工程材料复习总结

合集下载

工程材料学知识点总结

工程材料学知识点总结

工程材料学知识点总结一、材料的基本性质1. 密度:材料的密度是指单位体积内的质量。

密度越大,材料的质量就越大,密度越小,材料的质量就越小。

2. 弹性模量:材料的弹性模量是指材料在受力时产生弹性变形的能力。

弹性模量越大,材料的刚度就越大,抗压抗弯能力就越强。

3. 强度:材料的强度是指材料在受力时承受拉伸、压缩、剪切等力的能力。

强度越大,材料的抗拉强度、抗压强度、抗剪强度就越大。

4. 韧性:材料的韧性是指材料在受外力作用下能够吸收能量的能力。

韧性越大,材料的抗冲击性就越好。

5. 硬度:材料的硬度是指材料的抗划伤、抗刮伤能力。

硬度越大,材料就越难被划伤或刮伤。

6. 热膨胀系数:材料的热膨胀系数是指材料在温度变化时产生体积膨胀或收缩的程度。

热膨胀系数越大,材料在温度变化时的变形就越大。

二、金属材料1. 铁素体和奥氏体:铁素体是铁碳合金中的烤饼组织,具有较低的强度和硬度;奥氏体是铁碳合金中的馒头组织,具有较高的强度和硬度。

2. 钢的分类:钢可以按照成分分为碳钢、合金钢和特种钢;按照用途分为结构钢、工具钢和耐磨钢。

3. 铸铁的分类:铸铁可以按照形态分为白口铸铁和灰口铸铁;按照成分分为白口铸铁、灰口铸铁和球墨铸铁。

4. 不锈钢的特性:不锈钢具有耐腐蚀、耐高温、抗氧化等特性,适用于化工、食品加工、医疗器械等领域。

5. 铝合金的应用:铝合金具有轻质、耐腐蚀、导热性好的特性,广泛应用于航空航天、汽车、建筑等领域。

三、非金属材料1. 水泥混凝土:水泥混凝土应用广泛,常见于建筑、桥梁、水利工程等领域。

它具有强度高、耐久性好、施工方便等特点。

2. 砖瓦:砖瓦是建筑材料的重要组成部分,主要用于墙体、地面、屋面的施工。

它们具有隔热、隔音、防潮等特性。

3. 玻璃:玻璃具有透明、坚硬、抗腐蚀等特点,广泛应用于建筑、家具、日用品等领域。

4. 塑料:塑料具有轻质、耐腐蚀、可塑性好的特性,广泛应用于包装、日用品、建筑材料等领域。

5. 纤维素材料:纤维素材料主要包括木材、纸张、纺织品等,具有可再生、易加工、环保等特点。

工程材料知识点总结

工程材料知识点总结

1、晶格:描述原子在晶体中排列规律的三维空间几何点阵。

2、晶胞:晶格中能够代表晶格特征的最小几何单元致密度=原子所占的总体积÷晶胞的体积属于面心立方晶格的常用金属:γ铁、铝、铜、镍等。

属于体心立方晶格的常用金属:α铬、钨、钼、钒、α铁、β钛、铌等。

属于密排六方晶格的常用金属:镁、锌、铍、α钛、镉等。

晶面:晶体中由物质质点所组成的平面。

晶向:由物质质点所决定的直线。

每一组平行的晶面和晶向都可用一组数字来标定其位向。

这组数字分别称为晶面指数和晶向指数。

晶面指数的确定:晶面与三个坐标轴截距的倒数取最小整数,用圆括号表示。

如(111)、(112)。

晶向指数的确定:通过坐标原点直线上某一点的坐标,用方括号表示。

如[111]晶面族:晶面指数中各个数字相同但是符号不同或排列顺序不同的所有晶面。

这些晶面上的原子排列规律相同,具有相同的原子密度和性质。

如{110}=(110)+(101)+(011)+(101)+(110)+(011)晶向族:原子排列密度完全相同的晶向。

如<111>=[111]+[111]+[111]+[111]由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。

因此在同一单晶体内不同晶面和晶向上的性能也是不同的。

这种现象称为晶体的各向异性。

晶粒——金属晶体中,晶格位向基本一致,并有边界与邻区分开的区域。

亚晶粒——晶粒内部晶格位向差小于2°、3°的更小的晶块。

实际金属晶粒大小除取决于金属种类外,主要取决于结晶条件和热处理工艺。

晶界——晶粒之间原子排列不规则的区域。

亚晶界——亚晶粒间的过渡区。

晶体缺陷:是指晶体中原子排列不规则的区域。

1、点缺陷2、线缺陷3、面缺陷点缺陷类型主要有三种:(1)间隙原子(2)晶格空位(3)置换原子间隙原子:在晶格的间隙处出现多余原子的晶体缺陷。

☆晶格空位:在晶格的结点处出现缺少原子的晶体缺陷线缺陷·位错:指晶体中若干列原子发生有规律的错排现象。

工程材料复习要点

工程材料复习要点

工程材料复习要点工程材料是工程学科中很重要的一门学科,主要研究材料的性能、制备、应用以及与工程的相互关系。

以下是工程材料复习的一些要点:1.材料分类:根据其组成和性质的不同,材料可以分为金属材料、陶瓷材料、聚合物材料和复合材料等。

2.金属材料:金属材料具有良好的导电性、导热性、机械性能和可塑性,常用的金属材料有钢、铝、铜等。

3.陶瓷材料:陶瓷材料具有较高的硬度、抗磨损能力和耐高温性能,常用的陶瓷材料有瓷器、玻璃等。

4.聚合物材料:聚合物材料具有良好的电绝缘性、耐腐蚀性,常用的聚合物材料有塑料、橡胶等。

5.复合材料:复合材料由两种或两种以上不同种类的材料组合而成,具有优异的性能,常用的复合材料有碳纤维复合材料、玻璃钢等。

6.材料的微观结构:材料的性能与其微观结构的组成和排列方式有关,常见的微观结构有晶体结构和非晶体结构。

7.材料的物理性能:材料的物理性能包括密度、热性能、电性能、光学性能等。

8.材料的力学性能:材料的力学性能包括强度、硬度、塑性、韧性等。

9.材料的热处理:热处理是为了改变材料的性能,常见的热处理方法有退火、淬火、回火等。

10.材料的腐蚀和防护:材料在特定环境中会发生腐蚀,需要采取防护措施,常见的防护方式有电镀、涂层等。

11.材料的应力和应变:材料在外力作用下会发生应力和应变,应力和应变的关系可以通过杨氏模量和泊松比来描述。

12.材料的断裂:材料在受到超过其强度的应力时会发生断裂,常见的断裂方式有拉伸断裂和抗拉断裂等。

13.材料的疲劳:材料在反复加载下会出现疲劳失效,需要进行疲劳寿命的评估和预测。

14.材料的可持续性:材料的可持续性是指材料的制备和使用过程对环境的影响以及资源的可持续利用等方面的问题。

以上是工程材料复习的一些重点要点,希望对你的复习有所帮助。

如果需要更详细的内容,你可以参考相关的教材和专业资料。

工程材料总结

工程材料总结

工程材料总结
工程材料是指用于建筑和工程施工中的各种材料,包括结构材料、装饰材料和辅助材
料等。

下面是几种常见的工程材料和其特点:
1. 混凝土:混凝土是一种由水泥、砂、石料和水根据一定比例配制而成的人工石材。

混凝土具有耐久性好、强度高、施工方便等特点,广泛应用于各种建筑和工程项目中。

2. 钢材:钢材是一种高强度、耐腐蚀、可塑性好的材料,广泛用于建筑结构中的梁、柱、桁架等部位。

钢材的优点包括强度高、重量轻、可回收利用等。

3. 砖瓦:砖瓦是由黏土经过成型、干燥和烧制而成的建筑材料。

砖瓦具有耐久性好、
保温性能好、吸湿性强等特点,广泛用于房屋的墙体和地面铺装等。

4. 玻璃:玻璃是一种透明、坚硬、易加工的材料,广泛用于建筑中的窗户、门、隔断
等部位。

玻璃具有透光性好、隔热性能差、易碎等特点。

5. 石材:石材是一种天然的建筑材料,包括大理石、花岗岩、石灰岩等。

石材具有坚硬、耐久、抗风化等特点,广泛应用于外墙和地面铺装等。

6. 沥青:沥青是一种由石油提炼而成的黏稠物质,广泛用于道路铺设和防水工程中。

沥青具有抗水性好、粘附性强、施工方便等特点。

7. 塑料:塑料是一种由合成树脂加工而成的材料,具有耐腐蚀、重量轻、施工方便等
特点。

塑料广泛应用于建筑和工程中的管道系统、绝缘材料等。

工程材料的选择应根据具体工程的要求和条件来确定,包括材料的强度、耐久性、成
本等因素。

同时,在使用工程材料时要注意材料的施工工艺和环境要求,以确保工程
质量和安全。

材料工程基础知识点总结

材料工程基础知识点总结

材料工程基础知识点总结
第一章、材料的性能及应用
1、常用的力学性能,如:σS,σb,σe,σP 等所表示的含义,弹性模量E及其主要影响因素、塑性指标的意义。

不同材料所适用的硬度(HB、HR、HV)测量方法。

第二章、原子结构和结合键
1、结合键的类型(主要为金属键、离子键、共价键)及其主要特点,它们对材料性能的主要影响
第三章、晶体结构
1、晶面与晶向的标注和识别
2、BCC、FCC、HCP三种常见金属晶体结构中所含的原子数、它们的致密度。

3、相、固溶体、中间相、固溶强化的概念、固溶体的分类、中间相的分类以及固溶体和中间相的主要区别。

第四章、晶体缺陷
1、晶体缺陷的分类、位错的含义和分类及特点。

位错(及点缺陷)密度的变化对材料性能(主要是力学性能)的影响。

2、晶界原子排列?的特点及其分类,晶界的特性;相界的分类、润湿
第五章、固体材料中原子的扩散
1、Fick第一定律的含义、非稳态扩散的误差函数解的应用计算
2、扩散的机制及影响扩散的主要因素以及在工业上的应用(如:工业渗碳为何在奥氏体状态下进行)
第六章、相平衡与相图原理
1、Gibbs相律含义,二元匀晶、共晶相图分析,杠杆定律的应用计算;相图与合金使用性(强度、硬度)和工艺性(铸造)的关系
2、铁碳相图(简化版)及其标注上面主要的成分点和温度及相;不同含碳量的合金从高温到室温下组织的变化,利用杠杆定律计算组织或相组成物的含量(主要针对C%<2.11%的合金,即钢)第七章、材料的凝固
1、液态合金结构的特点,过冷度及其与冷却速率的关系?。

工程材料知识点总结

工程材料知识点总结

工程材料复习总结第一部分项目一:工程材料1.金属材料一般是指具有金属特性的物质。

2.金属材料通常分为钢铁材料、非铁金属材料、粉末冶金材料。

3.钢铁材料是指以铁、碳为主要元素组成的铁碳合金,分为工业用钢、工程铸铁。

4.非合金钢(碳素钢),通常分为碳素结构钢、优质碳素结构钢、碳素工具钢、铸钢。

5.工业用钢是指碳的质量分数在%11.2以下并含有其他元素的铁碳合金;工程铸铁是指碳的质量分数在%.2以上并含有其他元素的铁碳合金。

116.钢材生产过程:轧制→锻造→拉拔→挤压7.钢材分类:板材、型材和管材。

项目二:工程材料性能1.力学性能:材料在力的作用下表现出来的特性。

2.力学指标:强度、塑性、硬度、韧性、疲劳强度。

实验:拉伸试验、硬度试验、冲击试验、疲劳试验。

3.变形:材料受到外力作用时,机器零件和部件在宏观上将表现出形状和尺寸的变化。

4.⎩⎨⎧变形外力之后被保留下来的产生不能自行恢复卸除外力继续加大,材料将塑性变形,变形随之消失外力不大时,去除外力弹性变形变形5. 荷载(负荷、负载):材料所受的力。

⎪⎩⎪⎨⎧化向随时间发生周期性变大小、方向或大小和方变动载荷突然增加的载荷冲击载荷载荷大小不变或变动很慢的静载荷分类6.强度:材料在外力作用下抵抗塑性变形和断裂的能力。

7.变形的五种基本形式:拉伸与压缩、剪切与挤压、扭转、弯曲。

8.力—伸长曲线()1Oe 弹性变形阶段:发生弹性变形()2eeL 微量塑性变形阶段:弹性变形(大部分)+塑性变形(小部分)()3'eLeL 屈服阶段:屈服现象(水平线段或锯齿形线段)()4M eL '均匀变形阶段:材料发生大量塑性变形()5mz 缩颈阶段:缩颈现象,在z 点发生断裂图2-1 力—伸长曲线9.强度指标强度指标是判定材料强度大小的量化数据,通常用应力表示。

应力是指试验过程中的力除以试样原始横截面积的商,即试样单位横截面积上所受到的力,用符号R 表示,单位为MPa (兆帕)。

工程材料知识点总结

工程材料知识点总结

工程材料知识点总结一、工程材料的分类工程材料是指在建筑、道路、桥梁等工程中使用的各种材料。

工程材料按用途和性能可分为结构材料、装饰材料、防护材料。

结构材料主要用于承受力学作用,包括混凝土、钢材、木材等;装饰材料主要用于美观和环境保护,包括瓷砖、玻璃、涂料等;防护材料主要用于防水、隔热、防腐等,包括防水材料、隔热材料、防腐材料等。

二、混凝土及混凝土材料1. 混凝土的组成:混凝土是由水泥、骨料、粉煤灰、矿渣粉等混合配制而成的人工石料。

水泥是混凝土的胶凝材料,骨料是混凝土的填充材料,粉煤灰和矿渣粉是混凝土的掺合材料。

2. 混凝土的性能指标:混凝土的性能指标包括抗压强度、抗折强度、抗渗性、耐久性等。

三、钢材及钢材结构1. 钢材的种类:钢材主要包括普通碳素结构钢、低合金高强度结构钢、不锈钢、耐候钢等。

2. 钢材的性能:钢材具有优良的强度、韧性和可塑性,广泛应用于建筑结构中。

3. 钢结构的设计:钢结构的设计主要包括受力分析、结构优化、节点设计等。

四、木材及木结构1. 木材的种类:木材主要包括软木、硬木、板材等,不同种类的木材具有不同的物理力学性能。

2. 木结构的特点:木结构轻质、强度高、易加工、热工性能好,在建筑中得到广泛应用。

3. 木结构的设计:木结构的设计主要包括结构设计、连接设计、防腐设计等。

五、砖瓦及建筑装饰材料1. 砖瓦的种类:砖瓦主要包括粘土砖、红砖、瓷砖、玻璃砖等,根据用途和性能不同分为墙砖、地砖、护墙板等。

2. 建筑装饰材料的种类:建筑装饰材料主要包括大理石、花岗岩、涂料、墙纸等,用于装饰、改善建筑室内外环境。

六、防护材料1. 防水材料:防水材料主要包括沥青防水卷材、聚合物防水涂料等,用于建筑屋面、地下室、卫生间等防水工程。

2. 隔热材料:隔热材料主要包括聚苯板、岩棉、玻璃棉等,用于建筑外墙、屋面、地面隔热保温。

3. 防腐材料:防腐材料主要包括防腐漆、防腐涂料等,用于建筑结构、设备等的防腐蚀。

工程材料笔记整理重点

工程材料笔记整理重点

工程材料复习笔记整理(重点中的重点)名词解释:1.强度:抵抗塑性变形和破坏屈服强度:抵抗产生塑性变形抗拉强度:抵抗产生断裂前硬度:抵抗局部塑性变形塑性:产生塑性变形而不破坏的能力韧度:材料抵抗冲击载荷作用而不致破坏的极限能力称为冲击韧度疲劳强度:材料在规定的重复次数或交变应力作用下不致发生断裂的能力2.再结晶:升高温度,形成新的晶粒,使原来被拉大的晶粒转变为等轴晶粒,完全消除冷变形强化,力学性能恢复到塑性变形前的状态3.冷变形与热变形:再结晶温度以上进行的塑性变形为热变形,以下的为冷变形4.巴氏合金:铅基轴承合金5.下贝氏体,强度、韧度高,有最佳的综合机械性能,理想的强韧化组织,生产中常采用等温淬火获得下贝氏体组组织6. 一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。

二次渗碳体:指从奥氏体中析出的渗碳体三次渗碳体:从中析出的称为三次渗碳体共晶渗碳体:莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:珠光体中的渗碳体称为共析渗碳体7.纤维组织:热变形使铸态金属的偏析、分布在晶界上的夹杂物和第二相逐渐沿变形方向延展拉长、拉细而形成锻造流线;难以用热处理来消除8.变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

9.索氏体:在650〜600℃温度范围内形成层片较细的珠光体10.屈氏体:在600〜550℃温度范围内形成片层极细的珠光体。

11.马氏体:碳在a-Fe中的过饱和固溶体。

12.过冷度:实际结晶温度与理论结晶温度之差称为过冷度13.玻璃钢:玻璃纤维增强塑料称为玻璃钢。

玻璃钢具有成本低,工艺简单;强度低,绝缘等特点,它可制造壳体、管道、容器等14.加工硬化:随变形量的增加,金属的强度大为提高,塑性却有较大降低产生原因:位错密度升高为了继续变形,退火可消除加工硬化15.调质:调质处理后钢获得回火索氏体组织,其性能特点是具有较高的综合力学性能16.铁素体:(a或F )碳原子溶于a-Fe形成的间隙固溶体性能:固溶强化不明显,强度,硬度低,塑性韧性高17.奥氏体:(Y或A)碳原子溶于丫-Fe形成的间隙固溶体性能:高塑性,是理想的锻造组织18.渗碳体:(Fe3C )由12个铁原子和4个碳原子组成的具有复杂晶体结构间隙化合物性能:高硬度、高脆性、低强度19.珠光体:(P )铁素体和渗碳体的混合物称为珠光体,它具有较高的综合力学性能的特点20.莱氏体Ld 或Ld':组织:Ld : Fe3C ( Fe3C+Fe3CH) + Y Ld‘: Fe3C ( Fe3C+Fe3c口)+ P 机械化合物,性能:高硬度、高脆性。

材料工程基础复习要点及知识点整理

材料工程基础复习要点及知识点整理

材料工程基础复习要点及知识点整理材料工程是一门研究材料的性能与结构、制备与应用的学科。

在进行材料工程的复习时,可以从以下几个方面进行重点整理:1.材料的分类与性质:了解材料的基本分类,包括金属材料、无机非金属材料、有机材料和复合材料等。

每种材料都有其独特的性质和特点,例如金属具有高强度、导电性和塑性等特点;无机非金属材料具有高温性能和耐腐蚀性能等;有机材料具有低密度和良好的绝缘性能等。

2.材料的结构:掌握材料的晶体结构和非晶结构。

晶体结构可分为立方晶系、六方晶系、正交晶系等,不同结构对材料的性能有着重要影响。

非晶结构指材料的原子排列无规则,常见的非晶结构包括玻璃和塑料等。

3.材料的制备与工艺:了解常见的材料制备方法,包括熔融法、溶液法、气相法和固相法等。

掌握不同制备方法对材料性能的影响,以及材料的烧结、热处理、涂覆等工艺方法。

4.材料的物理性能:熟悉材料的物理性能,包括力学性能、热学性能、电学性能和磁学性能等。

了解不同材料的硬度、强度、韧性、导热性、导电性和磁性等方面的性能。

5.材料的化学性能:了解材料与环境的相互作用,包括腐蚀、腐蚀疲劳、氧化、烧蚀等现象。

熟悉不同材料的耐蚀性,以及如何通过表面涂层和防护措施来改善材料的化学性能。

6.材料的性能测试与评价:了解材料性能的测试方法和评价标准,例如拉伸试验、硬度测试、电阻测试等。

熟悉不同测试方法的原理和应用,并能够分析测试结果。

7.材料的应用:掌握材料在各个领域的应用,例如航空航天、汽车工业、电子技术和生物医药等。

了解材料的选择原则和设计原则,以及如何根据具体应用要求选择合适的材料。

除了上述基本要点和知识点,还可以参考相关教材和课堂笔记,结合习题和案例进行练习和思考,加深对材料工程的理解和应用。

同时,关注国内外的最新研究进展和材料工程的新技术,及时了解和学习材料工程领域的前沿知识。

不断提升自己的综合素质,掌握科学研究和工程实践中的材料选择、设计和改性等技术能力。

材料工程基础复习要点及知识点整理(全)

材料工程基础复习要点及知识点整理(全)

材料工程基础复习要点第一章粉体工程基础粉体:粉末质粒与质粒之间的间隙所构成的集合。

*粉末:最大线尺寸介于0.1~500μm的质粒。

*粒度与粒径:表征粉体质粒空间尺度的物理量。

粉体颗粒的粒度及粒径的表征方法:1.网目值表示——(目数越大粒径越小)直接表征,如果粉末颗粒系统的粒径相等时可用单一粒度表示。

2.投影径——用显微镜测试,对于非球形颗粒测量其投影图的投影径。

①法莱特(Feret)径D F:与颗粒投影相切的两条平行线之间的距离②马丁(Martin)径D M:在一定方向上将颗粒投影面积分为两等份的直径③克伦贝恩(Krumbein)径D K:在一定方向上颗粒投影的最大尺度④投影面积相当径D H:与颗粒投影面积相等的圆的直径⑤投影周长相当径D C:与颗粒投影周长相等的圆的直径3.轴径——被测颗粒外接立方体的长L、宽B、高T。

①二轴径长L与宽B②三轴径长L与宽B及高T4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表示方法。

(容易处理)*粉体的工艺特性:流动性、填充性、压缩性和成形性。

*粉体的基本物理特性:1.粉体的能量——具备较同质的块状固体材料高得多的能量。

2.分体颗粒间的作用力——高表面能,固相颗粒之间容易聚集(分子间引力、颗粒间异性静电引力、固相侨联力、附着水分的毛细管力、磁性力、颗粒表面不平滑引起的机械咬合力)。

3.粉体颗粒的团聚。

第二章粉体加工与处理粉体制备方法:1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法。

①脆性大的材料:捣磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法②塑性较高材料:切磨法、涡旋磨法、气流喷射粉碎法③超细粉与纳米粉:气流喷射粉碎法、高能球磨法2.物理化学法①物理法(雾化法、气化或蒸发-冷凝法):只发生物理变化,不发生化学成分的变化,适于各类材料粉末的制备②物理-化学法:用于制备的金属粉末纯度高,粉末的粒度较细③还原法:可直接利用矿物或利用冶金生产的废料及其他廉价物料作原料,制的粉末的成本低④电解法:几乎可制备所有金属粉末、合金粉末,纯度高3.化学合成法——指由离子、原子、分子通过化学反应成核和长大、聚集来获得微细颗粒的方法①固相法:以固态物质为原始原料(热分解反应法、化合反应法、水热法等)②液相沉淀法:最常见的方法沉淀法(直接沉淀法、均匀沉淀法、共沉淀法)、溶胶-凝胶法影响颗粒粉碎的因素:易碎性、碰撞速度(碎料例子碰撞速度、粉碎介质碰撞速度)粉体的分级:把粉体材料按某种粒度大小或不同种类颗粒进行分选的操作。

工程材料重点知识汇总.

工程材料重点知识汇总.

强度:材料在外力作用下抵抗塑性变形和断裂的能力。

硬度:衡量金属材料软硬程度的指标。

材料在交变应力作用下,在一处或几处产生局部永久性积累损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程称为疲劳。

当应力低于某值时,应力循环到无数次也不会发生疲劳断裂,此应力值称为材料的疲劳极限。

塑性:断裂前材料发生不可逆永久变形的能力。

3种最典型、最常见的金属晶体结构:体心立方晶格、面心立方晶格和密排六方晶格。

晶体中不可避免的存在着许多不完整的部位,这些晶格不完整的部位称为晶格缺陷。

晶体缺陷分为点缺陷、线缺陷、面缺陷。

合金:两种或者两种以上的金属元素或者金属元素与非金属元素组成的,具有金属特性的新物质。

相:合金中结构相同、成分和性能均一并以晶界相互分开的组成部分。

合金中的相分为固溶体和金属化合物两类。

组织:在金属学中,组织是指用金相观察方法观察到的材料内部微观形貌的图像,又称为金相组织。

固溶体是指合金在固态下,组元间能相互溶解而形成的均匀相。

一般把与合金晶体结构相同的元素称为溶剂,其他元素称为溶质。

固溶体又分为置换固溶体和间隙固溶体。

固溶强化:形成固溶体时,随溶质含量增加,固溶体的强度、硬度增加,塑性、韧性下降,这种由于溶质原子的固溶引起的强化效应称为固溶强化。

固溶强化的原因是溶质原子(相当于间隙原子或置换原子)使溶剂晶格发生畸变及对位错的钉扎作用(溶质原子在位错附近偏聚),阻碍了位错的运动。

问:1g 铁有多少个原子,在室温和1000℃各有多少个晶胞。

解:铁的摩尔质量:56g/mol ,1mol=6.02×1023,1g 铁有6.02×1023/56=1.075×1022个原子,室温下铁是体心立方晶格(α-Fe ),每个晶胞有两个原子,所以室温下有5.375×1021个晶胞,1000℃时铁是面心立方晶格(γ-Fe ),每个晶胞有四个原子,所以1000℃时有1.075×1022/4=2.6875×1021个原子。

工程材料学知识点总结

工程材料学知识点总结

工程材料学知识点总结材料的基本性质:密度:指单位体积内的质量,密度越大,材料的质量就越大。

弹性模量:反映材料在受力时产生弹性变形的能力,弹性模量越大,材料的刚度越大。

强度:指材料在受力时承受拉伸、压缩、剪切等力的能力,强度越大,材料的抗拉、抗压、抗剪能力就越强。

韧性:表示材料在受外力作用下能够吸收能量的能力,韧性好的材料抗冲击性更佳。

硬度:指材料的抗划伤、抗刮伤能力,硬度大的材料更不容易被损伤。

热膨胀系数:反映材料在温度变化时产生体积膨胀或收缩的程度。

钢的分类与特性:分类:钢按成分可分为碳钢、合金钢和特种钢;按用途可分为结构钢、工具钢和耐磨钢。

特性:以铁素体为例,它是碳在α-Fe中的间隙固溶体,硬度低而塑性高,具有铁磁性。

金属的塑性变形与加工硬化:滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿特定晶面和晶向发生相对滑移。

加工硬化:随塑性变形增加,金属晶格的位错密度增加,导致金属的强度和硬度提高,而塑性和韧性降低。

晶体缺陷与强化:晶体缺陷:包括点缺陷、线缺陷和面缺陷。

强化机制:室温下,金属的强度随晶体缺陷的增多而迅速下降,但当缺陷增加到一定数量后,金属强度又会随缺陷的增加而增大。

结晶与过冷:结晶过程:金属结晶是晶核不断形成和长大的过程。

过冷现象:实际结晶温度低于理论结晶温度,过冷度与冷却速度有关。

这些只是工程材料学的一部分知识点,实际上该领域涉及的内容远不止这些。

在学习工程材料学时,需要深入理解各种材料的性质、制备工艺、应用领域以及相关的工程实践。

同时,也需要关注新材料的发展趋势和研究动态,以便更好地应对工程实践中的挑战和需求。

工程材料知识点总结(全)

工程材料知识点总结(全)

第二章第三章第四章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。

缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。

适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。

2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。

HRC用于测量中等硬度材料,如调质钢、淬火钢等。

洛氏硬度的优点:操作简便,压痕小,适用范围广。

缺点:测量结果分散度大。

3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。

4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。

分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。

5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。

6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。

7、应力强度因子:描述裂纹尖端附近应力场强度的指标。

第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。

为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。

晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。

由任意两个原子之间连线所指的方向称为晶向。

组成晶格的最小几何组成单元称为晶胞。

晶胞的棱边长度、棱边夹角称为晶格常数。

①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。

属于体心立方晶格的金属有铁、钼、铬等。

②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。

③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。

工程材料复习总结超棒

工程材料复习总结超棒

1、力学性能⑴刚度:材料抵抗弹性变形的能力——指标为弹性模量:E=σ/ε⑵强度:材料抵抗变形和破坏的能力。

指标:抗拉强度σ b—材料断裂前承受的最大应力。

屈服强度σ s—材料产生微量塑性变形时的应力。

条件屈服强度σ 0.2—残余塑变为0.2%时的应力。

疲劳强度σ -1—无数次交变应力作用下不发生破坏的最大应力。

⑶塑性:材料断裂前承受最大塑性变形的能力。

指标为δ、ψ。

⑷硬度:材料抵抗局部塑性变形的能力。

指标为HB、HRC。

⑸冲击韧性:材料抵抗冲击破坏的能力。

指标为αk.材料的使用温度应在冷脆转变温度以上。

⑹断裂韧性:材料抵抗内部裂纹扩展的能力。

指标为K1C。

2、化学性能⑴耐蚀性:材料在介质中抵抗腐蚀的能力。

⑵抗氧化性:材料在高温下抵抗氧化作用的能力。

3、耐磨性:材料抵抗磨损的能力。

㈡工艺性能1、铸造性能:液态金属的流动性、填充性、收缩率、偏析倾向。

2、锻造性能:成型性与变形抗力。

3、切削性能:对刀具的磨损、断屑能力及导热性。

4、焊接性能:产生焊接缺陷的倾向。

5、热处理性能:淬透性、耐回火性、二次硬化、回火脆性二、晶体结构㈠纯金属的晶体结构1、理想金属⑴晶体:原子呈规则排列的固体。

晶格:表示原子排列规律的空间格架。

晶胞:晶格中代表原子排列规律的最小几何单元.⑶立方晶系的晶面指数和晶向指数①晶面指数:晶面三坐标截距值倒数取整加()②晶向指数:晶向上任一点坐标值取整加[ ]立方晶系常见的晶面和晶向⑷晶面族与晶向族指数不同但原子排列完全相同的晶面或晶向。

⑸密排面和密排方向——同滑移面与滑移方向在立方晶系中,指数相同的晶面与晶向相互垂直。

2、实际金属⑴多晶体结构:由多晶粒组成的晶体结构。

晶粒:组成金属的方位不同、外形不规则的小晶体.晶界:晶粒之间的交界面。

⑵晶体缺陷—晶格不完整的部位①点缺陷空位:晶格中的空结点。

间隙原子:挤进晶格间隙中的原子。

置换原子:取代原来原子位置的外来原子。

②线缺陷——位错晶格中一部分晶体相对另一部分晶体沿某一晶面发生局部滑移, 滑移面上滑移区与未滑移区的③面缺陷——晶界和亚晶界亚晶粒:组成晶粒的尺寸很小、位向差也很小的小晶块。

工程材料总复习知识点.doc

工程材料总复习知识点.doc

第二章材料的性能一、1)弹性和刚度弹性:为不产生永久变形的最大应力,成为弹性极限刚度:在弹性极限范围内,应力与应变成正比,即:比例常数E称为弹性模量,它是衡量材料抵抗弹性变形能力的指标,亦称为刚度。

2)强度屈服点与屈服强度是材料开始产生明显塑性变形时的最低应力值,即:3 )疲劳强度:表示材料抵抗交变应力的能力, 即:脚标r为应力比,即:对于对称循环交变应力,r= —1时,这种情况下材料的疲劳代号为4)裂纹扩展时的临界状态所对应的应力场强度因子,称为材料的断裂韧度•用Kc表示二、材料的高温性能:1、蠕变的定义:是指在长时间的恒温下、恒应力作用下,即使应力小于该温度下的屈服点, 材料也会缓慢的产生型性变形的现象,而导致的材料断裂的现象称为蠕变断裂2、端变变形与断裂机理:材料的蠕变变形主要通过位错滑移、原子扩散及晶界滑动等机理进行的;而蠕变断裂是山于在晶界上形成裂纹并逐渐扩展而引起的,大多为沿晶断裂。

3、应力松弛:指承受弹性变形的零件,在工作中总变形量应保持不变,但随时间的延长而发生蠕变,从而导致工作应力自行逐渐衰减的现象4、蠕变温度:指金属在一定的温度下、一定的时间内产生一定变形量所能承受的最大应力5、持久强度:指金属在一定温度下、一定时间内所能承受最大断裂应力第三章:金属结构与结晶三种常见金属晶格:体心立方晶格,面心立方晶格、密排六方晶格晶格致密度和配位数晶面和晶向分析1、晶面指数2、晶向指数3、晶面族和晶向族4、晶面和晶向的原子密度第四章:二元合金相图(计算组织组成物的相对含量及相的相对量)1、二元合金相图的建立2、二元合金的基本相图1)匀晶相图(枝晶偏析:由于固溶体一般都以树枝状方式结晶,先结晶的树枝晶轴含高熔点的组元较多;后结晶的晶枝间含低熔点组元较多,故把晶内偏析又称为枝晶偏析)2)共晶相图3)包晶相图4)共晶相图3、铁碳合金铁碳合金基本相1)铁素体2)奥氏体3)渗碳体4)石墨第五章金属塑性变形与再结晶1、单晶体塑性变形形式1)滑移2)挛生2、加工硬化:随着变形程度的增加,金属的强度、硬度上升而塑性、韧性下降,即为冷变形强化,也称加工硬化。

工程材料期末复习知识点总结

工程材料期末复习知识点总结

名词解释1、材料:指人的思想意识之外的所有物质2、设计材料的感性:指材料作用于人的认知体验。

是人们通过感觉器官对材料做出的综合印象。

3、触觉质感:人对质感认识的主要体验和感觉,属于初级感觉或粗觉,靠人手及皮肤接触外界物体(产品),直接刺激接触部位游离神经末梢带给人的感觉。

4、肌理:是由天然材料自身的组织结构或人工材料的人为组织设计而形成的,在视觉或触觉上可感受到的一种表面材质效果。

5、金属塑性加工:是指在外力作用下,使金属坯料产生预期的塑性变形,从而获得具有一定形状、尺寸和机械性能的毛坯或零件的加工方法。

6、自由锻:是将近坯料放在上下地铁之间,以冲击力或压力使其变形的加工方法。

7、鎏金:是把金和水银合成的金汞剂,涂在铜器表层,加热使水银蒸发,使金牢固地附在铜器表面不脱落的技术。

8、黑色金属:乃工业上对铁,铬,锰的统称。

(三者都不是黑色而是银白色,因为铁的表面常常生锈,看上去就是黑色的,人们称之为黑色金属,) 9、生铁:生铁是含碳量大于2%的铁碳合金,工业生铁含碳量一般在2.5%--4%10、工业纯铁:含碳量低于0.04%的铁碳合金,含铁约99.9%,而杂质含量约为0.1%。

11、铸铁:是含碳量大于 2.11%的铁碳合金,常分为白口铸铁、灰口铸铁、麻口铸铁、可锻铸铁、球墨铸铁等几类。

12、铁合金:是一种或一种以上的金属或非金属元素与铁组成的合金。

13、碳钢:是指碳含量低于2%,并有少量硅、锰以及磷、硫等杂质的铁碳合金。

可分为低碳钢(C<=0.25%)、中碳钢(0.25%-0.6%)和高碳钢(>0.6)。

高碳钢属于工具钢。

14、有色金属:除了铁、锰、铬以外,其他的金属,都算是有色金属。

15、有色金属合金:以一种有色金属作为基体,加入一种或几种其它金属或非金属元素,所组成的既具有基体金属通性、又具有某些特定性的物质。

16、青铜Q:原指铜锡合金,现在除黄铜和白铜(铜镍合金)以外的铜合金均称为青铜。

工程材料知识点总结

工程材料知识点总结

工程材料知识点总结工程材料是指在建筑、土木、机械、电气等工程中使用的各种材料。

它们具有不同的物理和化学性质,用途也各不相同。

下面将从常见的几大类材料中总结一些重要的知识点。

金属材料:金属材料是工程领域最常见的一类材料,其特点是热导率高、导电性好、强度高、塑性好等。

常见的金属材料有钢材、铁材、铝材、铜材等。

其中,钢材是最常用的金属材料之一,其具有高强度、耐腐蚀、可塑性好等特点,适用于各种工程结构。

水泥和混凝土:水泥是一种重要的建筑材料,是混凝土的主要成分。

它由石灰石经过煅烧后,经过研磨形成的粉状物质。

水泥的主要特点是早期强度低,但逐渐增加,可以通过控制水泥的配比来调整混凝土的强度和硬化时间。

混凝土是一种由水泥、砂子、骨料、水等按一定比例混合而成的人工石材,具有很高的耐用性和承重能力,广泛应用于建筑和土木工程中。

玻璃材料:玻璃是一种无定形的非晶态材料,主要由二氧化硅和其他氧化物混合熔融后制成。

它具有透明度高、硬度高、耐腐蚀等特点,广泛应用于窗户、器皿、光学仪器等领域。

在工程中,玻璃材料还可以作为复合材料的增强材料使用,提高材料的机械性能和耐用性。

塑料材料:塑料是一种由合成树脂经加工成型而成的材料,其特点是轻质、耐酸碱、绝缘性好等。

塑料材料具有很高的适用性,应用范围广泛,例如在电子工程、汽车制造等领域中使用到的塑料配件。

复合材料:复合材料是由两种或两种以上成分组成的材料,通过各成分之间的相互作用形成新的性能。

常见的复合材料有纤维复合材料、金属基复合材料、陶瓷基复合材料等。

纤维复合材料是其中最常见的一种,由纤维和树脂复合而成。

它具有比金属轻、强度高、耐腐蚀等特点,广泛应用于航空、汽车、体育用品等领域。

陶瓷材料:陶瓷材料是一类由无机非金属材料经高温烧结而成的材料,具有很高的硬度、耐磨性和耐荷载性。

由于其良好的绝缘性能,陶瓷材料在电气工程领域有很广泛的应用,例如电子器件、绝缘体等。

木材:木材是自然生长的一种有机材料,具有很好的机械和物理性能,也是一种可再生资源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、性能 ● ㈠ 使用性能 ● 1、力学性能 ● ⑴ 刚度:材料抵抗弹性变形的能力。

● 指标为弹性模量:E=σ/ε ● ⑵ 强度:材料抵抗变形和破坏的能力。

指标: ● 抗拉强度σ b —材料断裂前承受的最大应力。

● 屈服强度σ s —材料产生微量塑性变形时的应力。

● 条件屈服强度σ 0.2—残余塑变为0.2%时的应力。

● 疲劳强度σ -1—无数次交变应力作用下不发生破坏的最大应力。

● ⑶ 塑性:材料断裂前承受最大塑性变形的能力。

指标为δ、ψ。

● ⑷ 硬度:材料抵抗局部塑性变形的能力。

指标为HB 、HRC 。

● ⑸ 冲击韧性:材料抵抗冲击破坏的能力。

指标为αk .材料的使用温度应在冷脆转变温度以上。

● ⑹ 断裂韧性:材料抵抗内部裂纹扩展的能力。

指标为K 1C 。

● 2、化学性能 ● ⑴ 耐蚀性:材料在介质中抵抗腐蚀的能力。

● ⑵ 抗氧化性:材料在高温下抵抗氧化作用的能力。

● 3、耐磨性:材料抵抗磨损的能力。

● ㈡ 工艺性能 ● 1、铸造性能:液态金属的流动性、填充性、收缩率、偏析倾向。

● 2、锻造性能:成型性与变形抗力。

● 3、切削性能:对刀具的磨损、断屑能力及导热性。

● 4、焊接性能:产生焊接缺陷的倾向。

● 5、热处理性能:淬透性、耐回火性、二次硬化、回火脆性。

二、晶体结构 ● ㈠ 纯金属的晶体结构 ● 1、理想金属 ● ⑴ 晶体:原子呈规则排列的固体。

● 晶格:表示原子排列规律的空间格架。

● 晶胞:晶格中代表原子排列规律的最小几何单元. ⑵ 三种常见纯金属的晶体结构 ● ⑶ 立方晶系的晶面指数和晶向指数 ● ①晶面指数:晶面三坐标截距值倒数取整加( ) ● ②晶向指数:晶向上任一点坐标值取整加 [ ] ● 立方晶系常见的晶面和晶向 ● ⑷ 晶面族与晶向族 ● 指数不同但原子排列完全相同的 晶面或晶向。

● ⑸密排面和密排方向 ——同滑移面与滑移方向 ● 在立方晶系中,指数相同的晶面与晶向相互垂直。

2、实际金属 ● ⑴ 多晶体结构:由多晶粒组成的晶体结构。

● 晶粒:组成金属的方位不同、外形不规则的小晶体. ● 晶界:晶粒之间的交界面。

● ⑵ 晶体缺陷—晶格不完整的部位 ● ① 点缺陷 ● 空位:晶格中的空结点。

● 间隙原子:挤进晶格间隙中的原子。

● 置换原子:取代原来原子位置的外来原子。

● ② 线缺陷——位错 ● 晶格中一部分晶体相对另一部分晶体沿某一晶面发生局部滑移, 滑移面上滑移区与未滑移区的交接线. ● ③ 面缺陷——晶界和亚晶界 ● 亚晶粒:组成晶粒的尺寸很小、位向差也很小的小晶块。

亚晶界:亚晶粒之间的交界面。

● ④ 晶界的特点: ● 原子排列不规则;阻碍位错运动;熔点低;耐蚀性低;产生内吸附;是相变的优先形核部位。

● 金属的晶粒越细,晶界总面积越大,位错障碍越多;需要协调的具有不同位向的晶粒越多,使得金属塑性变形的抗力越高。

● 晶粒越细,单位体积内同时参与变形的晶粒数目越多,变形越均匀,在断裂前将发生较大塑性变形。

强度和塑性同时增加,在断裂前消耗的功大,因而韧性也好. ● 细晶强化:通过细化晶粒来提高强度、硬度和塑性、韧性的方法。

● ㈡ 合金的晶体结构 ● 合金:由两种或两种以上元素组成的具有金属特性的物质。

如碳钢、合金钢、铸铁、有色合金。

● 相:金属或合金中凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分。

● 1、固溶体:与组成元素之一的晶体结构相同的固相. ● ⑴ 置换固溶体:溶质原子占据溶剂晶格结点位置形成的固溶体。

多为金属元素之间形成的固溶体。

● ⑵ 间隙固溶体:溶质原子处于溶剂晶格间隙所形成的固溶体。

● 为过渡族金属元素与小原子半径非金属元素组成。

● 铁素体:碳在α-Fe 中的固溶体。

● 奥氏体:碳在γ-Fe 中的固溶体。

● 马氏体:碳在α-Fe 中的过饱和固溶体。

● 固溶强化:随溶质含量增加,固溶体的强度、硬度提高,塑性、韧性下降的现象。

● 马氏体的硬度主要取决于其含碳量,并随含碳量增加而提高。

● ⑵ 金属化合物:与组成元素晶体结构均不相同的固相. ● ① 正常价化合物 如Mg 2Si ● ② 电子化合物 如Cu 3Sn ● ③ 间隙化合物:由过度族元素与C 、N 、H 、B 等小原子半径的非金属元素组成。

● 分为结构简单的间隙相和复杂结构的间隙化合物。

● 强碳化物形成元素:Ti 、Nb 、V 如TiC 、VC ● 中碳化物形成元素:W 、Mo 、Cr 如Cr 23C 6 ● 弱碳化物形成元素:Mn 、Fe 如Fe 3C ● ⑶ 性能比较:强度:固溶体>纯金属 ● 硬度:化合物>固溶体>纯金属 ● 塑性:化合物<固溶体<纯金属 ● ⑷ 金属化合物形态对性能的影响 ● ① 基体、晶界网状:强韧性低 ● ② 晶内片状:强硬度提高,塑韧性降低 ● ③ 颗粒状: ● 弥散强化:第二相颗粒越细,数量越多,分布越均匀,合金的强度、硬度越高,塑韧性略有下降的现象。

● ⑸ 固溶体与化合物的区别:①结构;②性能;③表达方式 ∙ 合金元素在钢中的作用 ● 1、强化铁素体; ● 2、形成化合物——第二相强化 ● 3、扩大(C,Mn,Ni,Co )或缩小(Cr,Si,W,Mo )A 相区 ● 4、使S 、E 点左移 ● 5、影响A 化 ● 6、溶于A(除Co 外), 使C 曲线右移, V k 减小, 淬透性提高. ● 7、除Co 、Al 外,使Ms 、M f 点下降。

● 8、提高耐回火性(淬火钢在回火过程中抵抗硬度下降的能力) ● 9、产生二次硬化(含高W 、Mo 、Cr 、V 钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A ’转变为M 回,使硬度不仅不下降,反而升高的现象) ● 10、防止第二类回火脆性:W 、Mo ● (回火脆性 :淬火钢在某些温度范围内回火时,出现的冲击韧性下降的现象。

) 三、组织 ● ㈠ 纯金属的组织● 1、结晶:金属由液态转变为晶体的过程 ● ⑴ 结晶的条件——过冷:在理论结晶温度以下发生结晶的现象。

● 过冷度:理论结晶温度与实际结晶温度的差。

● ⑵ 结晶的基本过程——晶核形成与晶核长大 ● 形核——自发形核与非自发形核 ● 长大——均匀长大与树枝状长大 ● ⑶ 结晶晶粒度控制方法:①增加过冷度;②变质处理;③机械振动、搅拌 ● 2、纯金属中的固态转变 ● 同素异构转变:物质在固态下晶体结构随温度而发生变化的现象。

● 固态转变的特点:①形核部位特殊;②过冷倾向大;③伴随着体积变化。

● 3、再结晶 ● ⑴再结晶条件:冷塑性变形 ● ⑵加热时的变化:回复→再结晶→晶粒长大 ● 再结晶:冷变形组织在加热时重新彻底改组的过程.再结晶不是相变过程。

● ⑶ 再结晶温度:发生再结晶的最低温度。

● 纯金属的最低再结晶温度T 再≈0.4T 熔 ● ⑷ 影响再结晶晶粒度的因素:①加热温度和时间; ● ②预先变形程度 ● 4、塑性变形: ● 金属塑性变形方式:滑移和孪生 ● ⑴ 滑移的特点: ● ①只能在切应力的作用下发生; ● ②沿密排面和密排方向发生; ● ③位移量是原子间距整数倍; ● ④伴随着转动 ● 滑移的机理:通过位错运动实现。

● 孪生特点: ● ①孪生使晶格位向发生改变;②所需切应力比滑移大得多,变形速度极快,接近于声速;③孪生时相邻原子面的相对位移量小于一个原子间距。

● ⑵ 冷热加工:以再结晶温度划分 ● ① 冷加工组织:晶粒被拉长压扁、亚结构细化、 ● 织构:变形量大时,大部分晶粒的某一位向与外力趋于一致的现象。

● 加工硬化: 随冷塑性变形量增加,金属的强度、硬度提高,塑性、韧性下降的现象。

● 冷加工使内应力增加,耐蚀性下降,ρ提高。

● ② 热加工:形成纤维组织、带状组织 ● 纤维组织使热加工金属产生各向异性,加工零件时应考虑使流线方向与拉应力方向一致。

㈡ 合金的组织 ● 1、相图匀晶L →α 共晶L →α+β 共析 γ→α+β 包晶L+α→β ● 杠杆定律:只适用于两相区。

● 枝晶偏析:在一个枝晶范围内或一个晶粒范围内成分不均匀的现象。

● 2、合金中的固态相变 ● ⑴ 固溶体转变:A →F ● ⑵ 共析转变:A →P(F+Fe 3C) ● ⑶ 二次析出:A →Fe 3C Ⅱ ● ⑷ 奥氏体化 ● ⑸ 过冷奥氏体转变 ● ⑹ 固溶处理+时效: ● 固溶处理是指将合金加热到固溶线以上,保温并淬火后获得过饱和的单相固溶体组织的处理。

● 时效是指将过饱和的固溶体加热到固溶线以下某温度保温,以析出弥散强化相的热处理。

3、铁碳合金相图 ● 点:符号、成分、温度 典型合金的结晶过程(以共析钢为例) 杠杆定律的应用 四、钢的热处理 ● ㈠ 热处理原理 ● 1、加热时的转变 ● 奥氏体化步骤:A 形核;A 晶核长大;残余渗碳体溶解;A 成分均匀化。

● 奥氏体化后的晶粒度: ● 初始晶粒度:奥氏体化刚结束时的晶粒度。

● 实际晶粒度:给定温度下奥氏体的晶粒度。

● 本质晶粒度:加热时奥氏体晶粒的长大倾向。

2、冷却时的转变 ● ⑴ 等温转变曲线及产物 ⑵ 用C 曲线定性说明连续冷却转变产物 ● 根据与C 曲线交点位置判断转变产物 ●3、回火时的转变 ● 碳钢:马氏体的分解 ;残余奥氏体分解 ;ε-碳化物转变为Fe 3C ;Fe 3C 聚集长大和铁素体多边形化 。

● W18Cr4V 钢: 560℃三次回火。

析出W 、Mo 、V 的碳化物,产生二次硬化。

回火冷却时,A ’转变为M 。

每次回火加热都使前一次的淬火马氏体回火。

● 强化钢铁材料最经济有效的热处理工艺是淬火+回火,它包含了四种基本强化方法。

㈡ 热处理工艺 热处理工艺(续) 五、工业用金属材料 ● ㈠ 工业用钢 工业用钢(续) 工业用钢(续) ㈡ 铸铁 ● 石墨化:铸铁中的碳原子析出形成石墨的过程。

㈢ 有色金属及其合金。

相关文档
最新文档