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,2),则点B 2016的坐标为.14.如图,直线y=33x+2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180° 解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BA B1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT△ADB中,5即:BD的长为5故:选A二、填空题11.【答案】90º12.【答案】∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2.∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0,则﹣33x+2=0,解得x=23,令x=0,则y=2,∴点A(23,0),B(0,2),∴OA=23,OB=2,∴∠BA O=30°,∴AB=2OB=2×2=4,∵△AOB绕点A顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x轴,∴点B′(23,4).故答案为:(23,4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC中,OC=12AC=12BC=1cm,则OB=5(cm),则BB′=2OB=25(cm).故答案为:25cm.三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;+2=12(3m﹣1),解得:m=52;+2=﹣12(3m﹣1),解得:m=﹣34.23.【答案】(1)点P关于原点的对称点P'的坐标为(2,1);(2)OP'(a)动点T在原点左侧,当1T O OP'=P'TO是等腰三角形,∴点1T(-,0),(b)动点T在原点右侧,①当T2O=T2P'时,△P'TO是等腰三角形,得:2T (54,0), ②当T 3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T 4P'=P'O 时,△P'TO 是等腰三角形,得:点T 4(4,0).综上所述,符合条件的t 的值为,54,4. 24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BC OCB 的坐标为(1. (2)如图2所示: (A 1)图2yxO B 1CB A∵点B1与点A1的纵坐标相同,∴A 1B 1∥OA .①如图2所示:当a=300°时,点A 1与点B 1纵坐标相同. 如图3所示:A 1图3yxO B 1CBA当a=120°时,点A 1与点B 1纵坐标相同.word11 / 11 ∴当a=120°或a=300°时,点A 1与点B 1纵坐标相同.(3)如图2所示:由旋转的性质可知A 1B 1=AB=2,点B 的坐标为(1,2), ∴点B 1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B 1的坐标为(1). ∴点B1的坐标为(﹣11.。
人教版九年级数学 上册 第二十三章 旋转 单元综合与测试(含答案)
第二十三章旋转单元复习与检测题(含答案)一、选择题1、在下列四个图案中,不是中心对称图形的是( )2、下列图形既是轴对称图形又是中心对称图形的是( )A.等腰三角形 B.平行四边形C.矩形 D.等腰梯形3、将点A(3,2)沿x轴向左平移4个单位长度得到点A′,则点A′关于原点对称的点的坐标是( )A.(-3,2) B.(-1,2) C.(1,2) D.(1,-2)4、如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是( )A.72° B.108° C.144° D.216°5、若点A(n,2)与点B(-3,m)关于原点对称,则n-m=( )A.-1 B.-5 C.1 D.56、右图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A.90° B.60°C.45° D.30°7、用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转 B.对称和旋转 C.对称和平移 D.旋转和平移8、如图,△EFG与△E′F′G′均为等边三角形,且E(3,2),E′(-3,-2),通过对图形观察,下列说法正确的是( )A.△EFG与△E′F′G′关于y轴对称B.△EFG与△E′F′G′关于x轴对称C.△EFG与△E′F′G′关于原点O对称D.以F,E′,F′,E为顶点的四边形是轴对称图形9、在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3) B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)10、将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( )A.1圈B.1.5圈C.2圈D.2.5圈二、填空题11、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°到OA′,则点A′的坐标是________.12、如图,直线EF经过ABCD的对角线的交点,若AE=3 cm,四边形AEFB的面积为15 cm2,则CF=________,四边形EDCF的面积为________.13、点P(-1,3)绕着原点顺时针旋转90o与P’重合,则P’的坐标为 .14、在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.15、如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,BC=12 cm.将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF和△BDF的周长之和为________cm.r r三、解答题16、如图,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠PAC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。
人教版数学九年级上册:第二十三章 《旋转》单元测试卷(附参考答案)
第二十三章 《旋转》单元测试卷(全卷总分150分,考试时间120分钟)一、选择题(每小题4分,共40分)1.下列现象中属于旋转的是( )A .摩托车在急刹车时向前滑动B .拧开水龙头C .雪橇在雪地里滑动D .电梯的上升与下降2.在下列图案中,不是中心对称图形的是( )A B C D3.如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°第3题图 第6题图 第5题图 第7题图4.点A(3,-1)关于原点的对称点A ′的坐标是( )A .(-3,-1)B .(3,1)C .(-3,1)D .(-1,3)5.如图,已知△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列判断不正确的是( )A .∠ABC =∠A ′B ′C ′ B .∠BOC =∠B ′A ′C ′C .AB =A ′B ′D .OA =OA ′6.如图,把一个直角三角尺绕着30°角的顶点B 顺时针方向旋转,使得点A 与CB 延长线上的点E 重合,连接CD 交AB 于点F ,则∠AFC =( )A .45°B .30°C .60°D .90°7.如图,点O 是▱ABCD 的对称中心,EF 是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABFE 和四边形EFCD 的面积分别记为S 1,S 2,那么S 1,S 2之间的关系为( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定8.如图,直线y =-43x +4与x 轴,y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)第8题图第9题图第10题图9.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)10.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFG,则图中阴影部分的面积为( )A.12B.33C.1-34D.1-33二、填空题(每小题3分,共30分)11.小明、小辉两家所在位置关于学校中心对称,如果小明家距学校2公里,那么他们两家相距公里.12.等边三角形至少旋转度才能与自身重合.13.如图,▱ABCD中,对角线AC,BD相交于点O,则图中成中心对称的三角形共有对.第13题图第14题图第16题图14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为8.15.若点A(3-m,2)在函数y=2x-3的图象上,则点A关于原点对称的点的坐标是.16.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.17.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD的长为.第17题图第18题图第19题图18.如图,E,F分别是正方形ABCD的边BC,CD上的点,BE=CF,连接AE,BF,将△ABE 绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=.19.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG,EG,则∠CGE=.20.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.三、(本大题12分)21.平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.四、(本大题12分)22.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1个单位长度,请解答下列问题:(1)将△ABC向下平移3个单位长度得到△A1B1C1,作出平移后的△A1B1C1;(2)作出△ABC关于点O的中心对称图形△A2B2C2,并写出点A2的坐标.23.如图,已知△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?六、(本大题14分)24.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.25.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.八、(本大题16分)26.如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)若BC=8,DE=6,求△AEF的面积.参考答案: 题号1 2 3 4 5 6 7 8 9 10 选项B B AC B A CD A D11.4.12.120.13.4.14.8.15.(-52,-2). 16.(2,3).17.3.18.90°.19.45°.20.(-1,3).21.解:根据题意,得(x 2+2x)+(x +2)=0,y =-3.∴x 1=-1,x 2=-2.∵点P 在第二象限,∴x 2+2x<0.∴x =-1.∴x +2y =-7.22.解:(1)如图.(2)如图,点A 2的坐标是(-1,-2).23.解:(1)∵△ABD 经旋转后到达△ACE ,它们的公共顶点为A ,∴旋转中心是点A.(2)线段AB 旋转后,对应边是AC ,∠BAC 就是旋转角,也是等边三角形的内角, ∴旋转了60°.(3)∵旋转前后AB ,AC 是对应边,故AB 的中点M 旋转后就是AC 的中点了, ∴点M 转到了AC 的中点.24. 解:(1)根据对称中心的性质,可得对称中心的坐标是D 1D 的中点,∵D 1,D 的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A ,D 的坐标分别是(0,4),(0,2),∴正方形ABCD 与正方形A 1B 1C 1D 1的边长都是4-2=2.∴B ,C 的坐标分别是(-2,4),(-2,2).∵A 1D 1=2,D 1的坐标是(0,3),∴A 1的坐标是(0,1).∴B 1,C 1的坐标分别是(2,1),(2,3).综上可得顶点B ,C ,B 1,C 1的坐标分别是(-2,4),(-2,2),(2,1),(2,3). 25.解:(1)如图.(2)如图.(3)旋转中心的坐标为(0,-2).26.解:(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°.而F 是CB 的延长线上的点,∴∠ABF =90°.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠ADE =∠ABF ,DE =BF ,∴△ADE ≌△ABF(SAS).(3)∵BC =8,∴AD =8.在Rt △ADE 中,DE =6,AD =8,∴AE =AD 2+DE 2=10.∵△ABF 可以由△ADE 绕旋转中心 A 点,按顺时针方向旋转90度得到,∴AE =AF ,∠EAF =90°.1 2AE2=12×100=50.∴S△AEF=。
新人教版九年级上第第23章《旋转》基础练习含答案
新人教版九年级上第第23章《旋转》基础练习含答案时刻:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么那个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC能够看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时刻:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原先图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,假如连接线段AA′,BB′,CC′,它们都通过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时刻:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时刻:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形通过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形能够看成由差不多图形________通过________次旋转而成.5.如图J23-3-2,一串有味的图案按一定规律排列.请认真观看,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观看图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特点:特点1:____________________;特点2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特点.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯独).图DJ3。
人教版初中九年级数学上册第二十三章《旋转》经典测试卷(含答案解析)(2)
一、选择题1.如图,将△ABC 绕点A 旋转,得到△AEF ,下列结论正确的个数是( ) ①△ABC ≌△AEF ;②AC=AE ;③∠FAB=∠EAB ;④∠EAB=∠FAC .A .1B .2C .3D .42.下列图形一定不是中心对称图形的是( )A .正六边形B .线段()213y x x =-+≤≤C .圆D .抛物线2y x x =+3.下列图形中,是中心对称图形的是( ) A . B . C . D . 4.下列图形中,是中心对称图形的是( )A .B .C .D .5.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形 ).A .1个B .2个C .3个D .4个6.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .87.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( ) A .戴口罩讲卫生 B .勤洗手勤通风C .有症状早就医D .少出门少聚集8.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 9.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是( )A.22B.4 C.23D.不能确定10.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有()A.4种B.5种C.6种D.7种11.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90︒得到月牙②,则点A的对应点A’的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)12.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有( )个是正确的.①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④222+=BE DC DEA.4 B.3 C.2 D.113.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.14.如图,在△ABC 中,AB =2.2,BC =3.6,∠B =60°,将△ABC 绕点A 按逆时针方向旋转得到△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.5B .1.4C .1.3D .1.2 15.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( )A .3B .-3C .-1D .1 二、填空题16.如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形AB C D ''',若8CD =,6DA =,那么AC '=______.17.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.18.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.19.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.20.在平面直角坐标系中,点A (-5,b)关于原点对称的点为B (a ,6),则(a+b)2019=____.21.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点,B O 分别落在点11,B C 处,点1B 在x 轴上,再将111A B C △绕点1B 顺时针旋转到112A B C的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x轴上,依次进行下去,······,若点()3,0,0,2,2A B ⎛⎫ ⎪⎝⎭则点2020B 的坐标为__________________.22.如图,在Rt △ABC 中,已知∠C=90°,∠A=60°,AC=3cm ,以斜边AB 的中点P 为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt △A′B′C′,则旋转前后两个直角三角形重叠部分的面积为______________.23.如图,把ABC ∆绕顶点C 按顺时针方向旋转得到△A B C '',当A B AC ''⊥,47A ∠=︒,128A CB ∠='︒时,B CA '∠的度数为_____.24.如图,把Rt ABC ∆绕点A 逆时针旋转40︒,得到Rt AB C ''∆,点C '恰好落在边AB 上,连接BB ',则BB C ''∠=___________度.25.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________. 26.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.三、解答题27.把两个全等的等腰直角三角板ABC 和EFG 叠放在一起(如图①),两直角三角板的直角边长均为4,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点按顺时针方向旋转(旋转角α满足条件:090α︒<<︒),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH 与CK 有怎样的数量关系:________.(2)四边形CHGK 的面积有何变化?证明你发现的结论.(3)连接HK ,在上述旋转过程中,设BH x =,GKH △的面积为y ,求y 与x 之间的关系,并通过“配方法”求出GKH △面积的最小值.28.如图,ABC ∆的顶点坐标分别为()3,30,1,()),1,1(A B C ---.(1)请画出ABC ∆关于点B 成中心对称的11A BC ∆,并写出点11,A C 的坐标; (2)四边形11AC AC 的面积为 . 29.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由.30.在平面直角坐标系中,四边形AOBC 是矩形,点(0 0)O ,,点(10 0)A ,,点(0 6)B ,.以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E , F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证ADB △≌BCA ;②求出ABH 面积.。
人教版九年级数学上册第二十三章旋转测试卷 (2)
人教版九年级数学试题第二十三章二次函数周周测1一、选择题1.对如图的变化顺序描述正确的是A. 翻折、旋转、平移B. 旋转、翻折、平移C. 平移、翻折、旋转D. 翻折、平移、旋转2.将如图方格纸中的图形绕O点顺时针旋转得到的图形是A.B.C.D.3.将绕点O旋转得到,则下列作图正确的是A. B.C. D.4.一个图形旋转后得到的图形与原来的图形有如下的关系对应角相等;对应线段相等;对应点到旋转中心的距离相等;连接对应点所成的线段相等;每对对应点与旋转中心连线所成的角都相等,它们都等于旋转角;其中正确的有A. 5个B. 4个C. 3个D. 2个5.如图,网格纸上正方形小格的边长为图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段和点,则点所在的单位正方形区域是A. 1区B. 2区C. 3区D. 4区6.如图,将绕顶点A旋转到处,若∠BAD=40°,则的度数是A.B.C.D.7.下列现象属于旋转的是A. 摩托车在急刹车时向前滑动B. 飞机起飞后冲向空中的过程C. 幸运大转盘转动的过程D. 笔直的铁轨上飞驰而过的火车8.如图,将绕点B顺时针旋转得,点C的对应点E恰好落在AB延长线上,连接下列结论一定正确的是A.B.C.D.9.如图,将绕直角顶点C顺时针旋转,得到,连接,若,则的度数是A.B.C.D.10.如图,将绕点O按逆时针方向旋转后得到,若,则的度数是A.B.C.D.二、计算题11.如图,中,逆时针旋转一定角度后与重合,且点C恰好成为AD的中点.指出旋转中心,并求出旋转的度数;求出的度数和AE的长.12.如图是由边长为1的小正三角形组成的网格图,点O和的顶点都在正三角形的格点上,将绕点O逆时针旋转得到.在网格中画出旋转后的;求AB边旋转时扫过的面积.13.14.15.13.在如图所示的平面直角坐标系中,的三个顶点都在小正方形的顶点处,请结合图完成下列各题:填空:______ ;______ 结果保留根号.将绕原点O旋转,画出旋转对应的,并求直线的函数表达式.14.如图,在中,,将绕点C顺时针旋转至,点A的对应点恰好落在AB上,求的长.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAEC.∠EAF D.∠BAF3.下列图案中,是轴对称图形但不是中心对称图形的是()4.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′等于()A.2 B.3 C.4 D.1.5第2题图第4题图第5题图第7题图5.如图所示的两个三角形是经过什么图形变换得到的()A .旋转B .旋转和平移C .旋转和轴对称D .平移和轴对称6.若点A (-2,n )在x 轴上,则点B (n -1,n +1)关于原点对称的点的坐标为( ) A .(1,1) B .(-1,-1) C .(1,-1) D .(-1,1)7.如图,△ABC 绕点C 按顺时针旋转15°到△DEC .若点A 恰好在DE 上,AC ⊥DE ,则∠BAE 的度数为( )A .15°B .55°C .65°D .75°8.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后,点P 的对应点的坐标是( )A .(3,1)B .(1,-3)C .(23,-2)D .(2,-23)第8题图 第9题图 第10题图9.如图,O 是等边△ABC 内的一点,OB =1,OA =2,∠AOB =150°,则OC 的长为( ) A. 3 B. 5 C.7 D .310.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′的位置,则图中阴影部分的面积为( )A.12B.33 C .1-33 D .1-34二、填空题(每小题3分,共24分)11.请写出一个是中心对称图形的几何图形的名称:_________________.12.如图,将△OAB 绕着点O 逆时针连续旋转两次得到△OA ″B ″,每次旋转的角度都是50°.若∠B ″OA =120°,则∠AOB =________.第12题图 第13题图13.如图所示,在△ABC 中,∠C =90°,AC =BC =4cm.若以AC 的中点O 为旋转中心,将这个三角形旋转180°后,点B 落在B ′处,则BB ′=________cm.14.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB 绕点O 逆时针旋转90°得到△COD ,则旋转过程中形成的阴影部分的面积为_______.第14题图 第15题图15.如图,将等边△ABC 绕顶点A 按顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,则∠EAF 的度数为________.16.如图所示,已知抛物线C 1,抛物线C 2关于原点中心对称.如果抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为___________________.第16题图 第17题图 第18题图17.如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是________________.18.如图,在Rt △ABC 中,∠BAC =90°,AB =4,AC =3,点D ,E 分别是AB ,AC 的中点,点G ,F 在BC 边上(均不与端点重合),DG ∥EF .将△BDG 绕点D 顺时针旋转180°,将△CEF 绕点E 逆时针旋转180°,拼成四边形MGFN ,则四边形MGFN 周长l 的取值范围是________________.三、解答题(共66分)19.(8分)如图,AC 是正方形ABCD 的对角线,△ABC 经过旋转后到达△AEF 的位置. (1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度; (3)分别写出点A ,B ,C 的对应点.20.(8分)如图,已知四边形ABCD,画四边形A1B1C1D1,使它与四边形ABCD关于C 点中心对称.21.(8分)请你画出一条直线,把如图所示的平行四边形和圆两个图形分成面积相等的两部分(保留作图痕迹).22.(10分)如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10,若将△P AC 绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.23.(10分)在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O,B的对应点分别是点E,F.(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E,F的坐标;(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.24.(10分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB 与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.25.(12分)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB,BA(或它们的延长线)于点E,F,∠EDF=60°,当CE=AF时,如图①,小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图②,小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E,F分别在CB,BA的延长线上时,如图③,请直接写出DE与DF的数量关系;(3)连接EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?答案1.B2.A3.A4.A5.D6.C7.A8.B9.B 解析:如图,将△AOB 绕B 点顺时针旋转60°到△BO ′C 的位置,由旋转的性质,得BO =BO ′,∴△BO ′O 为等边三角形,由旋转的性质可知∠BO ′C =∠AOB =150°,∴∠CO ′O =150°-60°=90°.又∵OO ′=OB =1,CO ′=AO =2,∴在Rt △COO ′中,由勾股定理,得OC =OO ′2+O ′C 2=12+22= 5.故选B.10.C 11.平行四边形(答案不唯一) 12.20° 13.4 514.94π 15.60° 16.y =-34(x -2)2+1 17.(7,3) 18.495≤l <13 解析:连接DE ,作AH ⊥BC 于H .在Rt △ABC 中,∵∠BAC =90°,AB =4,AC =3,∴BC =AB 2+AC 2=5.∵12·AB ·AC =12·BC ·AH ,∴AH =125.∵AD =DB ,AE =EC ,∴DE ∥CB ,DE =12BC =52.∵DG ∥EF ,∴四边形DGFE 是平行四边形,∴GF =DE =52.由题意得MN ∥BC ,GM ∥FN ,∴四边形MNFG 是平行四边形,∴当MG =NF =AH 时,可得四边形MNFG 周长的最小值为2×125+2×52=495,当G 与B 重合时可得周长的最大值为13.∵G 不与B 重合,∴495≤l <13.19.解:(1)它的旋转中心为点A ;(2分) (2)它的旋转方向为逆时针方向,(4分)旋转角是45度;(6分) (3)点A ,B ,C 的对应点分别为点A ,E ,F .(8分) 20.解:四边形A 1B 1C 1D 1如图所示.(8分)21.解:如图所示.(8分)22.解:(1)由旋转的性质知AP ′=AP =6,∠P ′AB =∠P AC ,(3分)∴∠P ′AP =∠BAC =60°,∴△P ′AP 是等边三角形,∴PP ′=P A =6;(5分)(2)∵P ′B =PC =10,PB =8,PP ′=6,∴P ′B 2=P ′P 2+PB 2,∴△P ′PB 为直角三角形,且∠P ′PB =90°.(7分)由(1)知△P ′AP 是等边三角形,∴∠APP ′=60°.∴∠APB =∠P ′PB +∠P ′P A =90°+60°=150°.(10分)23.解:(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF如图所示.(3分)∵AO⊥AE,AO=AE,∴点E的坐标是(3,3).∵EF=OB=4,∴点F的坐标是(3,-1);(5分)(2)∵点F落在x轴的上方,∴EF<AO.(7分)又∵EF=OB,∴OB<AO.又∵AO =3,∴OB<3,∴一个符合条件的点B的坐标是(-2,0).(10分)24.(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C.∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD =∠CBC1.(3分)在△BCF与△BA1D中,∴△BCF≌△BA1D;(5分)(2)解:四边形A1BCE是菱形.(6分)理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A.∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°-α.∵∠C=α,∴∠A1=α,∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α.∴∠A1=∠C,∠A1BC=∠A1EC,∴四边形A1BCE是平行四边形.(9分)又∵A1B=BC,∴四边形A1BCE是菱形.(10分)25.解:(1)成立.(1分)证明如下:连接BD.∵四边形ABCD是菱形,∴AD=AB.又∵∠DAB =60°,∴△ABD是等边三角形,∴AD=BD,∠ADB=60°,∴∠DBE=∠DAF=60°.∵∠EDF =60°,∴∠ADF=∠BDE.∵在△ADF与△BDE中,∴△ADF≌△BDE(ASA),∴DE=DF;(4分)(2)DF=DE.(8分)解析:连接BD.∵四边形ABCD是菱形,∴AD=AB.又∵∠DAB =60°,∴△ABD是等边三角形,∠DAF=120°.∴AD=BD,∠ADB=60°,∴∠DBE=120°.∵∠EDF=60°,∴∠ADF=∠BDE.∵在△ADF与△BDE中,∴△ADF≌△BDE(ASA),∴DF=DE;(3)如图,过点D作DH⊥AB,DG⊥EF.由(2)知,DE=DF.又∵∠EDF=60°,∴△DEF 是等边三角形.∵四边形ABCD是边长为2的菱形,∴DH= 3.∵△ADF≌△BDE,CE=x,∴AF=BE=x-2,∴FH=AF+AH=x-2+1=x-1,∴DF=(x-1)2+3=x2-2x+4,DG=32×x2-2x+4,(10分)∴y=S△DEF=12·EF·DG=12×x2-2x+4×32×x2-2x+4=34(x-1)2+334.∴当x=1时,y最小值=334.(12分)。