人教版初三数学上册22.3实际问题与二次函数——最大利润.3.2实际问题与二次函数

合集下载

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

人教版数学九年级上册:22.3 实际问题与二次函数  第2课时  二次函数与最大利润问题  教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x (月份)与市场售价P(元/千克)的关系如下表:上市时间x/(月份)123456市场售价P(元/千克)10.597.56 4.53这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。

人教版数学九年级上册说课稿22.3《实际问题与二次函数》

人教版数学九年级上册说课稿22.3《实际问题与二次函数》

人教版数学九年级上册说课稿22.3《实际问题与二次函数》一. 教材分析《实际问题与二次函数》这一节是人教版数学九年级上册第22.3节的内容。

这部分教材主要让学生理解和掌握二次函数在实际问题中的应用。

通过本节课的学习,学生将能够将所学的二次函数知识应用于解决实际问题,提高他们的数学应用能力。

教材中给出了几个实际问题,让学生通过解决这些问题来理解和掌握二次函数的应用。

二. 学情分析九年级的学生已经学过二次函数的基本知识,他们对二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题可能是他们比较陌生的。

因此,在教学过程中,我需要引导学生将所学的二次函数知识与实际问题联系起来,帮助他们理解和掌握二次函数在实际问题中的应用。

三. 说教学目标1.知识与技能目标:学生能够理解二次函数在实际问题中的应用,并能够运用二次函数解决实际问题。

2.过程与方法目标:学生通过解决实际问题,培养他们的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够认识到数学在实际生活中的重要性,增强他们对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解二次函数在实际问题中的应用。

2.教学难点:学生能够将所学的二次函数知识应用于解决实际问题,并能够灵活运用。

五. 说教学方法与手段1.教学方法:我将以问题为导向,引导学生通过解决实际问题来理解和掌握二次函数的应用。

我会鼓励学生进行合作学习和讨论,培养他们的数学思维能力和解决问题的能力。

2.教学手段:我将使用多媒体教学手段,如PPT和教学软件,来展示二次函数的图像和实际问题的情境,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:我会通过一个简单的实际问题引入本节课的主题,激发学生的兴趣和好奇心。

2.教学新课:我会引导学生回顾二次函数的基本知识,然后向他们介绍二次函数在实际问题中的应用。

我会通过示例和讲解,让学生理解和掌握二次函数的应用方法。

3.学生练习:我会给出几个实际问题,让学生独立解决。

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案一. 教材分析本节课是人教版九年级数学上册第22.3节实际问题与二次函数的第2课时,主要内容是销售利润问题。

教材通过引入实际问题,让学生理解和掌握二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣和积极性。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题的解决上,可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生运用二次函数解决实际问题的能力。

三. 教学目标1.理解销售利润问题的背景和意义,掌握销售利润问题的解决方法。

2.能够将二次函数知识应用于解决实际问题,提高学生的数学应用能力。

3.培养学生的团队协作能力和问题解决能力,提高学生的数学素养。

四. 教学重难点1.重点:掌握销售利润问题的解决方法,能够将二次函数应用于实际问题的解决。

2.难点:如何引导学生将二次函数与实际问题相结合,提高学生的问题解决能力。

五. 教学方法本节课采用问题驱动的教学方法,通过引入实际问题,引导学生运用二次函数知识进行解决。

同时,采用小组合作学习的方式,鼓励学生积极参与讨论,提高学生的团队协作能力和问题解决能力。

六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。

2.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的销售利润问题,如商品打折、促销活动等,引导学生关注销售利润问题,激发学生的学习兴趣。

2.呈现(10分钟)呈现一个具体的销售利润问题,如某商品原价为100元,售价为80元,求商品的利润。

引导学生运用二次函数知识进行解决。

3.操练(10分钟)学生分组讨论,每组选取一个销售利润问题进行解决。

教师巡回指导,解答学生的问题,引导学生运用二次函数知识进行解决。

人教版九年级上册22.3 实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3 实际问题与二次函数(最大利润问题)教案教学设计

22.3实际问题与二次函数(最大利润问题)教案
(新人教版第二十二章第三节)
一、教学目标:
1.知识和技能目标:通过实际问题与二次函数关系的探究,让学生利用配方等方法解决利润最大值(或最小值)问题
2能力目标:通过观察,思考,交流,进一步提高分析问题、解决问题的能力
3.情感目标:通过生活学习数学,并用数学解决生活中的问题,从而激发学生的学习热情
二、教学重点、难点:
重点:利用二次函数的最大值(或最小值)解决实际问题
难点:如何将实际问题转化为二次函数问题
三、教学过程:。

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。

这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。

教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。

但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。

因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。

三. 教学目标1.了解二次函数在实际问题中的应用。

2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.掌握二次函数在实际问题中的应用。

2.将实际问题转化为二次函数问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。

同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。

六. 教学准备1.准备相关的实际问题案例。

2.准备PPT,展示二次函数在实际问题中的应用。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。

例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。

通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。

3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。

每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。

22.3+实际问题与二次函数二商品最大利润问题+课件2023—2024学年人教版数学九年级上册

22.3+实际问题与二次函数二商品最大利润问题+课件2023—2024学年人教版数学九年级上册

某商品现在的售价为每件60元,每星期可卖出
300件,已知商品的进价为每件40元,则每星期销售
额是 18000
元,销售利润 6000
元.
数量关系
(1)销售额= 售价×销售量;
(2)利润= 销售额-总成本=单件利润×销售量;
(3)单件利润=售价-进价.
典例精析
例1 某电器商场根据民众健康需要,代理销售某种
• ∴50≤x≤100,
• ∴一周销售量y与x的函数关系式为y=100010x(50≤x≤100);
例5 某商场销售成本为每件40 元的商品.据
市场调查分析,如果按每件50元销售,一周
能卖出500件;若销售单价每涨1元,每周销
量就减少10 件.设销售单价为x(x≥50)元.
• (2)设一周销售获得毛利润w元,写出w与x
第二十二章
二次函数
22.3 实际问题与二次函数
第5课时 商品利润最大问题
导入新课
情境引入
在日常生活中存在着许许多多的与数学知识有关
的实际问题.商品买卖过程中,作为商家追求利润最大
化是永恒的追求.
如果你是商场经理,如何定价才能使商场获得最大利润呢?
讲授新课
一 利用二次函数解决商品利润最大问题
探究交流
数的简图,利用简图和性质求出.
小试身手
• 某商家利用网络平台进行“直播带货”,销售一
批成本为每件30பைடு நூலகம்的商品,若销售单价为36元,
则每天可卖出88件,为提高利润,欲对该商品进
行涨价销售,经调查发现:每涨价1元,每天要少
卖出2件,按单价不低于成本价,且不高于50元销
售.
• (1)求该商品每天的销售量y(件)与销售单价x(元)之

初三数学九年级上册:22.3 实际问题与二次函数 22.3.2 实际问题与二次函数(二)——最大利润问题ppt课件

初三数学九年级上册:22.3 实际问题与二次函数 22.3.2 实际问题与二次函数(二)——最大利润问题ppt课件

则 y=(35- 1 x)x-( 1 x2+3x+80)=-1x2+32x-80=-1(x-80)2+1 200,
10
10
5
5
∵-1<0,∴当 x=80 时,函数有最大值 1 200. 5
即当每个周期产销 80 件商品时,产销利润最大,最大值为 1 200 元.
D.180元
8. 生产季节性产品的企业,当它 C 的产品无利润时就会及时停
产.现有一生产季节性产品的企 业C ,其一年中获得的利润y和月 份n之间的函数关系式为y=-n2 +14n-24,则该企业一年中应
停产的月份房间每天的房价
不得高于340元,设每个房间的
第二十二章 二次函数
22.3 实际问题与二次函数
22.3.2 实际问题与二次函数(二)——最大利
武汉专版·九年级上册
3. 一件工艺品的进价为100元, 标价135元出售,每天可售出100
件,根据销售统C 计,该工艺品的 标价每降价1元,则每天可多售 出4件,要使每天获得的利润最
大,则每件的售价应定为( ) A.130元 B.125元 C.131元
10
10
10
w与x的函数关系式; (3)- 1 <0,抛物线开口向下,对称轴为直线 x=170,又∵0<x≤160 在对称轴的左侧, 10
(3)一天订住多少个房间时,宾馆 ∴w 随 x 的增大而增大,∴当 x=160 时,w 的最大值为 10 880 元,此时 y=34,则当一天 订住 34 个房间时,宾馆的最大利润为 10 880 元.
的利润最大?最大利润是多少元?
P·x-C)
(1)直接写出产销成本C与商品件
数x的函数关系式(不要求写自变 产销商品件数(x/件)

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教学设计

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教学设计

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教学设计一. 教材分析人教版九年级数学上册第22.3节实际问题与二次函数第2课时《销售利润问题》,主要让学生通过解决实际问题,掌握二次函数在销售利润中的应用。

教材通过引入一个具体的销售利润问题,让学生探究利润与销售数量、销售价格之间的关系,引导学生利用二次函数模型解决问题,培养学生的数学建模能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,可能会对将实际问题转化为数学模型感到困难,对利润、成本等概念在实际问题中的运用还不够熟练。

因此,在教学过程中,需要帮助学生建立数学与实际问题之间的联系,提高学生解决实际问题的能力。

三. 教学目标1.理解销售利润问题的实际背景,掌握利用二次函数解决销售利润问题的方法。

2.能够将实际问题转化为二次函数模型,提高数学建模能力。

3.培养学生的数据分析、逻辑推理和解决问题的能力。

四. 教学重难点1.重点:理解销售利润问题的实际背景,掌握利用二次函数解决销售利润问题的方法。

2.难点:将实际问题转化为二次函数模型,求解最优化问题。

五. 教学方法1.情境教学法:通过引入一个具体的销售利润问题,激发学生的学习兴趣,引导学生主动探究。

2.案例分析法:分析具体案例,让学生了解销售利润问题在实际生活中的应用,培养学生解决实际问题的能力。

3.小组合作学习:鼓励学生分组讨论,共同解决问题,提高学生的团队协作能力。

六. 教学准备1.准备相关案例材料,用于引导学生分析实际问题。

2.准备多媒体教学设备,用于展示案例和教学过程。

七. 教学过程1.导入(5分钟)利用多媒体展示一个实际的销售利润问题,引导学生思考利润与销售数量、销售价格之间的关系。

2.呈现(10分钟)呈现具体案例,让学生分析利润与销售数量、销售价格之间的关系。

引导学生运用二次函数模型解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三堆初级中学数学组谌泽宾
今天让我们一起走进实际问题与二次函数,首先小组内讨论一下前置研究
课题22.3.2实际问题与二次函数课型新授课
教学内容及过程课堂质疑
活动一前置研究
求下列二次函数的最大值和最小值:
看图,完成前置研究
1.三个函数的解析式相同,他们的最值
相同吗?为什么?
2.观察上述函数的最值都是在哪些点处
取得?
(结论:在顶点或端点处取得)
活动二例题分析
问题3原价60元时,可卖300件:①涨价元时,卖
出件数为0,因此x的取值范围是≤x≤。

②降价元时,以成本价元销售,售价大于
元,才有利润,因此n的取值范围是。

活动三解题格式
首先列出关系式
确定范围第二步
画出图像并分析
最优值解可得出
你能求出降价时的最大利润吗?试一试
(0≤X≤
活动四步骤优化
确定最优解的关键是看顶点横坐标在不在自变量范围内,若在,直接取顶点纵坐标作为最优解。

解:②设降价元n元时,所得利润为y,由题意可得
定价为
1
58
3
元时,利润最大,最大利润为6050元
综合①②所述:当定价65元时,利润最大为6250元
活动五巩固练习
某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
若日销售量y 是销售价x 的一次函数。

(1)求出日销售量y(件)与销售价x(元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)
活动六课堂小结
活动七布置作业
习题22.3第2题,第8题作业本上
结合二次函数图像,我们发现:限定了自变量范围的函数,最值不是顶点纵坐标,就是端点纵坐标
例:抛物线y=2x2+8x+13(-3≤x≤3)的最大值是,最小值是。

分析:由以上总结,我们只需求出x=-3,x=3,x=
2
b
a
= -2时的y值,并比较y值大小,得出最值。

解:x=-3时,y=2 x(-3)2+8 x(-3)+13 =7
x= 3时,y=2 x 32 +8 x3+13 =55
x=-2时,y=2 x(-2)2+8 x(-2)+13 =5
∴x=-2时取最小值5,x=3时取最大值55。

相关文档
最新文档