行测数学41
经典行测75道逻辑推理题附加详细答案
经典行测75道逻辑推理题附加详细答案【1】假设有一个池塘,里面有无穷多的水。
现有2个空水壶,容积分别为5升和6升。
问题是如何只用这2个水壶从池塘里取得3升的水。
【2】周雯的妈妈是豫林水泥厂的化验员。
一天,周雯来到化验室做作业。
做完后想出去玩。
"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。
你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。
请你想想看,"小机灵"是怎样做的?【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。
小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。
由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。
然后这样循环,直到他们只剩下一个人。
那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?【4】一间囚房里关押着两个犯人。
每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。
起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。
后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。
于是争端就这么解决了。
可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。
必须寻找一个新的方法来维持他们之间的和平。
该怎么办呢?按:心理问题,不是逻辑问题【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。
这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。
请证明整个桌面可以用4n个硬币完全覆盖【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙【7】五个大小相同的一元人民币硬币。
公务员行测考试—整数问题
整数的问题对于两位、三位或者更多位的整数,有时要用下面的方法来表示:49=4×10+9,235=2×100+3×10+5,7064=7×1000+6×10+4,一、整除整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b 丨a.此时,b是a的一个因数(约数),a是b的倍数.1.整除的性质性质1 如果a和b都能被m整除,那么a+b,a-b也都能被m整除(这里设a>b).例如:3丨18,3丨12,那么3丨(18+12),3丨(18-12).性质2如果a能被b整除,b能被c整除,那么a能被c整除。
例如:3丨6,6丨24,那么3丨24.性质3如果a能同时被m、n整除,那么a也一定能被m和n的最小公倍数整除.例如:6丨36,9丨26,6和9的最小公倍数是18,18丨36.如果两个整数的最大公约数是1,那么它们称为互质的.例如:7与50是互质的,18与91是互质的.性质4整数a,能分别被b和c整除,如果b 与c互质,那么a能被b×c整除.例如:72能分别被3和4整除,由3与4互质,72能被3与4的乘积12整除.性质4中,“两数互质”这一条件是必不可少的.72分别能被6和8整除,但不能被乘积48整除,这就是因为6与8不互质,6与8的最大公约数是2.性质4可以说是性质3的特殊情形.因为b与c 互质,它们的最小公倍数是b×c.事实上,根据性质4,我们常常运用如下解题思路:要使a被b×c整除,如果b与c互质,就可以分别考虑,a被b整除与a被c整除.能被2,3,4,5,8,9,11整除的数都是有特征的,我们可以通过下面讲到的一些特征来判断许多数的整除问题.2.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.是什么数字?解:18=2×9,并且2与9互质,根据前面的性质4,可以分别考虑被2和9整除.要被2整除,b只能是0,2,4,6,8.再考虑被9整除,四个数字的和就要被9整除,已有7+4=11.如果b=0,只有a=7,此数是7740;如果b=2,只有a=5,此数是7542;如果b=4,只有a=3,此数是7344;如果b=6,只有a=1,此数是7146;如果b=8,只有a=8,此数是7848.因此其中最小数是7146.根据不同的取值,分情况进行讨论,是解决整数问题常用办法,例1就是一个典型.例2 一本老账本上记着:72只桶,共□67.9□元,其中□处是被虫蛀掉的数字,请把这笔账补上.解:把□67.9□写成整数679,它应被72整除.72=9×8,9与8又互质.按照前面的性质4,只要分别考虑679被8和被9整除.从被8整除的特征,79要被8整除,因此b=2.从6792能被9整除,按照被9整除特征,各位数字之和+24能被9整除,因此a=3.这笔帐是367.92元.例3 在1,2,3,4,5,6六个数字中选出尽可能多的不同数字组成一个数(有些数字可以重复出现),使得能被组成它的每一个数字整除,并且组成的数要尽可能小.解:如果选数字5,组成数的最后一位数字就必须是5,这样就不能被偶数2,4,6整除,也就是不能选2,4,6.为了要选的不同数字尽可能多,我们只能不选5,而选其他五个数字1,2,3,4,6.1+2+3+4+6=16,为了能整除3和6,所用的数字之和要能被3整除,只能再添上一个2,16+2=18能被3整除.为了尽可能小,又要考虑到最后两位数能被4整除.组成的数是122364.例4四位数7□4□能被55整除,求出所有这样的四位数.解:55=5×11,5与11互质,可以分别考虑被5与11整除.要被5整除,个位数只能是0或5.再考虑被11整除.(7+4)-(百位数字+0)要能被11整除,百位数字只能是0,所得四位数是7040.(7+4)-(百位数字+5)要能被11整除,百位数字只能是6(零能被所有不等于零的整数整除),所得四位数是7645.满足条件的四位数只有两个:7040,7645.例5一个七位数的各位数字互不相同,并且它能被11整除,这样的数中,最大的是哪一个?,要使它被11整除,要满足(9+7+5+b)-(8+6+a)=(21+b)-(14+a)能被11整除,也就是7+b-a要能被11整除,但是a与b只能是0,1,2,3,4中的两个数,只有b=4,a=0,满足条件的最大七位数是9876504.再介绍另一种解法.先用各位数字均不相同的最大的七位数除以11(参见下页除式).要满足题目的条件,这个数是9876543减6,或者再减去11的倍数中的一个数,使最后两位数字是0,1,2,3,4中的两个数字.43-6=37,37-11=26,26-11=15,15-11=4,因此这个数是9876504.思考题:如果要求满足条件的数最小,应如何去求,是哪一个数呢?(答:1023495)例6 某个七位数1993□□□能被2,3,4,5,6,7,8,9都整除,那么它的最后三个数字组成的三位数是多少?与上例题一样,有两种解法.解一:从整除特征考虑.这个七位数的最后一位数字显然是0.另外,只要再分别考虑它能被9,8,7整除.1+9+9+3=22,要被9整除,十位与百位的数字和是5或14,要被8整除,最后三位组成的三位数要能被8整除,因此只可能是下面三个数:1993500,1993320,1993680,其中只有199320能被7整除,因此所求的三位数是320.解二:直接用除式来考虑.2,3,4,5,6,7,8,9的最小公倍数是2520,这个七位数要被2520整除.现在用1993000被2520来除,具体的除式如下:因为2520-2200=320,所以1993000+320=1993320能被2520整除.例7下面这个41位数能被7整除,中间方格代表的数字是几?解:因为111111=3×7×11×13×37,所以555555=5×111111和999999=9×111111都能被7整除.这样,18个5和18个9分别组成的18位数,也都能被7整除.右边的三个加数中,前、后两个数都能被7整除,那么只要中间的55□99能被7整除,原数就能被7整除.把55□99拆成两个数的和:55A00+B99,其中□=A+B.因为7丨55300,7丨399,所以□=3+3=6.注意,记住111111能被7整除是很有用的.例8 甲、乙两人进行下面的游戏.两人先约定一个整数N.然后,由甲开始,轮流把0,1,2,3,4,5,6,7,8,9十个数字之一填入下面任一个方格中每一方格只填一个数字,六个方格都填上数字(数字可重复)后,就形成一个六位数.如果这个六位数能被N整除,就算乙胜;如果这个六位数不能被N整除,就算甲胜.如果N小于15,当N取哪几个数时,乙能取胜?解:N取偶数,甲可以在最右边方格里填一个奇数(六位数的个位),就使六位数不能被N整除,乙不能获胜.N=5,甲可以在六位数的个位,填一个不是0或5的数,甲就获胜.上面已经列出乙不能获胜的N的取值.如果N=1,很明显乙必获胜.如果N=3或9,那么乙在填最后一个数时,总是能把六个数字之和,凑成3的整数倍或9的整数倍.因此,乙必能获胜.考虑N=7,11,13是本题最困难的情况.注意到1001=7×11×13,乙就有一种必胜的办法.我们从左往右数这六个格子,把第一与第四,第二与第五,第三与第六配对,甲在一对格子的一格上填某一个数字后,乙就在这一对格子的另一格上填同样的数字,这就保证所填成的六位数能被1001整除.根据前面讲到的性质2,这个六位数,能被7,11或13整除,乙就能获胜.综合起来,使乙能获胜的N是1,3,7,9,11,13.记住,1001=7×11×13,在数学竞赛或者做智力测验题时,常常是有用的.二、分解质因数一个整数,它的约数只有1和它本身,就称为质数(也叫素数).例如,2,5,7,101,….一个整数除1和它本身外,还有其他约数,就称为合数.例如,4,12,99,501,….1不是质数,也不是合数.也可以换一种说法,恰好只有两个约数的整数是质数,至少有3个约数的整数是合数,1只有一个约数,也就是它本身.质数中只有一个偶数,就是2,其他质数都是奇数.但是奇数不一定是质数,例如,15,33,….例9○+(□+△)=209.在○、□、△中各填一个质数,使上面算式成立.解:209可以写成两个质数的乘积,即209=11×19.不论○中填11或19,□+△一定是奇数,那么□与△是一个奇数一个偶数,偶质数只有2,不妨假定△内填2.当○填19,□要填9,9不是质数,因此○填11,而□填17.这个算式是11×(17+2)=209,11×(2+17)=209.解例9的首要一步是把209分解成两个质数的乘积.把一个整数分解成若干个整数的乘积,特别是一些质数的乘积,是解决整数问题的一种常用方法,这也是这一节所讲述的主要内容.一个整数的因数中,为质数的因数叫做这个整数的质因数,例如,2,3,7,都是42的质因数,6,14也是42的因数,但不是质因数.任何一个合数,如果不考虑因数的顺序,都可以唯一地表示成质因数乘积的形式,例如360=2×2×2×3×3×5.还可以写成360=23×32×5.这里23表示3个2相乘,32表示2个3相乘.在23中,3称为2的指数,读作2的3次方,在32中,2称为3的指数,读作3的2次方.例10有四个学生,他们的年龄恰好是一个比一个大1岁,而他们的年龄的乘积是5040,那么,他们的年龄各是多少?解:我们先把5040分解质因数5040=24×32×5×7.再把这些质因数凑成四个连续自然数的乘积:24×32×5×7=7×8×9×10.所以,这四名学生的年龄分别是7岁、8岁、9岁和10岁.利用合数的质因数分解式,不难求出该数的约数个数(包括1和它本身).为寻求一般方法,先看一个简单的例子.我们知道24的约数有8个:1,2,3,4,6,8,12,24.对于较大的数,如果一个一个地去找它的约数,将是很麻烦的事.因为24=23×3,所以24的约数是23的约数(1,2,22,23)与3的约数(1,3)之间的两两乘积.1×1,1×3,2×1,2×3,22×1,22×3,23×1,23×3.这里有4×2=8个,即(3+1)×(1+1)个,即对于24=23×3中的23,有(3+1)种选择:1,2,22,23,对于3有(1+1)种选择.因此共有(3+1)×(1+1)种选择.这个方法,可以运用到一般情形,例如,144=24×32.因此144的约数个数是(4+1)×(2+1)=15(个).例11在100至150之间,找出约数个数是8的所有整数.解:有8=7+1;8=(3+1)×(1+1)两种情况.(1)27=128,符合要求,37>150,所以不再有其他7次方的数符合要求.(2)23=8,8×13=104,8×17=136,符合要求.33=27;只有27×5=135符合要求.53=135,它乘以任何质数都大于150,因此共有4个数合要求:128,104,135,136.利用质因数的分解可以求出若干个整数的最大公约数和最小公倍数.先把它们各自进行质因数分解,例如720=24×32×5,168=23×3×7.那么每个公共质因数的最低指数次方的乘积就是最大公约数,上面两个整数都含有质因数2,较低指数次方是23,类似地都含有3,因此720与168的最大公约数是23×3=24.在求最小公倍数时,很明显每个质因数的最高指数次方的乘积是最小公倍数.请注意720中有5,而168中无5,可以认为较高指数次方是51=5.720与168的最小公倍数是24×32×5×7=5040.例12两个数的最小公倍数是180,最大公约数是30,已知其中一个数是90,另一个数是多少?解:180=22×32×5,30=2×3×5.对同一质因数来说,最小公倍数是在两数中取次数较高的,而最大公约数是在两数中取次数较低的,从22与2就知道,一数中含22,另一数中含2;从32与3就知道,一数中含32,另一数中含3,从一数是90=2×32×5.就知道另一数是22×3×5=60.还有一种解法:另一数一定是最大公约数30的整数倍,也就是在下面这些数中去找30,60,90,120,….这就需要逐一检验,与90的最小公倍数是否是180,最大公约数是否是30.现在碰巧第二个数60就是.逐一去检验,有时会较费力.例13有一种最简真分数,它们的分子与分母的乘积都是420.如果把所有这样的分数从小到大排列,那么第三个分数是多少?解:把420分解质因数420=2×2×3×5×7.为了保证分子、分母不能约分(否则约分后,分子与分母的乘积不再是420了),相同质因数(上面分解中的2),要么都在分子,要么都在分母,并且分子应小于分母.分子从小到大排列是1,3,4,5,7,12,15,20.分子再大就要超过分母了,它们相应的分数是两个整数,如果它们的最大公约数是1.就称这两个数是互质的.例13实质上是把420分解成两个互质的整数.利用质因数分解,把一个整数分解成若干个整数的乘积,是非常基本又是很有用的方法,再举三个例题.例14将8个数6,24,45,65,77,78,105,110分成两组,每组4个数,并且每组4个数的乘积相等,请写出一种分组.解:要想每组4个数的乘积相等,就要让每组的质因数一样,并且相同质因数的个数也一样才行.把8个数分解质因数.6=2×3,24=23×3,45=32×5,65=5×13,77=7×11,78=2×3×13,105=3×5×7,110=2×5×11.先放指数最高的质因数,把24放在第一组,为了使第二组里也有三个2的因子,必须把6,78,110放在第二组中,为了平衡质因数11和13,必须把77和65放在第一组中.看质因数7,105应放在第二组中,45放在第一组中,得到第一组:24,65,77,45.第二组:6,78,110,105.在讲述下一例题之前,先介绍一个数学名词--完全平方数.一个整数,可以分解成相同的两个整数的乘积,就称为完全平方数.例如:4=2×2,9=3×3,144=12×12,625=25×25.4,9,144,625都是完全平方数.一个完全平方数写出质因数分解后,每一个质因数的次数,一定是偶数.例如:144=32×42,100=22×52,…例15 甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.2800=24×52×7.在它含有的约数中是完全平方数,只有1,22,24,52,22×52,24×52.在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.例16小明买红蓝两种笔各1支共用了17元.两种笔的单价都是整元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买都不能把35元恰好用完,问红笔、蓝笔每支各多少元?解:35=5×7.红、蓝的单价不能是5元或7元(否则能把35元恰好用完),也不能是17-5=12(元)和17-7=10(元),否则另一种笔1支是5元或7元.记住:对笔价来说,已排除了5,7,10,12这四个数.笔价不能是35-17=18(元)的约数.如果笔价是18的约数,就能把18元恰好都买成笔,再把17元买两种笔各一支,这样就把35元恰好用完了.因此笔价不能是18的约数:1,2,3,6,9.当然也不能是17-1=16,17-2=15,17-3=14,17-6=11,17-9=8.现在笔价又排除了:1,2,3,6,8,9,11,14,15,16.综合两次排除,只有4与13未被排除,而4+13=17,就知道红笔每支13元,蓝笔每支4元.三、余数在整数除法运算中,除了前面说过的“能整除”情形外,更多的是不能整除的情形,例如95÷3,48÷5.不能整除就产生了余数.通常的表示是:65÷3=21…… 2,38÷5=7…… 3.上面两个算式中2和3就是余数,写成文字是被除数÷除数=商……余数.上面两个算式可以写成65=3×21+2,38=5×7+3.也就是被除数=除数×商+余数.通常把这一算式称为带余除式,它使我们容易从“余数”出发去考虑问题,这正是某些整数问题所需要的.特别要提请注意:在带余除式中,余数总是比除数小,这一事实,解题时常作为依据.例17 5397被一个质数除,所得余数是15.求这个质数.解:这个质数能整除5397-15=5382,而5382=2×31997×13×23.因为除数要比余数15大,除数又是质数,所以它只能是23.当被除数较大时,求余数的一个简便方法是从被除数中逐次去掉除数的整数倍,从而得到余数.例18求645763除以7的余数.解:可以先去掉7的倍数630000余15763,再去掉14000还余下1763,再去掉1400余下363,再去掉350余13,最后得出余数是6.这个过程可简单地记成645763→15763→1763→363→13→6.如果你演算能力强,上面过程可以更简单地写成:645763→15000→1000→6.带余除法可以得出下面很有用的结论:如果两个数被同一个除数除余数相同,那么这两个数之差就能被那个除数整除.例19 有一个大于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?解:由上面的结论,所求整数应能整除967,1000,2001的两两之差,即1000-967=33=3×11,2001-1000=1001=7×11×13,2001-967=1034=2×11×47.这个整数是这三个差的公约数11.请注意,我们不必求出三个差,只要求出其中两个就够了.因为另一个差总可以由这两个差得到.例如,求出差1000-967与2001-1000,那么差2001-967=(2001-1000)+(1000-967)=1001+33=1034.从带余除式,还可以得出下面结论:甲、乙两数,如果被同一除数来除,得到两个余数,那么甲、乙两数之和被这个除数除,它的余数就是两个余数之和被这个除数除所得的余数.例如,57被13除余5,152被13除余9,那么57+152=209被13除,余数是5+9=14被13除的余数1.例20 有一串数排成一行,其中第一个数是15,第二个数是40,从第三个数起,每个数恰好是前面两个数的和,问这串数中,第1998个数被3除的余数是多少?解:我们可以按照题目的条件把这串数写出来,再看每一个数被3除的余数有什么规律,但这样做太麻烦.根据上面说到的结论,可以采取下面的做法,从第三个数起,把前两个数被3除所得的余数相加,然后除以3,就得到这个数被3除的余数,这样就很容易算出前十个数被3除的余数,列表如下:从表中可以看出,第九、第十两数被3除的余数与第一、第二两个数被3除的余数相同.因此这一串数被3除的余数,每八个循环一次,因为1998=8×249+6,所以,第1998个数被3除的余数,应与第六个数被3除的余数一样,也就是2.一些有规律的数,常常会循环地出现.我们的计算方法,就是循环制.计算钟点是1,2,3,4,5,6,7,8,9,10,11,12.这十二个数构成一个循环.按照七天一轮计算天数是日,一,二,三,四,五,六.这也是一个循环,相当于一些连续自然数被7除的余数0,1,2,3,4,5,6 的循环.用循环制计算时间:钟表、星期、月、四季,说明人们很早就发现循环现象.用数来反映循环现象也是很自然的事.循环现象,我们还称作具有“周期性”,12个数的循环,就说周期是12,7个数的循环,就说周期是7.例20中余数的周期是8.研究数的循环,发现周期性和确定周期,是很有趣的事.下面我们再举出两个余数出现循环现象的例子.在讲述例题之前,再讲一个从带余除式得出的结论:甲、乙两数被同一除数来除,得到两个余数.那么甲、乙两数的积被这个除数除,它的余数就是两个余数的积,被这个除数除所得的余数.例如,37被11除余4,27被11除余5,37×27=999被11除的余数是4×5=20被11除后的余数9.1997=7×285+2,就知道1997×1997被7除的余数是2×2=4.例21 191997被7除余几?解:从上面的结论知道,191997被7除的余数与21997被7除的余数相同.我们只要考虑一些2的连乘,被7除的余数.先写出一列数2,2×2=4,2×2×2 =8,2×2×2×2=16,….然后逐个用7去除,列一张表,看看有什么规律.列表如下:事实上,只要用前一个数被7除的余数,乘以2,再被7除,就可以得到后一个数被7除的余数.(为什么?请想一想.)从表中可以看出,第四个数与第一个数的余数相同,都是2.根据上面对余数的计算,就知道,第五个数与第二个数余数相同,……因此,余数是每隔3个数循环一轮.循环的周期是3.1997=3× 665 +2.就知道21997被7除的余数,与21997被7除的余数相同,这个余数是4.再看一个稍复杂的例子.例22 70个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和.这一行最左边的几个数是这样的:0,1,3,8,21,55,….问:最右边一个数(第70个数)被6除余几?解:首先要注意到,从第三个数起,每一个数都恰好等于前一个数的3倍减去再前一个数:3=1×3-0,8=3×3-1,21=8×3-3,55=21×3-8,……不过,真的要一个一个地算下去,然后逐个被6去除,那就太麻烦了.能否从前面的余数,算出后面的余数呢?能!同算出这一行数的办法一样(为什么?),从第三个数起,余数的计算办法如下:将前一个数的余数乘3,减去再前一个数的余数,然后被6除,所得余数即是.用这个办法,可以逐个算出余数,列表如下:注意,在算第八个数的余数时,要出现0×3-1这在小学数学范围不允许,因为我们求被6除的余数,所以我们可以0×3加6再来减1.从表中可以看出,第十三、第十四个数的余数,与第一、第二个数的余数对应相同,就知道余数的循环周期是12.70 =12×5+10.因此,第七十个数被6除的余数,与第十个数的余数相同,也就是4.在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的.目前许多小学数学的课外读物都喜欢讲这类问题,但是它的一般解法决不是小学生能弄明白的.这里,我们通过两个例题,对较小的数,介绍一种通俗解法.例23 有一个数,除以3余2,除以4余1,问这个数除以12余几?解:除以3余2的数有:2,5,8,11,14,17,20,23….它们除以12的余数是:2,5,8,11,2,5,8,11,….除以4余1的数有:1,5,9,13,17,21,25,29,….它们除以12的余数是:1,5,9,1,5,9,….一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.上面解法中,我们逐个列出被3除余2的整数,又逐个列出被4除余1的整数,然后逐个考虑被12除的余数,找出两者共同的余数,就是被12除的余数.这样的列举的办法,在考虑的数不大时,是很有用的,也是同学们最容易接受的.如果我们把例23的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.例24 一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.解:先列出除以3余2的数:2,5,8,11,14,17,20,23,26,…,再列出除以5余3的数:3,8,13,18,23,28,….这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8,23,38,…,再列出除以7余2的数2,9,16,23,30,…,就得出符合题目条件的最小数是23.事实上,我们已把题目中三个条件合并成一个:被105除余23.最后再看一个例子.例25在100至200之间,有三个连续的自然数,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,写出这样的三个连续自然数.解:先找出两个连续自然数,第一个能被3整除,第二个能被5整除(又是被3除余1).例如,找出9和10,下一个连续的自然数是11.3和5的最小公倍数是15,考虑11加15的整数倍,使加得的数能被7整除.11+15×3=56能被7整除,那么54,55,56这三个连续自然数,依次分别能被3,5,7整除.为了满足“在100至200之间”将54,55,56分别加上3,5,7的最小公倍数105.所求三数是159,160,161.注意,本题实际上是:求一个数(100~200之间),它被3整除,被5除余4,被7除余5.请考虑,本题解法与例24解法有哪些相同之处?。
行测数量关系的常用公式
行测常用数学公式工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1或最小公倍数1方阵问题:1.实心方阵:方阵总人数=最外层每边人数2=外圈人数÷4+12=N2最外层人数=最外层每边人数-1×42.空心方阵:方阵总人数=最外层每边人数2-最外层每边人数-2×层数 2=最外层每边人数-层数×层数×4=中空方阵的人数;★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人;边行每边有a人,则一共有Na-1人;4.实心长方阵:总人数=M×N 外圈人数=2M+2N-45.方阵:总人数=N2 N排N列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人解:10-3×3×4=84人(2)排队型:假设队伍有N人,A排在第M位;则其前面有M-1人,后面有N-M人(3)爬楼型:从地面爬到第N层楼要爬N-1楼,从第N层爬到第M层要爬NM-层;线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-11单边线形植树:棵数=总长÷间隔+1;总长=棵数-1×间隔2单边环形植树:棵数=总长÷间隔;总长=棵数×间隔3单边楼间植树:棵数=总长÷间隔-1;总长=棵数+1×间隔4双边植树:相应单边植树问题所需棵数的2倍;5剪绳问题:对折N 次,从中剪M 刀,则被剪成了2N×M +1段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + 2相遇追及型:相遇问题:相遇距离=大速度+小速度×相遇时间 追及问题:追击距离=大速度—小速度×追及时间 背离问题:背离距离=大速度+小速度×背离时间 3流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速; 顺流行程=顺流速度×顺流时间=船速+水速×顺流时间 逆流行程=逆流速度×逆流时间=船速—水速×逆流时间 4火车过桥型:列车在桥上的时间=桥长-车长÷列车速度列车从开始上桥到完全下桥所用的时间=桥长+车长÷列车速度 列车速度=桥长+车长÷过桥时间 (5)环形运动型:反向运动:环形周长=大速度+小速度×相遇时间 同向运动:环形周长=大速度—小速度×相遇时间(6)扶梯上下型:扶梯总长=人走的阶数×1±人梯u u ,顺行用加、逆行用减顺行:速度之和×时间=扶梯总长 逆行:速度之差×时间=扶梯总长(7)队伍行进型:对头→队尾:队伍长度=u 人+u 队×时间 队尾→对头:队伍长度=u 人-u 队×时间 (8)典型行程模型:等距离平均速度:21212u u u u u +=U 1、U 2分别代表往、返速度 等发车前后过车:核心公式:21212t t t t T +=,1212t t t t u u -+=人车 等间距同向反向:2121u u u u t t -+=反同 不间歇多次相遇:单岸型:2321s s s += 两岸型:213s s s -= s 表示两岸距离无动力顺水漂流:漂流所需时间=顺逆顺逆t t t t -2其中t 顺和t 逆分别代表船顺溜所需时间和逆流所需时间浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度⑵ 浓度分别为a%、b%的溶液,质量分别为M 、N,交换质量L 后浓度都变成c%,则 ⑶ 混合稀释型等溶质增减溶质核心公式:313122r r r r r += 其中r 1、r 2、r 3分别代表连续变化的浓度1利润=销售价卖出价-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1;2销售价=成本×1+利润率; 成本=+利润率销售价1;3利息=本金×利率×时期; 本金=本利和÷1+利率×时期;本利和=本金+利息=本金×1+利率×时期=期限利率)(本金+⨯1;月利率=年利率÷12; 月利率×12=年利率;例:某人存款2400元,存期3年,月利率为10.2‰即月利1分零2毫,三年到期后,本利和共是多少元”∴2400×1+10.2%×36 =2400×1.3672 =3281.28元关键是年龄差不变;①几年后年龄=大小年龄差÷倍数差-小年龄 ②几年前年龄=小年龄-大小年龄差÷倍数差⑴两集合标准型:满足条件I 的个数+满足条件II 的个数—两者都满足的个数=总个数—两者都不满足的个数⑵三集合标准型:C B A =C B A C A C B B A C B A +---++ ⑶三集和图标标数型:⑷三集和整体重复型:假设满足三个条件的元素分别为ABC,而至少满足三个条件之一的元素的总量为W;其中:满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得以下等式:①W=x+y+z ②A+B+C=x+2y+3z核心公式:y=N —xT原有草量=牛数-每天长草量×天数,其中:一般设每天长草量为X 注意:如果草场面积有区别,如“M 头牛吃W 亩草时”,N 用WM代入,此时N 代表单位面积上的牛数;如果有一个量,每个周期后变为原来的A 倍,那么N 个周期后就是最开始的A N 倍,一个周期前应该是当时的A1;调和平均数公式:21212a a a a a +=等价钱平均价格核心公式:21212p p p p p +=P 1、P 2分别代表之前两种东西的价格 等溶质增减溶质核心公式:313122r r r r r += 其中r 1、r 2、r 3分别代表连续变化的浓度核心公式: 2121a a a a a +=核心口诀:“余同取余、和同加和、差同减差、公倍数做周期” 注意:n 的取值范围为整数,既可以是负值,也可以取零值; 闰年被4整除的2月有29日,平年不能被4整除的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算;★星期推断:一年加1天;闰年再加1天;注意:星期每7天一循环;“隔N 天”指的是“每N+1天”; 1一元二次方程求根公式:ax 2+bx+c=ax-x 1x-x 2其中:x 1=a ac b b 242-+-;x 2=aac b b 242---b 2-4ac ≥0根与系数的关系:x 1+x 2=-a b,x 1·x 2=ac 2ab b a 2≥+ ab b a ≥+2)2(ab b a 222≥+ abc c b a ≥++3)3( 3abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++4一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零; 5两项分母列项公式:)(a m m b +=m 1—a m +1×ab6三项分母裂项公式:)2)((a m a m m b ++=)(1a m m +—)2)((1a m a m ++×ab21排列公式:P m n =nn -1n -2…n-m +1,m≤n ; 56737⨯⨯=A 2组合公式:C m n =P m n ÷P m m =规定0n C =1;12334535⨯⨯⨯⨯=c 3错位排列装错信封问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,4N 人排成一圈有N N A /N 种; N 枚珍珠串成一串有NN A /2种;十七、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21nn-1d ; 2a n =a 1+n -1d ; 3项数n =d a a n 1-+1;4若a,A,b 成等差数列,则:2A =a+b ; 5若m+n=k+i,则:a m +a n =a k +a i ; 6前n 个奇数:1,3,5,7,9,…2n —1之和为n 2 其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和十八、等比数列 1a n =a 1qn -1; 2s n =qq a n -11 ·1)-(q ≠1 3若a,G,b 成等比数列,则:G 2=ab ;4若m+n=k+i,则:a m ·a n =a k ·a i ; 5a m -a n =m-nd 6nm a a =q m-n其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和 十九、典型数列前N 项和平方数底数 1 2 3 4 5 6 7 8 9 10 11 平方 1 4 9 16 25 36 49 64 81 100 121 底数 12 13 14 15 16 17 18 19 20 21 22 平方 144 169 196 225 256 289 324 361 400 441 484 底数 23 24 25 26 27 28 29 30 31 32 33 平方 529576625676729784841900961 1024 1089立方数底数 1 2 3 4 5 6 7 8 9 10 11 立方182764125216343512729 1000 1331★1既不是质数也不是合数以内质数 2 3 5 7 101 103 10911 13 17 19 23 29 113 127 13131 37 41 43 47 53 59 149 151 157 163 16761 67 71 73 79 83 89 97 173 179 181 191 193 197 1993.常用“非唯一”变换①数字0的变换:)0(00≠=N N②数字1的变换:)0()1(1120≠-===a a N N③特殊数字变换:244216== 23684264===249381== 281642256=== ④个位幂次数字:12424== 13828== 12939== 1.勾股定理:a 2+b 2=c 2其中:a 、b 为直角边,c 为斜边2.面积公式:正方形=2a 长方形= b a ⨯ 三角形=c ab ah sin 2121= 梯形=h b a )(21+ 圆形=πR 2 平行四边形=ah 扇形=0360n πR 23.表面积:正方体=62a 长方体=)(2ac bc ab ++⨯ 圆柱体=2πr 2+2πrh 球的表面积=4πR 2 4.体积公式正方体=3a 长方体=abc 圆柱体=Sh =πr 2h 圆锥=31πr 2h 球=334R 5.若圆锥的底面半径为r,母线长为l ,则它的侧面积:S 侧=πr l ; 6.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则:1.所有对应角度不发生变化;2.所有对应长度变为原来的m 倍;3.所有对应面积变为原来的m 2倍;4.所有对应体积变为原来的m 3倍; 7.几何最值型:1.平面图形中,若周长一定,越接近与圆,面积越大;2.平面图形中,若面积一定,越接近于圆,周长越小;3.立体图形中,若表面积一定,越接近于球,体积越大;4.立体图形中,若体积一定,越接近于球,表面积越大;数量关系归纳分析一、等差数列:两项之差、商成等差数列1. 60, 30, 20, 15, 12,2. 23, 423, 823,3. 1, 10, 31, 70, 123二、“两项之和差、积商等于第三项”型基本类型: ⑴ 两项之和差、积商=第3项; ⑵ 两项之和差、积商±某数=第3项; 4. -1,1, ,1,1,2 5. ,, ,,0, 6. 1944, 108, 18, 6, 7. 2,4,2, ,, 三、平方数、立方数1) 平方数列;1,4,9,16,25,36,49,64,81,100,121;;; 2) 立方数列; 1,8,27,64,125,216,343;;;8. 1, 2, 3, 7, 46, 9. -1, 0, -1, , -2, -5,-33四、升、降幂型10. 24, 72, 216, 648, A. 1296 C. 2552 D. 324011. , , 1, 2, , 24 A. 3 C. 7 D. 10八、跳跃变化数列及其变式13. 9, 15, 22, 28, 33, 39,55, A. 60 C. 66 D. 58九、分数数列分子、分母各成不相关的数列或分子、分母交叉看16. , , , , A. B. C. 1 D.17. ,,,, , A. B. C. D.十、阶乘数列18. 1, 2, 6, 24, , 720 A. 109 B. 120 C. 125 D. 169十一、余数数列19. 15, 18, 54, , 210 A. 106 B. 107 C. 123 D. 112技巧方法:(一)观察数列的变化趋势;1、单调上升或下降的数列; “先减加,再除乘,平方立方增减项”2、波动性的数列; “隔项相关”3、先升后降的数列;“底数上升,指数下降的幂数列”“最后一项为分子为1的分数,倒数第二项为1”1、1^6,2^5,3^4,4^3,5^2,6^1,7^0,8^-1,即 1,32,81,64,25,6,1,1/8;整除判定基本法则1.能被2、4、8、5、25、125整除的数的数字特性能被2或5整除的数余数,末一位数字能被2或5、0整除余数;能被4或25整除的数余数,末两位数字能被4或 25整除余数;能被8或125整除的数余数,末三位数字能被8或125整除余数;2.能被3、9整除的数的数字特性能被3或9整除的数余数,各位数字和能被3或9整除余数;3.能被11整除的数的数字特性能被11整除的数,奇数位的和与偶数位的和之差,能被11整除;4.能被6:能被2和3整除;能被10:末位是0;能被12:能被3和4整除数量关系公式1.两次相遇公式:单岸型S=3S1+S2/2两岸型S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇;到达预定地点后, 每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航;这两艘船在距离乙岸 400 米处又重新相遇;问:该河的宽度是多少A. 1120 米B. 1280 米C. 1520 米D. 1760 米典型两次相遇问题,这题属于两岸型距离较近的甲岸 720 米处相遇、距离乙岸 400 米处又重新相遇代入公式3720-400=1760选D 如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式: T=2t逆t顺/ t逆-t顺例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天A、3天B、21天C、24天D、木筏无法自己漂到B城解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=2t1t2/ t1+t2 车速/人速=t1+t2/ t2-t1例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的倍A. 3C. 5解:车速/人速=10+6/10-6=4 选B4.往返运动问题公式:V均=2v1v2/v1+v2例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时解:代入公式得23020/30+20=24选A5.电梯问题:能看到级数=人速+电梯速度顺行运动所需时间顺6.能看到级数=人速-电梯速度逆行运动所需时间逆7.6.什锦糖问题公式:均价A=n /{1/a1+1/a2+1/a3+1/an}8.例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖9.每千克费用分别为元,6 元, 元,如果把这三种糖混在一起成为什锦10.糖,那么这种什锦糖每千克成本多少元11. A.元 B.5 元 C.元 D.元12.7.十字交叉法:A/B=r-b/a-r13.例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:14.析:男生平均分X,女生15. 75-X116. 75=17.X 得X=70 女生为849.一根绳连续对折N次,从中剪M刀,则被剪成2的N次方M+1段10.方阵问题:方阵人数=最外层人数/4+1的2次方N排N列最外层有4N-4人例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生析:最外层每边的人数是96/4+1=25,则共有学生2525=62511.过河问题:M个人过河,船能载N个人;需要A个人划船,共需过河M-A/ N-A次例题广东05有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完 B. 8 解:37-1/5-1=915.植树问题:线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-1例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树A 93B 95C 96D 9912.星期日期问题:闰年被4整除的2月有29日,平年不能被4整除的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算例:2002年 9月1号是星期日 2008年9月1号是星期几因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天;例:2004年2月28日是星期六,那么2008年2月28日是星期几4+1=5,即是过5天,为星期四;08年2 月29日没到13.复利计算公式:本息=本金{1+利率的N次方},N为相差年数例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元两年利息为1+2%的平方10-10= 税后的利息为1-20%约等于,则提取出的本金合计约为万元14.牛吃草问题:草场原有草量=牛数-每天长草量天数例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时A、16B、20C、24D、28解:10-X8=8-X12 求得X=410-48=6-4Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1淘汰赛需决前四名场次=N单循环赛场次为组合N人中取2双循环赛场次为排列N人中排2人传接球M次公式:次数=N-1的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数例题:四人进行篮球传接球练习,要求每人接球后再传给别人;开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式;A. 60种B. 65种C. 70种D. 75种公式解题: 4-1的5次方 / 4= 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数。
国家公务员行测数量关系余数同余问题平均数值问题星期日期问题历年真题试卷汇编1_真题-无答案
国家公务员行测数量关系(余数同余问题、平均数值问题、星期日期问题)历年真题试卷汇编1(总分86,考试时间90分钟)4. 数量关系数学运算在这部分试题中,每道试题呈现一道算术式或是表述数字关系的一段文字,要求你迅速、准确地计算出答案。
1. (广东2011—8)三个运动员跨台阶,台阶总数在100—150级之间,第一位运动员每次跨3级台阶,最后一步还剩2级台阶。
第二位运动员每次跨4级,最后一步还剩3级台阶。
第三位运动员每次跨5级台阶,最后一步还剩4级台阶。
这些台阶总共有( )级。
A. 119B. 121C. 129D. 1312. (上海2011B—61)韩信故乡淮安民间流传着一则故事——“韩信点兵”。
秦朝末年,楚汉相争。
有一次,韩信率1500名将士与楚军交战,战后检点人数,他命将士3人一排,结果多出2名;命将士5人一排,结果多出3名;命将士7人一排,结果又多出2名,用兵如神的韩信立刻知道尚有将士人数。
已知尚有将士人数是下列四个数字中的一个,则该数字是( )。
A. 868B. 998C. 1073D. 12983. (2010年918联考一26)在一个除法算式里,被除数、除数、商和余数之和是319,已知商是21,余数是6,问被除数是多少?( )A. 237B. 258C. 279D. 2904. (湖北政法2010A—9)四位数的自然数P满足:除以9余2,除于8余2,除以7余2,符合条件的自然数P有( )个。
A. 12B. 15C. 18D. 205. (浙江2010—77)有一个自然数x,除以3的余数是2,除以4的余数:是3,问x除以12的余数是多少?( )A. 1B. 5C. 9D. 116. 一个三位数除以7余3,并且尾数为6,请问这样的三位数一共有多少个?( )A. 11B. 12C. 13D. 147. (天津事业单位2011—16)一个三位数除以9余7,除以5余2,除以4余3,这个三位数共有( )个。
公务员行测数量关系解题技巧
数量关系行政能力测验(概况)比较省时的题目:常识判断,类比推理,选词填空,片段阅读(细节判断除外)比较耗时的题目:图形推理,数字判断,资料分析(好找的,好计算的)第一种题型数字推理备考重点:A基础数列类型B五大基本题型(多级,多重,分数,幂次,递推)C基本运算速度(计算速度,数字敏感)数字敏感(无时间计算时主要看数字敏感):a单数字发散b多数字联系对126进行数字敏感——单数字发散1).单数字发散分为两种1,因子发散:判断是什么的倍数(126是7和9的倍数)64是8的平方,是4的立方,是2的6次,1024是2的10次2.相邻数发散:11的2次+5,1215的3次+1,1252的7次-2,1282).多数字联系分为两种:1共性联系(相同)1,4,9——都是平方,都是个位数,写成某种相同形式2递推联系(前一项变成后一项(圈2),前两项推出第三项(圈3))——一般是圈大数注意:做此类题——圈仨数法,数字推理原则:圈大不圈小【例】1、2、6、16、44、()圈6 16 44 三个数得出 44=前面两数和得2倍【例】一.基础数列类型1常数数列:7,7 ,7 ,72等差数列:2,5,8,11,14等差数列的趋势:a大数化:123,456,789(333为公差)582、554、526、498、470、()b正负化:5,1,-33等比数列:5,15,45,135,405(有0的不可能是等比);4,6,9——快速判断和计算才是关键。
等比数列的趋势:a数字非正整化(非正整的意思是不正或不整)负数或分数小数或无理数8、12、18、27、()A.39B.37C.40.5D.42.5b数字正负化(略)4质数(只有1和它本身两个约数的数,叫质数)列:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83 ,89,97——间接考察:25,49,121,169,289,361(5,7,11,13,17,19的平方)41,43,47,53,(59)615合数(除了1和它本身两个约数外,还有其它约数的数,叫合数)列:4.6.8.9.10.12.14.15.16.18.20.21.22.24.25.26.27.28.30.32.33.34.35 .36.38.39.40.42.44.45.46.48.49.50.51.52.54.55.56.57.58.60.62.63.64.65.66.68.69.70.72.74.75.76.77.78.80.81.82.84.85.86.87.88.90.91.92.93.94.95.96.98.99.100【注】1既不是质数、也不是合数。
行测数学运算每日一练答案
1【解析】D。
此题属于计算类题目。
第一依照平方差公式a2-b2=(a+b)(a-b) 化简:12-22+32-42+52……-1002+1012=12+(-22+32-42+52……-1002+1012 )=1+2+3+4+5+……+100+101,依照等差数列求和,可算出结果为5151。
所以选择D选项。
2【解析】C。
此题属于周期类问题。
用数列的前几项除以9取余数,取得1 3 8 4 6 2 7 0 5 1 3 8 ……是一个循环数列,周期T=9。
依照周期的公式,2000/9余数为2,因此第2000个数除以9取得的余数是3,因此选择C 选项。
3【解析】C。
此题属于计数问题。
此题是排列组合中的错位问题,依照对错位问题数字的经历,答案应为9种。
因此选择C选项。
计算过程:设四只小鸟为1,2,3,4,则1有3个笼可选择,不妨假设1进了2号笼,则2也有3个笼可选择,不妨设2进了3号笼,则剩下鸟3、4和笼1、4只有一种选择。
所以一共有3×3=9种。
4【解析】C。
此题为构造类题目。
总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。
要使第三名分尽可能的低,第一第二名分要尽可能高,即为98分(还余282分)。
而第四和第五名的分数要尽可能的高,与第三名的分最接近,三者的分为93,94,95。
那么最高分至少为95。
因此选择C选项。
5【解析】D。
此题可采纳极端法。
既然要第十人隔壁必然有人,那么最极端的排法确实是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9?3=27,因此选择D选项。
6【解析】A。
此题属于几何问题。
圆锥容积为,装的水的体积为,倒入圆柱体后的高度为,因此选择A选项。
7【解析】C。
此题可采纳方程法。
设车长为x,车速为v,那么有1600+x=25v,x=5v,解得x=400,因此选择C选项。
8【解析】A。
此题属于牛吃草类题目。
依照题意,列出方程组:(24-X)×6=(21-X)×8=(16-X)×T。
行测余数问题万能技巧
带余除法。
一般地,如果.α是整数,b是整数(b≠0),那么一定有另外两个整数q和r,使得α÷b=q……r或α=b×q+r当r=0时,我们称α能被b整除。
当r≠0时,我们称α不能被b整除,r为α除以b的余数,q为α除以b的不完全商(也简称为商)。
带余除法最关键就是理清被除数、除数、商、余数的关系,特别需要注意的是,余数肯定小于除数。
出题者常常会在这里设置陷阱。
㈡余数周期。
这其中又分为递推数列(给一串数,要求第χ个数除以某个数的余数)和n次幂(求一个数的n次方除以某个数的余数)相关的余数问题,处理这两类问题一个最直接的做法就是找规律,因为它们除以某数的余数都是有周期的。
例如,求3130÷13的余数。
例如尖子班作业1。
㈢同余问题。
1、什么是“同余”?整数α和b除以整数c,得到的余数相同,我们就说整数α、b对于模c同余。
记作:α ≡b (mod c)例如:15÷4=3 (3)23÷4=5 (3)15和23对于除数4同余。
记作:15 ≡23 (mod4)可以理解为15和23除以4的余数相同。
2、“同余”的四个常用性质是什么?同余性质1:如果α ≡ b (mod m),则m︱(α-b)若两数同余,他们的差必是除数的倍数。
例如,73 ≡23 (mod 10)则10︱(73-23)73与23的差是10的倍数。
同余性质2:如果α ≡ b (mod m),c ≡d (mod m),则α ± c ≡ b ± d (mod m)两数和的余数等于余数的和。
两数差的余数等于余数的差。
例如,73 ≡3 (mod 10)84 ≡4 (mod 10)73+84 ≡3+4≡ 7 (mod 10)84-73≡4-3≡1 (mod 10)同余性质3:如果α ≡ b (模m),c ≡d (模m),则α × c ≡ b×d (模m)两数积的余数等于余数的积。
行测的应用题
【例22】(江苏2006B-76)在招考公务员中,A、B两岗位共有32个男生、18个女生报考。
已知报考A岗位的男生数与女生数的比为5:3,报考B岗位的男生数与女生数的比为2:1,报考A岗位的女生数是()。
A.15B.16C.12D.10[答案]C[解析]报考A岗位的男生数与女生数的比为5:3,所以报考A岗位的女生人数是3的倍数,排除选项B和选项D;代入A,可以发现不符合题意,所以选择C。
【例23】(上海2004-12)下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?()A.XXXYXXB.XYXYXYC.XYYXYYD.XYYXYX[答案]B[解析]因为这个六位数能被 2、5整除,所以末位为0,排除A、D;因为这个六位数能被3整除,这个六位数各位数字和是3的倍数,排除C,选择B。
【例24】(山东2004-12)某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?()A.33B.39C.17D.16[答案]D[解析]答对的题目+答错的题目=50,是偶数,所以答对的题目与答错的题目的差也应是偶数,但选项A、B、C都是奇数,所以选择D。
【例25】(国2005一类-44、国2005二类-44)小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。
如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是多少元?()A.1元B.2元C.3元D.4元[答案]C[解析]因为所有的硬币可以组成三角形,所以硬币的总数是3的倍数,所以硬币的总价值也应该是3的倍数,结合选项,选择C。
[注一]很多考生还会这样思考:“因为所有的硬币可以组成正方形,所以硬币的总数是4的倍数,所以硬币的总价值也应该是4的倍数”,从而觉得答案应该选D。
事实上,硬币的总数是4的倍数,一个硬币是五分,所以只能推出硬币的总价值是4个五分即两角的倍数。
【行测数学运算---平均数问题解题技巧】
【“平均数”问题解题技巧】甲班和乙班,在数学期终考试中,考一样的题目,哪一个班考得好呢?把每一个班所有人的得分加起来,然后除以这个班的人数,就得出这个班的平均分数.哪一个班平均分数高,就算哪一个班考得好.篮球队员的身材都很高,一个队里还是有高有矮,哪个篮球队身材更高呢?把一个队所有队员的身高数加起来,再除以全队人数,就算出这个队的平均身高.通常,用平均身高来衡量一个球队的身材高矮.要衡量"若干个数"的大小,常用的办法就是求它们的平均值.求平均值有两种方法,我们通过一个例子来说明.例1 一学期中进行了五次数学测验,小明的得分是95,87,94,100,98.那么他的平均成绩是多少?解:方法1 把所有分数加起来,除以次数,即(95+87+94+100+98)÷5=94.8.方法2 先设一个基数,通常设其中最小的数,例如本题设87为基数,求其他数与87的差,再求这些差的平均值,最后加上基数,即[(95-87)+(87-87)+(94-87)+(100-87)+(98-87)]÷5+87=(8+0+7+13+11)÷5+87=7.8+87=94.8.对若干个数求平均数,概括成以下两种方法.方法1:各个数的总和÷数的个数方法2:基数+每一数与基数的差求和÷数的个数.这两种方法将形成两种解题思路.方法2的好处是使计算的数值减小,减少计算量,特别便于心算.当然,也可以设其他的数为基数.进入中学后,学了负数,我们还可以设中间的那个数作为基数.方法2启示我们,求平均数就是把数之间的"差"扯平.给大家分享下我的个人考试经验:虽然自己在这篇帖子里面说的主要是申论的考试技巧和做题经验,但我更想跟大家分享的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。
公务员考试那是一个题海战术,只有在考试前大量做题、训练才会有成功的把握。
广东省公务员考试行测数学运算2013-2018年真题汇总(含答案)
广东省公务员考试行测数学运算真题汇总(含答案)2013-2018年20131、某企业组织80名员工一起去划船,每条船乘客定员12人,则该企业最少要租船()条。
A、10B、9C、8D、7答案:D2、师傅每小时加工25个零件,徒弟每小时加工20个零件,按每天工作8小时进行计算,师傅一天加工的零件比徒弟多()个。
A、10B、20C、40D、80答案:C25*8-20*83、小陈家住在5楼,他每天上下楼各一次,共需走120级楼梯。
后来小陈家搬到同一栋楼的8楼,如果每层楼的楼梯级数相同,则他搬家后每天上下楼一次共需走楼梯()级。
A、168B、192C、210D、2404、某礼堂的观众座椅共96张,分东、南、西三个区域摆放。
现从东区搬出与南区同样多的座椅放倒南区,再从南区搬出与西区同样多的座椅放到西区,最后从西区搬出与东区剩下的座椅数量相同的座椅放到东区,这时三个区域的座椅数量相同。
则最初南区的座椅有()张。
A、24B、28C、32D、365、有一部96集的电视纪录片从星期三开始在电视台播出。
正常情况下,星期二到星期五每天播出1集,星期六、星期天每天播出两集,星期一停播。
播完35集后,由于电视台要连续3天播出专题报道,该纪录片暂时停播,待专题报道结束后继续按常规播放。
那么该纪录片最后一集将在()播出。
A、星期二B、星期五C、星期六D、星期日【答案】C。
星期六解析:第一周从周三播放共播出3+2×2=7集,以后每周播出8集。
播完第35集恰好是星期五(7+8×3+4=35),星期六、日、一播纪录片。
剩下96-35=61集,61÷8=7……5,播出7周后还剩下5集,最后一集在星期六播出。
6、某社区组织开展知识竞赛,有5个家庭成功晋级决赛的抢答环节,抢答环节共5道题。
计分方式如下:每个家庭有10分为基础分:若抢答到题目,答对一题得5分,答错一题扣2分;抢答不到题目不得分。
那么,一个家庭在抢答环节有可能获得()种不同的分数。
2013年事业单位考试《行测》:数量关系数字推理
这篇《2013年事业单位考试《⾏测》:数量关系数字推理》是⽆忧考为⼤家整理的,希望对⼤家有所帮助。
以下信息仅供参考!第⼀节数项特征分析 数字推理的数项特征主要包括整除性、质合性、多次⽅数表现形式、数位特征等。
⼀、整除性 ⼀个整数的整除性是指这个数可以被哪些整数整除,如12,可被1、2、3、4、6、12整除。
每个正整数都可以被1和它本⾝整除。
⼀个数的约数越多,其整除性越好。
整除性可以⽤来考查数乘积拆分数列、等⽐数列等,当⼀个数表现出很好的整除性时,可以试着考虑它的因数来寻求规律。
⼆、质合性 质数与合数是从约数的⾓度对所有⼤于1的整数的⼀个划分,规定:除了1和它本⾝以外还有其他约数的数是合数,只有1和它本⾝两个约数的数是质数。
1既不是质数也不是合数。
除2以外,所有的质数都是奇数。
100以内的质数共有25个,从⼩到⼤依次是2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
在分析⼀些数列构成时利⽤质合性有助于推断规律的形式。
譬如质数没有很好的整除性,根据这⼀点就可以排除通过“作商”来寻求规律。
三、多次⽅数表现形式 通常把能够写成⼀个整数的整数次幂的数称为多次⽅数,如16=24、27=33。
多次⽅数附近的数也可写成多次⽅数与整数和或差的形式,如7=23—1、26=52+1=33-1。
四、数位特征 将⼀个多位数看成⼏个数字的组合。
这些数字之间的相互关系被称为这个数的数位特征。
数位特征分析多应⽤于数字位数较多的数列。
。
如123,看成数字1、2、3的组合。
1+2=3,即认为“百位数字与⼗位数字之和等于个位数字”,这就是123的⼀个数位和的特征。
⼜如1236,看成12、36的组合。
36+12=3,即认为“⼗位数字与个位数字组成的两位数是千位数字与百位数字组成的两位数的三倍”。
【例题1】1,6,20,56,144,( ) A.256 B.312 C.352 D.384 解析:此题答案为C0除1外各项都有良好的整除性,因此考虑对每项进⾏乘积拆分。
行测数学运算练习题带答案解析
行测数学运算练习题:1.某公交线路有15站,假设一辆公交车从起点站出发,从起点站后,每一站都会有到前方每一站下车的乘客各一名上车,那么在第九站和第十站之间,车上有( )人?A.48B.54C.56D.602.41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次?A.23B.24C.27D.263.把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?A.32 分钟B.38 分钟C.40 分钟D.152 分钟4.从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒?A.318B.294C.330D.3605.一个商家要将自己的广告牌装在一条马路的一边,计划每隔4米装一块广告牌。
在该马路上,每隔7米都栽种一棵树。
已知这段马路长1092米,且一端是树,请问在不砍掉树的情况下,这段马路上可以装( )块广告牌。
A.234B.233C.157D.156数学运算练习题答案解析:1.答案: B解析:解析1:总站点数为M,求第N站和第N+1之间车上的人数,有下述公式,车上的人数= N×(M-N),可知所求人数为9×(15-9)=9×6=54,故选B。
解析2:第一站点有14个人上车,没有人下车,第二个站点有13个人上,1个人下车,所以到第九站时候,前面上车人数为14,13,12,11,10,9,8,7,6,根据等差数列求和公式,一共有(14+6)×9÷2=90人,下车的人数为1,2,3,4,5,6,7,8,一共有(1+8)×8÷2=36,则到第九站点后,车上人数等于一到第九站上车的人减去一到第九站下车的人数,即90-36=54,故选B选项。
此题不用考虑过于复杂,起始站为第一站。
2.答案: C解析:套用公式,过河次数=(41-1)/(4-1)=13.33,过河次数为整数,13<13.33<14,要使所有人都过河,只能取14。
公务员行测考试—数学运算、应用题400道详解
公务员行测考试数学运算、应用题400道详解【1】、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?A.40;B.41;C.44;D.46;分析:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类] ×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44。
(附:这道题应用到排列组合的知识,有不懂这方面的学员请看看高中课本,无泪天使不负责教授初高中知识)【2】、从12时到13时,钟的时针与分针可成直角的机会有多少次?A.1;B.2;C.3;D.4;分析:选B,时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。
【3】、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。
若第五次传球后,球又回到甲手中,则共有传球方式多少种:A.60;B.65;C.70;D.75;分析:选A,球第一次与第五次传到甲手中的传法有:C(1,3) ×C(1,2) ×C(1,2) ×C(1,2) ×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3) ×C(1,1) ×C(1,3) ×C(1,2) ×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2) ×C(1,1) ×C(1,3) ×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:1.在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种.2.因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中.当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种.3.同理,当第三次球回到甲手中,同理可得3×3×1×2=18种. 最后可得24+18+18=60种【4】一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之.既没有空调也没有高级音响的汽车有几辆?A.2;B.8;C.10;D.15 ;答:选A,车行的小汽车总量=只有空调的+只有高级音响的+两样都有的+两样都没有的,只有空调的=有空调的- 两样都有的=45-12=33,只有高级音响的=有高级音响的- 两样都有的=30-12=18,令两样都没有的为x,则65=33+18+12+x=>x=2【5】一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利A.20%;B.30%;C.40%;D.50%;答:选D,设原价X,进价Y,那X×80%-Y=Y×20%,解出X=1.5Y 所求为[(X-Y)/Y] ×100%=[(1.5Y-Y)/Y] ×100%=50%【6】有两个班的小学生要到少年宫参加活动,但只有一辆车接送。
公务员行测数学数字推理技巧
第二部分数学部分(数字推理部分)1.5,4.5,13.5,16.5,( )A.21.5 B.34.5C.49.5 D.47.5[答案]C。
[解析] 1.5+3=4.5,4.5×3= 13.5,13.5+3=16.5,16.5×3=49.5。
2 5 9 15 ()43A.20 B.24 C.37 D.25--------------------------作差3 4 6 10 18 选D1 2 4 82, 5, 13, 38, ( )A.121B. 116C. 106D. 91B【解析】2×4+5=13,5×5+13=38,13×6+38=116,答案为B。
做差 3 8 25 783^1 3^2-1 3^3-2 3^4-315 30 45 60 75 9060-6=5485 52 ()19 14A、28B、33C、37D、41A-B=C243 217 206 197 171 ()A、160B、158C、162D、156答案A 做差26 11 9 26 1136 24 ()A、B、C、D、16答案D 等比数列5 7 4 9 25 ()A、168B、216C、256D、296答案C (A-B)^2=C3 18 60 147 ()A、297B、300C、303D、307答案A1X33X65X127X213.6.12.21为二级等差21,19,26,40,45,66,()A.105B.100C.93D.85a+b=d40+45=85或者奇偶分开看奇数21 26 45 ?=855 19 40偶数19 40 6621 26奇数差是偶数偶数差是奇数-2,-2,0,64,()A 250 B.650 C.1250 D.150 -2*1^0-1*2^10*3^21*4^32*5^4=12501,2,4,6,9,(),18A、11;B、12;C、13;D、18;1+2+4-1=62+4+6-3=94+6+9-6=136+9+13-10=18其中1、3、6、10做差 2 3 4 等差153,179,227,321,533,()A、987B、1079C、1129D、832150+3^1=153170+3^2=179200+3^3=227240+3^4=321290+3^5=533350+3^6=10794,23,68,101,()A、128B、119C、74.5D、70.254*6-1=2323*3-1=6868*1.5-1=101101*0.75-1=74.758,12,16,18,20,()A.22 B.24 C.26 D.28除以2得到:4,6,8,9,10,126,46,91,101,()A.146 B.155 C.167 D.122除5余1答案A12,18,24,33,45,()A. 61.5 B. 62.5 C. 63 D.64 除34 6 8 11 15 ?A/2+B=C答案A5,6,8,10,14,()A.16 B.18 C.19 D.20C-A=3,4,6,9 二次等差5 6 8 10 14 ()A15B16C17D18答案B 减3变成质数数列这个合理上面的不合理8,18,40,63,110,()A.140 B.144 C.150 D.156 2*4=85*8=407*9=6311*10=11013*12=1567,8,9,24,100,()A.190 B.216 C.153 D.200能被1,2,3,4,5,6整除1/2,1/5,4/5,5/7,( ) A.12/13 B.4/11 C.7/11 D.7/13 分子+分母:3,6,9,12,1547,58,71,79,()A.95 B.100 C.87 D.9247+4+7=5858+5+8=7171+7+1=7979+7+9=9524,6,4,(),2,0A4 B2 C1 D3/224/6=46-4=24/2=22-2=07,8,8,18,20,63,70, ( )A. 102B.183C.213D.284两个一组看7*1+1=88*2+2=1820*3+3=6370*4+4=2843 5 22 42 83 ( )A 133B 156C 163D 1643+5=2^322+42=4^342+83=5^383+?=6^3=2160,0,3,20,115,()A、710B、712C、714D、716解析:(0+0)×2=0,(0+1)×3=3,(3+2)×4=20,(20+3)×5=115,(115+4)×6=714 或者1.2.3.4.5.6的倍数或者除1.2.3.4.5.6得0.0.1.5.23.?0*1+0=00*2+1=11*3+2=55*4+3=2323*5+4=1190,0,1,4( )A 10B 11C 12D 132^0-12^1-22^2-32^3-42^4-5=115,6,6,9,( ),81A.12B.15C.18D.215*6/5=66*6/4=96*9/3=189*18/2=811,7,8,57,()A、123;B、122;C、121;D、120;答案Ca^2+b=c0,0,1,5,23,()A.119 B。
公务员行测数字推理必知的30个规律
公务员行测数字推理必知的30个规律一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )92 124 262 343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ()3三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、( )九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
行测余数问题万能技巧
带余除法。
一般地,如果.α是整数,b是整数(b≠0),那么一定有另外两个整数q和r,使得α÷b=q……r或α=b×q+r当r=0时,我们称α能被b整除。
当r≠0时,我们称α不能被b整除,r为α除以b的余数,q为α除以b的不完全商(也简称为商)。
带余除法最关键就是理清被除数、除数、商、余数的关系,特别需要注意的是,余数肯定小于除数。
出题者常常会在这里设置陷阱。
㈡余数周期。
这其中又分为递推数列(给一串数,要求第χ个数除以某个数的余数)和n次幂(求一个数的n次方除以某个数的余数)相关的余数问题,处理这两类问题一个最直接的做法就是找规律,因为它们除以某数的余数都是有周期的。
例如,求3130÷13的余数。
例如尖子班作业1。
㈢同余问题。
1、什么是“同余”?整数α和b除以整数c,得到的余数相同,我们就说整数α、b对于模c同余。
记作:α ≡b (mod c)例如:15÷4=3 (3)23÷4=5 (3)15和23对于除数4同余。
记作:15 ≡23 (mod4)可以理解为15和23除以4的余数相同。
2、“同余”的四个常用性质是什么?同余性质1:如果α ≡ b (mod m),则m︱(α-b)若两数同余,他们的差必是除数的倍数。
例如,73 ≡23 (mod 10)则10︱(73-23)73与23的差是10的倍数。
同余性质2:如果α ≡ b (mod m),c ≡d (mod m),则α ± c ≡ b ± d (mod m)两数和的余数等于余数的和。
两数差的余数等于余数的差。
例如,73 ≡3 (mod 10)84 ≡4 (mod 10)73+84 ≡3+4≡ 7 (mod 10)84-73≡4-3≡1 (mod 10)同余性质3:如果α ≡ b (模m),c ≡d (模m),则α × c ≡ b×d (模m)两数积的余数等于余数的积。
公务员行测资料分析十大速算技巧实例详解
公务员行测资料分析十大速算技巧实例详解:直除法作者:华图魏华刚资料分析是公务员考试行政职业能力测验中难度较高也同时是分值最高的题型,而资料分析这部分试题的区分度较高,掌握比较好的同学能获得较多的分数,而大部分同学往往持有“放弃”的态度。
单纯从行政职业能力测验试题的难易度分析,资料分析的难度远远比不上数学运算,但资料分析的困难之处在于时间的长消耗性。
对于资料分析这一模块,考生需要在20分钟内完成4篇材料共20道题目,而解决一道题目需要阅读材料——寻找数据——计算数据——涂答题卡四个步骤,考生要在一分钟内完成四个步骤,这是一项何等艰巨的任务。
【前置导读】资料分析是公务员考试行政职业能力测验中难度较高也同时是分值最高的题型,而资料分析这部分试题的区分度较高,掌握比较好的同学能获得较多的分数,而大部分同学往往持有“放弃”的态度。
单纯从行政职业能力测验试题的难易度分析,资料分析的难度远远比不上数学运算,但资料分析的困难之处在于时间的长消耗性。
对于资料分析这一模块,考生需要在20分钟内完成4篇材料共20道题目,而解决一道题目需要阅读材料——寻找数据——计算数据——涂答题卡四个步骤,考生要在一分钟内完成四个步骤,这是一项何等艰巨的任务。
我们不妨来分析一下这四个步骤,毋庸置疑最重要的是寻找数据、计算数据这两个步骤,尤其是计算数据,数据的计算往往成为广大考生的阿喀琉斯之踵。
华图公务员考试辅导专家魏华刚老师在此给大家介绍资料分析中最重要的计算方法之一:“直除法”,希望能通过实例的讲解对考生够提高数据计算的速度与准度有所帮助。
【方法点睛】“直除法”是通过首两位、首三位来判断答案,具体的分析包括四个层次、三个细节。
华图公务员考试辅导专家魏华刚老师提示:这是直除法最基础的层次,但是考生需要注意三个细节:1. 被除数保持不变(因为除不尽可以落位);2. 除数四舍五入取前两位;3. 商最后取前两位。
不用管答案是26点多,260多、2600多或者是等,只要是26开头就是正确答案了。