高中数学教案新人教A版必修2.2.3.4直线与平面垂直、平面与平面垂直的性质教案 新人教A版必修2

合集下载

高中数学2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质课件新人教A版必修2

高中数学2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质课件新人教A版必修2
(2)证明:①因为ABCD-A1B1C1D1为正方体, 所以AD1⊥A1D. 又因为CD⊥平面ADD1A1,AD1⊂平面ADD1A1, 所以CD⊥AD1.因为A1D∩CD=D, 所以AD1⊥平面A1DC. 又因为MN⊥平面A1DC, 所以MN∥AD1.
②M是AB的中点.
证明:②设 AD1∩A1D=O,连接 ON,在△A1DC 中, A1O=OD,A1N= NC.
(2)若平面AEF交SD于点G.求证:AG⊥SD.
证明:(2)因为SA⊥平面AC,所以SA⊥DC, 又AD⊥DC,SA∩AD=A, 所以DC⊥平面SAD. 所以DC⊥AG. 又由(1)有SC⊥平面AEF,AG⊂平面AEF, 所以SC⊥AG, 又DC∩SC=C, 所以AG⊥平面SDC,所以AG⊥SD.
规范解答:(1)如图所示,连接BD. 因为四边形ABCD是菱形, 且∠DAB=60°,所以△ABD是正三角形,…………………2分 因为G是AD的中点,所以BG⊥AD.…………………………3分 又因为平面PAD⊥平面ABCD, 平面PAD∩平面ABCD=AD.所以BG⊥平面PAD.……………6分
(2)求证:AD⊥PB.
4.如图所示,在三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在平面ABC上
的射影H必在直线
上.
答案:AB
5.设α ,β 是空间两个不同的平面,m,n是平面α 及β 外的两条不同直线.从
“①m⊥n;②α ⊥β ;③n⊥β ;④m⊥α ”中选取三个作为条件,余下一个作
为结论,写出你认为正确的一个命题:
规范解答:(2)连接PG. 因为△PAD为正三角形,G为AD的中点, 所以PG⊥AD.…………………………………7分 由(1)知BG⊥AD, 而PG∩BG=G, PG⊂平面PBG, BG⊂平面PBG. 所以AD⊥平面PBG.…………………………10分 又因为PB⊂平面PBG, 所以AD⊥PB.……………………………………12分

高中数学《平面与平面垂直的性质》说课稿

高中数学《平面与平面垂直的性质》说课稿

高中数学《平面与平面垂直的性质》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《平面与平面垂直的性质》。

虽然我个人的教学经验并不丰富,但是为了能过够成为一名合格的人民教师,我对于本节课也有了一些自己的思考,接下来我就从几方面简单的谈一谈我对本节课的理解。

一、说教材我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。

《平面与平面垂直的性质》在人教A版高中数学必修二第二章第三节第四小节,本节课的内容是平面与平面垂直的性质定理及其推导和应用。

到本小节,学生已经学了直线与平面、平面与平面垂直的判定定理和性质定理,教学中可以引导学生思考这些定理之间相互联系的同时也对于本节课的知识点有了很好的铺垫作用。

同时本节课的内容也是之后解决空间几何位置关系问题的必要基础。

二、说学情教材是我们教学的工具,是载体。

但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。

本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

三、说教学目标根据以上对教材的分析以及对学情的把握,结合本节课的知识内容以及课标要求,我指定了如下的三维教学目标:(一)知识与技能掌握平面与平面垂直的性质,会根据面面垂直证明线面垂直。

(二)过程与方法在探索证明平面与平面垂直的性质时,提升逻辑推理能力以及空间观念。

(三)情感态度价值观在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

四、说教学重难点并且我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

而教学重点的确立与我本节课的内容肯定是密不可分的。

那么根据授课内容可以确定本节课的教学重点是:掌握平面与平面垂直的性质。

而本节课作为本章的最后一节,那么就要求学生不光掌握面面垂直,还要能够理解与之前知识的联系,所以本节课的教学难点是:会根据面面垂直证明线面垂直。

高中数学 (2.3.3 直线与平面垂直的性质)示范教案 新人教A版必修2

高中数学 (2.3.3 直线与平面垂直的性质)示范教案 新人教A版必修2

2.3.3 直线与平面垂直的性质整体设计教学分析空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面垂直的性质定理不仅是由线面关系转化为线线关系,而且将垂直关系转化为平行关系,因此直线与平面垂直的性质定理在立体几何中有着特殊的地位和作用.本节重点是在巩固线线垂直和面面垂直的基础上,讨论直线与平面垂直的性质定理的应用. 三维目标1.探究直线与平面垂直的性质定理,培养学生的空间想象能力、实事求是等严肃的科学态度和品质.2.掌握直线与平面垂直的性质定理的应用提高逻辑推理的能力. 重点难点直线与平面垂直的性质定理及其应用. 课时安排 1课时教学过程复习直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:图1如图1,表示方法为:a⊥α. 由直线与平面垂直的定义不难得出:⎭⎬⎫⊥⊂ααb a ⇒b⊥a. 导入新课思路1.(情境导入)大家都读过茅盾先生的《白杨礼赞》,在广阔的西北平原上,矗立着一排排白杨树,它们像哨兵一样守卫着祖国疆土.一排排的白杨树,它们都垂直地面,那么它们之间的位置关系如何呢? 思路2.(事例导入)如图2,长方体ABCD —A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间具有什么位置关系?图2推进新课 新知探究 提出问题①回忆空间两直线平行的定义.②判断同垂直于一条直线的两条直线的位置关系?③找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系. ④用三种语言描述直线与平面垂直的性质定理.⑤如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:①如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.②如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.图3③如图4,长方体ABCD —A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直于所在的平面ABCD ,它们之间具有什么位置关系?图4 图5棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间互相平行. ④直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行. 直线和平面垂直的性质定理用符号语言表示为:⎭⎬⎫⊥⊥ααb a ⇒b∥a. 直线和平面垂直的性质定理用图形语言表示为:如图5. ⑤直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系. 应用示例思路1例1 证明垂直于同一个平面的两条直线平行. 解:已知a⊥α,b⊥α. 求证:a∥b.图6证明:(反证法)如图6,假定a 与b 不平行,且b∩α=O,作直线b′,使O ∈b′,a∥b′. 直线b′与直线b 确定平面β,设α∩β=c,则O ∈c. ∵a⊥α,b⊥α,∴a⊥c,b⊥c.∵b′∥a,∴b′⊥c.又∵O∈b,O ∈b′,b ⊂β,b′⊂β, a∥b′显然不可能,因此b∥a.例2 如图7,已知α∩β=l,EA⊥α于点A,EB⊥β于点B,a ⊂α,a⊥AB. 求证:a∥l.图7证明:⎭⎬⎫⊥⊥⇒⎭⎬⎫=⋂⊥⊥EB l EA l l EB EA βαβα,⇒l⊥平面EAB.又∵a ⊂α,EA⊥α,∴a⊥EA.又∵a⊥AB,∴a⊥平面EAB.∴a∥l.思路2例1 如图8,已知直线a⊥b,b⊥α,a ⊄α. 求证:a∥α.图8证明:在直线a 上取一点A ,过A 作b′∥b,则b′必与α相交,设交点为B ,过相交直线a 、b′作平面β,设α∩β=a′,∵b′∥b,a⊥b,∴a⊥b′.∵b⊥α,b′∥b, ∴b′⊥α.又∵a′⊂α,∴b′⊥a′.由a ,b′,a′都在平面β内,且b′⊥a,b′⊥a′知a∥a′.∴a∥α. 例2 如图9,已知PA⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥面PCD.图9证明:(1)取PD 中点E,又N 为PC 中点,连接NE,则NE∥CD,NE=21CD. 又∵AM∥CD,AM=21CD, ∴AM NE.∴四边形AMNE 为平行四边形. ∴MN∥AE.∵⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊂⊥ADP AE ADP CD AD CD PA CD ABCD CD ABCD PA 平面平面平面平面⇒CD⊥AE.(2)当∠PDA=45°时,Rt△PAD 为等腰直角三角形, 则AE⊥PD.又MN∥AE, ∴MN⊥PD,PD∩CD=D. ∴MN⊥平面PCD. 变式训练已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和平面α相交,并且和a 、b 、c 三条直线成等角.求证:l⊥α.证明:分别在a 、b 、c 上取点A 、B 、C 并使AO=BO=CO.设l 经过O ,在l 上取一点P ,在△POA、△POB、△P OC 中,∵PO=PO=PO,AO=BO=CO ,∠POA=∠POB=∠POC, ∴△POA≌△POB≌△POC. ∴PA=PB=PC.取AB 的中点D,连接OD 、PD ,则OD⊥AB,PD⊥AB. ∵PD∩OD=D,∴AB⊥平面POD. ∵PO ⊂平面POD,∴PO⊥AB.同理,可证PO⊥BC.∵AB ⊂α,BC ⊂α,AB∩BC=B,∴PO⊥α,即l⊥α.若l 不经过点O 时,可经过点O 作l′∥l.用上述方法证明l′⊥α, ∴l⊥α. 知能训练如图10,已知正方体ABCD —A 1B 1C 1D 1的棱长为a, (1)求证:BD 1⊥平面B 1AC; (2)求B 到平面B 1AC 的距离.图10(1)证明:∵AB⊥B 1C ,BC 1⊥B 1C,∴B 1C⊥面ABC 1D 1. 又BD 1⊂面ABC 1D 1,∴B 1C⊥BD 1. ∵B 1B⊥AC,BD⊥AC,∴AC⊥面BB 1D 1D.又BD 1⊂面BB 1D 1D,∴AC⊥BD 1. ∴BD 1⊥平面B 1AC.(2)解:∵O∈BD,∴连接OB 1交BD 1于E. 又O ∈AC ,∴OB 1⊂面B 1AC.∴BE⊥OE,且BE 即为所求距离. ∵1BD BD OB BE =,∴BE=1BD BD ·OB=a a a a 332232=∙.拓展提升已知在梯形ABCD 中,A B∥CD,CD 在平面α内,AB∶CD=4∶6,AB 到α的距离为10 cm ,求梯形对角线的交点O 到α的距离.图11解:如图所示,过B 作BE⊥α交α于点E ,连接DE, 过O 作OF⊥DE 交DE 于点F,∵AB∥CD,AB ⊄α,CD ⊂α,∴AB∥α.又BE⊥α, ∴BE 即为AB 到α的距离,BE=10 cm 且∠BED=90°. ∵OF⊥DE,∴OF∥BE,得BDODBE OF =. ∵AB∥CD,∴△AOB∽△COD.∴46==AB CD OB OD ,得53106==BD OD . 又BD ODBE OF =,BE=10 cm, ∴OF=53×10=6(cm ).∵OF∥BE,BE⊥α.∴OF⊥α,即OF 即为所求距离为6 cm. 课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题. 作业课本习题2.3 B 组1、2.设计感想线面关系是线线关系和面面关系的桥梁和纽带,空间中直线与平面垂直的性质定理不仅是由线面关系转化为线线关系,而且将垂直关系转化为平行关系,因此直线与平面垂直的性质定理在立体几何中有着特殊的地位和作用,因此它是高考考查的重点.本节不仅选用了大量经典好题,还选用了大量的2007高考模拟题,相信能够帮助大家解决立体几何中的重点难点问题.。

高中数学 2.3.3-2.3.4直线与平面垂直的性质 平面与平面垂直的性质课件 新人教A版必修2

高中数学 2.3.3-2.3.4直线与平面垂直的性质 平面与平面垂直的性质课件 新人教A版必修2

试判断直线
a与平面β的位置关系。
β B α A
a
学法小结
1. 直线与平面垂直的性质; 2. 平面与平面垂直的性质。
例题精析 例1:如图,在正方体ABCD-A′B′C′D′ 中,求证:平面ACC′A′⊥平面A′BDC′。
D′ A′
B′
C′
D
A B
C
B. 研读教材P71: 1. 平面与平面垂直的性质; 2. 平面与平面垂直的性质证明体现了“线面” 维度间怎样的联系?
3. 例题精析:
(1)P72 例4,如图,已知平面α、β, α⊥β,直线a满足α⊥β,
a
α,试判断直线a与平面
α a β
α的位置关系。

(2)P72
探究,平面α、β,直线a,且α⊥β=AB,a //α,a ⊥ AB,
此ppt下载后可自行编辑
高中数学课件
知识回顾 1. 直线与平面、平面与平面垂直的判定; 2. 直线、平面间所成的三类角的研究方法。
. 直线与平面垂直的性质; 2. 研究直线与平面垂直的性质的证明,体会 几何证明的方法及维度的选择?
3. 自我检测:
(1)教材P71练习部分; (2)教材P71探究部分。

2.3.3直线与平面2.3.4平面与平面垂直的性质(1)学案(含解析)新人教A版必修2

2.3.3直线与平面2.3.4平面与平面垂直的性质(1)学案(含解析)新人教A版必修2

2.3.3 & 2.3.4 直线与平面、平面与平面垂直的性质第一课时 直线与平面、平面与平面垂直的性质[提出问题]世界上的高楼大厦太多了:中国上海中心大厦632米,天津高银117大厦621米,位于深圳的平安国际金融大厦600米(如右图).问题1:上海中心大厦外墙的每列玻璃形成的直线与地面有何位置关系?提示:垂直.问题2:每列玻璃形成的直线是什么位置关系? 提示:平行. [导入新知]直线与平面垂直的性质定理(1)文字语言:垂直于同一个平面的两条直线平行. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b .(4)作用:①线面垂直⇒线线平行; ②作平行线. [化解疑难]对于线面垂直的性质定理的理解(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.[提出问题]教室内的黑板所在的平面与地面所在的平面垂直.问题1:在黑板上任意画一条线与地面垂直吗? 提示:不一定,也可能平行、相交(不垂直). 问题2:怎样画才能保证所画直线与地面垂直? 提示:只要保证所画的线与两面的交线垂直即可. [导入新知]平面与平面垂直的性质定理 (1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂αa ⊥l⇒a ⊥β.(4)作用:①面面垂直⇒线面垂直; ②作面的垂线. [化解疑难]对面面垂直的性质定理的理解 (1)定理成立的条件有三个: ①两个平面互相垂直; ②直线在其中一个平面内; ③直线与两平面的交线垂直.(2)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直. (3)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.[例1] 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE .[解] 证明:取CE 的中点G ,连接FG ,BG ,AF .∵F 为CD 的中点,∴GF ∥DE , 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE .则GF ∥AB . 又∵AB =12DE ,∴GF =AB .则四边形GFAB 为平行四边形.于是AF ∥BG . ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF .又∵CD ∩DE =D ,CD ,DE ⊂平面CDE ,∴AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE . [类题通法]1.此类问题是证明两个平面垂直比较难的问题,证明时要综合题目中的条件,利用条件和已知定理来证,或从结论出发逆推分析.2.若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行, 可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.[活学活用]如图,在四棱锥P ­ABCD 中,底面ABCD 为菱形,PB ⊥平面ABCD .(1)若AC =6,BD =8,PB =3,求三棱锥A ­PBC 的体积; (2)若点E 是DP 的中点,证明:BD ⊥平面ACE . 解:(1)∵四边形ABCD 为菱形, ∴BD 与AC 相互垂直平分,∴底面ABCD 的面积S 菱形ABCD =12×6×8=24,∴S △ABC =12S 菱形ABCD =12.又PB ⊥平面ABCD ,且PB =3,∴三棱锥A ­PBC 的体积V A ­PBC =V P ­ABC =13×PB ×S △ABC =12.(2)证明:如图,设BD 与AC 相交于点O ,连接OE ,∵O 为BD 的中点,E 是DP 的中点,∴OE ∥PB . 又PB ⊥平面ABCD ,∴OE ⊥平面ABCD . ∵BD ⊂平面ABCD ,∴OE ⊥BD , 由(1)知AC ⊥BD ,又AC ∩OE =O , ∴BD ⊥平面ACE .[例2] 如图所示,P 是四边形ABCD 所在平面外的一点,四边形ABCD 是∠DAB =60°,且边长为a 的菱形.侧面PAD 为正三角形,其所在平面垂直于底面ABCD .(1)若G 为AD 边的中点,求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB .[解] 证明:(1)连接PG ,由题知△PAD 为正三角形,G 是AD 的中点,则PG ⊥AD . 又∵平面PAD ⊥平面ABCD ,PG ⊂平面PAD ,∴PG ⊥平面ABCD . ∵BG ⊂平面ABCD , ∴PG ⊥BG .又∵四边形ABCD 是菱形, 且∠DAB =60°, ∴△ABD 是正三角形. 则BG ⊥AD .又∵AD ∩PG =G ,且AD ,PG ⊂平面PAD , ∴BG ⊥平面PAD .(2)由(1)可知BG ⊥AD ,PG ⊥AD .又∵BG ,PG 为平面PBG 内两条相交直线, ∴AD ⊥平面PBG .∵PB⊂平面PBG,∴AD⊥PB.[类题通法]证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理,本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.[活学活用]如图,菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF 的中点.(1)求证:平面AHC⊥平面BCE;(2)求此几何体的体积.解:(1)证明:连接AE,在菱形ABEF中,因为∠ABE=60°,所以△AEF是等边三角形.又因为H是线段EF的中点,所以AH⊥EF,所以AH⊥AB.因为平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,所以AH⊥平面ABCD,所以AH⊥BC.在直角梯形ABCD中,AB=2AD=2CD=4,∠BAD=∠CDA=90°,得到AC=BC=22,从而AC2+BC2=AB2,所以AC⊥BC.又AH∩AC=A,所以BC⊥平面AHC.又BC⊂平面BCE,所以平面AHC⊥平面BCE.(2)连接FC,因为V=V E­ACB+V F­ADC+V C­AEF,又易得S△ACB=4,S△ADC=2,S△AEF=43,所以V=V E­ACB+V F­ADC+V C­AEF=13(23×4+23×2+2×43)=2033.[例3] 已知:如图,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.[解] 证明:(1)在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G.∵平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.∵PA⊂平面PAC,∴DF⊥PA.同理可证,DG⊥PA.∵DG∩DF=D,∴PA⊥平面ABC.(2)连接BE并延长交PC于点H.∵E是△PBC的垂心,∴PC⊥BH.又∵AE是平面PBC的垂线,∴PC⊥AE.∵BH∩AE=E,∴PC⊥平面ABE,∴PC⊥AB.又∵PA⊥平面ABC,∴PA⊥AB.∵PA∩PC=P,∴AB⊥平面PAC.∴AB⊥AC,即△ABC是直角三角形.[类题通法]线线、线面、面面垂直关系的综合应用主要体现了转化思想.证明线面垂直常转化为线线垂直,证明面面垂直常转化为线面垂直.[活学活用]如图,在三棱锥P­ABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB;(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.证明:(1)∵E,F分别为AC,BC的中点,∴EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(2)∵PA=PC,E为AC的中点,∴PE⊥AC.又∵平面PAC⊥平面ABC,∴PE⊥平面ABC,∴PE⊥BC.又∵F为BC的中点,∴EF∥AB.∵∠ABC=90°,∴BC⊥EF.∵EF∩PE=E,∴BC⊥平面PEF.又∵BC⊂平面PBC,∴平面PBC⊥平面PEF.5.垂直性质定理应用的误区[典例] 已知两个平面垂直,有下列命题:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数是( )A.3 B.2C.1 D.0[解析] 如图,在正方体ABCD­A1B1C1D1中,对于①AD1⊂平面AA1D1D,BD⊂平面ABCD,AD1与BD是异面直线,所成角为60°,①错误;②正确.对于③,AD1⊂平面AA1D1D,AD1不垂直于平面ABCD;对于④,过平面AA1D1D内点D1作D1C.∵AD⊥平面D1DCC1,D1C⊂平面D1DCC1,∴AD⊥D1C.但D1C不垂直于平面ABCD,④错误.[答案] C[易错防范]对于④,很容易认为是正确的,其实与面面垂直的性质定理是不同的,“一个平面内垂直于交线的直线与另一个平面垂直”与“过一个平面内任意一点作交线的垂线,此垂线与另一个平面垂直”是不同的,关键是过点作的直线不一定在已知平面内.[成功破障]如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么( )A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ答案:A[随堂即时演练]1.下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案:D2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是( )A.若m⊂α,n⊂β,m∥n,则α∥βB.若n⊥α,n⊥β,m⊥β,则m⊥αC.若m∥α,n∥β,m⊥n,则α⊥βD.若α⊥β,n⊥β,m⊥n,则m⊥α答案:B3.若a,b表示直线(不重合),α表示平面,有下列说法:①a⊥α,b∥α⇒a⊥b;②a ⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.其中正确的是________(填序号).答案:①④4.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.答案:平行5.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1,求证:CF⊥平面BDE.证明:如图,设AC∩BD=G,连接EG,FG.由AB=2易知CG=1,则EF=CG=CE.又EF∥CG,所以四边形CEFG为菱形,所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF,所以BD⊥CF.又BD∩EG=G,所以CF⊥平面BDE.[课时达标检测]一、选择题1.若l,m,n表示不重合的直线,α表示平面,则下列说法中正确的个数为( )①l∥m,m∥n,l⊥α⇒n⊥α;②l∥m,m⊥α,n⊥α⇒l∥n;③m⊥α,n⊂α⇒m⊥n.A.1 B.2C.3 D.0答案:C2.如果直线a与平面α不垂直,那么平面α内与直线a垂直的直线有( )A.0条B.1条C.无数条D.任意条答案:C3.(浙江高考)设l是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β答案:B4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β答案:D5.如图,线段AB的两端在直二面角α­l­β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是( )A.30° B.45°C.60° D.75°答案:B二、填空题6.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB,则直线a与直线l的位置关系是________.答案:平行7.如图,四面体P­ABC中,PA=PB=13,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.答案:78.如图,已知六棱锥P­ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有______(把所有正确的序号都填上).答案:①④三、解答题9.如图,三棱锥P­ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.证明:∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊥AC,∴PA⊥平面ABC.又BC ⊂平面ABC,∴PA⊥BC.又∵AB⊥BC,AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,∴BC⊥平面PAB.又BC⊂平面PBC,∴平面PAB⊥平面PBC.10.如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明:(1)在四棱锥P­ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.- 11 -。

人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

3.[变条件]本例中的条件“AE⊥PB 于点 E, AF⊥PC 于点 F”,改为“E,F 分别是 AB, PC 的中点,PA=AD”,其他条件不变,求证: EF⊥平面 PCD.
证明:取 PD 的中点 G,连接 AG,FG. 因为 G,F 分别是 PD,PC 的中点, 所以 GF═∥12CD,又 AE═ ∥12CD,所以 GF═ ∥AE, 所以四边形 AEFG 是平行四边形,所以 AG∥EF. 因为 PA=AD,G 是 PD 的中点, 所以 AG⊥PD,所以 EF⊥PD, 易知 CD⊥平面 PAD,AG⊂平面 PAD, 所以 CD⊥AG,所以 EF⊥CD. 因为 PD∩CD=D,所以 EF⊥平面 PCD.
8.6 空间直线、平面的垂直 第1课时直线与直线垂直、直线与平面垂直的定义及判定
第八章 立体几何初步
考点
学习目标
核心素养
会用两条异面直线所成角的
直观想象、逻辑
异面直线所成的 定义,找出或作出异面直线
推理、

所成的角,会在三角形中求简
数学运算
单的异面直线所成的角
第八章 立体几何初步
考点
学习目标
核心素养
所以∠GFE(或其补角)就是异面直线 EF 与 AB 所成的角,EG =GF. 因为 AB⊥CD,所以 EG⊥GF. 所以∠EGF=90°. 所以△EFG 为等腰直角三角形. 所以∠GFE=45°, 即 EF 与 AB 所成的角为 45°.
直线与平面垂直的定义
(1)直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不可能( )
解析:当 l 与 α 内的一条直线垂直时,不能保证 l 与平面 α 垂 直,所以①不正确;当 l 与 α 不垂直时,l 可能与 α 内的无数条 平行直线垂直,所以②不正确,③正确.根据线面垂直的定义, 若 l⊥α,则 l 与 α 内的所有直线都垂直,所以④正确. 答案:③④

人教A版高中数学必修二《直线与平面垂直的判定》教学设计

人教A版高中数学必修二《直线与平面垂直的判定》教学设计

课题:2.3.1 《直线与平面垂直的判定》教学设计一、教学目标教学目标知识目标借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义.能力目标 通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念.情感目标 让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣. 重难点重点 操作确认并概括出直线与平面垂直的定义和判定定理.难点 操作确认并概括出直线与平面垂直的定义和判定定理及初步应用.法制渗透 无 教学方法 启发式 教学工具 三角形纸片二、教学设计活动名称 师生互动活动意图活动1[复习旧知引入课题]1.空间中一条直线与平面有哪几种位置关系?答案:直线在平面内、直线与平面平行、直线与平面相交.2. 直线和平面相交时,有一种特殊的位置关系是什么?(垂直) 是否也可以像直线与平面平行那样,也有一个判定定理呢? →引入课题:直线与平面垂直的判定(板书课题)1、答案让学生回答,教师引导和纠正.2、教师引导学生回忆,并对学生活动进行评价;学生回顾知识点时,可互相交流.结合学生已有知识,启发学生思考,激发学生学习兴趣.活动2[探究和证明判定定理]1.知识探究(一):直线与平面垂直的概念 (1)创设情境请同学们找出下图中线与面垂直的地方?(2)思考:如何定义一条直线与一个平面垂直?→通过动画的展示,让学生明白到底什么叫做直线与平面垂直.直线与平面垂直的定义:如果一条直线l 与平面α内的任意一条直线都垂直,则称这条直线与这个平面垂直.记作 α⊥l .l a若a l a l ⊥⇒⊂⊥αα,(线面垂直⇒线线垂直). (3)深入理解“线面垂直定义”教师引导学生去探索和发现直线与平面垂直的判定的证明方法。

让学生知道数学问题源于实际生活,培养学生证明直线与平面垂直的判定的方法,证明思路。

Pα①.如果一条直线与一个平面垂直,那么它与平面内所有的直线都垂直( )②.如果一条直线与平面内无数条直线都垂直,那么它与平面垂直( ) 答案:①√,②×2、知识探究(二):直线与平面垂直的判定定理 (1)思考:是否把平面中的直线一一找出,才能证明直线与平面垂直,该怎样判定直线与平面垂直呢? (2)探究活动:请同学们拿出一块三角形的纸片,做以下试验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触). ①折痕AD 与桌面垂直吗? ②如何翻折才能保证折痕AD 与桌面所在平面肯定垂直 答案:当BC AD ⊥时AD 作为BC 边上的高时,AD ⊥α,这时AD ⊥ BC ,即AD ⊥BD ,AD ⊥CD ,BD ∩CD=D.结论:AD ⊥BD ,AD ⊥CD ,BD ∩CD=D ,有AD ⊥α. (3) 直线与平面垂直的判定定理:一条直线和一个平面内的两条相交直线都垂直,则这条直线垂直于这个平面.n m m n P l l m l n ααα⊂⎫⎪⊂⎪⎪⋂=⇒⊥⎬⎪⊥⎪⊥⎪⎭线线垂直⇒线面垂直活动名称师生互动 活动意图αPnml活动3[学以致用]例1.如图,已知a ∥b 、a ⊥α.求证:b ⊥α.分析已知条件 → 讨论如何利用直线与平面垂直的判定定理 → 示范格式 → 得出结论 证明:在平面α内作两条相交直线n m ,. 因为直线α⊥a ,根据直线与平面垂直的定义知n a m a ⊥⊥,.又因为b ∥a 所以.,n b m b ⊥⊥又因为n m ,是平面α内的两条相交直线, 所以α⊥b .结论:若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.例2.如图,已知OA 、OB 、OC 两两垂直.(1)求证:OA ⊥平面OBC (2)求证:OA ⊥BC.B分析已知条件 → 讨论如何利用直线与平面垂直的判定定理 → 示范格式答案:(1)OC OB OA ,, 两两垂直 OC OA OB OA ⊥⊥∴, 又O OC OB =⋂ ⊥∴OA 平面OBCBCOA OBCBC OBC OA ⊥∴⊂⊥ , )2(平面平面教师引导学生由已知条件,并结合判定定理去解决问题;并让抽学生解答, 教师应该关注并发现学生的做题步骤,对做得好的学生应该给予表扬.同时强调,立体几何是一门数与形结合的学科.教师引导学生发现答案,并让学生上黑板来板书解答过程。

2.3.3-4 直线与平面垂直的性质、平面与平面垂直的性质 学案(人教A版必修2)

2.3.3-4 直线与平面垂直的性质、平面与平面垂直的性质 学案(人教A版必修2)

2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质【课标要求】1.掌握直线与平面垂直,平面与平面垂直的性质定理. 2.能运用性质定理解决一些简单问题. 【核心扫描】1.线面垂直、面面垂直性质定理的应用.(重点) 2.线线、线面、面面垂直关系的相互转化.(难点)新知导学1.温馨提示:线与直线平行的结论.(2)该定理可用来判定两直线平行,揭示了“平行”与“垂直”这两种特殊位置关系之间的转化.温馨提示 其他性质(1)如果两个平面垂直,那么经过第一个平面内一点且垂直于第二个平面的直线在第一个平面内.即α⊥β,A ∈α,A ∈b ,b ⊥β⇒b ⊂α.(2)如果两个平面互相垂直,那么其中一个平面的垂线平行于另一个平面或在另一个平面内.即α⊥β,b ⊥β⇒b ∥α或b ⊂α.互动探究探究点1 垂直于同一直线的两个平面有什么关系? 提示 平行(可用此结论判定面面平行).探究点2 两个平面均垂直于一个平面,这两个平面有什么关系? 提示 关系不能确定,平行、相交(垂直)都有可能.类型一利用线面垂直性质定理证平行问题【例1】如图所示,在正方体A1B1C1D1-ABCD中,EF与异面直线AC,A1D都垂直相交.求证:EF∥BD1.[思路探索]分别证明EF、BD都垂直平面ACB1即可.1证明如图所示:连接AB1,B1D1,B1C1,BD.∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.又AC⊥BD,DD1∩BD=D,∴AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,∴AC⊥BD1.同理可证BD1⊥B1C.又B1C∩AC=C,∴BD1⊥平面AB1C.∵EF⊥AC,EF⊥A1D,又A1D∥B1C,∴EF⊥B1C.又AC∩B1C=C,∴EF⊥平面AB1C,∴EF∥BD1.[规律方法]线面垂直的性质是证明线线平行的方法之一,还可进而证明线面、面面平行.【活学活用1】如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE =AB=2a,CD=a,F为BE的中点.求证:DF∥平面ABC.证明取AB的中点G,连接FG、GC,则FG为△BEA中位线,∴FG∥AE.∵AE⊥平面ABC,FG∥AE,∴FG⊥平面ABC.∵FG⊥平面ABC,CD⊥平面ABC,∴FG ∥CD .又FG =12AE =CD =a .∴四边形CDFG 为平行四边形,FD ∥CG .∵FD ∥CG .CG ⊂平面ABC ,∴DF ∥平面ABC . 类型二 利用面面垂直的性质定理证垂直问题【例2】 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. 已知α⊥γ,β⊥γ,α∩β=l . 求证:l ⊥γ.[思路探索] 根据直线和平面垂直的判定定理,可在γ内构造两相交直线分别与平面α,β垂直;或者由面面垂直的性质易在α,β内作出平面γ的垂线,再设法证明l 与其平行即可.证明 法一 在γ内取一点P ,作P A 垂直α与γ的交线于A ,PB 垂直β与γ的交线于B ,则P A ⊥α,PB ⊥β.∵l =α∩β,∴l ⊥P A ,l ⊥PB .又P A ∩PB =P ,且P A ⊂γ,PB ⊂γ, ∴l ⊥γ.法二 在α内作直线m 垂直于α与γ的交线,在β内作直线n 垂直于β与γ的交线, ∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n .又n ⊂β,∴m ∥β.又m ⊂α,α∩β=l , ∴m ∥l .∴l ⊥γ.[规律方法] 面面垂直的性质是作平面的垂线的重要方法,因此,在有面面垂直的条件下,若需要平面的垂线,要首先考虑面面垂直的性质.【活学活用2】 如图,在三棱锥P ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB .∴AD ⊥平面PBC .又BC ⊂平面PBC ,∴AD ⊥BC .又∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB ,∴BC ⊥AB .类型三 利用面面垂直的性质定理求二面角【例3】 在平面四边形ABCD 中,已知AB =BC =CD =a ,∠ABC =90°,∠BCD =135°,沿AC 将四边形折成直二面角B -AC -D .(1)求证:平面ABC ⊥平面BCD ;(2)求平面ABD 与平面ACD 所成的角的度数. [思路探索] 关于折叠问题,关键明确在折叠前后哪些量发生变化,如线与线的位置关系,角的大小等,要抓住不变量来解题.(1)证明 如图所示,其中图(1)是平面四边形,图(2)是折后的立体图.在四边形ABCD 中, ∵AB =BC ,AB ⊥BC , ∴∠ACB =45°,而∠BCD =∠ACB +∠ACD =135°, ∴∠ACD =90°,即CD ⊥AC .又平面ABC 与平面ACD 的二面角的平面为直角,且平面ABC ∩平面ACD =AC ,∴CD ⊥平面ABC ,又CD ⊂平面BCD ,∴平面ABC ⊥平面BCD . (2)解 过点B 作BE ⊥AC ,E 为垂足,则BE ⊥平面ACD . 又过点E 在平面ACD 内作EF ⊥AD ,F 为垂足,连接BF . 由已知可得BF ⊥AD , ∴∠BFE 是二面角B -AD -C 的平面角.∵E 为AC 的中点,∴AE =12AC =22a .又sin ∠DAC =CD AD =33,EF =33AE ,∴EF =22a ·33=66a ,tan ∠BFE =BEEF= 3.∴∠BFE =60°,即平面ABD 与平面ACD 所成的角的度数为60°.[规律方法] 当一个平面与二面角的一个面垂直时,常利用面面垂直的性质作出二面角面的垂线,而作出平面角.【活学活用3】 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为正方形,且P A =AD =2,E 、F 分别为AD 、PC 中点.(1)求异面直线EF 和PB 所成角的大小; (2)求证:平面PCE ⊥平面PBC ; (3)求二面角E -PC -D 的大小.(1)解 如图,取PB 的中点G ,连接FG 、AG , ∵E 、F 分别为AD 、PC 中点,∴FG 綉12BC ,AE 綉12BC ,∴FG 綉AE ,∴四边形AEFG 是平行四边形,∴AG ∥FE ,∵P A =AD =AB ,∴AG ⊥PB ,即EF ⊥PB , ∴EF 与PB 所成的角为90°.(2)证明 由(1)知AG ⊥PB ,AG ∥EF , ∵P A ⊥平面ABCD ,∴BC ⊥P A , ∵BC ⊥AB ,AB ∩BC =B , ∴BC ⊥平面P AB ,∴BC ⊥AG ,又∵PB ∩BC =B , ∴AG ⊥平面PBC , ∴EF ⊥平面PBC , ∵EF ⊂平面PCE ,∴平面PCE ⊥平面PBC .(3)解 作EM ⊥PD 于点M ,连接FM , ∵CD ⊥平面P AD ,∴CD ⊥EM , ∴EM ⊥平面PCD ,EM ⊥PC ,由(2)知EF ⊥平面PBC ,∴EF ⊥PC , 又EM ∩EF =E , ∴PC ⊥平面EFM , ∴FM ⊥PC ,∴∠MFE 是二面角E -PC -D 的平面角或其补角.∵P A =AD =2,∴EF =AG =2,EM =22,∴sin ∠MFE =EM EF =12,∴∠MEF =30°,即二面角E -PC -D 的大小为30°. 方法技巧 转化思想在垂直关系转换中的应用 线线垂直、线面垂直和面面垂直的转换关系如下:当证明垂直关系时,要灵活地应用垂直之间的转换关系.当运用平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.【示例】 如图所示,在四棱锥V -ABCD 中,底面四边形ABCD 是正方形,侧面三角形VAD 是正三角形,平面VAD ⊥底面ABCD .(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的平面角的正切值. [思路分析] (1)用面面垂直的性质 (2)由(1)利用垂线法作平面角.(1)证明 ∵底面四边形ABCD 是正方形, ∴AB ⊥AD .又∵平面VAD ⊥底面ABCD ,AB ⊂平面ABCD ,且平面VAD ∩平面ABCD =AD , ∴AB ⊥平面VAD .(2)解 如图所示,取VD 的中点E ,连接AE ,BE . ∵△VAD 是正三角形,∴AE ⊥VD ,AE =32AD .∵AB ⊥平面VAD , ∴AB ⊥VD .又∵AE ∩AB =A , ∴VD ⊥平面ABE .∴BE ⊥VD .因此∠AEB 就是所求二面角的平面角,于是tan ∠AEB =233.[题后反思] 证明垂直问题,要结合条件充分利用已知或证出的垂直关系的性质灵活地进行垂直间的转化.课堂达标1.平面α⊥平面β,a⊥α,则有().A.a∥βB.a∥β或a⊂βC.a与β相交D.a⊂β解析由已知易得:a∥β或a⊂β.答案 B2.(2012·济宁高一检测)已知平面α⊥平面β,则以下说法正确的个数是().①平面α内的直线必垂直平面β内的无数条直线;②在平面β内垂直于平面α与平面β的交线的直线必垂直于α内的任意一条直线;③α内的任意一条直线必垂直于β;④过β内的任意一点作平面α与平面β的交线的垂线,此直线必垂直于α.A.4 B.3C.2 D.1解析①②正确,③④不正确.答案 C3.已知a、b为直线,α、β为平面.在下列四个命题中,正确的命题是________.①若a⊥α,b⊥α,则a∥b;②若a∥α,b∥α,则a∥b;③若a⊥α,a⊥β,则α∥β;④若α∥b,β∥b,则α∥β.解析由“垂直于同一平面的两直线平行”知①真;由“平行于同一平面的两直线平行或异面或相交”知②假;由“垂直于同一直线的两平面平行”知③真;易知④假.答案①③4.已知α、β、γ是三个互不重合的平面,l是一条直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两个点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析①也可能是直线l⊂α;②正确;③中的两个点可以在平面的两侧;④正确.答案②④5.如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,P A⊥平面ABCD,且P A =AB,点E是PD的中点.(1)求证:AC⊥PB;(2)求证:PB∥平面AEC;(3)求二面角E-AC-B的大小.(1)证明(1)由P A⊥平面ABCD可得P A⊥AC.又AB⊥AC,所以AC⊥平面P AB,所以AC⊥PB.(2)证明如图,连接BD交AC于点O,连接EO,则EO是△PDB的中位线,∴EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(3)解如图,取AD的中点F,连接EF,FO,则EF是△P AD的中位线,∴EF∥P A.又P A⊥平面ABCD,∴EF⊥平面ABCD.同理,FO 是△ADC 的中位线, ∴FO ∥AB ,∴FO ⊥AC . 因此,∠EOF 是二面角E -AC -D 的平面角.又FO =12AB =12P A =EF ,∴∠EOF =45°.而二面角E -AC -B 与二面角E -AC -D 互补,故所求二面角E -AC -B 的大小为135°.课堂小结1.直线与平面垂直的性质定理是平行关系与垂直关系的完美结合,利用垂直关系可判断平行,反过来由平行关系也可判定垂直,即两条平行直线中的一条垂直于一个平面,则另一条直线也垂直于这个平面.2.面面垂直的性质定理是判断线面垂直的又一重要定理.3.灵活进行线线、线面、面面垂直关系之间的转换,是判定和运用垂直关系的关键.。

2.3.直线与平面垂直的性质-人教A版必修二教案

2.3.直线与平面垂直的性质-人教A版必修二教案

2.3 直线与平面垂直的性质-人教A版必修二教案背景直线与平面是空间中常见的几何学概念。

在立体几何学中,直线与平面之间的关系是非常重要的性质。

垂直是基础的几何学概念之一,直线与平面的垂直关系也是很重要的。

目标1.学习直线与平面相交的情况;2.理解直线与平面垂直的概念;3.学会利用向量法、坐标法和公式法判定直线与平面的垂直关系。

活动1.学生通过阅读教材,回答下列问题:•直线与平面重合一定垂直?•直线与平面垂直,必然相交吗?•直线与平面相交,是否就一定垂直?2.教师向学生介绍直线与平面垂直的定义及性质,引导学生理解该概念。

3.教师使用向量法、坐标法和公式法分别说明怎样判断直线与平面的垂直关系,并且通过实例引导学生解决相关问题。

例如,对于以下直线和平面:直线 l: (x, y, z) = (1, 1, 1) + t(1, -1, 1)平面 A: 2x + y - z = 3通过向量法,我们可以求出直线 l 的方向向量为 (1, -1, 1),平面A 的法向量为(2, 1, -1)。

由于这两个向量的点积为 0,所以直线 l 与平面 A 垂直。

通过坐标法,我们可以将直线上的点代入平面的方程,计算得到一个数值,如果该值为 0,则直线与平面垂直;反之,则不垂直。

通过公式法,我们可以利用直线和平面的法向量计算它们之间的夹角,并判断垂直关系。

4.学生独立完成练习题,巩固所学知识。

总结通过本课程的学习,学生了解了直线与平面的基本概念和垂直关系,并掌握了判断直线与平面垂直关系的方法和技巧。

在实际应用中,这些知识和方法将发挥重要作用。

高中数学 2.32.3.3直线与平面垂直、平面与平面垂直的性质课件 新人教A版必修2

高中数学 2.32.3.3直线与平面垂直、平面与平面垂直的性质课件 新人教A版必修2

而 FE⊂平面 DEF,DE⊂平面 DEF,EF∩DE=E.

PB⊂平面 PGB,GB⊂平面 PGB,PB∩GB=B,
目 链

∴平面 DEF∥平面 PGB.
由(1)得 PG⊥平面 ABCD,而 PG⊂平面 PGB,
∴平面 PGB⊥平面 ABCD, ∴平面 DEF⊥平面 ABCD.
第三十四页,共42页。
PC=PC,
所以 Rt△PBC≌Rt△PAC,
栏 目

所以 AC=BC.

如图,取 AB 中点 D,连接 PD,CD,
则 PD⊥AB,CD⊥AB,又因为 PD∩CD=D,所以 AB⊥平
面 PDC,所以 AB⊥PC.
第三十七页,共42页。
跟踪 训练
(2)解析:作 BE⊥PC,垂足为 E,连接 AE.
目 链

(pàndìng)定理和性质定理间的相互联系.
第三页,共42页。
栏 目 链 接
第四页,共42页。
基础 梳理
1.直线与平面垂直的性质定理.
文字语言
垂直于同一个平面的两条直
平行线(_p_í_n_g_x_íng)




符号语言
a∥b
第五页,共42页。
基础 梳理
图形语言 栏 目 链 接
作用
①线面垂直⇒线线平行; ②作平行线
栏 目 链 接
(1)证明:BD⊥平面 PAC; (2)若 PA=1,AD=2,求二面角 BPCA 的正切值.
第二十九页,共42页。
跟踪
训练
证明:∵PA⊥平面 ABCD,∴PA⊥BD.
∵PC⊥平面 BDE,∴PC⊥BD.
又∵PA∩PC=P,BD⊄平面 PAD.

《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》教学设计

《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》教学设计

《空间中直线、平面的垂直关系》教学设计一、教材内容解析本节课的内容是探究空间直线与平面、平面与平面垂直的性质,选自人教A 版教材《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》。

空间中直线、平面的垂直关系是一种非常重要的的位置关系,它不仅应用广泛,而且是空间问题平面化的典范。

这类问题求解的关键是根据线面、面面之间的互化关系,借助创设辅助线和面,找出符号语言和图形语言之间的关系。

通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。

本节内容是学习了线面垂直和面面垂直判定之后的进一步探究,进一步巩固“观察模型——直观感知——操作确认——推理证明——拓展应用”定理学习模式,培养学生空间概念,空间想象能力以及逻辑推理能力。

二、教学目标设置根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定以下教学目标:(1)知识与技能目标:①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;②会证明性质定理,并能运用性质定理解决一些简单问题。

(2)过程与方法目标:①通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力;②了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握转化思想在解决问题中的运用;③通过类比空间中直线与平面的平行关系、平面与平面的平行关系的学习方法来探究本节课中的垂直关系。

(3)情感态度与价值观目标:①让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣;②提高学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新精神;③进一步体会几何中的公理化体系,提升学生的科学素养。

教学重点:学生经历“观察模型——直观感知——操作确认——推理证明——拓展应用”定理学习过程,培养空间想象能力和逻辑推理能力,感悟数学中的“转化”的思想,并能类比此方法用于其它数学命题的学习,解决更多的生活中的实际问题,所以性质定理的发现及证明是本节课的重点。

[教案精品]新课标高中数学人教A版必修二全册教案2.3.3直线与平面垂直、平面与平面垂直的性质(

[教案精品]新课标高中数学人教A版必修二全册教案2.3.3直线与平面垂直、平面与平面垂直的性质(

直线与平面垂直、平面与平面垂直的性质第三课时(一)教学目标.知识与技能1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;1()能运用性质定理解决一些简单问题;2(.)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系3(.过程与方法2获得对性质定理正确性的认识;进行操作确认,让学生在观察物体模型的基础上,)1(.情感、态度与价值观3,培养学生空间概念、空间想象能力以及逻辑通过“直观感知、操作确认、推理证明”.推理能力(二)教学重点、难点.两个性质定理的证明(三)教学方法学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.设计意图师生互动教学内容教学过程判定直线和平面垂:1问题直的方法有几种?固巩习复讨学生思考、. 师投影问题若一条直线和一个:2问题新课导入以旧带新论问题,教师点出主题可得到什么结论?若平面垂直,直垂面平个一同与线直条两呢?模助借、′A A生:借助长方体模型直线与平面垂直的性质一、培型教学,所在直线都垂直′DD、′CC、′BB定理已问题:.1直何几养它们之间相互平,ABCD于平面,.观能力.行,所以结论成立和平b、a知直线反师:怎么证明呢?由于无果如,面题证法证,那探索新知难归入到一个b、a法把两条直线个一是平面内,故无法应用平行直线一定平行吗?b、a么直线采用以点,已知的判定知识,也无法应用公理教师为主,“反我们采用有这种情况下,,4.a∥b求证:一到起能证法”,a不平行于b证明:假定作范示个设并提高用,. 师生边分析边板书. 上课效率平行的a与直线O是经过′b直线,′b∥a∵a⊥′b∴、b的两线O即经过同一点′b垂直这是不可能的,都与.a∥b因此.直线与平面垂直的性质2定理垂直于同一个平面的两条直线平行线线简化为:线面垂直平行教师投影问题,学生思考、平面与平面平行的性质二、观察、讨论,然后回答问题定理生:借助长方体模型,在.问题1D′C′B′A – ABCD长方体黑板所在平面与地面所在中,面′你能否在黑板上画一平面垂直,,AD⊥A′A,ABCD⊥面′ADD′A条A′A⊥AB ?直垂面地与线直∵例本ABCD⊥面A′A∴故只需在黑板上作一直线点难的题,设 1 例.辅构与两个平面的交线垂直即可造是,CD⊥AB,,师:证明直线和平面垂直采用助线,探索新知AB求证B = CD⊥一般都转化为证直线和平面内合综析分需,CD⊥AB现两条交线垂直,好较能法AB找一条直线与有条件垂直,这决解地用利否能,用有没还个问题垂直AB构造一条直线与⊥BE内引直线证明:在是二ABE,则∠B,垂足为CD呢?⊥BE作B内过在面生:由.角面平的角面⊥AB又,BE⊥AB,知即可CD.内的两条相是CD与师:为什么呢?⊥AB交直线,所以学生分析,教师板书.平面与平面垂直的性质3定理则一个平面两个平面垂直,内垂直于交线的直线与另一个平面垂直线面简记为:面面垂直 . 垂直并读题2师投影例如2 例生:平行图,已知平面,,师:证明线面平行一般策足满a线直略是什么?a,试判断直线,生:转证线线平行.的位置关系与平面a∥b师:假设内一条直线与内作垂直于解:在的位置关系如何?与b则,b交线的直线生:垂直学所固巩,所以因为,怎师:已知训练知识,.b∥a,所以因为?b样作直线 . 化归能力、垂直于b内作在生:.∥a所以,又因为 . 的交线即可平行与平面a即直线,⊥平面设平面3 例学生写出证明过程,教师巩学典例分析所固试判断,a的垂线作平面P点投影训练知识,师投影例的位置关系?与平面a直线并读题,师生3想思类分,c=证明:如图,设共同分析思路,完成证题过程,力能归化 . 然后教师给予评注在平P过点的维思及师:利用“同一法”证明内作直面灵活性. b线问题主要是在按一般途径不易,根c⊥完成问题的情形下,所采用的与平平面据一种数学方法,这里要求做到的性垂直面一是作出符合题意的直线.两点有理定质与直b不易想到,二是证直线因为过一点有且只有一条重合,相对容易一些,本a线a所以直线垂直,直线与平面题注意要分类讨论,其结论也 .垂合,因此b与直线. 可作性质用学生独立完成判断下列命题是否正确,.1 所学巩固、错误的“√”正确的在括号内画随堂练习知识. 画“×”垂直于同一条直线.a)1()√ ( . 的两个平面互相平行.垂直于同一个平面的两b . 条直线互相平行)√ (.一条直线在平面内,另c则这一条直线与这个平面垂直,)√ (. 两条直线互相垂直已知直线)2(和平面b,a与b,则⊥a,b⊥a,且的位置关系是. . b或∥b答案:的)下列命题中错误1(.2..)A 是(,⊥平面.如果平面内所有直线垂直于那么平面平面,⊥平面.如果平面内一定存在直线平那么平面行于平面不垂直平面.如果平面C内一定不存在直那么平面,线垂直于平面.如果平面D,⊥平面,那,⊥平面平面么)已知两个平面垂直,2()B 下列命题(①一个平面内已积压直线必垂直于另一平面内的任意一. 条直线②一个平面内的已知直线必垂直于另一个平面的无数条 . 直线③一个平面内的任意一条 . 直线必垂直于另一个平面④过一个平面内任意一点则此垂线必垂直作交线的垂线, . 于另一个平面)(其中正确命题的个数是.D 1 .C 2 .B 3 .A0 分别在正方b,a 设直线.3中两个不同′D′C′B′A –ABCD体,a,b∥a欲使的面所在平面内,应满足什么条件?b 答案:不相交,不异面,直线,.已知平面4∥a,,,且与直a,试判断直线AB⊥a,的位置关系线相交或在平面平行、答案:内回顾、归纳反思、.直线和平面垂直的性质1高提识知学生归纳总结,教材再补.平面和平面垂直的性质2 归纳总结线面垂直.面面垂直3合整我自. 充完善能的识知线线垂直 . 力固化知识学生独立完成习案第三课时2.3 课后作业提升能力备选例题AC另一条直角边放置桌面,BC的直角边ABC把直角三角板 1 例垂直,a与AB内一条直线,若斜边是a垂直,与桌面所在的平面是否与BC则垂直?【解析】平面平面也垂直,其实质是三垂线定理及逆定理,与AB垂直,同理可得与BC【评析】若.线线垂直”→线面垂直→“线线垂直证明过程体现了一种重要的数学转化思想方法:求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已 2 例.r⊥l,求证:l= ∩,r⊥,r⊥知垂、内构造两相交直线分别与平面r根据直线和平面垂直的判定定理可在【分析】与其平行即可.l的垂线,再设法证明r内作出平面、直.或由面面垂直的性质易在过.P内任取一点r在,b = r∩,a = r∩设如图,法一:【证明】.b⊥n,a⊥m内作直线r在P点,r⊥,r⊥∵.(面面垂直的性质)⊥n,a⊥m∴,l= ∩又,m⊥l∴r n,m,P = n∩m.又n⊥.r⊥l∴.b⊥n内作,在a⊥ = m内作,在br∩,a = r∩法二:如图,设,r⊥,r⊥∵n,r⊥m∴.r⊥,m,n,又n∥m∴,m,l= ∩,又∥m∴,l∥m∴.r⊥l,∴r⊥m又证法一充分利用面充分利用面面垂直的性质构造线面垂直是解决本题的关键.【评析】面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益的.。

最新人教版高中数学必修2第二章直线与平面垂直的性质、平面与平面垂直的性质

最新人教版高中数学必修2第二章直线与平面垂直的性质、平面与平面垂直的性质

求证:(1)BG⊥平面 PAD; (2)AD⊥PB. 思路分析:(1)可利用面面垂直的性质定理去证明;(2)可通过垂直关 系来转化.
章末整合提升
问题导学 当堂检测
知识网络构建 课前预习导学
KEQIAN YUXI DAOXUE
专题归纳整合 课堂合作探究
KETANG HEZUO TANJIU
预习交流 2
(1)若两个平面互相垂直,一条直线与一个平面垂直,那么这条直线 与另一个平面的关系是什么? 提示:若 α⊥β,l⊥α,在 β 内作 a 与 α,β 的交线垂直,则 a⊥α,∴ a∥l.∴ l∥β 或 l⊂ β,即直线 l 与平面 β 平行或在平面 β 内. (2)两个平面垂直,其中一个平面内的任一条直线与另一个平面一 定垂直吗? 提示:不一定.只有在一个平面内垂直于两平面交线的直线才能垂 直于另一个平面.
1 2 1 2 1 2
章末整合提升
问题导学 当堂检测
知识网络构建 课前预习导学
KEQIAN YUXI DAOXUE
专题归纳整合 课堂合作探究
KETANG HEZUO TANJIU
迁移与应用 若 a,b 表示直线,α 表示平面,下列命题中正确的个数为( ⊥α,b⊥α⇒ a∥b. A.1 答案:B 解析:由线面垂直的性质知①,④正确.②中 b 可能满足 b⊂ α,故②错 误;③中 b 可能与 α 相交(不垂直),也可能平行,故③不正确.故选 B. 线面垂直的性质也是得到线线平行的一个方法 ,在有线面垂直的 条件下,要得平行线,可先考虑线面垂直的性质. B.2 C.3 D.0 ) ①a⊥α,b∥α⇒ a⊥b;②a⊥α,a⊥b⇒ b∥α;③a∥α,a⊥b⇒ b⊥α;④a
章末整合提升
目标导航 预习导引

2.3.2《线面垂直、面面垂直的性质定理》教学设计(人教A版必修2)

2.3.2《线面垂直、面面垂直的性质定理》教学设计(人教A版必修2)

2.3.2 《线面垂直、面面垂直的性质定理》教学设计【教学目标】(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。

【导入新课】问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢? 新授课阶段1. 线面垂直的性质定理观察长方体模型中四条侧棱与同一个底面的位置关系。

如图,在长方体ABCD —A 1B 1C 1D 1中,棱AA 1、BB 1、CC 1、DD 1所在直线都垂直于平面ABCD ,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a ⊥α 、b ⊥α、那么直线a 、b 一定平行吗?(一定)我们能否证明这一事实的正确性呢?观察得到:线面垂直的性质定理:垂直于同一个平面的两条直线平行。

例1如图1,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2。

(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

图1(1)证明:由AB =AC ,D 是BC 的中点,得AD ⊥BC 。

又PO ⊥平面ABC ,得PO ⊥BC 。

因为PO ∩AD =O ,所以BC ⊥平面PAD 。

故BC ⊥PA 。

(2)如图,在平面PAB 内作BM ⊥PA 于M ,连接CM ,由(1)中知AP ⊥BC ,得AP ⊥平面BMC 。

又AP ⊂平面APC ,所以平面BMC ⊥平面APC 。

在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2,在Rt △PDB 中,PB 2=PD 2+BD 2,所以PB 2=PO 2+OD 2+DB 2=36,得PB =6,在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5,又cos ∠BPA =PA 2+PB 2-AB 22PA·PB =13, 从而PM =PBcos ∠BPA =2,所以AM =PA -PM =3。

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

高中数学《直线与平面垂直的判定》教学设计(全国一等奖)《普通高中课程标准实验教科书—数学必修(二)》人教A版直线与平面垂直的判定姓名:单位:《直线与平面垂直的判定(第一课时)》教学设计一、内容和内容解析:本节内容选自人教A版《普通高中课程标准实验教科书——数学必修(二)》第二章第三节:2.3.1直线与平面垂直的判定(第一课时),属于新授概念课.本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平面垂直的研究是直线与直线垂直研究的继续,也为平面与平面垂直的研究做了准备;判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,是本节课的重要任务.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,后续内容如空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习与研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此学习这部分知识有着非常重要的意义.二、目标和目标解析:《数学课程标准》中与本节课相关的要求是:① 在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面垂直位置关系的定义;② 通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定定理;③ 能运用已获得的结论证明一些空间位置关系的简单命题.本节课的课程标准分解如下:(1)从认知角度进行分解:(2)从能力角度进行分解:根据《课程标准》,依据教材内容和学生情况,确定本课时的学习目标为:(1)在直观认识和理解空间点、线、面的位置关系的基础上,抽象出直线与平面垂直的定义;(2)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;(3)能运用直线与平面垂直的定义和判定定理证明一些空间位置关系的简单命题.针对本节课的学习目标,我设计了如下的评价任务:评价任务一:能否从生活现象中直观感受到直线与平面垂直的形象,并将其抽象出直线与平面垂直的概念;评价任务二:学生积极参与,通过影子实验,在动手操作、思考、归纳等一系列活动中完成探索.评价任务三:能够从正反例中,通过对比归纳出直线与平面垂直的定义,并用自己的语言描述定义内容.评价任务四:能够根据定义得到直线与平面垂直时,直线与平面内任意一条直线垂直的结论,并写出符号语言,了解定义的双向叙述功能.评价任务五:能够利用将无限转化为有限的思想,寻找判定直线与平面垂直的可能性假设. 评价任务六:能在实验操作中,确认直线与平面垂直的判定定理,能用自己的语言叙述出定理内容并写出相应的符号语言.评价任务七:能够用定义和判定定理解决空间位置关系的简单命题.三、教学问题诊断分析:1、学生已有基础:学生已经学习了两条直线互相垂直的位置关系,学习了直线、平面平行的判定及性质,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,具备学习本节课所需的知识.2、学生面临的问题:高一学生仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维.认识到这点,教学中要控制要求的拔高,关注学习过程.因此我确定本节课的难点为:直线与平面垂直的定义的生成,操作确认直线与平面垂直的判定定理.因此,在教学过程中我抓住学生好奇心强,学习积极性较高的特点,我让学生以小组为单位进行合作,通过动手操作,观察、思考、归纳总结,发现直线与平面垂直时,直线与平面内的直线有怎样的位置关系;再通过操作,反向验证,当直线与平面内的直线具有上述位置关系时,能否得到直线与平面垂直,让学生在实验中自然生成直线与平面垂直的定义.在探究直线与平面垂直的判定定理时,让学生从寻找合理假设出发,通过操作验证假设的正确性,从而获得直线与平面垂直的判定定理.由于学生对这种用“有限”代替“无限”的过程,在形成理解上的可能会有思维障碍,所以强调关于定理的证明,会在后续学习中获得.四、教学策略分析:新课程标准明确指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维.因此本节课在“目标导引教学”这一理念的指引下,主要采用的是引导发现教学法.教学中,我利用学生感兴趣的图片引出直线与平面垂直的形象,抽象出直线与平面垂直的概念.让学生在分析操作过程发现规律特点,从而自发地生成定义;接着让学生在实际应用中自觉提出判定直线与平面垂直是否有更简洁方便的方法,通过折纸活动,让学生在游戏中学习,在活动中获得知识.我设计了分组探究等实践活动,通过活动引导学生进行观察、思考、操作、归纳、应用,使学生始终处于积极、主动、有趣的学习状态中,深刻体会到了“做数学、学数学”的乐趣,最终达成了本节课的学习目标.五、课前准备:多媒体课件、三角形纸片(多种形状)、三角板、手电筒、彩色手环、笔(表直线)、纸(表平面)等.六、教学过程:验证跨栏的支架与地面是否垂直,七、教学设计说明:兴趣是最好的老师,它是学生主动学习、积极思考、勇于探索的强大内驱力.因此,本节课我在“目标导引教学”理念及“数学源于生活、又应用于生活”的理念的指引下,以激发学生的学习兴趣为出发点,设置了一系列的动手操作、自主探索的活动,引导学生通过感受、思考、交流、总结,真正对所学内容有所感悟,进而内化为己有.课堂上加入了多种探究实验与动手操作活动,增加了学生学习的兴趣;加入了影子实验、折纸环节,使学生体会到了学数学的乐趣,达到了让教学生活化、让教学活动化、让教学趣味化的目的.符合新课标中“数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维,要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法”的要求.此外,在整个教学过程中,“学生是学习的主体”这一理念,“让不同的人在数学上得到不同的发展”的理念都得到了充分的体现.总之,本节课的设计使学生的情感和能力都得到了一定的发展,成长过程和长期发展也得到了一定的关注,体现了新课程的要求.八、教学反思:本节课的设计从理解数学、理解学生、理解教学三个维度出发,对高中数学课程结构体系及本节课教学重点的知识进行了较为系统的分析;对学生学习本节课的难点进行了深入思考,并精心设计了重点、难点知识的教学解释;评估了学生的知识理解水平等方面,以达到教学设计的科学、完整和精细,具有一定的可操作性和调控性.本节课树立理解数学、理解学生、理解教学的观念来设计课堂教学,本质与核心是“以学生的发展为本”,这是时代发展的要求.这就要求教师在教学设计中,不仅要看到所教的学科知识,而且要看到相应的知识在学生发展中起什么作用;不仅要研究学生的发展规律,思考学习与发展的关系,而且要研究学生是如何学习的;不仅要以适合学生认知特点的方式传《直线与平面垂直(第一课时)》教学设计授数学知识,而且要在教学过程中时刻体现思想性,从而在提高学生在知识水平的同时,提高他们的素质,丰富他们的精神世界.点评这堂课给人的感觉是充满青春的朝气,一气呵成,如沐春风。

新人教A版 必修第二本 8.6.2《直线与平面垂直》第一节课 教案

新人教A版 必修第二本 8.6.2《直线与平面垂直》第一节课 教案

8.6.2《直线与平面垂直》教案一、教学目标1.理解直线与平面垂直的定义。

2.理解直线与平面垂直的判定定理。

3.理解直线与平面垂直的性质定理,并能够证明。

4.能运用判定定理证明直线与平面垂直的简单命题。

5.能运用性质定理证明一些空间位置关系的简单命题。

二、教学重难点1.教学重点直观感知、操作确认,概括出直线与平面垂直的判定定理、性质定理。

2.教学难点直线与平面垂直的判定定理的应用、性质定理的证明。

黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!三、教学准备1.《直线与平面垂直》PPT2.每人发一张三角形纸片四、教学过程黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!【提问】有同学认识它吗?(手指着日晷)(学生:认识)(学生:不认识)可能有同学不认识,它叫日晷。

【PPT演示】日晷日晷是中国古代用来测定时间的仪器,日晷通常由晷针指到和晷盘组成(手指着部位)。

如果我们把晷针看成一条直线,晷面看成一个平面,这里就体现了直线与平面的一种非常特殊的位置关系。

同学们知道是什么位置关吗?(学生:垂直)对,直线与平面重直,这就是我们今天所要学习的内容——《直线与平面垂直》【PPT演示图片】课题《8.6.2直线与平面垂直》【板书】8.6.2直线与平面垂直在我们的实际生活中,有许多场景都能给我们以直线与平面重直的直观形象。

同学们你能举出几个例子吗?(让学生多举几个)如:①把老师我看成一条直线,把讲台看成一个平面;②教室里相邻墙面的交线与地面的位置关系【PPT演示图片】③旗杆所在直线与地面的位置关系④港珠澳大桥雄伟壮观,桥墩所在直线与海面所在平面的位置关系⑤美丽的上海东方明珠塔,如果把塔身看成一条直线,海面看成一个平面。

这些都能给我们以直线与平面重直的形象。

⑥意大利萨斜塔,它能体现直线与平面垂直的形象吗?(学生:不能)对,不能,塔身所在直线与地面所在平面是不重直的。

高中数学人教A版必修二教案:2.3.3直线与平面垂直、平面与平面垂直的性质

高中数学人教A版必修二教案:2.3.3直线与平面垂直、平面与平面垂直的性质

可. 【证明】法一:如图,设 ∩r = a , ∩r = b,在 r 内任取一点
P.过点 P 在 r 内作直线 m⊥a,n⊥b. ∵ ⊥r, ⊥r, ∴m⊥a,n⊥ (面面垂直的性质). 又 ∩ = l,
∴l⊥m,l⊥n.又 m∩n = P,m,n r
∴l⊥r. 法二:如图,设 ∩r = a, ∩r = b,在 内作 m⊥a,在 内作 n⊥b. ∵ ⊥r, ⊥r,
2.例 1
设 , 与两个平面的交线垂直即可.
I =CD, AB ,AB⊥CD
师:证明直线和平面垂直
,AB⊥CD = B 求证 AB
一般都转化为证直线和平面内
两条交线垂直,现 AB⊥CD,
需找一条直线与 AB 垂直,有
条件 还没有用,能否利
本例 题的难点 是构造辅 助线,采 用分析综 合法能较 好地解决 这个问题.
c.一条直线在平面内,另
一条直线与这个平面垂直,则
这两条直线互相垂直. ( √

(2)已知直线 a,b 和平
面 ,且 a⊥b,a⊥ ,则 b
与 的位置关系是
.
答案:b∥ 或 b .
2.(1)下列命题中错误的
是( A ) 随堂练习
A.如果平面 ⊥平面 ,
那么平面 内所有直线垂直于
平面 .
质定理
观察、讨论,然后回答问题
1.问题
生:借助长方体模型,在
黑板所在平面与地面所在 长方体 ABCD – A′B′C′D′中,面
平面垂直,你能否在黑板上画 A′ADD′⊥面
一条直线与地面垂直?
ABCD,A′A⊥AD,AB⊥A′A
探索新知
∵ AD I AA A
∴A′A⊥面 ABCD

高中数学人教A版必修2《2.3.3直线与平面垂直的性质》教案2

高中数学人教A版必修2《2.3.3直线与平面垂直的性质》教案2

必修二§2、3.3直线与平面垂直的性质一、教学目标1、知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。

2、过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;(2)性质定理的推理论证。

3、情态与价值通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。

二、教学重点、难点两个性质定理的证明。

三、学法与用具(1)学法:直观感知、操作确认,猜想与证明。

(2)用具:长方体模型。

四、教学设计(一)创设情景,揭示课题问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。

(自然进入课题内容)(二)研探新知1、操作确认观察长方体模型中四条侧棱与同一个底面的位置关系。

如图 2.3—4,在长方体ABCD—A1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a⊥α、b⊥α、那么直线a、b一定平行吗?(一定)我们能否证明这一事实的正确性呢?图图2.3-52、推理证明引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法——反证法, 然后师生互动共同完成该推理过程 ,最后归纳得出:垂直于同一个平面的两条直线平行。

(三)应用巩固例子:课本P.74例4做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。

(四)类比拓展,研探新知类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?例如:如何在黑板面上画一条与地面垂直的直线?引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直,这时,只要在黑板上画出一条与这交线平行的直线,则所画直线必与地面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:2.2.3.4直线与平面垂直、平面与平面
垂直的性质
课 型:新授课
一、教学目标
1、知识与技能
(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简单问题;
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。

2、过程与方法
(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;
(2)性质定理的推理论证。

3、情态与价值
通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。

二、教学重点、难点
两个性质定理的证明。

三、学法与用具
(1)学法:直观感知、操作确认,猜想与证明。

(2)用具:长方体模型。

四、教学设计
(一)、复习准备:
1.直线、平面垂直的判定,二面角的定义、大小及求法.
2.练习:对于直线,m n 和平面,αβ,能得出αβ⊥的一个条件是( )①,//m n m α⊥,//n β②,,m n m n αβα⊥⋂=⊂③//,,m n n m βα⊥⊂④//,,m n m n αβ⊥⊥.
3.引入:星级酒店门口立着三根旗杆,这三根旗杆均与地面垂直,这三根旗杆所在的直线之间具有什么位置关系?
(二)、讲授新课:
1. 教学直线与平面垂直的性质定理:
①定理:垂直于同一个平面的两条直线平行. (线面垂直→线线平行)
②练习:,,a b c 表示直线,M 表示平面,则//a b 的充分条件是( )A 、a c b c ⊥⊥且
B 、////a M b M 且
C 、a M b M ⊥⊥且
D 、,a b c 与所在的角相等
例1:设直线,a b 分别在正方体''''ABCD A B C D -中两个不同的平面内,欲使//a b ,,a b 应满足什么条件?(分组讨论→师生共析→总结归纳)
(判定两条直线平行的方法有很多:平行公理、同位角相等、内错角相等、同旁内角互补、中位线定理、平行四边形等等)
2.教学平面与平面垂直的性质定理:
①定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(面面垂直→线面垂直)
探究:两个平面垂直,过其中一个平面内一点作另一个平面的垂线有且仅有一条. ②练习:两个平面互相垂直,下列命题正确的是( )
A 、一个平面内的已知直线必垂直于另一个平面内的任意一条直线
B 、一个平面内的已知直线必垂直于另一个平面内的无数条直线
C 、一个平面内的任意一条直线必垂直于另一个平面
D 、过一个平面内任意点作交线的垂线,则此垂线必垂直于另一个平面.
例2、如图,已知平面,,αβαβ⊥,直线a 满足,a a βα⊥⊄,试判断直线a 与平面α的位置关系.
④练习:如图,已知平面α⊥平面γ,平面β⊥平面γ,a αβ⋂=,求证:.a γ⊥
(三)、巩固练习:
1、下列命题中,正确的是( )
A 、过平面外一点,可作无数条直线和这个平面垂直
B 、过一点有且仅有一个平面和一条定直线垂直
C 、若,a b 异面,过a 一定可作一个平面与b 垂直
D 、,a b 异面,过不在,a b 上的点M ,一定可以作一个平面和,a b 都垂直.
2、如图,P 是ABC ∆所在平面外一点,,,PA PB CB PAB M PC =⊥平面是的中点,N 是AB 上的点,3.AN NB =求证:.MN AB ⊥
3、教材P71、72页
(四)巩固深化、发展思维
思考1、设平面α⊥平面β,点P 在平面α内,过点P 作平面β的垂线a ,直线a 与平面α具有什么位置关系?
(答:直线a 必在平面α内)
思考2、已知平面α、β和直线a ,若α⊥β,a ⊥β,a α,则直线a 与平面α具有什么位置关系?
五、归纳小结,课后巩固
小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么?
(2)类比两个性质定理,你发现它们之间有何联系?
六、作业:(1)求证:两条异面直线不能同时和一个平面垂直;
(2)求证:三个两两垂直的平面的交线两两垂直。

课后记:。

相关文档
最新文档