【真卷】2018年山东省潍坊市寿光市中考数学模拟试卷和解析(四)

合集下载

2018年山东省潍坊市寿光市数学中考模拟试卷【答案】(四)(解析版)

2018年山东省潍坊市寿光市数学中考模拟试卷【答案】(四)(解析版)

2018年山东省潍坊市寿光市中考数学模拟试卷(四)一、选择题(本题共12小题,每小题给出四个选项中,只有有个是不正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列计算不正确的是()A.﹣+=﹣2 B.(﹣)2=C.|﹣3|=3 D.2×sin245°=12.(3分)下列汽车标志中既是轴对称又是中心对称图形的是()A.B.C.D.3.(3分)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间4.(3分)肥皂泡的厚度为0.00000007m,这个数用科学记数法表示为()A.0.7×10﹣7 m B.0.7×l0﹣8m C.7×10﹣7m D.7×10﹣8m5.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π6.(3分)如图所示的工件是由两个长方体构成的组合体,则它的俯视图是()A.B.C.D.7.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.38.(3分)若实数满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.9.(3分)一次函数y=ax+的图象过一、二、四象限,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=图象上的三点,则下列结论正确的是()A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x110.(3分)如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.11.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a(x+1)(x﹣3)=0;④2c﹣3b=0.其中正确的个数为()A.4 B.3 C.2 D.112.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)13.(3分)分解因式:﹣x3y+2x2y2﹣xy3=14.(3分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在CD上,且DE=DO,则∠EOC=.15.(3分)如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1•k2的值为.16.(3分)已知是二元一次方程组的解,则m+3n的立方根为.17.(3分)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.18.(3分)如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为.三、解答题(本大题共7小题,共66分)19.(8分)某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其寒假期间的课外阅读量进行统计分析,绘制成如图所示不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数及课外阅读量的众数;(2)求扇形统计图汇总的a、b值;将条形统计图补充完整;(3)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?(4)如果5本以上的学生中恰有2名男生,4名女生,先要选取两名学生做读书介绍,请你用列表法或树状图的方法,求恰好选取1男1女的概率.20.(8分)如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449)21.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.22.(8分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55、为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间,少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留,问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC 于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.24.(12分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?25.(12分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2018年山东省潍坊市寿光市中考数学模拟试卷(四)参考答案与试题解析一、选择题(本题共12小题,每小题给出四个选项中,只有有个是不正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列计算不正确的是()A.﹣+=﹣2 B.(﹣)2=C.|﹣3|=3 D.2×sin245°=1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣1,符合题意;B、原式=,不符合题意;C、原式=3,不符合题意;D、原式=2×=1,不符合题意,故选:A.2.(3分)下列汽车标志中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是中心对称图形,也是轴对称图形.故选:D.3.(3分)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间【分析】先估算出的范围,再求出1﹣的范围,即可得出选项.【解答】解:∵3<<4,∴﹣4<﹣<﹣3,∴﹣3<1﹣<﹣2,即1﹣在﹣2到﹣3之间,故选:C.4.(3分)肥皂泡的厚度为0.00000007m,这个数用科学记数法表示为()A.0.7×10﹣7 m B.0.7×l0﹣8m C.7×10﹣7m D.7×10﹣8m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000007=7×10﹣8.故选:D.5.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.故选:D.6.(3分)如图所示的工件是由两个长方体构成的组合体,则它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看到的图形是:,故选:B.7.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选:C.8.(3分)若实数满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.9.(3分)一次函数y=ax+的图象过一、二、四象限,点A(x 1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=图象上的三点,则下列结论正确的是()A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1【分析】根据一次函数y=ax+的图象过一、二、四象限推知a<0,所以a﹣1<0,则反比例函数y=的图象位于第二、四象限,然后将点A、B、C在反比例函数图象上大致标出,根据图象直接判定x1>x3>x2【解答】解:∵一次函数y=ax+的图象过一、二、四象限,∴a<0,∴a﹣1<0,∴反比例函数y=图象位于第二、四象限,其大致图象如图所示:,根据图象知,x1>x3>x2;故选:B.10.(3分)如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.【分析】连接OE、OB,延长EO交AB于F,设⊙O的半径为R,则OF=2﹣R,再由勾股定理即可求出R的值.【解答】解:连接OE、OB,延长EO交AB于F;∴E是切点,∴OE⊥CD,∴OF⊥AB,OE=OB;设OB=R,则OF=2﹣R,在Rt△OBF中,BF=AB=×2=1,OB=R,OF=2﹣R,∴R2=(2﹣R)2+12,解得R=.故选:D.11.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a(x+1)(x﹣3)=0;④2c﹣3b=0.其中正确的个数为()A.4 B.3 C.2 D.1【分析】根据函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断①;根据对称轴的位置判断②;根据二次函数一一元二次方程的关系判断③;根据二次函数图象与x轴的交点判断④.【解答】解:①图象开口向下,∴a<0,与y轴交于正半轴,∴c>0,对称轴在y轴右侧,∴b>0,则abc<0,故①错误;②对称轴在y轴右侧,∴x==1,则﹣=1,解得,2a+b=0,故②正确;③∵抛物线与x轴交于(﹣1,0)和(3,0),∴a(x+1)(x﹣3)=0,故③正确;④∵抛物线与x轴交于(﹣1,0)和(3,0),∴a﹣b+c=0,9a+3b+c=0,两式相加得,10a+2b+2c=0,又b=﹣2a,∴2c﹣3b=0,故④正确.故选:B.12.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,故④错误,综上,正确的个数为3个.故选:C.二、填空题(每小题3分,共18分)13.(3分)分解因式:﹣x3y+2x2y2﹣xy3=﹣xy(x﹣y)2【分析】首先提取公因式﹣xy,再利用完全平方公式分解因式得出答案.【解答】解:﹣x3y+2x2y2﹣xy3=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2.故答案为:﹣xy(x﹣y)2.14.(3分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在CD上,且DE=DO,则∠EOC=25°.【分析】根据∠BAD和菱形邻角和为180°的性质可以求∠ADC的值,根据菱形对角线即角平分线的性质可以求得∠CDO的值,又由DE=DO可得∠DEO=∠DOE,根据∠DOE和菱形对角线互相垂直的性质可以求得∠EOC的大小.【解答】解:∵∠BAD=80°,菱形邻角和为180°∴∠ADC=100°,∵菱形对角线即角平分线∴∠CDO=50°,∵DE=DO∴∠DEO=∠DOE=(180°﹣50°)÷2=65°,∵菱形对角线互相垂直∴∠DOC=90°,∴∠EOC=90°﹣65°=25°.故答案为25°.15.(3分)如图,一次函数y=k 1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1•k2的值为﹣2.【分析】设一次函数的解析式为y=k1x+3,反比例函数解析式y=,都经过B 点,得等式k1x+3x﹣k2=0,得到再由AB=BC,点C的横坐标是点B横坐标的2倍,不防设x2=2x1,列出x1,x2关系等式,据此可以求出k1•k2的值.【解答】解:k1•k2=﹣2,是定值.理由如下:∵一次函数y=k1x+b的图象过点A(0,3),∴设一次函数的解析式为y=k1x+3,反比例函数解析式y=,∴k1x+3=,整理得k1x2+3x﹣k2=0,∴x1+x2=﹣,x1x2=﹣,∵AB=BC,∴点C的横坐标是点B横坐标的2倍,不防设x2=2x1,∴x1+x2=3x1=﹣,x1x2=2x12=﹣,∴﹣=(﹣)2,整理得,k1k2=﹣2,是定值.故答案为﹣2.16.(3分)已知是二元一次方程组的解,则m+3n的立方根为2.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.17.(3分)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为(,0),点A n(()n﹣1,0).【分析】由直线解析式求出B1点的坐标,解直角三角形得出∠B1OA1=30°,由此可发现,OA2=OB1=OA1÷cos30°=OA1,同理OA3=OA2=()2OA1,OA4=OA3=()3OA1,…,由此得出一般规律.【解答】解:由A1坐标为(1,0),可知OA1=1,把x=1代入直线y=x中,得y=,即A1B1=,tan∠B1OA1==,所以,∠B1OA1=30°,则OA2=OB1=OA1÷cos30°=OA1=,OA3=OA2=()2,OA4=OA3=()3,故点A4的坐标为(,0),点A n(()n﹣1,0).故答案为:(,0),(()n﹣1,0).18.(3分)如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为π.【分析】仔细观察顶点O经过的路线可得,顶点O经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA’=AB的弧长第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°所以,O点经过的路线总长S=π+π+π=π.故答案为π.三、解答题(本大题共7小题,共66分)19.(8分)某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其寒假期间的课外阅读量进行统计分析,绘制成如图所示不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数及课外阅读量的众数;(2)求扇形统计图汇总的a、b值;将条形统计图补充完整;(3)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?(4)如果5本以上的学生中恰有2名男生,4名女生,先要选取两名学生做读书介绍,请你用列表法或树状图的方法,求恰好选取1男1女的概率.【分析】(1)根据读2本的人数与所占的百分比列式计算即可求出被调查的学生人数;根据扇形统计图,读3本的人数最多,再根据众数的定义即可得解;(2)根据各部分的百分比等于各部分的人数除以总人数的方计算求出a的值,再求出读4本的人数,然后根据百分比的求解方法列式计算即可求出b的值,据此补全统计图即可;(3)根据完成假期作业的人数所占的百分比,乘以总人数600,计算即可.(4)画树状图列出所有等可能结果,从中找到符合要求的结果数,根据概率公式计算可得.【解答】解:(1)10÷20%=50人,根据扇形统计图,读3本的人数所占的百分比最大,所以课外阅读量的众数是3;(2)∵a%=×100%=32%,∴a=32,读4本书的人数为50﹣4﹣10﹣16﹣6=50﹣36=14,∵b%=×100%=28%,∴b=28;补全图形如图:(3)此估计该校600名学生中,完成假期作业的有600×=432人;(4)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中恰好选取1男1女的结果数为16,所以恰好选取1男1女的概率为=.20.(8分)如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449)【分析】在Rt△ABC中求出AC,在Rt△ADC中求出CD,求出BD的长度后可得出剩余空地的长度,继而可作出判断.【解答】解:∵在Rt△ABC中,sin45°=,∴AC=AB•sin45°=m,∵在Rt△ABC中,∠C=90°,∠ABC=45°,∴BC=AC=m,∵在Rt△ADC中,tan30°=,∴CD==m,∴BD=CD﹣BC=(﹣)≈2.5875≈2.59m,∵6﹣2.59=3.41(米)>3米,∴这样改造是可行的.21.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM ⊥OA 于M ,DN ⊥AB 于N ,证明四边形DMAN 是矩形,得出∠MDN=90°,DM ∥AB ,DN ∥OA ,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF ∽△DNE ,得出=,再由三角函数定义即可得出答案;(3)作作DM ⊥OA 于M ,DN ⊥AB 于N ,若AD 将△DEF 的面积分成1:2的两部分,设AD 交EF 于点G ,则点G 为EF 的三等分点;①当点E 到达中点之前时,NE=3﹣t ,由△DMF ∽△DNE 得:MF=(3﹣t ),求出AF=4+MF=﹣t +,得出G (,t ),求出直线AD 的解析式为y=﹣x +6,把G (,t )代入即可求出t 的值;②当点E 越过中点之后,NE=t ﹣3,由△DMF ∽△DNE 得:MF=(t ﹣3),求出AF=4﹣MF=﹣t +,得出G (,t ),代入直线AD 的解析式y=﹣x +6求出t 的值即可.【解答】解:(1)当t=3时,点E 为AB 的中点, ∵A (8,0),C (0,6), ∴OA=8,OC=6, ∵点D 为OB 的中点, ∴DE ∥OA ,DE=OA=4, ∵四边形OABC 是矩形, ∴OA ⊥AB , ∴DE ⊥AB ,∴∠OAB=∠DEA=90°, 又∵DF ⊥DE , ∴∠EDF=90°,∴四边形DFAE 是矩形, ∴DF=AE=3;(2)∠DEF 的大小不变;理由如下:作DM ⊥OA 于M ,DN ⊥AB 于N ,如图2所示: ∵四边形OABC 是矩形, ∴OA ⊥AB ,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或22.(8分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55、为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间,少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留,问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.【分析】(1)根据等式“速度=路程/时间”求出步行平均速度,注意步和米的转化.由速度和时间分别算出两段路程;(2)①分段求出时间,再累加起来算出到家的时间;②根据函数图象和题中给出的信息算出B点坐标及列出CD段函数解析式.【解答】解:(1)小刚每分钟走1200÷10=120(步),每步走100÷150=(米),所以小刚上学的步行速度是120×=80(米/分)小刚家和少年宫之间的路程是80×10=800(米)少年宫和学校之间的路程是80×(25﹣10)=1200(米)(2)①(分钟),所以小刚到家的时间是下午5:00②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100)点C的坐标是(50,1100),点D的坐标是(60,0)设线段CD所在直线的函数解析式是s=kt+b(k≠0)将点C,D的坐标代入,得解得所以线段CD所在直线的函数解析式是s=﹣110t+660023.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC 于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.【分析】(1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;(2)CF=1,DF=,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC 为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.【解答】(1)证明:连接AD、OD,如图所示.∵AB为直径,∴∠ADB=90°,∴AD⊥BC,∵AC=AB,∴点D为线段BC的中点.∵点O为AB的中点,∴OD为△BAC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线.(2)解:在Rt△CFD中,CF=1,DF=,∴tan∠C==,CD=2,∴∠C=60°,∵AC=AB,∴△ABC为等边三角形,∴AB=4.∵OD∥AC,∴∠DOG=∠BAC=60°,∴DG=OD•tan∠DOG=2,∴S阴影=S△ODG﹣S扇形OBD=DG•OD﹣πOB2=2﹣π.24.(12分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx 求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.25.(12分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.【分析】(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.=BC×h表示,若要它的面积最大,需要使h取(3)△MBC的面积可由S△MBC最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.【解答】解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又∵OC⊥AB,∴△OAC∽△OCB,∴∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;∴该外接圆的圆心为AB的中点,且坐标为(1.5,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣4x﹣4﹣2b=0,且△=0;∴16﹣4×(﹣4﹣2b)=0,即b=﹣4;∴直线l:y=x﹣4.由于S=BC×h,当h最大(即点M到直线BC的距离最远)时,△ABC的面△MBC积最大所以点M即直线l和抛物线的唯一交点,有:,解得:,即M(2,﹣3).。

山东省潍坊市2018年中考数学试卷(解析版)

山东省潍坊市2018年中考数学试卷(解析版)

2018年山东省潍坊市中考数学试卷含答案【精品】一、选择题1. |1﹣|=()A. 1﹣B. ﹣1C. 1+D. ﹣1﹣【答案】B【解析】【分析】直接利用绝对值的性质化简得出答案.【详解】|1﹣|=﹣1,故选B.【点睛】本题主要考查了实数的性质,正确掌握绝对值的性质是解题关键.2. 生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A. 3.6×10﹣5B. 0.36×10﹣5C. 3.6×10﹣6D. 0.36×10﹣6【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000036的小数点向右移动6位得到3.6,所以0.0000036=3.6×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】试题分析:根据三视图的概念,左视图是从左面看到的图形,这个图从左面可是一个长方形.故选:D.4. 下列计算正确的是()A. a2•a3=a6B. a3÷a=a3C. a﹣(b﹣a)=2a﹣bD. (﹣a)3=﹣a3【答案】C【解析】【分析】根据同底数幂乘法,同底数幂除法,合并同类项法则,积的乘方法则逐项进行计算即可得. 【详解】A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a﹣(b﹣a)=2a﹣b,故C正确;D、(﹣a)3=﹣a3,故D错误,故选C.【点睛】本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.5. 把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A. 45°B. 60°C. 75°D. 82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.6. 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A. ∠CBD=30°B. S△BDC=AB2C. 点C是△ABD的外心D. sin2A+cos2D=l【答案】D【解析】【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【详解】由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,sin2A+cos2D=≠1,故D错误,故选D.【点睛】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题.7. 某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄19 20 21 22 24 26人数 1 1 x y 2 1A. 22,3B. 22,4C. 21,3D. 21,4【答案】D【解析】【分析】先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.【详解】∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=,∴x=3、y=2,则这组数据的众数为21,平均数为=22,所以方差为×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,故选D.【点睛】本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.8. 在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A. (2m,2n)B. (2m,2n)或(﹣2m,﹣2n)C. (m,n)D. (m,n)或(﹣m,﹣n)【答案】B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9. 已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A. 3或6B. 1或6C. 1或3D. 4或6【答案】B【解析】【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【详解】如图,当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6,综上所述:h的值为1或6,故选B.【点睛】本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.10. 在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A. Q(3,240°)B. Q(3,﹣120°)C. Q(3,600°)D. Q(3,﹣500°)【答案】D【解析】【分析】根据中心对称的性质解答即可.【详解】∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选D.【点睛】本题考查了中心对称,关键是根据中心对称的性质解答.11. 已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A. 2B. ﹣1C. 2或﹣1D. 不存在【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合=4m,即可求出m的值.【详解】∵关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>﹣1且m≠0,∵x1、x2是方程mx2﹣(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2,故选A.【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.12. 如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B. C. D.【答案】D【解析】【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【详解】当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合,故选D.【点睛】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二、填空题13. 因式分解:(x+2)x﹣x﹣2=_____.【答案】(x+2)(x﹣1)【解析】【分析】通过提取公因式(x+2)进行因式分解即可.【详解】(x+2)x﹣x﹣2=(x+2)x-(x+2)=(x+2)(x﹣1),故答案为:(x+2)(x﹣1).【点睛】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.14. 当m=_____时,解分式方程=会出现增根.【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15. 用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是_____.【答案】34+9【解析】【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【详解】由题意知输入的值为32=9,则输出的结果为[(9+3)﹣]×(3+)=(12﹣)×(3+)=36+12﹣3﹣2=34+9,故答案为:34+9.【点睛】本题主要考查计算器﹣基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.16. 如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为_____.【答案】(﹣1,)学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...【详解】如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=AD•tan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).【点睛】本题主要考查旋转的性质、正方形的性质,解题的关键是掌握旋转变换的不变性与正方形的性质、全等三角形的判定与性质及三角函数的应用.17. 如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.【答案】【解析】【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是,故答案为:.【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.18. 如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行_____小时即可到达.(结果保留根号)【答案】【解析】【分析】如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,通过解直角△AQP、直角△BPQ求得PQ的长度,即MN的长度,然后通过解直角△BMN求得BM的长度,则易得所需时间.【详解】如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),所以BQ=PQ﹣90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里),所以PQ﹣90=PQ,所以PQ=45(3+)(海里),所以MN=PQ=45(3+)(海里),在直角△BMN中,∠MBN=30°,所以BM=2MN=90(3+)(海里),所以(小时),故答案为:.【点睛】本题考查的是解直角三角形的应用,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.三、解答题19. 如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.【答案】(1)k=3;(2)S△AOB =.【解析】分析:(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.详解:(1)点在直线上,,解得,,反比例函数的图象也经过点,,解得;(2)设直线分别与轴,轴相交于点,点,当时,即,,当时,,,点在直线上,.即,.20. 如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【答案】(1)证明见解析;(2)sin∠EBF=.【解析】【分析】(1)通过证明△ABF≌△DAE得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF=.【点睛】本题考查了正方形的性质、解直角三角形等,熟知正方形具有四边形、平行四边形、矩形、菱形的一切性质,会运用全等三角形的知识解决线段相等问题是解题的关键.21. 为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.【答案】(1)n=20,补全图形见解析;(2)这20户家庭的月平均用水量为6.95m3,估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为231户;(3)选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.【解析】分析:(1)根据月用水量为9m3和10m3的户数及其所占百分比可得总户数,再求出5m3和8m3的户数即可补全图形;(2)根据加权平均数的定义计算可得月平均用水量,再用总户数乘以样本中低于月平均用水量的家庭户数所占比例可得;(3)列表得出所有等可能结果,从中找到满足条件的结果数,根据概率公式计算可得.详解:(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%-7=4户,月用水量为5m3的户数为20-(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下:a b c d ea (b,a)(c,a)(d,a)(e,a)b (a,b)(c,b)(d,b)(e,b)c (a,c)(b,c)(d,c)(e,c)d (a,d)(b,d)(c,d)(e,d)e (a,e)(b,e)(c,e)(d,e)由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.22. 如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.【答案】(1)证明见解析;(2)AD=2.【解析】【分析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.23. 为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【答案】(1)每台A型挖掘机一小时挖土30立方米,每台B型挖掘机一小时挖土15立方米;(2)方案一:A型挖据机7台,B型挖掘机5台;方案二:A型挖掘机8台,B型挖掘机4台;方案三:A型挖掘机9台,B型挖掘机3台.…A型挖掘机7台,B型挖据机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.所以,共有三种调配方案.方案一:当时,,即型挖据机7台,型挖掘机5台;方案二:当时,,即型挖掘机8台,型挖掘机4台;方案三:当时,,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.24. 如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.①求四边形BHMM′的面积;②直线EF上有一动点N,求△DNM周长的最小值.(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.【答案】(1)①四边形BHMM′的面积为7.5;②△DNM周长的最小值为9;(2)CP的长为或.【解析】【分析】(1)①根据相似三角形的判定和性质以及平移的性质进行解答即可;②连接CM交直线EF于点N,连接DN,利用勾股定理解答即可;(2)分点P在线段CE上和点P在线段ED上两种情况进行解答.【详解】(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,∴DE=FH=3,又BF:FA=1:5,∴AH=2,∵Rt△AHD∽Rt△MHF,∴,即,∴HM=1.5,根据平移的性质,MM'=CD=6,连接BM,如图1,四边形BHMM′的面积==7.5;②连接CM交直线EF于点N,连接DN,如图2,∵直线EF垂直平分CD,∴CN=DN,∵MH=1.5,∴DM=2.5,在Rt△CDM中,MC2=DC2+DM2,∴MC2=62+(2.5)2,即MC=6.5,∵MN+DN=MN+CN=MC,∴△DNM周长的最小值为9;(2)∵BF∥CE,∴,∴QF=2,∴PK=PK'=6,过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,当点P在线段CE上时,在Rt△PK'E'中,PE'2=PK'2﹣E'K'2,∴PE′=2,∵Rt△PE'K'∽Rt△K'F'Q,∴,即,解得:QF′=,∴PE=PE'﹣EE'=,∴CP=,同理可得,当点P在线段DE上时,CP′=,,如图4,综上所述,CP的长为或.【点睛】本题考查四边形的综合题,关键是根据相似三角形的性质和平移的性质解答,注意(2)分两种情况分析.25. 如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.【答案】(1)y2=﹣;(2)当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;(3)PR解析式为:y=﹣或y=﹣【解析】【分析】(1)应用待定系数法求解析式;(2)设出点T坐标,表示△TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.【详解】(1)由已知,c=,将B(1,0)代入,得:a﹣=0,解得a=﹣,抛物线解析式为y1=x2-x+,∵抛物线y1平移后得到y2,且顶点为B(1,0),∴y2=﹣(x﹣1)2,即y2=-x2+x-;(2)存在,如图1:抛物线y2的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,),过点T作TE⊥y轴于E,则TC2=TE2+CE2=12+()2=t2﹣t+,TA2=TB2+AB2=(1+3)2+t2=t2+16,AC2=,当TC=AC时,t2﹣t+=,解得:t1=,t2=;当TA=AC时,t2+16=,无解;当TA=TC时,t2﹣t+=t2+16,解得t3=﹣;当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;(3)如图2:设P(m,),则Q(m,),∵Q、R关于x=1对称∴R(2﹣m,),①当点P在直线l左侧时,PQ=1﹣m,QR=2﹣2m,∵△PQR与△AMG全等,∴当PQ=GM且QR=AM时,m=0,∴P(0,),即点P、C重合,∴R(2,﹣),由此求直线PR解析式为y=﹣x+,当PQ=AM且QR=GM时,无解;②当点P在直线l右侧时,同理:PQ=m﹣1,QR=2m﹣2,则P(2,﹣),R(0,﹣),PQ解析式为:y=﹣;∴PR解析式为:y=﹣x+或y=﹣.【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.。

2018年潍坊市中考数学试卷及答案(Word解析版)

2018年潍坊市中考数学试卷及答案(Word解析版)

CLARK-EDU、康老师--2018年潍坊中考数学试题解读一、选择题<本题共12小题,在每小题给出的四个选项中,只有一个是正确的, 的选项选出来.每小题选对得3分,1.实数0.5的算术平方根等于<C.算术平方根。

理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键答案:A.考点:轴对称图形与中心对称图形的特征。

点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。

. 3.2Q18年,我国财政性教育经费支出实现了占国内生产总值比例达义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达“865.4亿元”用科学记数法可表示为< )元.YNSHECzGeP答案:B.考点:根据实物原型画出三视图。

点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有同.其中的一名学生想要知道自己能否进入前名学生成绩的<).YNSHECzGeP选错、不选或选出的答案超过一个均记A.2B. ,2C.二21D.-2请把正确Q分.)答案考点点评2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是A. B. C.4%的目标•其中在促进865.4亿元•数据8A. 865 10 9B. 8.65 10C.8.65 1010D. 0.865 1110答案:C.考点:科学记数法的表示。

点评:此题考查了科学记数法的表示方法•科学记数法的表示形式为axlQn的形式,其中1 W|a|10, n为整数,表示时关键要正确确定a的值以及n的值.YNSHECzGeP4.如图是常用的一种圆顶螺杆,它的俯视图正确的是<).I..9名学生参加决赛,他们决赛的最终成绩各不相5名,不仅要了解自己的成绩,还要了解这9大弋h.A. 众数B.方差C.平均数D.中位数答案:D.考点:统计量数的含义•点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑•与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度.YNSHECzGePk6•设点A X i, y i和B X2, y是反比例函数y 图象上的两个点,当X i v x? < 0时,y ix< y ,则一次函数y 2x k的图象不经过的象限是< )A.第一象限B.第二象限C.第三象限D.第四象限答案:A.考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y随x增大而增大,可知k< 0,而一次函数在k< 0, b< 0时,经过二三四象限,从而可得答案.YNSHECzGeP 7•用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是< ).YNSHECzGeP考点:变量间的关系,函数及其图象.点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。

山东潍坊市2018中考数学试题及答案解析

山东潍坊市2018中考数学试题及答案解析

2018年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.(3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.(3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l7.(3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11x y21 A.22,3 B.22,4 C.21,3 D.21,48.(3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.(3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x ≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.(3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°) C.Q(3,600°)D.Q(3,﹣500°)11.(3分)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.(3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.(3分)因式分解:(x+2)x﹣x﹣2=.14.(3分)当m=时,解分式方程=会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.(3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.17.(3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x 轴正半轴于点A3;….按此作法进行下去,则的长是.18.(3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(本大题共7小题,共66分。

2018中考数学模拟考试含答案

2018中考数学模拟考试含答案

2018年山东省初中学业水平中考模拟考试(时间:120分钟 满分:120分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.3.选择题每小题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效.4. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在第Ⅱ卷的表格里,每小题选对得3分,满分36分. 多选、不选、错选均记零分.) 1.下列运算中,正确的是( )A.623a a a =⨯B.5332n m 8-2mn -=)( C. 3x x -3x 2= D. 3m m 3m 23=÷2.一个圆柱形笔筒如图放置,它的左视图是( )A.B.C.D.3. 2018年第一季度潍坊市市级重大项目完成投资384亿元,占年度投资计划的24.4%,项目建设整体呈现“续建项目进度加快、新建项目开工率高、前期项目有新进展”等特点。

384亿元用科学记数法可表示为( )A. 9103.84⨯元 B. 10103.84⨯元 C. 101038.4⨯元 D. 11103.84⨯元4.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5. 已知21b 1-a 1=,则b-a ab 的值是( ) A.-2 B. 2 C. 21- D.216. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A.100B. 150C. 200D. 2507. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可描述为:如图所示,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB=1尺(注:1尺=10寸)则直径CD 的长为( ) A .12寸 B .24寸 C .26寸 D .28寸8. 将下列多项式分解因式,结果中不含因式x ﹣1的是( ) A. x 2-x-2 B. x 2-2x+(2-x) C.2(x 2+1)-4x D.xy+x 2-x-y9.关于x 的分式方程4x-1a 1-x 2=+的解为非负数且不大于3,则所有满足条件的整数a 的值之和是( )A.-2B.0C.2D.410.用计算器依次按键,则计算器显示结果为( )(注414.12=,732.13=)A.300B. 450C. 600D.75011. 分式1-x 2-x 有意义,则x 的取值范围是( )A. 2x ≥且1x ≠B. 2x ≥C. 2x ≥或x<1D. x<112.我们给出如下定义:在平面直角坐标系xOy 中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如图,抛物线F 2是抛物线F 1的过顶抛物线,设F 1的顶点为A ,F 2的对称轴分别交F 1、F 2于点D 、B ,点C 是点A 关于直线BD 的对称点.若F 1 的表达式为y=x 2,点C 坐标是(2,0),则,F 2的表达式是( ) A. x 2x y 2+= B.x 2-x y 2= C. x 3-x y 2= D. x 3x y 2+=2018年潍坊市初中学业水平中考模拟考试第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分)13. 化简:2-x 1-x 1-x -232÷)(=___________ 14. 若关于x 的一元二次方程02)1(2)1(2=-++++k x k x k 有实数根,则k 的取值范围是___________15. 如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x 轴的正半轴上,∠OBA=90°,且tan ∠AOB=21,OB= 52,反比例函数y= xk的图象经过点B ,则反比例函数表达式是___________16.若9a 6-a 2+与4-b -a 2互为相反数,则a -b=___________17. 如图,点D 是线段BC 的中点,分别以点B ,C 为圆心,BC 长为半径画弧,两弧相交于点A ,连接AB ,AC ,AD ,点E 为AD 上一点,连接BE ,CE ;以点E 为圆心,ED 长为半径画弧,分别交BE ,CE 于点F ,G.若BC=4,∠EBD=30°,则图中阴影部分的面积是___________18. 我国古代数学家赵爽很早就创制了一幅“勾股圆方图”(也称“弦图”),并对勾股定理的证明进行了详细注释:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。

山东省潍坊市中考数学模拟试卷及答案

山东省潍坊市中考数学模拟试卷及答案

山东省潍坊市中考数学模拟试卷及答案2018年山东省潍坊市中考数学模拟试卷及答案模拟试题是考试前的前瞻,能帮助我们认清楚考试的具体内容、形式和时间,可以说是十分重要的。

以下是店铺给你带来的最新模拟试题,希望能帮到你哈。

2018年山东省潍坊市中考数学模拟试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.(3分)(2015•潍坊)在|﹣2|,20,2﹣1,这四个数中,最大的数是( )A. |﹣2|B. 20C. 2﹣1D.考点:实数大小比较;零指数幂;负整数指数幂..分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.解答:解:|﹣2|=2,20=1,2﹣1=0.5,∵ ,∴ ,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.点评:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p= (a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.(3分)(2015•潍坊)如图所示几何体的左视图是( )A. B. C. D.考点:简单组合体的三视图..分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看可得矩形中间有一条横着的虚线.故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(3分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( )A.x k 1.11×104B. 11.1×104C. 1.11×105D. 1.11×106考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将11.1万用科学记数法表示为1.11×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.4.(3分)(2015•潍坊)如图汽车标志中不是中心对称图形的是( )A. B. C. D.考点:中心对称图形..分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2015•潍坊)下列运算正确的是( )A. + =B. 3x2y﹣x2y=3C. =a+bD. (a2b)3=a6b3考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法..分析: A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵ ,∴选项A不正确;∵3x2y﹣x2y=2x2y,∴选项B不正确;∵ ,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(am)n =amn(m,n是正整数);②(ab)n=anbn(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.(3分)(2015•潍坊)不等式组的所有整数解的和是( )A. 2B. 3C. 5D. 6考点:一元一次不等式组的整数解..分析:先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.解答:解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.点评:本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.7.(3分)(2015•潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是( )A. 70°B. 50°C. 45°D. 20°考点:切线的性质..分析:由BC是⊙O的切线,OB是⊙O的半径,得到∠OBC=90°,根据等腰三角形的性质得到∠A=∠ABO=20°,由外角的性质得到∠BOC=40°,即可求得∠C=50°.解答:解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=20°,∴∠BOC=40°,∴∠C=50°.故选B.点评:本题考查了本题考查了切线的性质,等腰三角形的性质,掌握定理是解题的关键.8.(3分)(2015•潍坊)若式子 +(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是( )A. B. C. D.考点:一次函数图象与系数的关系;零指数幂;二次根式有意义的条件..分析:首先根据二次根式中的被开方数是非负数,以及a 0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.解答:解:∵式子 +(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.点评:(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.9.(3分)(2015•潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是( )A. 2B. 4C. 6D. 8考点:平行线分线段成比例;菱形的判定与性质;作图—基本作图..分析:根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出 = ,代入求出即可.解答:解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴ = ,∵BD=6,AE=4,CD=3,∴ = ,∴BE=8,故选D.点评:本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.10.(3分)(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是( )A. ( π﹣4 )cm2B. ( π﹣8 )cm2C. ( π﹣4 )cm2D. ( π﹣2 )cm2考点:垂径定理的应用;扇形面积的计算..分析:作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S扇形﹣S△AOB求得杯底有水部分的面积.解答:解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC= = ,∴∠OAC=30°,∴∠AOC=120°,AC= =2 ,∴AB=4 ,∴杯底有水部分的面积=S扇形﹣S△AOB= ﹣× ×2=( π﹣4 )cm2 故选A.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.(3分)(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A. cm2B. cm2C. cm2D. cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD= x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A= ∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD= x,∴DE=6﹣2 x,∴纸盒侧面积=3x(6﹣2 x)=﹣6 x2+18x,=﹣6 (x﹣ )2+ ,∴当x= 时,纸盒侧面积最大为 .故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的.侧面积是关键.12.(3分)(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是( )A. 1B. 2C. 3D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣ =﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于 (0,c).二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.(3分)(2015•潍坊)“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是 5 .考点:算术平均数;众数..分析:首先根据众数为5得出x=5,然后根据平均数的概念求解.解答:解:∵这组数据的众数是5,∴x=5,则平均数为: =5.故答案为:5.点评:本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.14.(3分)(2015•潍坊)如图,等腰梯形ABCD中,AD∥BC,BC=50,AB=20,∠B=60°,则AD= 30 .考点:等腰梯形的性质..分析:首先作辅助线:过点A作AE∥CD交BC于点E,根据等腰梯形的性质,易得四边形AECD是平行四边形,根据平行四边形的对边相等,即可得AE=CD=AB=20,AD=EC,易得△ABE是等边三角形,即可求得AD的长.解答:解:过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD=AB=20,AD=EC,∵∠B=60°,∴BE=AB=AE=20,∴AD=BC﹣CE=50﹣20=30.故答案为:30点评:此题考查了等腰梯形的性质、平行四边形的判定与性质以及等边三角形的性质.解题的关键是注意平移梯形的一腰是梯形题目中常见的辅助线.15.(3分)(2015•潍坊)因式分解:ax2﹣7ax+6a= a(x﹣1)(x﹣6) .考点:因式分解-十字相乘法等;因式分解-提公因式法..专题:计算题.分析:原式提取a,再利用十字相乘法分解即可.解答:解:原式=a(x2﹣7x+6)=a(x﹣1)(x﹣6),故答案为:a(x﹣1)(x﹣6)点评:此题考查了因式分解﹣十字相乘法,以及提取公因式法,熟练掌握因式分解的方法是解本题的关键.16.(3分)(2015•潍坊)观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是135 m.考点:解直角三角形的应用-仰角俯角问题..分析:根据“爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°”可以求出AD的长,然后根据“在一楼房的底端A点处观测观光塔顶端C处的仰角是60°”可以求出CD的长.解答:解:∵爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,∴∠ADB=30°,在Rt△ABD中,tan30°= ,解得, = ,∴AD=45 ,∵在一楼房的底端A点处观测观光塔顶端C处的仰角是60°,∴在Rt△ACD中,CD=AD•tan60°=45 × =135米.故答案为135米.点评:本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角、俯角构造直角三角形并解直角三角形.17.(3分)(2015•潍坊)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn= ( )n .(用含n的式子表示)考点:等边三角形的性质..专题:规律型.分析:由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn.解答:解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1= ,∴S1= × ×( )2= ( )1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2= ,AB1= ,根据勾股定理得:AB2= ,∴S2= × ×( )2= ( )2;依此类推,Sn= ( )n.故答案为: ( )n.点评:此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.18.(3分)(2015•潍坊)正比例函数y1=mx(m>0)的图象与反比例函数y2= (k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是﹣22 .考点:反比例函数与一次函数的交点问题..分析:由反比例函数图象的对称性可得:点A和点B关于原点对称,再根据△AMB的面积为8列出方程×4n×2=8,解方程求出n的值,然后利用图象可知满足y1>y2的实数x的取值范围.解答:解:∵正比例函数y1=mx(m>0)的图象与反比例函数y2= (k≠0)的图象交于点A(n,4)和点B ,∴B(﹣n,﹣4).∵△AMB的面积为8,∴ ×4n×2=8,解得n=2,∴A(2,4),B(﹣2,﹣4).由图形可知,当﹣22时,正比例函数y1=mx(m>0)的图象在反比例函数y2= (k≠0)图象的上方,即y1>y2.故答案为﹣22.点评:本题考查了一次函数和反比例函数的交点问题,三角形的面积,反比例函数的对称性,体现了数形结合的思想.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(9分)(2015•潍坊)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析: (1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得 .答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.20.(10分)(2015•潍坊)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.考点:列表法与树状图法;用样本估计总体;扇形统计图..分析: (1)首先求得总分数,然后即可求得x和y的值;(2)首先求得样本中的优秀率,然后用样本估计总体即可;(3)列表将所有等可能的结果列举出来,然后利用概率公式求解即可.解答:解:(1)由表可知被调查学生中“一般”档次的有13人,所占比例是26%,所以共调查的学生数是13÷26%=50,则调查学生中“良好”档次的人数为50×60%=30,∴x=30﹣(12+7)=11,y=50﹣(1+2+6+7+12+11+7+1)=3.(2)由样本数据可知“优秀”档次所占的百分比为 =8%,∴,估计九年级400名学生中为优秀档次的人数为400×8%=32;(3)用A、B、C表示阅读本数是8的学生,用D表示阅读9本的学生,列表得到:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC由列表可知,共12种等可能的结果,其中所抽取的2名学生中有1名阅读本数为9的有6种,所以抽取的2名学生中有1名阅读本数为9的概率为 = ;点评:考查了列表与树状图法求概率、用样本估计总体及扇形统计图的知识,解题的关键是能够通过列表将所有等可能的结果列举出来,难度不大.21.(10分)(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.考点:切线的判定;相似三角形的判定与性质..分析: (1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,易证DF⊥OD,故DF为⊙O的切线;(2)证得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.解答: (1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴ = ,∵OD∥AB,AO=CO,∴BD=CD= BC=3,又∵AE=7,∴ = ,∴BE=2,∴AC=AB=AE+BE=7+2=9.点评:此题考查切线的判定,三角形相似的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.22.(11分)(2015•潍坊)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v= 200 米/分钟,路程s= 200 米;②当t=15分钟时,速度v= 300 米/分钟,路程s= 4050 米.(2)当0≤t≤3和3(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.考点:一次函数的应用..分析:(1)①根据图象得出直线OA的解析式,代入t=2解答即可;②根据图象得出t=15时的速度,并计算其路程即可;(2)利用待定系数法得出0≤t≤3和3(3)根据当3解答:解:(1)①直线OA的解析式为:y= t=100t,把t=2代入可得:y=200;路程S= =200,故答案为:200;200;②当t=15时,速度为定值=300,路程= ,故答案为:300;4050;(2)①当0≤t≤3,设直线OA的解析式为:y=kt,由图象可知点A(3,300),∴300=3k,解得:k=100,则解析式为:y=100t;设l与OA的交点为P,则P(t,100t),∴s= ,②当3∴S= ,(3)∵当0≤t≤3,S最大=50×9=450,∵750>50,∴当3则令750=300t﹣450,解得:t=4.故王叔叔该天上班从家出发行进了750米时所用的时间4分钟.点评:此题考查一次函数的应用,关键是根据图象进行分析,同时利用待定系数法得出解析式.23.(12分)(2015•潍坊)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.考点:几何变换综合题..分析:(1)延长ED交交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′= +2,此时α=315°.解答:解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠AGO+∠DEO =90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD= OG= OG′,∴在Rt△OAG′中,sin∠AG′O= = ,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB= ,∵OG=2OD,∴OG′=OG= ,∴OF′=2,∴AF′=AO+OF′= +2,∵∠COE′=45°,∴此时α=315°.点评:本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当∠OAG′是直角时,求α的度数是本题的难点.24.(14分)(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值; 若不存在,请说明理由.考点:二次函数综合题..分析:(1)认真审题,直接根据题意列出方程组,求出B,C两点的坐标,进而可求出抛物线的解析式;(2)分0(3)分26时两种情况进行讨论,再根据三角形相似的条件,即可得解.解答:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m= ,∴该抛物线解析式为:y= ;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣ x+3,要构成△APC,显然t≠6,分两种情况讨论:①当0∵P(t, ),∴PF= ,∴S△APC=S△APF+S△CPF=== ,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣ ),∵P(t, ),∴PM= ,∴S△APC=S△APF﹣S△CPF=== ,当t=8时,取最大值,最大值为:12,综上可知,当0(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t, ),①当2若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t= ,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′= ,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t= ,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t= 或t= 或t=14.点评:本题主要考查了抛物线解析式的求法,以及利用配方法等知识点求最值的问题,还考查了三角形相似的问题,是一道二次函数与几何问题结合紧密的题目,要注意认真总结.2018年山东省潍坊市中考数学模拟试卷答案详见题底。

2018年山东省潍坊市寿光市中考数学一模试卷

2018年山东省潍坊市寿光市中考数学一模试卷

0);
三、解答题(共 66 分)
19.43.2°; 20.
; 21.
; 22.
; 23.
; 24.
; 25.

声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/19 10:28:59; 用户:qgjyus er10 081;邮箱:q gjyus er10081.219 57750;学号 :21985087
点的概率.
20.(7 分)如图,某天我国一艘海监船巡航到 A 港口正西方的 B 处时,发现在 B 的北偏东 60°方向,相距 150 海里处的 C 点有一可疑船只正沿 CA 方向行驶,C 点在 A 港口的北 偏东 30°方向上,海监船向 A 港口发出指令,执法船立即从 A 港口沿 AC 方向驶出,在 D 处成功拦截可疑船只,此时 D 点与 B 点的距离为 75 海里.
A.2.8×105
B.2.8×106
C.28×105
D.0.28×107
3.(3 分)如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )
A.
B.
C.
D.
4.(3 分)下列图形中,是中心对称图形但不是轴对称图形的是( )
A.
B.
C.
D.
5.(3 分)化简 + 的结果为( )
A.1
B.﹣1
N 作直线 l 的垂线交 x 轴于点 M1;过点 M1 作 x 轴的垂线交直线 l 于 N1,过点 N1 作直线
l 的垂线交 x 轴于点 M2,……;按此做法继续下去,则点 M2000 的坐标为

第4页(共8页)
三、解答题(共 66 分)
19.(7 分)某市旅游景区有 A、B、C、D、E 等著名景点,该市旅游部门统计绘制出 2018

2018潍坊数学中考真题(解析版)

2018潍坊数学中考真题(解析版)

2018潍坊数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.如图所示的几何体的左视图是()A.B.C.D.4.下列计算正确的是()A.a2•a3=a6B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=17.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11x y21 A.22,3 B.22,4 C.21,3 D.21,48.在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)11.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(共6小题)13.因式分解:(x+2)x﹣x﹣2=﹣.14.当m=时,解分式方程=会出现增根.15.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M 的坐标为﹣.17.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.18.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(共7小题)19.如图,直线y=3x﹣5与反比例函数y=的图象相交于A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.20.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.22.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24.如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:F A=1:5.(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.①求四边形BHMM′的面积;②直线EF上有一动点N,求△DNM周长的最小值.(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK 交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.25.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.2018潍坊数学中考真题(解析版)参考答案一、单选题(共12小题)1.【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.【知识点】实数的性质2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000036=3.6×10﹣6;故选:C.【知识点】科学记数法—表示较小的数3.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个等宽的矩形,矩形的公共边是虚线,故选:D.【知识点】简单组合体的三视图4.【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a﹣(b﹣a)=2a﹣b,故C正确;D、(﹣a)3=﹣a3,故D错误.故选:C.【知识点】幂的乘方与积的乘方、同底数幂的除法、整式的加减、同底数幂的乘法5.【分析】直接利用平行线的性质结合已知角得出答案.【解答】解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1的度数是:45°+30°=75°.故选:C.【知识点】平行线的性质6.【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.【知识点】线段垂直平分线的性质、三角形的外接圆与外心、解直角三角形的应用、作图—基本作图7.【分析】先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.【解答】解:∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即,∴x=3、y=2,则这组数据的众数为21,平均数为=22,所以方差为×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,故选:D.【知识点】方差、中位数、众数8.【分析】根据位似变换的性质计算即可.【解答】解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.【知识点】位似变换、坐标与图形性质9.【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.【知识点】二次函数的最值10.【分析】根据中心对称的性质解答即可.【解答】解:∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.【知识点】中心对称、坐标与图形变化-旋转11.【分析】先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合+=4m,即可求出m的值.【解答】解:∵关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>﹣1且m≠0.∵x1、x2是方程mx2﹣(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵+=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2.故选:A.【知识点】一元二次方程的定义、根与系数的关系、根的判别式12.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;当2≤t<4时,S=×4××(4﹣t)=﹣t+4;只有选项D的图形符合.故选:D.【知识点】动点问题的函数图象二、填空题(共6小题)13.【分析】通过提取公因式(x+2)进行因式分解.【解答】解:原式=(x+2)(x﹣1).故答案是:(x+2)(x﹣1).【知识点】因式分解-提公因式法14.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.【解答】解:分式方程可化为:x﹣5=﹣m,由分母可知,分式方程的增根是3,当x=3时,3﹣5=﹣m,解得m=2,故答案为:2.【知识点】分式方程的增根15.【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【解答】解:由题意知输入的值为32=9,则输出的结果为[(9÷3)﹣]×(3+)=(3﹣)×(3+)=9﹣2=7故答案为:7.【知识点】计算器—基础知识16.【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).【知识点】坐标与图形变化-旋转、正方形的性质17.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【知识点】弧长的计算、规律型:点的坐标、一次函数图象上点的坐标特征18.【分析】如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,通过解直角△AQP、直角△BPQ求得PQ的长度,即MN的长度,然后通过解直角△BMN求得BM的长度,则易得所需时间.【解答】解:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),所以BQ=PQ﹣90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里),所以PQ﹣90=PQ,所以PQ=45(3+)(海里)所以MN=PQ=45(3+)(海里)在直角△BMN中,∠MBN=30°,所以BM=2MN=90(3+)(海里)所以=(小时)故答案是:.【知识点】勾股定理的应用、解直角三角形的应用-方向角问题三、解答题(共7小题)19.【分析】(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.【解答】解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得:n=﹣,∴B(﹣,﹣6),∵反比例函数y=的图象过点B,∴k﹣1=﹣×(﹣6),解得:k=3;(2)设直线y=3x﹣5分别与x轴、y轴交于C、D,当y=0时,3x﹣5=0,x=,即OC=,当x=0时,y=﹣5,即OD=5,∵A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1,即A(2,1),∴△AOB的面积S=S△BOD+S△COD+S△AOC=××5+×5+×1=.【知识点】反比例函数与一次函数的交点问题20.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.【知识点】正方形的性质、解直角三角形、全等三角形的判定与性质21.【分析】(1)根据月用水量为9m3和10m3的户数及其所占百分比可得总户数,再求出5m3和8m3的户数即可补全图形;(2)根据加权平均数的定义计算可得月平均用水量,再用总户数乘以样本中低于月平均用水量的家庭户数所占比例可得;(3)列表得出所有等可能结果,从中找到满足条件的结果数,根据概率公式计算可得.【解答】解:(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%﹣7=4户,月用水量为5m3的户数为20﹣(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下:a b c d ea(b,a)(c,a)(d,a)(e,a)b(a,b)(c,b)(d,b)(e,b)c(a,c)(b,c)(d,c)(e,c)d(a,d)(b,d)(c,d)(e,d)e(a,e)(b,e)(c,e)(d,e)由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为=.【知识点】用样本估计总体、列表法与树状图法、加权平均数、条形统计图22.【分析】(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【解答】证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,(2分)∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,(3分)∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(4分)(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,(5分)∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,(7分)∴BD=8,∴在Rt△ABD中,AD====2.(8分)【知识点】切线的判定与性质、垂径定理、勾股定理23.【分析】(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.【解答】解:(1)设每台A型,B型挖掘机一小时分别挖土x立方米和y立方米,根据题意得解得:∴每台A型挖掘机一小时挖土30立方米,每台B型挖掘机一小时挖土15立方米(2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12﹣m)台.根据题意得W=4×300m+4×180(12﹣m)=480m+8640∵∴解得∵m≠12﹣m,解得m≠6∴7≤m≤9∴共有三种调配方案,方案一:当m=7时,12﹣m=5,即A型挖掘机7台,B型挖掘机5台;方案二:当m=8时,12﹣m=4,即A型挖掘机8台,B型挖掘机4台;方案三:当m=9时,12﹣m=3,即A型挖掘机9台,B型挖掘机3台.…∵480>0,由一次函数的性质可知,W随m的减小而减小,∴当m=7时,W小=480×7+8640=12000此时A型挖掘机7台,B型挖掘机5台的施工费用最低,最低费用为12000元.【知识点】一元一次不等式组的应用、二元一次方程组的应用、一次函数的应用24.【分析】(1)①根据相似三角形的判定和性质以及平移的性质进行解答即可;②连接CM交直线EF于点N,连接DN,利用勾股定理解答即可;(2)分点P在线段CE上和点P在线段ED上两种情况进行解答.【解答】解:(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,∴DE=FH=3,又BF:FA=1:5,∴AH=2,∵Rt△AHD∽Rt△MHF,∴,即,∴HM=1.5,根据平移的性质,MM'=CD=6,连接BM,如图1,四边形BHMM′的面积=;②连接CM交直线EF于点N,连接DN,如图2,∵直线EF垂直平分CD,∴CN=DN,∵MH=1.5,∴DM=2.5,在Rt△CDM中,MC2=DC2+DM2,∴MC2=62+(2.5)2,即MC=6.5,∵MN+DN=MN+CN=MC,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴,∴QF=2,∴PK=PK'=6,过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,当点P在线段CE上时,在Rt△PK'E'中,PE'2=PK'2﹣E'K'2,∴,∵Rt△PE'K'∽Rt△K'F'Q,∴,即,解得:,∴PE=PE'﹣EE'=,∴,同理可得,当点P在线段DE上时,,如图4,综上所述,CP的长为或.【知识点】四边形综合题25.【分析】(1)应用待定系数法求解析式;(2)设出点T坐标,表示△TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.【解答】解:(1)由已知,c=,将B(1,0)代入,得:a﹣+=0,解得a=﹣,抛物线解析式为y1=﹣,∵抛物线y1平移后得到y2,且顶点为B(1,0),∴y2=﹣(x﹣1)2,即y2=﹣.(2)存在,如图1:抛物线y2的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,),过点T作TE⊥y轴于E,则TC2=TE2+CE2=12+()2=t2﹣,TA2=TB2+AB2=(1+3)2+t2=t2+16,AC2=,当TC=AC时,t2﹣=解得:t1=,t2=;当TA=AC时,t2+16=,无解;当TA=TC时,t2﹣=t2+16,解得t3=﹣;当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形.(3)如图2:设P(m,﹣),则Q(m,﹣)∵Q、R关于x=1对称∴R(2﹣m,﹣),①当点P在直线l左侧时,PQ=1﹣m,QR=2﹣2m,∵△PQR与△AMG全等,∴当PQ=GM且QR=AM时,m=0,∴P(0,),即点P、C重合.∴R(2,﹣),由此求直线PR解析式为y=﹣,当PQ=AM且QR=GM时,无解;②当点P在直线l右侧时,同理:PQ=m﹣1,QR=2m﹣2,则P(2,﹣),R(0,﹣),PQ解析式为:y=﹣;∴PR解析式为:y=﹣或y=﹣【知识点】二次函数综合题。

2018年山东省潍坊市中考数学试题(含答案解析)

2018年山东省潍坊市中考数学试题(含答案解析)

2018年潍坊市初中学业水平考试数学试题一、选择题1.()A. B. C. D.【答案】B【解析】分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.000036用科学记数法表示正确的是()A. B. C. D.【答案】C【解析】分析:绝对值小于1的正数用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.0000036=3.6×10-6;故选C.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.如图所示的几何体的左视图是()A.(A)B.(B)C.(C)D.(D)【答案】D【解析】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.详解:从左面看可得矩形中间有一条横着的虚线.故选D.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.下列计算正确的是()A. B. C. D.【答案】C详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则的度数是()A. B. C. D.【答案】C【解析】分析:直接利用平行线的性质结合已知角得出答案.详解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1的度数是:45°+30°=75°.故选C.点睛:此题主要考查了平行线的性质,正确作出辅助线是解题关键.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是()A. B.C.点是的外心D.【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()A.22,3B.22,4C.21,3D.21,4【答案】D【解析】分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.详解:∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即,∴x=3、y=2,则这组数据的众数为21,平均数为=22,故选D.点睛:本题主要考查中位数、众数、方差,解题的关键是根据中位数的定义得出x、y的值及方差的计算公式.8.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为()A. B.或C. D.或【答案】B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为()A.3或6B.1或6C.1或3D.4或6【答案】B【解析】分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.10.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成中心对称的点的极坐标表示不正确的是()A. B.C. D.【答案】D【解析】分析:根据中心对称的性质解答即可.详解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选D.点睛:此题考查中心对称的问题,关键是根据中心对称的性质解答.11.已知关于的一元二次方程有两个不相等的实数根,若,则的值是()A.2B.-1C.2或-1D.不存在【答案】A【解析】分析:先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合,即可求出m的值.详解:∵关于x的一元二次方程mx2-(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>-1且m≠0.∵x1、x2是方程mx2-(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵,∴=4m,∴m=2或-1,∵m>-1,∴m=2.故选A.点睛:本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于-、两根之积等于.12.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是()A.(A)B.(B)C.(C)D.(D)【答案】D【解析】分析:应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.详解:当0≤t<2时,S=2t××(4-t)=-t2+4t;当2≤t<4时,S=4××(4-t)=-2t+8;只有选项D的图形符合.故选D.点睛:本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.因式分解:____________.【答案】【解析】分析:通过提取公因式(x+2)进行因式分解.详解:原式=(x+2)(x-1).故答案是:(x+2)(x-1).点睛:考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.14.当____________时,解分式方程会出现增根.【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.用教材中的计算器进行计算,开机后依次按下.把显示结果输人下侧的程序中,则输出的结果是____________.【答案】34+9.【解析】分析:先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.详解:由题意知输入的值为32=9,则输出的结果为[(9+3)-]×(3+)=(12-)×(3+)=36+12-3-2=34+9,故答案为:34+9.点睛:本题主要考查计算器-基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.16.如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形的位置,与相交于点,则的坐标为____________.【答案】【解析】分析:连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.详解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(-1,),故答案为:(-1,).点睛:本题主要考查旋转的性质、正方形的性质,解题的关键是掌握旋转变换的不变性与正方形的性质、全等三角形的判定与性质及三角函数的应用.17.如图,点的坐标为,过点作不轴的垂线交直于点以原点为圆心,的长为半径断弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点;…按此作法进行下去,则的长是____________.【答案】【解析】分析:先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.详解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是.故答案为:.点睛:本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.18.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行____________小时即可到达(结果保留根号)【答案】.【解析】分析:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,通过解直角△AQP、直角△BPQ求得PQ的长度,即MN的长度,然后通过解直角△BMN求得BM的长度,则易得所需时间.详解:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N,在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),所以BQ=PQ-90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里),所以PQ-90=PQ,所以PQ=45(3+)(海里)所以MN=PQ=45(3+)(海里)在直角△BMN中,∠MBN=30°,所以BM=2MN=90(3+)(海里)所以(小时)故答案是:.点睛:本题考查的是解直角三角形的应用,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.三、解答题19.如图,直线与反比例函数的图象相交于,两点,连接.(1)求和的值;(2)求的面积.【答案】(1),;(2).【解析】分析:(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.详解:(1)点在直线上,,解得,,反比例函数的图象也经过点,,解得;(2)设直线分别与轴,轴相交于点,点,当时,即,,当时,,,点在直线上,.即,.点睛:本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.20.如图,点是正方形边上一点,连接,作于点,手点,连接.(1)求证:;(2已知,四边形的面积为24,求的正弦值.【答案】(1)证明见解析;(2).【解析】分析:(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x-2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.详(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=-8(舍去),∴EF=x-2=4,在Rt△BEF中,BE=,∴sin∠EBF=.点睛:本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区户家庭的月用水量,绘制了下面不完整的统计图.(1)求并补全条形统计图;(2)求这户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为和的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为和恰好各有一户家庭的概率.【答案】(1)n=20,补全条形图见解析;(2)这20户家庭的月平均用水量为6.95立方米,小莹所住小区月用水量低于的家庭户数为231;(3),【解析】分析:(1)根据月用水量为9m3和10m3的户数及其所占百分比可得总户数,再求出5m3和8m3的户数即可补全图形;(2)根据加权平均数的定义计算可得月平均用水量,再用总户数乘以样本中低于月平均用水量的家庭户数所占比例可得;(3)列表得出所有等可能结果,从中找到满足条件的结果数,根据概率公式计算可得.详解:(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%-7=4户,月用水量为5m3的户数为20-(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下:a b c d ea(b,a)(c,a)(d,a)(e,a)b(a,b)(c,b)(d,b)(e,b)c(a,c)(b,c)(d,c)(e,c)d(a,d)(b,d)(c,d)(e,d)e(a,e)(b,e)(c,e)(d,e)由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.22.如图,为外接圆的直径,且.(1)求证:与相切于点;(2)若,,求的长.【答案】(1)证明见解析;(2)AD=.【解析】分析:(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.详解:证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF=,在Rt△OFB中,OB2=BF2+(OB-AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.点睛:本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.(1)分别求每台型,型挖掘机一小时挖土多少立方米?(2)若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【答案】(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一:型挖据机7台,型挖掘机5台;方案二:型挖掘机8台,型挖掘机4台;方案三:型挖掘机9台,型挖掘机3台.当A型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.所以,共有三种调配方案.方案一:当时,,即型挖据机7台,型挖掘机5台;案二:当时,,即型挖掘机8台,型挖掘机4台;方案三:当时,,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.24.如图1,在中,于点的垂直平分线交于点,交于点,,.(1)如图2,作于点,交于点,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点,求周长的最小值.(2)如图3.延长交于点.过点作,过边上的动点作,并与交于点,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.【答案】(1)①;②周长的最小值为9;(2)的长为或.【解析】分析:(1)①根据相似三角形的判定和性质以及平移的性质进行解答即可;②连接CM 交直线EF 于点N ,连接DN ,利用勾股定理解答即可;(2)分点P 在线段CE 上和点P 在线段ED 上两种情况进行解答.详解:(1)①在▱ABCD 中,AB=6,直线EF 垂直平分CD ,∴DE=FH=3,又BF :FA=1:5,∴AH=2,∵Rt △AHD ∽Rt △MHF ,∴,即,∴HM=1.5,根据平移的性质,MM'=CD=6,连接BM ,如图1,四边形BHMM′的面积=×6×1.5+×4×1.5=7.5;②连接CM交直线EF于点N,连接DN,如图2,∵直线EF垂直平分CD,∴CN=DN,∵MH=1.5,∴DM=2.5,在Rt△CDM中,MC2=DC2+DM2,∴MC2=62+(2.5)2,即MC=6.5,∵MN+DN=MN+CN=MC,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴,∴QF=2,∴PK=PK'=6,过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,当点P在线段CE上时,在Rt△PK'E'中,PE'2=PK'2-E'K'2,∴PE′=2,∵Rt△PE'K'∽Rt△K'F'Q,∴,即,解得:QF′=,∴PE=PE'-EE'=2−=,∴CP=,同理可得,当点P在线段DE上时,CP′=,如图4,综上所述,CP的长为或.点睛:此题考查四边形的综合题,关键是根据相似三角形的性质和平移的性质解答,注意(2)分两种情况分析.25.如图1,抛物线与轴交于点和点,与轴交于点,抛物线的顶点为轴于点.将抛物线平移后得到顶点为且对称轴为直的抛物线.(1)求抛物线的解析式;(2)如图2,在直线上是否存在点,使是等腰三角形?若存在,请求出所有点的坐标:若不存在,请说明理由;(3)点为抛物线上一动点,过点作轴的平行线交抛物线于点,点关于直线的对称点为,若以为顶点的三角形与全等,求直线的解析式.【答案】(1)抛物线的解析式为;(2)点的坐标为,,;(3)的解析式为或.【解析】分析:(1)把和代入求出a、c的值,进而求出y1,再根据平移得出y2即可;(2)抛物线的对称轴为,设,已知,过点作轴于,分三种情况时行讨论等腰三角形的底和腰,得到关于t的方程,解方程即可;(3)设,则,根据对称性得,分点在直线的左侧或右侧时,结合以构成的三角形与全等求解即可.详解:(1)由题意知,,解得,所以,抛物线y的解析式为;因为抛物线平移后得到抛物线,且顶点为,所以抛物线的解析式为,即;(2)抛物线的对称轴为,设,已知,过点作轴于,则,,,当时,即,解得或;当时,得,无解;当时,得,解得;综上可知,在抛物线的对称轴上存在点使是等腰三角形,此时点的坐标为,,.(3)设,则,因为关于对称,所以,情况一:当点在直线的左侧时,,,又因为以构成的三角形与全等,当且时,,可求得,即点与点重合所以,设的解析式,则有解得,即的解析式为,当且时,无解,情况二:当点在直线右侧时,,,同理可得的解析式为,综上所述,的解析式为或.点睛:本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式、等腰三角形的判定与性质、全等三角形的性质等知识,解答(1)问的关键是求出a、c的值,解答(2)、(3)问的关键是正确地作出图形,进行分类讨论解答,此题有一定的难度.。

2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数(含解析)

2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数(含解析)

2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数一.选择题(共12小题)1.(2020•潍坊一模)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或B.6或或﹣10C.﹣19或6 D.6或或﹣192.(2020•寿光市二模)已知二次函数y=ax2+bx+c,其中y与x的部分对应值如表:x﹣2 ﹣1 0.5 1.5y 5 0 ﹣3.75 ﹣3.75 下列结论正确的是()A.abc<0B.4a+2b+c>0C.若x<﹣1或x>3时,y>0D.方程ax2+bx+c=5的解为x1=﹣2,x2=33.(2020•青州市一模)表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y… 6 m11 k11 m 6 …根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④4.(2020•潍坊三模)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0 B.2≤m<C.2≤m≤4 D.<m≤5.(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥06.(2019•潍坊一模)如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣0.5,y1)、N(2.5,y2)为函数图象上的两点,则y1<y2.其中正确的是()A.①③④B.①②3④C.①②③D.②③④7.(2019•临朐县二模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.有下列4个结论:①abc>0;②4a+2b+c>0;③2c<3b;④a+b>m(am+b)(m是不等于1的实数).其中正确的结论个数有()A.1个B.2个C.3个D.4个8.(2019•寿光市二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c =2;③a;④b>1,其中正确的结论个数是()A.1个B.2 个C.3 个D.4 个9.(2019•潍坊二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④10.(2018•安丘市模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:(1)abc<0;(2)b2>4ac;(3)3a+2c=0;(4)5a+3b+2c<0.其中正确的有几个()A.1个B.2个C.3个D.4个11.(2018•高密市二模)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个12.(2018•诸城市一模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤二.填空题(共1小题)13.(2020•潍坊一模)已知二次函数y=x2+2mx+3的图象交y轴于点B,交直线x=5于点C,设二次函数图象上的一点P(x,y)满足0≤x≤5时,y≤3,则m的取值范围为.三.解答题(共27小题)14.(2020•安丘市一模)如图,已知的圆心为点(3,0),抛物线y=ax2﹣x+c过点A,与⊙A交于B、C两点,连接AB、AC,且AB⊥AC,B、C两点的纵坐标分别是2、1.(1)求B、C点坐标和抛物线的解析式;(2)直线y=kx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且AD=AE,请判断点E是否在此抛物线上,并说明理由;(3)如果直线y=k1x﹣1与⊙A相切,请直接写出满足此条件的直线解析式.15.(2020•潍坊一模)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B (4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的一点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)求tan∠OAB的值.(4)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.16.(2020•潍坊一模)国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售过程中发现:A型汽车的每周销售量y A(台)与售价x A(万元/台)满足函数关系y A=﹣x A+18;B型汽车的每周销售量y B(台)与售价x B(万元/台)满足函数关系y B=﹣x B+14.若A型汽车的售价比B型汽车的售价高1万元/台,设每周销售这两种车的总利润为w万元.求当B型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?17.(2020•寿光市二模)如图,抛物线y=x2+bx+c交x轴于B,C两点,交y轴于点A,直线y=﹣x+3经过点A,B.(1)求抛物线的解析式.(2)点P是直线AB下方的抛物线上一动点,过点P作PE⊥x轴于点E,交直线AB于点F,设点P的横坐标为m,若PF=3PE,求m的值.(3)N是第一象限对称轴右侧抛物线上的一点,连接BN,AC,抛物线的对称轴上是否存在点M,使得△BMN与△AOC相似,且∠BMN为直角,若存在,请直接写出点M的坐标;若不存在,请说明理由.18.(2020•潍坊三模)如图,西游乐园景区内有一块矩形油菜花田地(单位:m),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为ym2.(1)求y与x的函数关系式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.6≤x≤1,求改造后油菜花地所占面积的最大值.19.(2020•潍坊一模)如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.20.(2020•青州市一模)某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,部分数据如表:售价x(元/千克)50 60 70销售量y(千克)120 100 80 (1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),则当售价x定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价x的取值范围是多少?请说明理由.21.(2020•青州市一模)如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.22.(2020•安丘市三模)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x≤14)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x≤7 8≤x≤14售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+40023.(2020•奎文区一模)金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.24.(2020•奎文区一模)如图,抛物线y=﹣+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.25.(2020•诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量在100个以内,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).26.(2019•潍坊一模)如图1,已知抛物线y1=x2+mx与抛物线y2=ax2+bx+c的形状相同,开口方向相反,且相交于点A(﹣3,﹣6)和点B(1,6).抛物线y2与x轴正半轴交于点C,P为抛物线y2上A、B两点间一动点,过点P作PQ∥y轴,与y1交于点Q.(1)求抛物线y1与抛物线y2的解析式;(2)四边形APBQ的面积为S,求S的最大值,并写出此时点P的坐标;(3)如图2,y2的对称轴为直线l,PC与l交于点E,在(2)的条件下,直线l上是否存在一点T,使得以T、E、C为顶点的三角形与△APQ相似?如果存在,求出点T的坐标;如果不存在,说明理由.27.(2019•临朐县二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O,C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,NE⊥AD于点E,求NE的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t.是否存在t,使以点M,C,D,N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.28.(2019•临朐县二模)某商场经营某种品牌的玩具,购进时的单价是30元,经市场预测,销售单价为40元时,可售出600个;面销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?29.(2019•临朐县一模)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y(万元/kg),y与时间t(天)函数关系可用线段AB和BC上的一些不连续的点来表示(t为整数),如图所示.其中线段BC的函数关系式为y=﹣+m.该商品在销售期内每天的销量如下表:时间(t)0<t≤50 50<t≤100每天的销量(kg)200 t+150 (1)分别求出当0<t≤50和50<t≤100时y与t的函数关系式;(2)设每天的销售收入为w(万元),则当t为何值时,w的值最大?求出最大值30.(2019•寿光市二模)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.31.(2019•临朐县三模)如图,西游乐园景区内有一块矩形油菜花田地(单位:m),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为ym2.(1)求y与x的函数关系式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后油菜花田地所占面积的最大值.32.(2019•潍坊模拟)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,说明理由.33.(2018•安丘市模拟)如图,在直角坐标系中,二次函数经过A(﹣2,0),B(2,2),C(0,2)三个点.(1)求该二次函数的解析式.(2)若在该函数图象的对称轴上有个动点D,求当D点坐标为何值时,△ACD的周长最小.(3)在直线y=x上是否存在一点E,使得△ACE为直角三角形?有,请求出E点坐标;没有,说明理由.34.(2018•青州市二模)阅读1:a、b为实数,且a>0,b>0,因为≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:函数y=x+(常数m>0,x>0),由阅读1结论可知:x+≥2=2,所以当x=即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:(1)已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为.(2)已知函数y1=x+1(x>﹣1)与函数y2=x2+2x+17(x>﹣1),当x=时,的最小值为.(3)某民办学校每天的支出总费用包含以下三个部分:一是教职工工资12800元;二是学生生活费每人20元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.02.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)35.(2018•潍坊二模)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:销售价格x(元/个)…30 40 50 60 …销售量y(万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的数据,用所学过的函数知识,直接写出y与x的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请你结合函数图象求出销售价格x(元个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?36.(2018•青州市三模)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.37.(2018•青州市三模)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?38.(2018•高密市二模)如图1,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(﹣1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.39.(2018•高密市二模)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?40.(2018•寿光市模拟)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元)0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数参考答案与试题解析一.选择题(共12小题)1.(2020•潍坊一模)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或B.6或或﹣10C.﹣19或6 D.6或或﹣19【答案】C【解答】解:∵二次函数y=﹣x2+mx+m=﹣(x﹣)2++m,∴抛物线的对称轴为x=,∴当<﹣2时,即m<﹣4,∵当﹣2≤x≤4时,y的最大值是15,∴当x=﹣2时,﹣(﹣2)2﹣2m+m=15,得m=﹣19;当﹣24时,即﹣4≤m≤8时,∵当﹣2≤x≤4时,y的最大值是15,∴当x=时,+m=15,得m1=﹣10(舍去),m2=6;当>4时,即m>8,∵当﹣2≤x≤4时,y的最大值是15,∴当x=4时,﹣42+4m+m=15,得m=(舍去);由上可得,m的值是﹣19或6;故选:C.2.(2020•寿光市二模)已知二次函数y=ax2+bx+c,其中y与x的部分对应值如表:x﹣2 ﹣1 0.5 1.5y 5 0 ﹣3.75 ﹣3.75 下列结论正确的是()A.abc<0B.4a+2b+c>0C.若x<﹣1或x>3时,y>0D.方程ax2+bx+c=5的解为x1=﹣2,x2=3【答案】C【解答】解:∵x=0.5,y=﹣3.75;x=1.5,y=﹣3.75,∴抛物线的对称轴为直线x=1,∵抛物线与x轴的另一个交点坐标为(3,0),∵设y=a(x+1)(x﹣3),把(﹣2,5)代入得5=a×(﹣2+1)(﹣2﹣3),解得a=1,∴y=x2﹣2x﹣3,∴abc>0,所以A选项错误;4a+2b+c=4﹣4﹣3=﹣3<0,所以B选项错误;∵抛物线开口向上,抛物线与x轴的交点坐标为(﹣1,0),(3,0),∴x<﹣1或x>3时,y>0,所以C选项正确;方程ax2+bx+c=5表示为x2﹣2x﹣3=5,解得x1=﹣2,x2=4,所以D选项错误.故选:C.3.(2020•青州市一模)表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y… 6 m11 k11 m 6 …根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④【答案】B【解答】解:∵x1<x2<x3<x4<x5<x6<x7,其对应的函数值是先增大后减小,∴抛物线开口向下,∴a<0,①符合题意;∴6<m<11<k,∴6<m<11,②符合题意;根据图表中的数据知,只有当x==x4时,抛物线的顶点坐标纵坐标是k,即y的值是k,③不符合题意;∵≥k,a<0,∴4ac﹣b2≤4ak,∴b2≥4a(c﹣k),④符合题意.综上,可得判断正确的是:①②④.故选:B.4.(2020•潍坊三模)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0 B.2≤m<C.2≤m≤4 D.<m≤【答案】C【解答】解:令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣1,c=﹣,故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,如图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x ≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4,故选:C.5.(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【答案】B【解答】解:当a>0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴上方,它们的横坐标分别为m、n,∴m<x1<x2<n;当a<0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴下方,它们的横坐标分别为m、n,∴m<x1<x2<n.故选:B.6.(2019•潍坊一模)如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣0.5,y1)、N(2.5,y2)为函数图象上的两点,则y1<y2.其中正确的是()A.①③④B.①②3④C.①②③D.②③④【答案】C【解答】解:①由图象可知:a<0,c>0,由对称轴可知:>0,∴b>0,∴abc<0,故①正确;②由对称轴可知:=1,∴b=﹣2a,∵抛物线过点(3,0),∴0=9a+3b+c,∴9a﹣6a+c=0,∴3a+c=0,故②正确;③当x=1时,y取最大值,y的最大值为a+b+c,当x取全体实数时,ax2+bx+c≤a+b+c,即ax2+bx≤a+b,故③正确;④(﹣0.5,y1)关于对称轴x=1的对称点为(2.5,y1):∴y1=y2,故④错误;故选:C.7.(2019•临朐县二模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.有下列4个结论:①abc>0;②4a+2b+c>0;③2c<3b;④a+b>m(am+b)(m是不等于1的实数).其中正确的结论个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①由图象可知:a<0,c>0,∵﹣>0,∴b>0,∴abc<0,故①错误;②由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故②正确;③当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故③正确;④当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故④正确.故选:C.8.(2019•寿光市二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c =2;③a;④b>1,其中正确的结论个数是()A.1个B.2 个C.3 个D.4 个【答案】C【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①错误,当x=1时,y=a+b+c=2,故②正确,当x=﹣1时,y=a﹣b+c<0,由a+b+c=2得,a+c=2﹣b,则a﹣b+c=(a+c)﹣b=2﹣b﹣b<0,得b>1,故④正确,∵,a>0,得a>>,故③正确,故选:C.9.(2019•潍坊二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【答案】C【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选:C.10.(2018•安丘市模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:(1)abc<0;(2)b2>4ac;(3)3a+2c=0;(4)5a+3b+2c<0.其中正确的有几个()A.1个B.2个C.3个D.4个【答案】B【解答】解:(1)由图象可知:a>0,c<0,由对称轴可知:<0,∴b>0,∴abc<0,故(1)正确;(2)抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故(2)正确;(3)由于对称轴可知:=﹣1,∴b=2a,由于抛物线过点(1,0),∴a+b+c=0,∴3a+c=0,故(3)错误;(4)由于b=2a,c=﹣3a5a+3b+2c=5a+6a﹣6a=5a>0,故(4)错误;故选:B.11.(2018•高密市二模)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【答案】B【解答】解:∵x=﹣=2,∴4a+b=0,故①正确.由函数图象可知:当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故②正确.∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0又∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故③错误;∵抛物线的对称轴为x=2,C(7,y3),∴(﹣3,y3).∵﹣3<﹣,在对称轴的左侧,∴y随x的增大而增大,∴y1=y3<y2,故④错误.方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,依据函数图象可知:x1<﹣1<5<x2,故⑤正确.故选:B.12.(2018•诸城市一模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤【答案】C【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选:C.二.填空题(共1小题)13.(2020•潍坊一模)已知二次函数y=x2+2mx+3的图象交y轴于点B,交直线x=5于点C,设二次函数图象上的一点P(x,y)满足0≤x≤5时,y≤3,则m的取值范围为m≤﹣2.5.【答案】见试题解答内容【解答】解:∵a=1>0,故抛物线开口向上,故y在x=0或x=5时取得最大值,当x=0时,y=x2+2mx+3=3,则x=5时,y=x2+2mx+3=25+10m+3≤3,解得:m≤﹣2.5;故答案为:m≤﹣2.5.三.解答题(共27小题)14.(2020•安丘市一模)如图,已知的圆心为点(3,0),抛物线y=ax2﹣x+c过点A,与⊙A交于B、C两点,连接AB、AC,且AB⊥AC,B、C两点的纵坐标分别是2、1.(1)求B、C点坐标和抛物线的解析式;(2)直线y=kx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且AD=AE,请判断点E是否在此抛物线上,并说明理由;(3)如果直线y=k1x﹣1与⊙A相切,请直接写出满足此条件的直线解析式.【答案】见试题解答内容【解答】解:(1)过点B、C分别作x轴的垂线交于点R、S,∵∠BAR+∠RBA=90°,∠BAR+∠CAS=90°,∴∠RAB=∠SCA,又∵AB=AC,∴△BRA≌△ASC(AAS),∴AS=BR,AR=CS,∵B、C两点的纵坐标分别是2、1,∴AS=BR=2,AR=CS=1,故点B、C的坐标分别为(2,2)、(5,1),将点B、C坐标代入抛物线y=ax2﹣x+c,,解得,,故抛物线的表达式为y=x2﹣x+11;(2)∵直线y=kx+1经过点B(2,2),∴2=2k+1,得k=,即直线y=x+1,当y=0时,0=x+1,得x=﹣2,即点D的坐标为(﹣2,0),∵点A、B、C、D的坐标分别为(3,0)、(2,2)、(5,1)、(﹣2,0),∴,AD=5,∵点E在直线BD上,∴设E的坐标为(x,x+1),∵AD=AE,∴,解得:x1=﹣2(舍去),x2=6,∴点E(6,4),当x=6时,y=+11=4,∴点E在抛物线上;(3)①当切点在x轴下方时,设直线y=k1x﹣1与⊙A相切于点H,直线与x轴、y轴分别交于点K、G(0,﹣1),连接GA,∵AR=1,BE=2,∠BRA=90°,点A(3,0),点G(0,﹣1),∴AB=,AG=,∴AH=AB=,∵∠AHK=∠KOG=90°,∠HKA=∠OKG,∴△KOG∽△KHA,∴,即:,解得:KO=2或(舍去),∴点K的坐标为(﹣2,0),把点K的坐标代入y=k1x﹣1,得0=﹣2k1﹣1,得k1=,∴直线的表达式为;②当切点在x轴上方时,直线的表达式为:y=2x﹣1;故满足条件的直线解析式为或y=2x﹣1.15.(2020•潍坊一模)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B (4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的一点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)求tan∠OAB的值.(4)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.【答案】见试题解答内容【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),由点O(0,0),A(3,3)得直线OA的解析式为:y=x,设点P(p,﹣p2+4p),则点Q(p,p),PQ=y P﹣y Q=﹣p2+4p﹣p=﹣p2+3p=﹣(p﹣)2+,当p=时,PQ的值最大,最大值为;(3)如图1,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,∵A(3,3),∴AE=3,OE=3,∴△AOE为等腰直角三角形,∴∠AOE=45°,OA=OE=3,在等腰Rt△BOD中,OB=4,∴OD=BD=2,∴AD=OA﹣OD=3﹣2=,∴tan∠OAB==2;(4)存在,设点N(2,a),若AB=AN,∵点A(3,3),B点(4,0),点N(2,a),∴=,。

山东省潍坊市2018-2019年最新寿光市中考数学一模试卷(含答案)

山东省潍坊市2018-2019年最新寿光市中考数学一模试卷(含答案)

2019届山东省潍坊市寿光市中考数学一模试卷一、选择题1.下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.(2xy2)3=6x3y6D.﹣(x﹣y)=﹣x+y2.观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C. D.4.2019届4月20日晚,中国首艘货运飞船天舟一号顺利发射升空.其在太空飞行速度是子弹飞行速度8倍,已知子弹的速度约为每秒300米,那么天舟一号的飞行速度用科学记数法(精确到千位)表示为()厘米/秒.A.2.40×106B.2.4×105C.2.40×105D.2.4×1035.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm6.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为()A.﹣3 B.1 C.5 D.87.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简﹣|a+b|的结果是()A.2a B.﹣2a C.2b D.﹣2b8.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误是()A.众数是85 B.平均数是85 C.方差是20 D.极差是159.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)10.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0) C.(,0)D.(,0)11.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.12.已知α是锐角,且点A(,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,那么a、b、c的大小关系是()A.a<b<c B.a<c<b C.b<c<a D.c<b<a二、填空题13.如果与(2x﹣4)2互为相反数,那么2x﹣y的平方根是.14.若不等式组有解,则a的取值范围是.15.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).16.若关于x的方程+=2的解是正数,则m的取值范围是.17.如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是.18.如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2,使A2B1=B1B2,以A2B2为边作等边△A2B2C2,A3为等边△A2B2C2的中心,连接A3B2并延长到点B3,使A3B2=B2B3,以A3B3为边作等边△A3B3C3,依次作下去得到等边△A n B n C n,则等边△A6B6C6的边长为.三、解答题(6+8+12+6+12+10+12=66分)提示:计算过程要完整、书写规范,证明过程尽量写清证明依据,规范、条理.19.(6分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.20.(8分)某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A的概率是多少?写出分析计算过程.21.(12分)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA=,求BH的长.22.(6分)如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)23.(12分)某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?24.(10分)已知如图1菱形ABCD,∠ABC=60°,边长为 3,在菱形内作等边三角形△AEF,边长为2,点E,点F,分别在AB,AC上,以A为旋转中心将△AEF顺时针转动,旋转角为α,如图2(1)在图2中证明BE=CF;(2)若∠BAE=45°,求CF的长度;(3)当CF=时,直接写出旋转角α的度数.25.(12分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).2019届山东省潍坊市寿光市中考数学一模试卷参考答案与试题解析一、选择题1.下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.(2xy2)3=6x3y6D.﹣(x﹣y)=﹣x+y【考点】4C:完全平方公式;36:去括号与添括号;47:幂的乘方与积的乘方.【分析】利用完全平方公式,积的乘方的性质,去括号法则,对各选项分析判断后利用排除法求解.【解答】解:A、x2与x3不是同类项,不能合并,故本选项错误;B、应为(x+y)2=x2+2xy+y2,故本选项错误;C、应为(2xy2)3=8x3y6,故本选项错误;D、﹣(x﹣y)=﹣x+y,正确.故选D.【点评】本题比较复杂,涉及到完全平方公式,积的乘方,去括号与添括号法则,熟练掌握运算法则和性质是解题的关键.2.观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】俯视图是从上往下看得到的视图,结合选项进行判断即可.【解答】解:所给图形的俯视图是A选项所给的图形.故选A.【点评】本题考查了简单组合体的三视图,解答本题的关键是掌握俯视图是从上往下看得到的视图.4.2019届4月20日晚,中国首艘货运飞船天舟一号顺利发射升空.其在太空飞行速度是子弹飞行速度8倍,已知子弹的速度约为每秒300米,那么天舟一号的飞行速度用科学记数法(精确到千位)表示为()厘米/秒.A.2.40×106B.2.4×105C.2.40×105D.2.4×103【考点】1L:科学记数法与有效数字.【分析】首先利用其速度是子弹速度的8倍确定该数据,然后用科学计数法表示即可.【解答】解:∵在太空飞行速度是子弹飞行速度8倍,已知子弹的速度约为每秒300米,∴其速度为300×8=2400米/秒=2.40×105厘米/秒,故选C.【点评】本题考查了科学计数法与有效数字的知识,解题的关键是能够确定其速度然后按要求精确,解答时注意单位换算,难度不大.5.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm【考点】MP:圆锥的计算;MN:弧长的计算.【分析】一只扇形的弧长是6πcm,则底面的半径即可求得,底面的半径,圆锥的高以及母线正好构成直角三角的三边,利用勾股定理即可求解.【解答】解:设圆锥的底面半径是r,则2πr=6π,解得:r=3,则圆锥的高是: =4cm.故选A.【点评】本题主要考查圆锥侧面展开图的知识和圆锥侧面面积的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.6.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为()A.﹣3 B.1 C.5 D.8【考点】HF:二次函数综合题.【分析】当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.【解答】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选:D.【点评】能够正确地判断出点C横坐标最小、点D横坐标最大时抛物线的顶点坐标是解答此题的关键.7.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简﹣|a+b|的结果是()A.2a B.﹣2a C.2b D.﹣2b【考点】F7:一次函数图象与系数的关系;7A:二次根式的化简求值.【分析】根据一次函数图象与系数的关系结合当x=1时y>0,即可得出a>0、b<0、a+b>0,进而可得出a﹣b>0,依此即可得出﹣|a+b|=(a﹣b)﹣(a+b)=﹣2b,此题得解.【解答】解:观察函数图象可知:a>0,b<0,a+b>0,∴a﹣b>0,∴﹣|a+b|=(a﹣b)﹣(a+b)=﹣2b.故选D.【点评】本题考查了一次函数图象与系数的关系以及二次根式的化简求值,观察函数图象找出a>0、b<0、a+b >0是解题的关键.8.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误是()A.众数是85 B.平均数是85 C.方差是20 D.极差是15【考点】W7:方差;W2:加权平均数;W5:众数;W6:极差.【分析】利用众数是一组数据中出现次数最多的数据,注意众数可以不止一个,再利用平均数和方差、极差的定义可分别求出.【解答】解:A、这组数据中85出现了3次,出现的次数最多,所以这组数据的众数位85,故此选项正确,不合题意;B、由平均数公式求得这组数据的平均数位85,故此选项正确,不合题意;C、S2= [(85﹣85)2+(95﹣85)2+(85﹣85)2+(80﹣85)2+(80﹣85)2+(85﹣85)2]=(0+100+25+25+0+0)=25,故此选项错误,符合题意;D、极差为95﹣80=15,故此选项正确,不合题意;故选:C.【点评】本题考查了统计学中的平均数,众数与方差、极差的定义.解答这类题学生常常对方差的计算方法掌握不好而错选.9.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)【考点】R7:坐标与图形变化﹣旋转;L8:菱形的性质.【分析】首先连接OB,OB′,过点B′作B′E⊥x轴于E,由旋转的性质,易得∠BOB′=105°,由菱形的性质,易证得△AOB是等边三角形,即可得OB′=OB=OA=2,∠AOB=60°,继而可求得∠AOB′=45°,由等腰直角三角形的性质,即可求得答案.【解答】解:连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=2,∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,∴OE=B′E=OB′•sin45°=2×=,∴点B′的坐标为:(,﹣).故选:A.【点评】此题考查了旋转的性质、菱形的性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意辅助线的作法.10.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0) C.(,0)D.(,0)【考点】GB:反比例函数综合题;FA:待定系数法求一次函数解析式;K6:三角形三边关系.【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.11.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【考点】N3:作图—复杂作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】考查了作图﹣复杂作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.12.已知α是锐角,且点A(,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,那么a、b、c的大小关系是()A.a<b<c B.a<c<b C.b<c<a D.c<b<a【考点】H5:二次函数图象上点的坐标特征;T7:解直角三角形.【分析】先计算对称轴为直线x=,抛物线开口向下,可知A点为顶点(最高点),a最大;再根据B、C两点与对称轴的远近,比较纵坐标的大小.【解答】解:抛物线y=﹣x2+x+3的对称轴是直线x=,开口向下,点A(,a)为顶点,即最高点,所以,a最大,A、B错误;又1<sin30°+cos30°<2,﹣m2+2m﹣2=﹣(m﹣1)2﹣1≤﹣1,可知,B点离对称轴近,C点离对称轴远,由于抛物线开口向下,离对称轴越远,函数值越小,c<b,C错误;故选D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题13.如果与(2x﹣4)2互为相反数,那么2x﹣y的平方根是±1 .【考点】23:非负数的性质:算术平方根;1F:非负数的性质:偶次方;21:平方根.【分析】直接利用算术平方根以及偶次方的性质得出2x﹣y的值,进而得出答案.【解答】解:∵与(2x﹣4)2互为相反数,∴y﹣3=0,2x﹣4=0,解得:y=3,x=2,∴2x﹣y=1,∴2x﹣y的平方根是:±1.故答案为:±1.【点评】此题主要考查了平方根以及算术平方根和偶次方的性质,正确得出x,y的值是解题关键.14.若不等式组有解,则a的取值范围是a<3 .【考点】CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故答案为a<3.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.15.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1 (写出一个即可).【考点】54:因式分解﹣运用公式法.【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.16.若关于x的方程+=2的解是正数,则m的取值范围是m<4且m≠2 .【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.【解答】解:去分母得:x+m﹣2m=2x﹣4,解得:x=4﹣m,由分式方程的解为正数,得到4﹣m>0,且4﹣m≠2,解得:m<4且m≠2,故答案为:m<4且m≠2【点评】此题考查了分式方程的解,以及解一元一次不等式,始终注意分母不为0这个条件.17.如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是13 .【考点】LJ:等腰梯形的性质.【分析】根据等腰梯形的两腰相等可得出DE、DC的长度,利用平行线的性质可得出BE的长度,继而可得出答案.【解答】解:∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=5,EB=AD=4,∴EC=7﹣4=3,则△DEC的周长=DE+DC+EC=5+5+3=13.故答案是:13.【点评】本题主要考查了等腰梯形的性质和平行四边形的判定及性质,难度不大,注意基本性质的掌握及熟练运用.18.如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2,使A2B1=B1B2,以A2B2为边作等边△A2B2C2,A3为等边△A2B2C2的中心,连接A3B2并延长到点B3,使A3B2=B2B3,以A3B3为边作等边△A3B3C3,依次作下去得到等边△A n B n C n,则等边△A6B6C6的边长为.【考点】KK:等边三角形的性质.【分析】作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,根据等边三角形的中心的性质得∠A2B1D1=30°,B1D1=A1B1=,利用余弦的定义得cos∠A2B1D1=cos30°==,可计算出A2B1=,由A2B1=B1B2得到A2B2=,用同样的方法可计算出A3B3=()2,特殊的结论.【解答】解:作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,如图,∵△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,∴∠A2B1D1=30°,B1D1=A1B1=,∴cos∠A2B1D1=cos30°==,∴A2B1=,∵A2B1=B1B2,∴A2B2=,同理可得∠A3B2D2=30°,B2D2=A2B2=×=,∴cos∠A3B2D2=cos30°==,∴A3B2=,∵A3B2=B2B3,∴A3B3==()2,同理可得A4B4=()3,A5B5=()4.A6B6C=()5=,故答案为.【点评】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了特殊角的三角函数值.三、解答题(6+8+12+6+12+10+12=66分)提示:计算过程要完整、书写规范,证明过程尽量写清证明依据,规范、条理.19.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.【考点】AB:根与系数的关系;AA:根的判别式.【分析】(1)方程有两个实数根,可得△=b2﹣4ac≥0,代入可解出k的取值范围;(2)结合(1)中k的取值范围,由题意可知,x1+x2=2(k﹣1)<0,去绝对值号结合等式关系,可得出k的值.【解答】解:(1)由方程有两个实数根,可得△=b2﹣4ac=4(k﹣1)2﹣4k2=4k2﹣8k+4﹣4k2=﹣8k+4≥0,解得,k≤;(2)依据题意可得,x1+x2=2(k﹣1),x1•x2=k2,由(1)可知k≤,∴2(k﹣1)<0,x1+x2<0,∴﹣x1﹣x2=﹣(x1+x2)=x1•x2﹣1,∴﹣2(k﹣1)=k2﹣1,解得k1=1(舍去),k2=﹣3,∴k的值是﹣3.答:(1)k的取值范围是k≤;(2)k的值是﹣3.【点评】本题主要考查了一元二次方程根与系数的关系,将根与系数的关系与代数式相结合解题是一种经常使用的解题方法;注意k的取值范围是正确解答的关键.20.某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A的概率是多少?写出分析计算过程.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据A的人数与所占的百分比列式求出随机抽取的总人数,再求出B的人数,由C得人数及总人数可得其百分比,最后补全两个统计图即可;(2)用全市的总人数乘以B所占的百分比,计算即可得解;(3)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)被抽查的总人数:290÷29%=1000,则B的人数:1000﹣290﹣180﹣120=410.C所占的百分比:180÷1000=18%;补全统计图如下:(2)110×41%=45.1(万人),答:估计全市最喜欢“羊口咸蟹子”的市民约有45.1万人;(3)根据题意作出树状图如下:一共有16种情况,两次都摸到“A”的有1种情况,所以P(A,A)=.【点评】本题考查的是条形统计图、扇形统计图及列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(12分)(2018•寿光市一模)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA=,求BH的长.【考点】MR:圆的综合题.【分析】(1)如图1中,欲证明BD是切线,只要证明AB⊥BD即可;(2)连接AC,如图2所示,欲证明CE2=EH•EA,只要证明△CEH∽△AEC即可;(3)连接BE,如图3所示,由CE2=EH•EA,可得EH=,在Rt△BEH中,根据BH=,计算即可;【解答】(1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.【点评】本题考查圆综合题、切线的判定和性质、垂径定理、相似三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考压轴题.22.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据锐角三角函数的定义求出DB的长,由CF=DB﹣FB+CD及∠α=45°即可得出结论.【解答】解:在Rt△ADB中,∵tan 60°=,∴DB==41.∴CF=DB﹣FB+CD=41+30.∵∠α=45°,∴EF=CF=41+30≈101.0 (米).答:点E离地面的高度EF约为101.0米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.23.(12分)(2008•安顺)某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?【考点】HE:二次函数的应用;FH:一次函数的应用.【分析】(1)用待定系数法求解析式;(2)设这次批发A种文具a件,根据题意求出取值范围,结合实际情况取特殊解后求解;(3)运用函数性质求解.【解答】解:(1)由图象知:当x=10时,y=10;当x=15时,y=5.设y=kx+b,根据题意得:,解得,∴y=﹣x+20.(2)当y=4时,得x=16,即A零售价为16元.设这次批发A种文具a件,则B文具是(100﹣a)件,由题意,得,解得48≤a≤50,∵文具的数量为整数,∴有三种进货方案,分别是①进A种48件,B种52件;②进A种49件,B种51件;③进A种50件,B种50件.(3)w=(x﹣12)(﹣x+20)+(x﹣10)(﹣x+22),整理,得w=﹣2x2+64x﹣460=﹣2(x﹣16)2+52.当x=﹣=16,w有最大值,即每天销售的利润最大.答:A文具零售价为16元,B文具零售价为14元时利润最大.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.24.(10分)(2018•寿光市一模)已知如图1菱形ABCD,∠ABC=60°,边长为 3,在菱形内作等边三角形△AEF,边长为2,点E,点F,分别在AB,AC上,以A为旋转中心将△AEF顺时针转动,旋转角为α,如图2(1)在图2中证明BE=CF;(2)若∠BAE=45°,求CF的长度;(3)当CF=时,直接写出旋转角α的度数.【考点】LO:四边形综合题.【分析】(1)连接AC,证明△AEB≌△AFC,即可得出结论;(2)过E点作EM⊥AB于M,则△AEM是等腰直角三角形,得出EM=AM=AE=2,求出BM=AB﹣AM=1,在Rt△BME 中,由勾股定理求出BE,即可得出CF的长;(3)过E点作EM⊥AB于M,则∠EMB=∠EMA=90°,由(1)得:BE=CF=,设AM=x,则BM=3﹣x,由勾股定理得出方程,积解方程求出x=0,得出点M与A重合,求出∠BAE=90°,即α=90°;同理可得:当CF=时,α还等于270°即可.【解答】(1)证明:连接AC,如图2所示:∵四边形ABCD是菱形,∴AB=BC=3,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),∴BE=CF;(2)解:过E点作EM⊥AB于M,如图3所示:∵∠BAE=45°,则△AEM是等腰直角三角形,∴EM=AM=AE=×2=2,∴BM=AB﹣AM=3﹣2=1,在Rt△BME中,由勾股定理得:BE===,由(1)得:CF=BE=;(3)解:过E点作EM⊥AB于M,如图4所示,则∠EMB=∠EMA=90°,由(1)得:BE=CF=,设AM=x,则BM=3﹣x,由勾股定理得:BM2=BE2﹣BM2,BM2=AE2﹣AM2,∴BE2﹣BM2=AE2﹣AM2,即()2﹣(3﹣x)2=(2)2﹣x2,解得:x=0,即点M与A重合,∴∠BAE=90°,即α=90°;同理可得:当CF=时,α还等于270°;综上所述:当CF=时,旋转角α的度数为90°或270°.【点评】本题是四边形综合题目,考查了菱形的性质、全等三角形的判定与性质、旋转的性质、等边三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度.25.(12分)(2016•湖州)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C (0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标。

最新-山东省潍坊市2018年中考数学真题试卷(解析版) 精

最新-山东省潍坊市2018年中考数学真题试卷(解析版) 精

2018年山东省潍坊市中考数学试卷-解析版一、选择题(共12小题,每小题3分,满分36分)1、(2018•潍坊)下面计算正确的是()A、B、C、D、考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式的混合运算方法,分别进行运算即可.解答:解:A.3+不是同类项无法进行运算,故此选项错误;B.===3,故此选项正确;C.=,×==,故此选项错误;D.=﹣2,∵==2,故此选项错误;故选:B.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2、(2018•潍坊)我国以2018年11月1日零时为标准时点进行了笫六次全国人口普查,普查得到全国总人口为1371836875人,该数用科学记数法表示为()(保留3个有效数字)A、13.7亿B、13.7×118C、1.37×118D、1.4×118考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1371836875有10位,所以可以确定n=10﹣1=9.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1371836875=1.371836875×118≈1.37×118.故选:C.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2018•潍坊)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1:4.其中正确的有()A、0个B、1个C、2个D、3个考点:相似三角形的判定与性质;三角形中位线定理。

山东省潍坊市2018年中考数学试题(含答案)-精编

山东省潍坊市2018年中考数学试题(含答案)-精编

2018年潍坊市初中学业水平考试数学试题第I 卷(选择题共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.|1-( )A .1B .1C .1+D .1-2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.000036用科学记数法表示正确的是( ) A .53.610-⨯B .50.3610-⨯C .63.610-⨯D .60.3610-⨯3.如图所示的几何体的左视图是( )4.下列计算正确的是( )A .236a a a ⋅= B .33a a a ÷= C .()2ab a a b --=- D .3311()26a a -=- 5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则1∠的度数是( )A .45B .60C .75D .82.56.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB ,分别以,A B 为圆心,以AB 长为半径作弧,两弧的交点为C ; (2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接,BD BC 下列说法不正确的是( )A .30CBD ∠=B .24BDC S AB ∆=C .点C 是ABD ∆的外心D .22sin cos 1A D +=7.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )A .22,3B .22,4C .21,3D .21,48.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --9.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A .3或6B .1或6C .1或3D .4或610.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即(3,60)P 或(3,300)P -或(3,420)P 等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( )A .(3,240)QB .(3,120)Q -C .(3,600)QD .(3,500)Q -11.已知关于x 的一元二次方程2(2)04mmx m x -++=有两个不相等的实数根12,x x ,若12114m x x +=,则m 的值是( ) A .2B .-1C .2或-1D .不存在12.如图,菱形ABCD 的边长是4厘米,60B ∠= ,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止若点,P Q 同时出发运动了t 秒,记BPQ ∆的面积为2S 厘米,下面图象中能表示S 与t 之间的函数关系的是( )第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.因式分解:(2)2x x x +--= . 14.当m = 时,解分式方程533x mx x-=--会出现增根. 15.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是 .16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上将正方形ABCD 绕点A 逆时针旋转30至正方形AB C D '''的位置,B C ''与CD 相交于点M ,则M 的坐标为 .17.如图,点1A 的坐标为(2,0),过点1A 作不轴的垂线交直:l y =于点1B 以原点O 为圆心,1OB 的长为半径断弧交x 轴正半轴于点2A ;再过点2A 作x 轴的垂线交直线l 于点2B ,以原点O 为圆心,以2OB 的长为半径画弧交x 轴正半轴于点3A ;…按此作法进行下去,则20192018A B 的长是 .18.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P 在东北方向上,继续航行1.5小时后到达B 处此时测得岛礁P 在北偏东30方向,同时测得岛礁P 正东方向上的避风港M 在北偏东60方向为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75海里/小时的速度继续航行 小时即可到达 (结果保留根号)三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤)19.如图,直线35y x =-与反比例函数1k y x-=的图象相交于(2,)A m ,(,6)B n -两点,连接,OA OB .(1)求k 和n 的值;(2)求AOB ∆的面积.20.如图,点M 是正方形A B C D 边CD 上一点,连接AM ,作DE AM ⊥于点E ,BF AM ⊥手点F ,连接BE .(1)求证:AE BF =;(2已知2AF =,四边形ABED 的面积为24,求EBF ∠的正弦值.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n 户家庭的月用水量,绘制了下面不完整的统计图.(1)求n 并补全条形统计图;(2)求这n 户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为35m 和39m 的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为35m 和39m 恰好各有一户家庭的概率. 22.如图,BD 为ABC ∆外接圆O 的直径,且BAE C ∠=∠.(1)求证:AE 与O 相切于点A ;(2)若,AE BC BC =∥AC =求AD 的长.23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24.如图1,在ABCD 中,DH AB ⊥于点,H CD 的垂直平分线交CD 于点E ,交AB 于点F ,6,4AB DH ==,:1:5BF FA =.(1)如图2,作FG AD ⊥于点G ,交DH 于点M ,将DGM ∆沿DC 方向平移,得到CG M ''∆,连接M B '.①求四边形BHMM '的面积;②直线EF 上有一动点N ,求DNM ∆周长的最小值.(2)如图3.延长CB 交EF 于点Q .过点Q 作OK AB ∥,过CD 边上的动点P 作PK EF ∥,并与QK 交于点K ,将PKQ ∆沿直线PQ 翻折,使点K 的对应点K '恰好落在直线AB 上,求线段CP 的长.25.如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点(1,0)B ,与y 轴交于点3(0,)4C ,抛物线1y 的顶点为,G GM x ⊥轴于点M .将抛物线1y 平移后得到顶点为B 且对称轴为直l 的抛物线2y .(1)求抛物线2y 的解析式;(2)如图2,在直线l 上是否存在点T ,使TAC ∆是等腰三角形?若存在,请求出所有点T 的坐标:若不存在,请说明理由;(3)点P 为抛物线1y 上一动点,过点P 作y 轴的平行线交抛物线2y 于点Q 点Q 关于直线l 的对称点为R 若以,,P Q R 为顶点的三角形与AMC ∆全等,求直线PR 的解析式.2018年潍坊市初中学业水平考试 数学试题(A)参考答案及评分标准一、选择题(本大题共12小题,每小题选对得3分,共36分)BCDCC DDBBD AD二、填空题(本大题共6小题,每小题填对得3分,共18分)13.(2)(1)x x +-14.2 15.7 16.(3-17.201923π18.185+ 三、解答题(本大题共7小题,共66分)19.解:(1)点(,6)B n -在直线35y x =-上,635n ∴-=-,解得13n =-,1(,6)3B ∴--,反比例函数1k y x -=的图象也经过点1(,6)3B --, 11 6()23k ∴-=-⨯-=,解得3k =;(2)设直线35y x =-分别与x 轴,y 轴相交于点C ,点D , 当0y =时,即5350,3x x -==,53OC ∴=, 当0x =时,3055y =⨯-=-,5OD ∴=, 点(2,)A m 在直线35y x =-上,3251m ∴=⨯-=.即(2,1)A ,AOB AOC COD BOD S S S S ∆∆∆∆∴=++155135(155)23336=⨯⨯+⨯+⨯=. 20.(1)证明:90BAF DAE ∠+∠=,90ADE DAE ∠+∠=,BAF ADE ∴∠=∠,在Rt DEA ∆和Rt AFB ∆中,,ADE BAF DEA AFB ∠=∠∠=∠,DA AB =,Rt Rt DEA AFB ∴∆≅∆AE BF ∴=.(2)解:设AE x =,则BF x =,四边形ABED 的面积为24,2DE AF ==,21122422x x ∴+⨯=, 解得126,8x x ==-(舍),624EF AE AF ∴=-=-=,在Rt EFB ∆中,BE ==,sin EF EBFBE ∴∠==13=.21.解:(1)由题意知:(32)25%20n =+÷=, 补全的条形图为:(2)这20户家庭的月平均用水量为:42526784931026.9520⨯+⨯+⨯+⨯+⨯+⨯=3()米,月用水量低于36.95m 的家庭共有11户,所以1142023120⨯=, 估计小莹所住小区月用水量低于36.95m 的家庭户数为231.(3)月用水量为35m 的有两户家庭,分别用,a b 来表示;月用水量为39m 的有三户家庭,分别用,,c d e 来表示,画树状图如下:由树状图可以看出,有10种等可能的情况,其中满足条件的共有6种情况, 所以63105P ==, 22.证明:(1)连接OA 交BC 于点F ,则OA OD =,D DAO ∴∠=∠,,D C C DAO ∠=∠∴∠=∠,BAE C ∠=∠,BAE DAO ∴∠=∠,BD 是O 的直径,90DAB ∴∠= ,即90DAO OAB ∠+∠=,90BAE OAB ∴∠+∠=,即90OAE ∠=,AE OA ∴⊥,AE ∴与O 相切于点A .(2),AE BC AE OA ⊥∥,OA BC ∴⊥ 1,2AB AC FB BC ∴==, AB AC ∴=,2BC AC ==BF AB ∴==,在Rt ABF ∆中,1AF ==,在Rt OFB ∆中,222()OB BF OB AF =+-,4OB ∴=, 8BD ∴=,∴在Rt ABD ∆中,AD ====23.解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩ 解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米. (2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有(12)m -台.根据题意,得43004180W m =⨯+⨯(12)4808640m m -=+,因为430415(12)108043004180(12)12960m m m m ⨯+⨯-≥⎧⎨⨯+⨯-≤⎩,解得69m m ≥⎧⎨≤⎩,又因为12m m ≠-,解得6m ≠,所以79m ≤≤. 所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台; 案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台; 方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800>,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元. 24.解:(1)①在ABCD 中,6AB = ,直线EF 垂直平分CD ,3DE FH ∴==,又:1:5BF FA =,1,5BF FA ∴==,2AH ∴=,Rt Rt AHD MHF ∆∆,HM AH FH DH ∴=, 234HM ∴=, 32HM ∴=, 根据平移的性质,6MM CD '== ,连结BM ,13=622BHMM S '⨯⨯四边形1315+4=222⨯⨯. ②连结CM 交直线EF 于点N ,连结DN ,直线EF 垂直平分CD ,CN DN ∴=, 35,22MH DM =∴=, 在Rt COM ∆中,222MC DC DM =+, 22256()2MC ∴=+, 即132MC =, MN DN MN CN MC +=+=DNM ∴∆周长的最小值为9.(2)BF CE ∥,143QF BF QF CE ∴==+, 2QF ∴=,6PK PK '∴==过点K '作E F EF ''∥,分别交CD 于点E ,交QK 于点F ',当点P 在线段CE 上时,在Rt PK E ''∆中,222PE PK E K ''''=-,PE '∴=,Rt ~Rt PE K K F Q ''''∆∆,PE E K K F QF '''∴='''4QF =',QF '∴=, PE PE EE ''∴=-=-=CP ∴=, 同理可得,当点P 在线段ED 上时,CP '= 综上可得,CP25.解:(1)由题意知,34102c a c ⎧=⎪⎪⎨⎪-+=⎪⎩, 解得14a =-, 所以,抛物线y 的解析式为21113424y x x =--+; 因为抛物线1y 平移后得到抛物线2y ,且顶点为(1,0)B ,所以抛物线2y 的解析式为221(1)4y x =--, 即2111424y x x =-+-;(2)抛物线2y 的对称轴l 为1x =,设(1,)T t ,已知3(3,0),(0,)4A C -, 过点T 作TE y ⊥轴于E ,则 22221TC TE CE =+=+223325()4216t t t -=-+, 222TA TB AB =+=222(13)16t t ++=+,215316AC =, 当TC AC =时, 即232515321616t t -+=,解得134t +=或234t -=; 当TC AC =时,得21531616t +=,无解; 当TC AC =时,得2232516216t t t -+=+,解得3778t =-; 综上可知,在抛物线2y 的对称轴l 上存在点T 使TAC ∆是等腰三角形,此时T 点的坐标为13(1,4T +,23(1,)4T -,377(1,)8T -. (3)设2113(,)424P m m m --+, 则2111(,)424Q m m m -+-, 因为,Q R 关于1x =对称,所以2111(2,)424R m m m --+-, 情况一:当点P 在直线的左侧时,2113424PQ m m =--+-2111()1424m m m -+-=-, 22QR m =-,又因为以,,P Q R 构成的三角形与AMG ∆全等,当PQ GM =且QR AM =时,0m =, 可求得3(0,)4P ,即点P 与点C 重合 所以1(2,)4R -,设PR 的解析式y kx b =+, 则有3,412.4b k b ⎧=⎪⎪⎨⎪+=-⎪⎩ 解得12k =-, 即PR 的解析式为1324y x =-+, 当PQ AM =且QR GM =时,无解,情况二:当点P 在直线l 右侧时,2111424P Q m m ''=--+-2111()1424m m m -+-=-, 22Q R m ''=-, 同理可得51(2,),(0,)44P R ''-- P R ''的解析式为1124y x =--,综上所述, PR 的解析式为1324y x =-+或1124y x =--.。

(完整word)山东潍坊市2018中考数学试题及答案解析,推荐文档

(完整word)山东潍坊市2018中考数学试题及答案解析,推荐文档

2018年山东省潍坊市中考数学试卷、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正 确的,请把正确的选项选出来,每小题选对得 3分,选错、不选或选出的答案超过一个均记0分) 1. (3 分)|1 —近 |=()A. 1 -心 B .1 C. 1+.〕 D .- 1 -::A . a 2?a 3=a 6 B. a 3* a=a 3C. a -( b - a ) =2a- b D .(—丄 a ) 5. (3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个 直角顶点重合,两条斜边平行,则/1的度数是()6 (3分)如图,木工师傅在板材边角处作直角时,往往使用 三弧法”其作法 是:(1) 作线段AB,分别以A ,B 为圆心,以AB 长为半径作弧,两弧的交点为 C ; (2) 以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ;2.(3分)生物学家发现了某种花粉的直径约为 0.0000036 毫米,数据 0.0000036 用科学记数法表示正确的是( ) A .3.6X 10-5B. 0.36X 10-5C. 3.6X 10-6D . 0.36X 10「63. (3分)如图所示的几何体的左视图是(C .B.4. (3分)下列计算正确的是() 3_a 3C. 75°D. 82.5(3)连接 BD, BC.F 列说法不正确的是()A .Z CBD=30 B. S A BDC ^I AB 24C.点 C 是厶 ABD 的外心D . sin 2A+cogD=l7. (3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为 21.5,则众数与方差分别为()年龄 19 20 21 22 24 26 人数11xy21A . 22, 3B . 22, 4 C. 21, 3 D . 21, 48. (3分)在平面直角坐标系中,点 P (m , n )是线段AB 上一点,以原点O 为位似中心把△ AOB 放大到原来的两倍,则点P 的对应点的坐标为()9. (3分)已知二次函数y=-(x — h ) 2(h 为常数),当自变量x 的值满足2<x <5时,与其对应的函数值y 的最大值为-1,则h 的值为() A . 3 或 6 B . 1 或 6 C. 1 或 3 D . 4 或 610. (3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图, 在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段 OP 的长度以及从Ox 转动到OP 的 角度(规定逆时针方向转动角度为正)来确定,即 P (3, 60°或P (3,— 300° 或P (3, 420°)等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的 是()A . (2m ,2n ) C (二m ,二n ) B. (2m ,2n )或(—2m ,— 2n )D. (丄m ,二 n )或(-A . Q (3, 240° B. Q (3,- 120° C. Q (3, 600°D. Q (3, - 500°11. (3分)已知关于x 的一元二次方程 mx 2-( m+2) x 丄=0有两个不相等的实 4数根xi ,X2.若1 + I =4m ,贝U m 的值是()S 1 K 2 A . 2B.- 1C. 2 或-1 D .不存在12. (3分)如图,菱形ABCD 的边长是4厘米,/ B=60°,动点P 以1厘米秒的 速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点 出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了 t 秒,记△ BPQ 的面积为S 厘米2,下面图象中能表示S 与t 之间的函数关系的是二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13. ____________________________________ (3 分)因式分解:(x+2) x -x -2= ______________________________________ . 14. __________________ (3分)当m= 时,解分式方程 会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下 ,把显示结果输 入如图的程序中,则输出的结果是 _______ .1A .B. C. D.16. (3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方17. _________________________________________________________ (3分)如图,点A i的坐标为(2, 0),过点A i作x轴的垂线交直线I: y=;x 于点B i,以原点O 为圆心,OBi的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线I 于点B2,以原点O为圆心,以0庄的长为半径画弧交x 轴正半轴于点A3 ;….按此作法进行下去,贝U的长是______________________________________________ .18. (3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向•为了(结果保留根号)在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继三、解答题(本大题共7小题,共66分。

九年级数学学业水平模拟考试试题(扫描版) 试题

九年级数学学业水平模拟考试试题(扫描版) 试题

山东省寿光市2018届九年级数学学业水平模拟考试试题2018初中学业水平模拟考试数学试题 选择题 (每题3分,共36分)1-6 DBDCAC7-12 CDDBAB填空题(每题3分,共18分)13.-2 y (x -1)( x -3)14.3015.78 16.(1,0)17.+ , 1(不全对不得分) 18.(24001,0)解答题(7分+7分+10分+10分+10分+10分+12分=66分) 19.(满分7分)解:(1)该市景点共接待游客数为:15÷30%=50(万人).………………1分 (2)扇形统计图中E 景点所对应的圆心角的度数是:650 ×360°=43.2°,…………2分 补全条形统计图如下:,………………………………………………4分(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,…………………………………………………………………………6分 ∴P(同时选择去同一个景点)=39 =13 .………………………………7分 20.(满分7分)解:(1)过点B 作BH ⊥CA 交CA 的延长线于点H (如图),∵∠EBC =60°, ∴∠CBA =30°,∵∠FAD =30°, ∴∠BAC =120°,∴∠BCA =180°-∠BAC -∠CBA =30°,∴BH =BC ×sin ∠BCA =150×12 =75(海里).…………………………4分答:B 点到直线CA 的距离是75海里; (2)∵BD =75 2 海里,BH =75海里, ∴DH =BD2-BH2 =75(海里),∵∠BAH =180°-∠BAC =60°, 在Rt △ABH 中,tan ∠BAH =BHAH = 3 , ∴AH =25 3 ,∴AD =DH -AH =75-25 3 ≈31.7(海里).……………………7分答:执法船从A 到D 航行了31.7海里.21.(满分10分)(1)解:设装运乙、丙水果的车分别为x 辆,y 辆,得解得:答:装运乙种水果的车有2辆、丙种水果的汽车有6辆……………………3分 (2)解:设装运乙、丙水果的车分别为a 辆,b 辆,得:解得东北FDA BCE⎩⎨⎧=+=+22328y x y x ⎩⎨⎧==62y x 2042372m a b m a b ++=⎧⎨++=⎩⎩⎨⎧-=-=mb m a 23212答:装运乙种水果的汽车是(m ﹣12)辆,丙种水果的汽车是(32﹣2m )辆………6分 (3)解:设总利润为w 千元, w =5×4m +7×2(m ﹣12)+4×3(32﹣2m )=10m +216.∵ ⎪⎩⎪⎨⎧≥-≥-≥12321121m m m∴13≤m ≤15.5, ∵m 为正整数, ∴m =13,14,15,在w =10m +216中,w 随x 的增大而增大, ∴当m =15时,W 最大=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时利润最大,最大利润为366千元 …………………………………………………………………10分 22.(满分10分)解:(1)根据题意可得:w =(x -80)•y=(x -80)(-2x +320) =-2x 2+480x -25600,w 与x 的函数关系式为:w =-2x 2+4800x -25600……………………3分(2)根据题意可得:w =-2x 2+4800x -25600=-2(x -120)2+3200,∵-2<0,80≤x ≤160∴当x =120时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元……………6分(3)当w =4000时,可得方程-2(x -120)2+3200=2400.解得 x 1=100,x 2=140.……………9分x 2=100时,y =120 x 2=140时,y =40∵120>40,∴x 2=140不符合题意,应舍去.(也可以用函数增减性判断:y 随x 的增大而减小,所以当x=100时,y=120.卖的快) 答:该商店想要获得2400元的销售利润,且要卖的快,销售单价定为100元.…10分23.(满分10分)解:(1)连结OB ,则OA =OB .如图1,∵OP ⊥AB , ∴AC =BC ,∴OP 是AB 的垂直平分线, ∴PA =PB .在△PAO 和△PBO 中,∵PA =PB ,PO =PO ,OA =OB , ∴△PAO ≌△PBO (SSS ), ∴∠PBO =∠PAO .∵PB 为⊙O 的切线,B 为切点, ∴∠PBO =90°,∴∠PAO =90°,即PA ⊥OA ,∴PA 是⊙O 的切线;……………………………………………………5分 (证明方法有多种,合理规范即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省潍坊市寿光市中考数学模拟试卷(四)一、选择题(本题共12小题,每小题给出四个选项中,只有有个是不正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列计算不正确的是()A.﹣+=﹣2 B.(﹣)2=C.|﹣3|=3 D.2×sin245°=12.(3分)下列汽车标志中既是轴对称又是中心对称图形的是()A.B.C.D.3.(3分)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间4.(3分)肥皂泡的厚度为0.00000007m,这个数用科学记数法表示为()A.0.7×10﹣7 m B.0.7×l0﹣8m C.7×10﹣7m D.7×10﹣8m5.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π6.(3分)如图所示的工件是由两个长方体构成的组合体,则它的俯视图是()A.B.C.D.7.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.38.(3分)若实数满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.9.(3分)一次函数y=ax+的图象过一、二、四象限,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=图象上的三点,则下列结论正确的是()A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x110.(3分)如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.11.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a(x+1)(x﹣3)=0;④2c﹣3b=0.其中正确的个数为()A.4 B.3 C.2 D.112.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)13.(3分)分解因式:﹣x3y+2x2y2﹣xy3=14.(3分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在CD上,且DE=DO,则∠EOC=.15.(3分)如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1•k2的值为.16.(3分)已知是二元一次方程组的解,则m+3n的立方根17.(3分)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.18.(3分)如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为.三、解答题(本大题共7小题,共66分)19.(8分)某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其寒假期间的课外阅读量进行统计分析,绘制成如图所示不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数及课外阅读量的众数;(2)求扇形统计图汇总的a、b值;将条形统计图补充完整;(3)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?(4)如果5本以上的学生中恰有2名男生,4名女生,先要选取两名学生做读书介绍,请你用列表法或树状图的方法,求恰好选取1男1女的概率.20.(8分)如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449)21.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.22.(8分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55、为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间,少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留,问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC 于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.24.(12分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?25.(12分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2018年山东省潍坊市寿光市中考数学模拟试卷(四)参考答案与试题解析一、选择题(本题共12小题,每小题给出四个选项中,只有有个是不正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列计算不正确的是()A.﹣+=﹣2 B.(﹣)2=C.|﹣3|=3 D.2×sin245°=1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣1,符合题意;B、原式=,不符合题意;C、原式=3,不符合题意;D、原式=2×=1,不符合题意,故选:A.2.(3分)下列汽车标志中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是中心对称图形,也是轴对称图形.故选:D.3.(3分)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间【分析】先估算出的范围,再求出1﹣的范围,即可得出选项.【解答】解:∵3<<4,∴﹣4<﹣<﹣3,∴﹣3<1﹣<﹣2,即1﹣在﹣2到﹣3之间,故选:C.4.(3分)肥皂泡的厚度为0.00000007m,这个数用科学记数法表示为()A.0.7×10﹣7 m B.0.7×l0﹣8m C.7×10﹣7m D.7×10﹣8m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000007=7×10﹣8.故选:D.5.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.故选:D.6.(3分)如图所示的工件是由两个长方体构成的组合体,则它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看到的图形是:,故选:B.7.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选:C.8.(3分)若实数满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.9.(3分)一次函数y=ax+的图象过一、二、四象限,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=图象上的三点,则下列结论正确的是()A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1【分析】根据一次函数y=ax+的图象过一、二、四象限推知a<0,所以a﹣1<0,则反比例函数y=的图象位于第二、四象限,然后将点A、B、C在反比例函数图象上大致标出,根据图象直接判定x1>x3>x2【解答】解:∵一次函数y=ax+的图象过一、二、四象限,∴a<0,∴a﹣1<0,∴反比例函数y=图象位于第二、四象限,其大致图象如图所示:,根据图象知,x1>x3>x2;故选:B.10.(3分)如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.【分析】连接OE、OB,延长EO交AB于F,设⊙O的半径为R,则OF=2﹣R,再由勾股定理即可求出R的值.【解答】解:连接OE、OB,延长EO交AB于F;∴E是切点,∴OE⊥CD,∴OF⊥AB,OE=OB;设OB=R,则OF=2﹣R,在Rt△OBF中,BF=AB=×2=1,OB=R,OF=2﹣R,∴R2=(2﹣R)2+12,解得R=.故选:D.11.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a(x+1)(x﹣3)=0;④2c﹣3b=0.其中正确的个数为()A.4 B.3 C.2 D.1【分析】根据函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断①;根据对称轴的位置判断②;根据二次函数一一元二次方程的关系判断③;根据二次函数图象与x轴的交点判断④.【解答】解:①图象开口向下,∴a<0,与y轴交于正半轴,∴c>0,对称轴在y轴右侧,∴b>0,则abc<0,故①错误;②对称轴在y轴右侧,∴x==1,则﹣=1,解得,2a+b=0,故②正确;③∵抛物线与x轴交于(﹣1,0)和(3,0),∴a(x+1)(x﹣3)=0,故③正确;④∵抛物线与x轴交于(﹣1,0)和(3,0),∴a﹣b+c=0,9a+3b+c=0,两式相加得,10a+2b+2c=0,又b=﹣2a,∴2c﹣3b=0,故④正确.故选:B.12.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,故④错误,综上,正确的个数为3个.故选:C.二、填空题(每小题3分,共18分)13.(3分)分解因式:﹣x3y+2x2y2﹣xy3=﹣xy(x﹣y)2【分析】首先提取公因式﹣xy,再利用完全平方公式分解因式得出答案.【解答】解:﹣x3y+2x2y2﹣xy3=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2.故答案为:﹣xy(x﹣y)2.14.(3分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在CD上,且DE=DO,则∠EOC=25°.【分析】根据∠BAD和菱形邻角和为180°的性质可以求∠ADC的值,根据菱形对角线即角平分线的性质可以求得∠CDO的值,又由DE=DO可得∠DEO=∠DOE,根据∠DOE和菱形对角线互相垂直的性质可以求得∠EOC的大小.【解答】解:∵∠BAD=80°,菱形邻角和为180°∴∠ADC=100°,∵菱形对角线即角平分线∴∠CDO=50°,∵DE=DO∴∠DEO=∠DOE=(180°﹣50°)÷2=65°,∵菱形对角线互相垂直∴∠DOC=90°,∴∠EOC=90°﹣65°=25°.故答案为25°.15.(3分)如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1•k2的值为﹣2.【分析】设一次函数的解析式为y=k1x+3,反比例函数解析式y=,都经过B 点,得等式k1x+3x﹣k2=0,得到再由AB=BC,点C的横坐标是点B横坐标的2倍,不防设x2=2x1,列出x1,x2关系等式,据此可以求出k1•k2的值.【解答】解:k1•k2=﹣2,是定值.理由如下:∵一次函数y=k1x+b的图象过点A(0,3),∴设一次函数的解析式为y=k1x+3,反比例函数解析式y=,∴k1x+3=,整理得k1x2+3x﹣k2=0,∴x1+x2=﹣,x1x2=﹣,∵AB=BC,∴点C的横坐标是点B横坐标的2倍,不防设x2=2x1,∴x1+x2=3x1=﹣,x1x2=2x12=﹣,∴﹣=(﹣)2,整理得,k1k2=﹣2,是定值.故答案为﹣2.16.(3分)已知是二元一次方程组的解,则m+3n的立方根为2.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.17.(3分)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为(,0),点A n(()n﹣1,0).【分析】由直线解析式求出B1点的坐标,解直角三角形得出∠B1OA1=30°,由此可发现,OA2=OB1=OA1÷cos30°=OA1,同理OA3=OA2=()2OA1,OA4=OA3=()3OA1,…,由此得出一般规律.【解答】解:由A1坐标为(1,0),可知OA1=1,把x=1代入直线y=x中,得y=,即A1B1=,tan∠B1OA1==,所以,∠B1OA1=30°,则OA2=OB1=OA1÷cos30°=OA1=,OA3=OA2=()2,OA4=OA3=()3,故点A4的坐标为(,0),点A n(()n﹣1,0).故答案为:(,0),(()n﹣1,0).18.(3分)如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为π.【分析】仔细观察顶点O经过的路线可得,顶点O经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA’=AB的弧长第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°所以,O点经过的路线总长S=π+π+π=π.故答案为π.三、解答题(本大题共7小题,共66分)19.(8分)某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其寒假期间的课外阅读量进行统计分析,绘制成如图所示不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数及课外阅读量的众数;(2)求扇形统计图汇总的a、b值;将条形统计图补充完整;(3)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?(4)如果5本以上的学生中恰有2名男生,4名女生,先要选取两名学生做读书介绍,请你用列表法或树状图的方法,求恰好选取1男1女的概率.【分析】(1)根据读2本的人数与所占的百分比列式计算即可求出被调查的学生人数;根据扇形统计图,读3本的人数最多,再根据众数的定义即可得解;(2)根据各部分的百分比等于各部分的人数除以总人数的方计算求出a的值,再求出读4本的人数,然后根据百分比的求解方法列式计算即可求出b的值,据此补全统计图即可;(3)根据完成假期作业的人数所占的百分比,乘以总人数600,计算即可.(4)画树状图列出所有等可能结果,从中找到符合要求的结果数,根据概率公式计算可得.【解答】解:(1)10÷20%=50人,根据扇形统计图,读3本的人数所占的百分比最大,所以课外阅读量的众数是3;(2)∵a%=×100%=32%,∴a=32,读4本书的人数为50﹣4﹣10﹣16﹣6=50﹣36=14,∵b%=×100%=28%,∴b=28;补全图形如图:(3)此估计该校600名学生中,完成假期作业的有600×=432人;(4)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中恰好选取1男1女的结果数为16,所以恰好选取1男1女的概率为=.20.(8分)如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449)【分析】在Rt△ABC中求出AC,在Rt△ADC中求出CD,求出BD的长度后可得出剩余空地的长度,继而可作出判断.【解答】解:∵在Rt△ABC中,sin45°=,∴AC=AB•sin45°=m,∵在Rt△ABC中,∠C=90°,∠ABC=45°,∴BC=AC=m,∵在Rt△ADC中,tan30°=,∴CD==m,∴BD=CD﹣BC=(﹣)≈2.5875≈2.59m,∵6﹣2.59=3.41(米)>3米,∴这样改造是可行的.21.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(,t),求出直线AD的解析式为y=﹣x+6,把G(,t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(,t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或22.(8分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55、为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间,少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留,问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.【分析】(1)根据等式“速度=路程/时间”求出步行平均速度,注意步和米的转化.由速度和时间分别算出两段路程;(2)①分段求出时间,再累加起来算出到家的时间;②根据函数图象和题中给出的信息算出B点坐标及列出CD段函数解析式.【解答】解:(1)小刚每分钟走1200÷10=120(步),每步走100÷150=(米),所以小刚上学的步行速度是120×=80(米/分)小刚家和少年宫之间的路程是80×10=800(米)少年宫和学校之间的路程是80×(25﹣10)=1200(米)(2)①(分钟),所以小刚到家的时间是下午5:00②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100)点C的坐标是(50,1100),点D的坐标是(60,0)设线段CD所在直线的函数解析式是s=kt+b(k≠0)将点C,D的坐标代入,得解得所以线段CD所在直线的函数解析式是s=﹣110t+660023.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC 于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.【分析】(1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;(2)CF=1,DF=,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC 为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.【解答】(1)证明:连接AD、OD,如图所示.∵AB为直径,∴∠ADB=90°,∴AD⊥BC,∵AC=AB,∴点D为线段BC的中点.∵点O为AB的中点,∴OD为△BAC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线.(2)解:在Rt△CFD中,CF=1,DF=,∴tan∠C==,CD=2,∴∠C=60°,∵AC=AB,∴△ABC为等边三角形,∴AB=4.∵OD∥AC,∴∠DOG=∠BAC=60°,∴DG=OD•tan∠DOG=2,∴S阴影=S△ODG﹣S扇形OBD=DG•OD﹣πOB2=2﹣π.24.(12分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx 求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.25.(12分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.【分析】(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S=BC×h表示,若要它的面积最大,需要使h取△MBC最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.【解答】解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又∵OC⊥AB,∴△OAC∽△OCB,∴∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;∴该外接圆的圆心为AB的中点,且坐标为(1.5,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣4x﹣4﹣2b=0,且△=0;∴16﹣4×(﹣4﹣2b)=0,即b=﹣4;∴直线l:y=x﹣4.=BC×h,当h最大(即点M到直线BC的距离最远)时,△ABC的面由于S△MBC积最大所以点M即直线l和抛物线的唯一交点,有:,解得:,即M(2,﹣3).。

相关文档
最新文档