河北省南堡开发区实验中学2018-2019学年八年级上学期第一次月考数学试题(图片版,答案不全)
2018年八年级上数学第一次月考试题 冀教版
2018-2019学年八年级第一次月考数学试卷一、选择题(每小题2分,共32分) 1. 下列图形中有稳定性的是( )A. 四边形B. 三角形C. 五边形D. 平行四边形 2.下列是分式的是( )A .B .C .D .3.下列各式正确的是( )A 、m m m x x x 2=+B 、22=-n n x xC 、3332x x x =⋅D 、426x x x =÷4.下列命题的逆命题是真命题的是( ) A . 直角都相等 B .对顶角相等 C . 如果x+y>0,那么x-y>0D .偶数能被2整除5. 下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a b a b D 、()()yxa b y b a x =-- 6.若一个数的算术平方根为a ,则比这个数大2的数是 ( ) A. a 222 D. a + 2 7.下列说法正确的是( ) A . 全等三角形是指形状相同的三角形 B . 全等三角形是指面积相等的两个三角形 C .所有等边三角形是全等三角形D . 全等三角形的周长和面积相等8.若△ABC ≌△DEF ,则下列结论错误的是( )A .BC=EFB .∠B=∠DC .∠C=∠FD .AC=DF班级:____________ 姓名: 考场: 考号: -----------------------------------------装------------------------------------订-------------------------------------线------------------------------------------9.如图,△ABC ≌△CDA ,AB=5,BC=7,AC=6,则CD 边的长为( ) A .5B .6C .7D .不确定10.如右图,某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最方便的方法是( ) A.带①去B .带②去C.带③去D .带①②③去11、如图,若△ABE ≌△ACF ,且AB=5,AE=3, 则EC 的长为( )A .2B .3C .5D .2.512.如果分式13x x +-有意义,那么x 的取值范围 是( )A .0x ≠B .1x ≠-C .3x ≠±D .3x =± 13.解分式方程4x2x 2-x 3=-+时,去分母后得到的方程为( ) A 3-X=4(X-2) B 3+X=4(X-2 ) C 3(2-X)+X(X-2)=4 D 3-X=414.小李做90个零件与小王做120个零件所用的时间相同,他俩每小时一共做35个零件,设小李每小时做x 个零件,则可列方程( ) A .B .C .D .15. 某工程甲单独做x 天完成,乙单独做比甲慢3天完成,现由甲、乙合作5天后,余下的工程由甲单独做3天才能全部完成,则下列方程中符合题意的F E CBA是( ) A .B .C .D .16. 如图,已知AB ∥CD ,AD ∥BC ,过AC ,BD 的交点O 任作一直线EF 交AB ,CD 分别交于点E 、F ,则图中全等三角形的对数共有( )A .4对B .6对C .7对D .8对二、填空题:(每小题3分,共12分)17. 如图,线段AC 与BD 交于点O ,且OA=OC, 请你添加一个条件: ,利用“AAS ” 使△OAB ≌△OCD .18.如图,若△ABC ≌△EBD ,且BD=4cm , ∠E=28°,则∠ACB=_________°.19. 若分式方程xmx x -=--2524无解,那么m 的值应为 20. 分式ab c 32、bc a 3、acb25的最简公分母是BD三、解答题:(共76分) 21. (1)计算(10分):3a 19a a 22--- 3x x 1.x 393x x 22+⎪⎪⎭⎫ ⎝⎛-+-(2)解分式方程:(每题6分,共12分)1x 1++1-x 2=14x2-572x x =-(3)(8分))⎪⎭⎫ ⎝⎛---+1x 21x 4x 32÷12x -x 2x 2++,从2,-2,1,-1中任意取一个作为x 的值代入。
冀教版八年级数学上册第一次月考试卷(完整版)
冀教版八年级数学上册第一次月考试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.比较大小:3133.分解因式:3x -x=__________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,四边形ABCD 的四个顶点分别在反比例函数m y x =与n y x=(x >0,0<m <n)的图象上,对角线BD//y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4.(1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、B6、C7、C8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、<3、x (x+1)(x -1)4、2≤a+2b ≤5.5、706、三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、4ab ,﹣4.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
18—19学年上学期八年级第一次月考数学试题(附答案)(2)
2018-2019学年度第一学期八年级第一次月考数学试卷班级姓名考号一、细心选一选:(本大题共6小题,每小题4分,共24分)1、下列说法正确的是………………………………………………………… ()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2、下列交通标志图案是轴对称图形的是………………………………… ().3.如图所示:ABC∆和DEF∆中①AB DE BC EF AC DF===,,;②AB DE B E BC EF=∠=∠=,,;③B E BC EF C F∠=∠=∠=∠,,;④AB DE AC DF B E==∠=∠,,.其中,能使ABC DEF△≌△的条件共有…………………………………()A.1组B.2组C.3组D.4组4.如图是一个经过改造的规则为3×5的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是……………………………………………… ()A.1号袋B.2号袋C.3号袋D. 4号袋5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF= ( ) A.110°B.115°C.120°D.130°13号袋4号袋第4题第5题第3题6.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当P A =CQ 时,连PQ 交AC 边于D ,则DE 的长为( ) .二、精心填一填:(本大题共有7空,每空3分,共21分.)7.线段的对称轴是 .8.小新是一位不错的足球运动员,他衣服上的号码在镜子里如图,他是 号运动员. 9、如图,AC 、BD 相交于点O ,∠A =∠D ,请补充一个条件,使△AOB ≌△DOC ,你补充.10.如图所示,=∠ADC °.11.如图,已知AB ∥CF ,E 为DF 的中点,若AB =9 cm ,CF =5 cm ,则BD = cm . 12、如图,在△ABC 中,AB =AC =32cm ,DE 是AB 的垂直平分线,分别交AB 、AC 于D 、E 两点.(1) 若∠C =700,则∠CBE =______(2) 若BC =21cm ,则△BCE 的周长是______cm .13.如图,△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm .点P 从A 点出发沿A →C →B 终点为B 点;点Q 从B 点出发沿B →C →A 路径向终点运动,终点为A 点.点P 和Q 分别以1cm /秒和3cm /秒的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P 和Q 作PE ⊥l 于E ,QF ⊥l 于F .设运动时间为t (秒),当t =_____ ___秒时,△PEC 与△QFC 全等. 三、认真答一答(本大题八题,共55分)14.(本题满分8分)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF ,请从下列三个条件:①AB =DE ;②∠A =∠D ;③∠ACB =∠DFE 中选择一个..合适的条件,使AB ∥ED 成立,并给出证明.(1)选择的条件是 (填序号)图1.1-15第8题 o50ABC D第10题第6题第9题第12题 第13题EABCD(2)证明:15.(本题满分6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.16、(本题满分7分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1 ; (2)在直线DE 上画出点Q ,使QC QA 最小.17.(本题满分8分)已知:如图, AD ∥BC ,EF 垂直平分BD ,与AD ,BC ,BD 分别交于点E ,F ,O .求证:(1)△BOF ≌△DOE ;(2)DE =DF .18、(本题满分8分)如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC .你能说明BE 与DF 相等吗?A1B CD EF 219.(本题满分8分)两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,图中AB =AC ,AD =AE ,∠BAC =∠EAD =900,B ,C ,E 在同一条直线上,连结D C .(1)图2中的全等三角形是_______________ ,并给予证明(说明:结论中不得含有未标识的字母);(2)指出线段DC 和线段BE 的关系,并说明理由.20、(本题满分10分)已知:如图,∠B =90°AB ∥DF ,AB =3cm ,BD =8cm ,点C 是线段BD上一动点,点E 是直线DF 上一动点,且始终保持AC ⊥CE 。
最新冀教版八年级数学上册第一次月考考试卷及答案【完美版】
最新冀教版八年级数学上册第一次月考考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .152 2.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.下列各式,化简后能与3合并的是( )A .18B .24C .12D .9 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_______cm.3.在数轴上表示实数a的点如图所示,化简2(5)a +|a-2|的结果为____________.4.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.5.如图,将周长为16的三角形ABC 沿BC 方向平移3个单位得到三角形DEF ,则四边形ABFD 的周长等于________.6.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为_____.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y .3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围; (2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、C5、A6、B7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、223、3.4、1.55、226、12.5三、解答题(本大题共6小题,共72分)1、原方程组的解为=63x y ⎧⎨=-⎩2、132 3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略(2)略5、(1)略(2)菱形6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
2018-2019初中八年级上册数学第一次月考试题
O D CBA 第11题图班级: 姓名: 学号:………………………密…………………………………封………………………………………线…………………………………………………第10题图F C E B A D 第7题图 ④ ①② ③2018-2019学年八年级上学期数学第一次月考测试卷(考试时间120分钟,满分120分)一、选择题(每小题3分,共30分) 1、下列命题正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形是指面积相同的两个三角形 C .两个周长相等的三角形是全等三角形 D .全等三角形的周长、面积分别相等 2、如图所示表示三条相互交叉的公路,现要建一个货物中转站, 要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 3、下图中的轴对称图形有( ).A .(1),(2)B .(1),(4)C .(2),(3)D .(3),(4)4、下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等5、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD的周长是( )cm.A.3.9B.7.8C.4D.4.66、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .67、如图,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7 D .68、下列条件中不能作出唯一直角三角形的是( )A. 已知两个锐角B. 已知一条直角边和一个锐角C. 已知两条直角边D. 已知一条直角边和斜边 9、如图,在直角ABC △中,90C =∠,AB 的垂直平分线交AB 于D , 交AC 于E ,且2EBC EBA =∠∠,则A ∠等于( )A.20 B.22.5 C.25 D.27.5 10、如图,在直角三角形ABC 中,∠C =90°,AC =10cm ,BC =5cm ,线段PQ =AB , P 、Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP = 时,才能使△ABC 和△APQ 全等.二、填空题(每小题3分,共18分) 11、如图,线段AC 与BD 交于点O ,且OA=OC, 请添加一个条件,使△OAB ≌△OCD,这个条件可以是______________________. 12、如图,50ABC AD ∠=,垂直平分线段BC 于点D ABC ∠,的平分线BE 交AD 于点E ,连结EC ,则∠C 的度数是 . 13、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是14、如图,已知△ABC 的周长是21,OB,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是___________15、如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .16、如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是 .三.解答题(共72分)座 号C D B E A 第12题图 A B Ca b c 74 41 65 b a 41 甲 74 c b 乙 65 74 a 丙 第13题图 A D F C B E第15题图 第6题图 D CA E 第9题图 A D O CB 第14题图 A B第5题图17、(作图6分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置. 18、(7分)完成下面的证明过程: 如图,已知:AD ∥BC ,AD =CB ,AE =CF. 求证:∠D =∠B. 证明:∵AD ∥BC ,∴∠A =∠ (两直线平行, 相等). ∵AE =CF , ∴AF = . 在△AFD 和△CEB 中,AD _____,A ____,AF _____,⎧=⎪∠=∠⎨⎪=⎩∴△AFD ≌△CEB ( ). ∴∠D =∠B.19、(8分)已知:如图,直线AD 与BC 交于点O ,OA OD =,OB OC =.求证:AB CD ∥.20、(9分)如图,D 是AB 上一点,DF 交AC 于点E,DE=FE,FC//AB.AE 与CE 有什么关系?证明你的结论。
2018-2019学年最新冀教版八年级数学上学期第一次月考检测试题及答案解析-精编试题
八年级上学期第一次月考数学试卷一、选择题:(每小题3分,共36分)1.(3分)下列是分式的是()A.B.C.D.2.(3分)下列各式正确的是()A.B.C.D.3.(3分)下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0 D.对顶角相等4.(3分)下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形5.(3分)若△ABC≌△DEF,则下列结论错误的是()A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=DF 6.(3分)如图,△ABC≌△CDA,AB=5,BC=7,AC=6,则AD边的长为()A.5 B.6 C.7 D.不确定7.(3分)下列各分式中,最简分式是()A .B .C .D .8.(3分)化简的结果是()A .B .C .D .9.(3分)若把分式中的x 和y 都扩大2倍,那么分式的值() A . 扩大2倍B . 不变C . 缩小2倍D . 缩小4倍10.(3分)当x 为任意实数时,下列分式一定有意义的是()A .B .C .D .11.(3分)若分式方程有增根,则a 的值是() A . 1B . 0C . ﹣1D . ﹣212.(3分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程()A .B .C .D .二、填空题:(每小题3分,共18分)13.(3分)当x时,分式没有意义.14.(3分)若有增根,则增根为.15.(3分)计算:=.16.(3分)已知a﹣=3,那么a2+=.17.(3分)如图,若△ABC≌△EBD,且BD=4cm,∠D=60°,则∠ACE=°.18.(3分)阅读下列材料:方程的解是x=1;方程的解是x=2;方程的解是x=3;…根据上述结论,写出一个解为5的分式方程.三、解答题:19.计算:(1)(2)(3)(4)(﹣x﹣2)20.(10分)解分式方程:(1)(2).21.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.22.(8分)先化简,再求值:÷(﹣1),其中x=﹣2.23.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱.某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?24.(10分)观察下列各式:并解答后面的问题.;;;…①由此可以推测=.②用含n的式子(n是正整数)表示这一规律:.③用上述规律计算:++.参考答案与试题解析一、选择题:(每小题3分,共36分)1.(3分)下列是分式的是()A.B.C.D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,,的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选B.点评:π不是字母,是常数,所以不是分式,是整式.2.(3分)下列各式正确的是()A.B.C.D.考点:分式的基本性质.分析:分式的基本性质:分式的分子、分母同乘以或同除以一个不为0的数或整式,分式的值不变.只有C是符合的.解答:解:根据分式的基本性质:分式的分子、分母同乘以或同除以一个不为0的数或整式,分式的值不变,A、D是分子、分母同加或同减是不符合分式基本性质的;B,分式的分子分母同乘以b,而b是有可能是0的,B不正确;C,符合分式的基本性质,是正确的.故选C.点评:做题的根据是看是否符合分式的基本性质,特别要注意同乘或同除的数或整式是否为0.3.(3分)下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0 D.对顶角相等考点:命题与定理.分析:把一个命题的条件和结论互换就得到它的逆命题,再对逆命题判断即可.解答:解:A.直角都相等的逆命题是相等的角是直角,是假命题,B.钝角都小于180°的逆命题是小于180°的角都是钝角,是假命题,C.如果x2+y2=0,那么x=y=0的逆命题是如果x=y=0,那么x2+y2=0,是真命题,D.对顶角相等的逆命题是相等的角是对顶角,是假命题.故选:C.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(3分)下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形考点:全等图形.分析:能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.解答:解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选C.点评:本题考查了全等形的特点,做题时一定要严格按照全等的定义进行.5.(3分)若△ABC≌△DEF,则下列结论错误的是()A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=DF考点:全等三角形的性质.分析:根据全等三角形对应边相等,全等三角形对应角相等解答.解答:解:∵△ABC≌△DEF,∴BC=EF,∠B=∠E,∠C=∠F,AC=DF.∴结论∠B=∠D错误.故选B.点评:本题考查了全等三角形的性质,对应顶点的字母写在对应位置上是准确确定对应边和对应角的关键.6.(3分)如图,△ABC≌△CDA,AB=5,BC=7,AC=6,则AD边的长为()A.5 B.6 C.7 D.不确定考点:全等三角形的性质.分析:根据全等三角形对应边相等可得AD=BC.解答:解:∵△ABC≌△CDA,∴AD=BC=7.故选C.点评:本题考查了全等三角形的性质,熟记对应顶点的字母写在对应位置上找出对应边是解题的关键.7.(3分)下列各分式中,最简分式是()A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;B、=m﹣n,故本选项错误;C、=,故本选项错误;D、=,故本选项错误.故选A、点评:本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.8.(3分)化简的结果是()A .B .C .D .考点: 约分.分析: 首先把分式分子分母因式分解,然后把相同的因子约掉.解答: 解:=,=﹣,故选:B .点评: 解答本题主要把分式分子分母进行因式分解,然后进行约分.9.(3分)若把分式中的x 和y 都扩大2倍,那么分式的值() A . 扩大2倍B . 不变C . 缩小2倍D . 缩小4倍考点: 分式的基本性质. 专题: 计算题.分析: 根据题意,分式中的x 和y 都扩大2倍,则==;解答: 解:由题意,分式中的x 和y 都扩大2倍, ∴==; 分式的值是原式的,即缩小2倍;故选C .点评: 本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.10.(3分)当x 为任意实数时,下列分式一定有意义的是()A .B .C .D .考点:分式有意义的条件.分析:根据分式有意义的条件:分式有意义的条件是分母不等于零进行分析即可.解答:解:A、当x=±是,x2﹣2=0,分式无意义,故此选项错误;B、无论x为何值,x2+1≠0,分式有意义,故此选项正确;C、当x=0时,x2=0,分式无意义,故此选项错误;D、当x=﹣2时,x+2=0,分式无意义,故此选项错误;故选:B.点评:此题主要考查了分式有意义,关键是掌握分式有意义的条件是分母不等于零.11.(3分)若分式方程有增根,则a的值是()A.1 B.0 C.﹣1 D.﹣2考点:分式方程的增根.分析:分式方程去分母转换为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程即可求出a的值.解答:解:去分母得:1+3x﹣6=﹣a+x,根据题意得:x﹣2=0,即x=2,代入整式方程得:1+6﹣6=﹣a+2,解得:a=1.故选:A.点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.(3分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()A.B.C .D .考点: 由实际问题抽象出分式方程.分析: 设江水的流速为x 千米/时,根据一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可列方程求解.解答: 解:设江水的流速为x 千米/时,=. 故选A .点评: 本题考查理解题意的能力,关键知道路程=时间×速度,本题以时间做为等量关系列方程.二、填空题:(每小题3分,共18分)13.(3分)当x=1时,分式没有意义.考点: 分式有意义的条件. 分析: 分母为零,分式无意义;分母不为零,分式有意义.解答: 解:当分母x ﹣1=0,即x=1时,分式没有意义. 故答案为:=1.点评: 本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)若有增根,则增根为x=4.考点: 分式方程的增根.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,让分式方程的最简公分母为0,得到方程求解即可.解答:解:∵原方程有增根,∴最简公分母x﹣4=0,即增根为x=4.点评:确定分式方程的增根的方法:让分式方程的最简公分母为0.15.(3分)计算:=1.考点:分式的加减法.专题:计算题.分析:初看此题,分母不同,但仔细观察会发现,分母互为相反数,可化为同分母分式相加减.解答:解:原式===1.故答案为1.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.16.(3分)已知a﹣=3,那么a2+=11.考点:分式的加减法.专题:计算题.分析:对已知条件两边平方,整理后不难求解.解答:解:∵=3,∴(a﹣)2=9,即a2﹣2+=9,∴a2+=9+2=11.故答案为11.点评:此题的关键是根据a与互为倒数的特点,利用完全平方公式求解.17.(3分)如图,若△ABC≌△EBD,且BD=4cm,∠D=60°,则∠ACE=120°.考点:全等三角形的性质.分析:根据全等三角形的性质得出∠ACB=120°,即可求出答案.解答:解:∵△ABC≌△EBD,∠D=60°,∴∠ACB=∠D=60°,∴∠ACE=180°﹣∠ACB=120°,故答案为:120.点评:本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等.18.(3分)阅读下列材料:方程的解是x=1;方程的解是x=2;方程的解是x=3;…根据上述结论,写出一个解为5的分式方程﹣=﹣.考点:分式方程的解.专题:规律型.分析:从条件中所给的三个方程的解的过程中发现规律:方程的解是分式无意义的中间的数,即可写出解为5的分式方程.解答:解:由方程的解是分式无意义的中间的数,得写出一个解为5的分式方程﹣=﹣,故答案为:﹣=﹣.点评:本题考查了分式方程的解,发现规律是解题关键.三、解答题:19.计算:(1)(2)(3)(4)(﹣x﹣2)考点:分式的混合运算.分析:(1)把除法变乘法,约分即可;(2)先对分子与分母因式分解,再约分即可;(3)通分再约分即可;(4)先算括号里面的,再把除法变乘法,约分即可.解答:解:(1)原式=﹣•=﹣;(2)原式=•﹣=﹣=;(3)原式=﹣==x+2;(4)原式=(﹣)==•=.点评:本题考查了分式的混合运算,解决问题的关键是因式分解和约分.20.(10分)解分式方程:(1)(2).考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:2﹣2+x=3x+6,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1=3+3x﹣5+5x,移项合并得:8x=3,解得:x=,经检验是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.考点:全等三角形的判定与性质.专题:证明题.分析:由HL可得Rt△DCE≌Rt△BAF,进而得出对应线段、对应角相等,即可得出(1)、(2)两个结论.解答:证明:(1)∵DE⊥AC,BF⊥AC,∴在Rt△DCE和Rt△BAF中,AB=CD,DE=BF,∴Rt△DCE≌Rt△BAF(HL),∴AF=CE;(2)由(1)中Rt△DCE≌Rt△BAF,可得∠C=∠A,∴AB∥CD.点评:本题主要考查了全等三角形的判定及性质问题,能够熟练掌握.22.(8分)先化简,再求值:÷(﹣1),其中x=﹣2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=÷=÷=×=,当x=﹣2时,原式==4.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱.某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?考点:分式方程的应用.分析:设第一天有x人,第二天有(x+50)人,根据已知第一天捐款4800元,第二天捐款6000元,且两天人均捐款数相等,可列方程求解.解答:解:设第一天有x人,第二天有(x+50)人,由题意得:=解得:x=200,经检验x=200是分式方程的解.200+200+50=450(人).答:两天共有450人捐款.点评:本题主要考查分式方程的应用,设出捐款的人数,根据两天平均捐款相等可列方程求解.注意不要忘记检验.24.(10分)观察下列各式:并解答后面的问题.;;;…①由此可以推测=﹣.②用含n的式子(n是正整数)表示这一规律:=﹣.③用上述规律计算:++.考点:分式的加减法.专题:规律型.分析:①观察一系列式子得出结果即可;②归纳总结得到一般性规律,写出即可;③原式利用得出的规律变形,计算即可得到结果.解答:解:①根据题意得:==﹣;②根据题意得:=﹣;③原式=﹣+﹣+…+﹣=﹣=.故答案为:①﹣;②.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.。
冀教版八年级数学上册第一次月考测试卷(完整版)
冀教版八年级数学上册第一次月考测试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分) 1.8-的立方根是__________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 323(1)0m n -+=,则m -n 的值为________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+的值.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、C7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、3.3、44、()()2a b a b ++.5、1(21,2)n n -- 6、132三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、x 2-,32-. 3、0.4、E (4,8) D (0,5)5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
冀教版八年级数学上册第一次月考考试及答案【完整版】
冀教版八年级数学上册第一次月考考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a715 )A .点PB .点QC .点MD .点N8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)13x x =,则x=__________21273=___________. 3.若m+1m =3,则m 2+21m=________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b>kx+6的解集是_________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、A7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.23、74、x>3.5、1 (21,2) n n--6、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、3.3、(1)12b-≤≤;(2)24、E(4,8) D(0,5)5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
冀教版八年级数学上册第一次月考考试及答案【一套】
冀教版八年级数学上册第一次月考考试及答案【一套】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.21273=___________.3.若23(1)0m n-++=,则m-n的值为________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -++=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、A7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-23、44、﹣2<x <25、49136、132三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、1a b-+,-1 3、(1)略(2)1或24、(1)略;(2)4.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
最新冀教版八年级数学上册第一次月考考试题及答案下载
最新冀教版八年级数学上册第一次月考考试题及答案下载 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④ 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2(,大正方形的面积为13,则小正方形的面积为()+=a b)21A.3 B.4 C.5 D.69.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________. 3.计算:()()201820195-252+的结果是________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=________度.6.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块。
冀教版八年级数学上册第一次月考考试题(新版)
冀教版八年级数学上册第一次月考考试题(新版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N8.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、B6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、22()1y x =-+3、如果两个角互为对顶角,那么这两个角相等4、﹣2<x <25、49136、6三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、x+2;当1x =-时,原式=1.3、0.4、(1)y =x +5;(2)272;(3)x >-3.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
冀教版八年级数学上册第一次月考考试卷(A4打印版)
冀教版八年级数学上册第一次月考考试卷(A4打印版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.275.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.分解因式:3x-x=__________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、B5、B6、D7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、x (x+1)(x -1)4、20°.5、36、15.三、解答题(本大题共6小题,共72分)1、(1)1216,16x x =+=-;(2)3x =是方程的解.2、22x -,12-.3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
冀教版八年级数学上册第一次月考考试及答案【精选】
冀教版八年级数学上册第一次月考考试及答案【精选】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.21a +8a =__________.3.4的平方根是 .4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、B5、A6、B7、B8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、13、±2.4、2≤a+2b≤5.5、706、8三、解答题(本大题共6小题,共72分)1、x=32、11a-,1.3、(1)12b-≤≤;(2)24、(1) 65°;(2) 25°.5、略.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
冀教版八年级数学上册第一次月考考试【附答案】
冀教版八年级数学上册第一次月考考试【附答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.若a =7+2、b =2﹣7,则a 和b 互为( ) A .倒数 B .相反数 C .负倒数 D .有理化因式8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3x 2-x 的取值范围是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、C6、A7、D8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、3.3、x 2≥4、10.5、46、8三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、112x -;15.3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、略.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
冀教版八年级数学上册第一次月考考试卷(加答案)
冀教版八年级数学上册第一次月考考试卷(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.分解因式:3x-x=__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、D6、A7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x(x+1)(x-1)4、10.5、706、15.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、(1)略;(2)4.5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
冀教版八年级数学上册第一次月考考试题及答案【精编】
冀教版八年级数学上册第一次月考考试题及答案【精编】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222--的值为____________.a b b2.比较大小:23133.分解因式:3x-x=__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.若方程组3133x y mx y m+=+⎧⎨+=-⎩的解满足x为非负数,y为负数.(1)请写出x y+=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、<3、x(x+1)(x-1)4、()()2a b a b++.5、46、4三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、x+2;当1x=-时,原式=1.3、(1)1;(2)m>2;(3)-2<2m-3n<184、(1)y=x+5;(2)272;(3)x>-3.5、CD的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
冀教版八年级数学上册第一次月考考试卷(精选)
考研知识点归纳中国特色社会主义总体布局中国特色社会主义总体布局是中国共产党在中国特殊国情下确定的一种基本社会制度安排和发展方向。
它是中国特色社会主义理论的核心内容,也是指导中国社会主义事业发展的总纲。
一、总体布局的基本内容中国特色社会主义总体布局包括"五位一体"和"四个全面"两个重要方面。
1. "五位一体"是指经济建设、政治建设、文化建设、社会建设和生态文明建设的相互贯通、相互促进的统一整体。
它强调了各项建设的协调发展,是中国特色社会主义事业全局观的核心要点。
- 经济建设是总体布局的基础。
它要求坚持发展是硬道理,加大科技创新力度,推动经济高质量发展,构建现代化经济体系。
- 政治建设是总体布局的重要保障。
它要求坚持党的全面领导,推进全面依法治国,加强党风廉政建设和反腐败斗争。
- 文化建设是总体布局的重要支撑。
它要求传承中华优秀传统文化,推动社会主义核心价值观的培育和践行,提高全民族文化素质。
- 社会建设是总体布局的人民期待。
它要求加强社会保障体系建设,推动社会公平正义,提高人民群众的获得感和幸福感。
- 生态文明建设是总体布局的可持续发展要求。
它要求坚持绿色发展,保护生态环境,构建美丽中国。
2. "四个全面"是指全面建成小康社会、全面深化改革、全面依法治国、全面从严治党。
- 全面建成小康社会是总体布局的战略目标。
它要求在经济、政治、文化、社会、生态等各个领域实现全面发展,让人民共享经济发展成果。
- 全面深化改革是总体布局的重要动力。
它要求解放思想,推动体制机制创新,破除各种体制机制障碍,不断完善社会主义制度。
- 全面依法治国是总体布局的重要保障。
它要求建设中国特色社会主义法治体系,依法治国、依法执政、依法行政。
- 全面从严治党是总体布局的政治前提。
它要求全面加强党的建设,加强党内法规制度建设,从严治党、从严治吏,确保党始终充满活力、始终走在时代前列。
冀教版八年级数学上册第一次月考考试题及答案【学生专用】
冀教版八年级数学上册第一次月考考试题及答案【学生专用】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.4的平方根是 .4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
最新冀教版2018-2019学年数学八年级上学期第一次月考学情检测及答案解析-精编试题
八年级上学期第一次月考数学试卷一、选择题(每题3分,共30分)1.(3分)有下列长度的三条线段,能组成三角形的是()A.1cm、2cm、3cm B.1cm、4cm、2cm C.2cm、3cm、4cm D.6cm、2cm、3cm2.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.(3分)如图中三角形的个数是()A.6 B.7 C.8 D.94.(3分)能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以5.(3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形6.(3分)下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等7.(3分)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED的度数是()A.70°B.85°C.65°D.以上都不对8.(3分)如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形.A.2 B.3 C.4 D.59.(3分)如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC10.(3分)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.8二、填空题:(每题3分,共18分)11.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是.12.(3分)若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是.13.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCD=.14.(3分)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.15.(3分)把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.16.(3分)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=.三.解答题(共52分)17.(10分)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.18.(10分)若多边形的内角和为2340°,求此多边形的边数.19.(10分)已知:AD=AE,∠B=∠C,证明:AC=AB.20.(10分)已知,AE=BF,AC∥DB,AC=DB,证明:CF=DE.21.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论②还成立吗?若成立,请给予证明;若不成立,线段DE、AD、BE又有怎样的数量关系?请写出你的猜想,不需证明.参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)有下列长度的三条线段,能组成三角形的是()A.1cm、2cm、3cm B.1cm、4cm、2cm C.2cm、3cm、4cm D.6cm、2cm、3cm考点:三角形三边关系.分析:看哪个选项中两条较小的边的和大于最大的边即可.解答:解:A、1+2=3,不能构成三角形;B、1+2<4,不能构成三角形;C、2+3>4,能构成三角形;D、2+3<6,不能构成三角形.故选C.点评:根据三角形的三边关系,验证的时候,注意只需看较小的两个数的和是否大于第三个数.2.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去考点:全等三角形的应用.专题:应用题.分析:此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.解答:解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.点评:主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.(3分)如图中三角形的个数是()A.6 B.7 C.8 D.9考点:三角形.分析:根据三角形的定义得:图中三角形有:△ECA,△EBD,△FBA,△FCD,△AFD,△ABD,△ACD,△AED共8个.解答:解:∵图中三角形有:△ECA,△EBD,△FBA,△FCD,△AFD,△ABD,△ACD,△AED,∴共8个.故选C.点评:此题考查了学生对三角形的认识.注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.4.(3分)能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以考点:三角形的面积;三角形的角平分线、中线和高.分析:根据等底等高的三角形的面积相等解答.解答:解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.点评:本题考查了三角形的面积,熟记等底等高的三角形的面积相等是解题的关键.5.(3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.6.(3分)下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等考点:全等三角形的判定.分析:要逐个对选项进行验证,根据各个选项的已知条件结合三角形全等的判定方法进行判定,其中B满足SSA时不能判断三角形全等的.解答:解:A、三条边对应相等的三角形是全等三角形,符合SSS,故A不符合题意;B、两边和一角对应相等的三角形不一定是全等三角形,故B符合题意;C、两角和其中一角的对边对应相等是全等三角形,符合AAS,故C不符合题意;D、两角和它们的夹边对应相等是全等三角形,符合ASA,故D不符合题意.故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED的度数是()A.70°B.85°C.65°D.以上都不对考点:全等三角形的判定与性质.分析:先证明△AOD≌△BOC,就可以得出∠OBC=∠OAD,由三角形的内角和定理就可以求出∠DAO的值,就可以得出∠OBC的值,由外角与内角的关系就可以求出结论.解答:解:在△AOD和△BOC中,∴△AOD≌△BOC(SAS)∴∠C=∠D.∵∠C=25°,∴∠D=25°.∵∠O=60°,∠C=25°,∴∠OBC=95°.∴∠OBC=∠BED+∠D=95°,∴∠BED=70°.故选A.点评:本题考查了全等三角形的判定及性质的运用,三角形的内角和定理的运用,三角形外角与内角的关系的运用,解答时求三角形全等是关键.8.(3分)如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形.A.2 B.3 C.4 D.5考点:全等三角形的判定.专题:证明题.分析:根据AB=AD,AE平分∠BAD,且AE、AC为公共边,易证得△DAC≌△BAC,△DAE≌△BAE;由以上全等易证得△DCE≌△BCE(SSS),即可得全等三角形的对数.解答:解:∵AB=AD,AE平分∠BAD,且AE、AC为公共边,∴△DAC≌△BAC,△DAE≌△BAE(SAS),∴DE=BE,DC=BC,EC为公共边,∴△DCE≌△BCE(SSS).所以共有3对三角形全等.故选B.点评:本题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.9.(3分)如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC考点:全等三角形的判定.分析:本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,必须是这边和公共边的夹角对应相等,只有符合以上条件,才能根据三角形全等判定定理得出结论.解答:解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.点评:本题考查了全等三角形的判定方法;三角形全等判定定理中,最易出错的是“边角边”定理,这里强调的是夹角,不是任意一对角.10.(3分)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.8考点:多边形内角与外角.分析:多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.解答:解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.点评:本题考查了多边形的内角和公式和外角和定理.二、填空题:(每题3分,共18分)11.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是三角形具有稳定性.考点:三角形的稳定性.分析:用木条固定矩形门框,即组成三角形,故可用三角形的稳定性解释.解答:解:加上木条后,原不稳定的四边形中具有了稳定的三角形,故这种做法根据的是三角形的稳定性.故答案为:三角形具有稳定性.点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用.12.(3分)若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCD=90°.考点:三角形的外角性质;垂线.专题:计算题.分析:三角形的一个外角等于与它不相邻的两个内角的和.解答:解:∠BCD是三角形ABC的外角,所以∠BCD=∠A+∠B=60°+30°=90°.故填90°.点评:熟记三角形内、外角的关系是解答本题的关键.14.(3分)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=5.考点:全等三角形的性质.分析:全等三角形,对应边相等,周长也相等.解答:解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5点评:本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,本题比较简单.15.(3分)把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.考点:全等三角形的应用.专题:计算题.分析:连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.解答:解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.点评:本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.16.(3分)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=140°,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=40°.考点:三角形内角和定理;三角形的外角性质.分析:首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再次根据三角形内角和求出∠I 的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1=∠DBC,∠2=ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M 的度数.解答:解:∵∠A=100°,∵∠ABC+∠ACB=180°﹣100°=80°,∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°,∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1=∠DBC,∠2=ECB,∴∠1+∠2=×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.点评:此题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出∠ABC+∠ACB的度数.三.解答题(共52分)17.(10分)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.考点:三角形的外角性质;平行线的性质.专题:计算题.分析:先根据三角形的一个外角等于和它不相邻的两个内角的和求出∠A,再根据两直线平行,内错角相等得到∠D等于∠A.解答:解:在△ABO中,∵∠AOC=95°,∠B=50°,∴∠A=∠AOC﹣∠B=95°﹣50°=45°;∴∠D=∠A=45°.点评:本题主要考查三角形的外角性质和两直线平行,内错角相等的性质,熟练掌握性质是解题的关键.18.(10分)若多边形的内角和为2340°,求此多边形的边数.考点:多边形内角与外角.分析:根据多边形的内角和计算公式作答.解答:解:设此多边形的边数为n,则(n﹣2)•180°=2340,解得n=15.故此多边形的边数为15.点评:此题主要考查了多边形的内角和,关键是掌握多边形内角和定理.19.(10分)已知:AD=AE,∠B=∠C,证明:AC=AB.考点:全等三角形的判定与性质.专题:证明题.分析:根据AAS得出△ABE≌△ACD,再利用全等三角形的性质解答即可.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),点评:本题考查了对全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.20.(10分)已知,AE=BF,AC∥DB,AC=DB,证明:CF=DE.考点:全等三角形的判定与性质.专题:证明题.分析:求出AF=BE,根据平行线性质求出∠A=∠B,根据AAS推出△ACF≌△BDE即可.解答:证明:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,∵AC∥BD,∴∠A=∠B,在△ACF和△BDE中,,∴△ACF≌△BDE(AAS),∴CF=DE.点评:本题考查了全等三角形的性质和判定,平行线的性质的应用,解此题的关键是推出△ACF≌△BDE,注意:全等三角形的对应边相等,对应角相等.21.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论②还成立吗?若成立,请给予证明;若不成立,线段DE、AD、BE又有怎样的数量关系?请写出你的猜想,不需证明.考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)易证∠DAC=∠ECB,可证△ADC≌△CEB,可得CD=BE,即可解题;(2)不成立,新结论为:DE=AD﹣BE;证明:易证∠DAC=∠ECB,可证△ADC≌△CEB,可得CD=BE,证明新结论.解答:解:(1)∵∠DAC+∠ACD=90°,∠ACD+∠BCE=90°,∴∠DAC=∠ECB,∵在△ADC和△CEB中,,∴△ADC≌△CEB,(AAS)∴CD=BE,AD=CE∵DE=CE+CE,∴DE=AD+BE;(2)不成立,新结论为:DE=AD﹣BE;证明:∵∠DAC+∠ACD=90°,∠ACD+∠BCE=90°,∴∠DAC=∠ECB,∵在△ADC和△CEB中,,∴△ADC≌△CEB,(AAS)∴CD=BE,AD=CE∵DE=CE﹣CD,∴DE=AD﹣BE.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADC≌△CEB是解题的关键.。