【导与练】2014届高三数学(理)一轮总复习:第二篇 函数、导数及其应用 检测试题 Word版含解析
2014高考数学(理)一轮复习总教案:3.3 导数的应用 (二)
3.3导数的应用(二)典例精析题型一利用导数证明不等式【例1】已知函数f(x)=错误!x2+ln x.(1)求函数f(x)在区间[1,e]上的值域;(2)求证:x>1时,f(x)<错误!x3.【解析】(1)由已知f′(x)=x+错误!,当x∈[1,e]时,f′(x)>0,因此f(x)在[1,e]上为增函数.故f(x)max=f(e)=错误!+1,f(x)min=f(1)=错误!,因而f(x)在区间[1,e]上的值域为[12,错误!+1]。
(2)证明:令F(x)=f(x)-错误!x3=-错误!x3+错误!x2+ln x,则F′(x)=x +错误!-2x2=错误!,因为x>1,所以F′(x)<0,故F(x)在(1,+∞)上为减函数.又F(1)=-错误!<0,故x>1时,F(x)<0恒成立,即f(x)<错误!x3.【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时( )A.f′(x)>0,g′(x)>0 B。
f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0【解析】选B。
题型二优化问题【例2】(2012湖南模拟)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元。
假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元。
(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?【解析】(1)设需新建n个桥墩,则(n+1)x=m,即n=错误!-1。
所以y=f(x)=256n+(n+1)(2+错误!)x=256(错误!-1)+错误!(2+错误!)x=错误!+m错误!+2m-256。
高三数学(理)一轮总复习(人教通用)试题:第二章函数、导数及其应用Word版含解析
1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案:D2.已知函数f (x )满足f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,则f (3)=( ) A.98 B.94 C.92D .9解析:选C ∵f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,∴f (3)=2f ⎝⎛⎭⎫32=2×⎝⎛⎭⎫322=92. 3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()答案:B4.(教材习题改编)函数f (x )=x -4|x |-5的定义域是________________. 答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成.[小题纠偏]1.函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)解析:选D由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).2.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D 若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1.3.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t .∴f (x )=5x +1x 2(x ≠0). 答案:5x +1x2(x ≠0)考点一 函数的定义域 (常考常新型考点——多角探明)[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域 1.(2015·德州期末)y = x -12x-log 2(4-x 2)的定义域是( )A .(-2,0)∪(1,2)B .(-2,0]∪(1,2)C .(-2,0)∪[1,2)D .[-2,0]∪[1,2] 解析:选C要使函数有意义,必须⎩⎨⎧x -12x≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)x -1的定义域是( )A .[0,2 015]B .[0,1)∪(1,2 015]C .(1,2 016]D .[-1,1)∪(1,2 015]解析:选B 令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( ) A .[-1,1] B .[1,2] C .[10,100]D .[0,lg 2]解析:选C 因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].角度三:已知定义域确定参数问题 5.(2016·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0][方法归纳]函数定义域的2种求法考点二 求函数的解析式 (重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.[由题悟法][即时应用]1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点三 分段函数 (重点保分型考点——师生共研)[典例引领]1.已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.2.(2015·山东高考)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.[由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为A .-1B .1C .-1或1D .-1或-13解析:选C 由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1,所以实数x 0的值为-1或1.2.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .(6,+∞) B .(-3,6) C .(-3,+∞)D .[-3,6)解析:选D 要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43 D .-43解析:选B 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝⎛⎭⎫122=14. 答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标 1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10].2.(2016·武汉调考)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能值为( )A .1或-22B .-22 C .1D .1或22解析:选A 因为f (1)=e 1-1=1且f (1)+f (a )=2, 所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1.3.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c 4=c2=30.② 联立①②解得c =60,a =16.5.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.6.已知f (x )=⎩⎨⎧x 12,x ∈[0,+∞),|sin x |,x ∈⎝⎛⎭⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝⎛⎭⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x9.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2, f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2, f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2, 又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1,∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1, 所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图:三上台阶,自主选做志在冲刺名校1.(2016·唐山期末)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 解析:选C 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1, ∴-1≤a <12.即a 的取值范围是⎣⎡⎭⎫-1,12. 2.(2015·北京二模)已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则f (3,5)=解析:由表可知f (3,5)=5+3=8. ∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x ,则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立; 当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:8 {1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性 (1)单调函数的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值 1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.(教材习题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比. [小题纠偏]1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减答案:C2.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断 (基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1) =a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间 (重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用 (常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·哈尔滨联考)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞ C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法. (2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.(2016·珠海摸底)下列函数中,定义域是R 且为增函数的是( ) A .y =2-xB .y =xC .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x 与y =x 的定义域为R ,且只有y =x 在R 上是增函数. 2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(2016·长春市质量检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).3.(2016·安徽师大附中第二次月考)函数f (x )=x 1-x 在( )A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x -1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.已知函数f (x )=1a -1x (a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数. (2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.(2015·浦东一模)如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0, 代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题体验]1.(2015·北京高考)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案:B2.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________. 答案:-13.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.答案:x (1-x )1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________.解析:由题意得,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:1考点一 函数奇偶性的判断 (基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ;(4)(易错题)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x, ∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性(题点多变型考点——纵引横联)[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f (x )的最小正周期为4. (2)f (0)=0,f (1)=1,f (2)=0, f (3)=f (-1)=-f (1)=-1. 又∵f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0, ∴f (0)+f (1)+f (2)+…+f (2 015)=0.[类题通法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f (x ),则T =2a ; (3)若f (x +a )=-1f (x ),则T =2a .(a >0)[越变越明][变式1] 若母题中条件变为“f (x +2)=-1f (x )”,求函数f (x )的最小正周期. 解:∵对任意x ∈R ,都有f (x +2)=-1f (x ), ∴f (x +4)=f (x +2+2)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6.∵当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0, ∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数, ∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4). 又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8.利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三 函数性质的综合应用 (常考常新型考点——多角探明)[命题分析][破译玄机]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________. 解析:∵f (x )是定义在R 上的偶函数,∴当x <0时,-x >0. 由已知f (-x )=(-x )2-(-x )-1=x 2+x -1=f (x ), ∴f (x )=x 2+x -1. 答案:x 2+x -12.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (x )=(x +1)(x +a )x 为奇函数,∴f (1)+f (-1)=0,即(1+1)(1+a )1+(-1+1)(-1+a )-1=0,∴a =-1.答案:-1角度二:单调性与奇偶性结合3.(2015·昆明统考)下列函数中,在其定义域内既是偶函数又在(-∞,0)上单调递增的函数是( )A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x |D .f (x )=sin x解析:选C 函数f (x )=x 2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f (x )=2|x |是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f (x )=log 21|x |是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f (x )=sin x 是奇函数,不合题意.4.(2015·刑台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(1,2)∪(-2,-1)解析:选B 依题意得,f ′(x )>0,则f (x )是定义在(-1,1)上的奇函数、增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则-1<1-a 2<a -1<1,由此解得1<a < 2.角度三:周期性与奇偶性结合5.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)解:选A ∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.角度四:单调性、奇偶性与周期性结合6.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). 因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.(2015·福建高考)下列函数为奇函数的是( ) A .y =x B .y =e x C .y =cos x D .y =e x -e -x解析:选D 对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D ,∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e -x 为奇函数,故选D.2.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( ) A.17 B .-1 C .1D .7 解析:选A 因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.3.(2015·石家庄一模)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( ) A .-12B.12C .2D .-2解析:选B 因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.4.函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数解析:选C ∵f (-x )=lg|sin(-x )|=lg|sin x |, ∴函数f (x )为偶函数.∵f (x +π)=lg|sin(x +π)|=lg|sin x |, ∴函数f (x )的周期为π.5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (x )=-f (-x )=-(-x +1), 即x <0时,f (x )=-(-x +1)=--x -1.答案:--x -1二保高考,全练题型做到高考达标1.下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x ),g (x )是定义在R 上的函数,h (x )=f (x )·g (x ),则 “f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 一方面,若f (x ),g (x )均为偶函数,则f (-x )=f (x ),g (-x )=g (x ),因此,h (-x )=f (-x )g (-x )=f (x )g (x )=h (x ),∴h (x )是偶函数;另一方面,若h (x )是偶函数,但f (x ),g (x )不一定均为偶函数,事实上,若f (x ),g (x )均为奇函数,h (x )也是偶函数,因此,“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的充分不必要条件.。
2014届高考数学(理科)二轮复习专题讲义:专题一 第5讲 导数及其应用
2014届高考数学(理科)二轮复习专题讲义:专题一 第5讲 导数及其应用(1)函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0).(2)曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、经典例题领悟好[例1] (1)(2013·湖北荆门调研)曲线y =x2x -1在点(1,1)处的切线方程为________.(2)(2013·广东高考)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________. [解析] (1)∵点(1,1)在曲线y =x 2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x ,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.[答案] (1)x +y -2=0 (2)12解决函数切线的相关问题,需抓住以下关键点: (1)切点是交点.(2)在切点处的导数是切线的斜率.因此,解决此类问题,一般要设出切点,建立关系—方程(组).(3)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上;在点P 处的切线,点P 是切点.三、预测押题不能少1.已知偶函数f (x )在R 上的任一取值都有导数,且f ′(1)=1,f (x +2)=f (x -2),则曲线y =f (x )在x =-5处的切线斜率为( )A .2B .-2C .1D .-1解析:选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ) ,即函数的对称轴为x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.函数的单调性与导数的关系:在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增;如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减.二、经典例题领悟好[例2] (2013·全国卷Ⅰ节选)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值; (2)讨论f (x )的单调性.[解] (1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.利用导数研究函数单调性的一般步骤(1)确定函数的定义域; (2)求导数f ′(x );(3)①若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可.②若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.三、预测押题不能少2.已知函数f (x )=13x 3+mx 2-3m 2x +1,m ∈R .(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若f (x )在区间(-2,3)上是减函数,求m 的取值范围. 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5. 又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0. (2)因为f ′(x )=x 2+2mx -3m 2, 令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3; 当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2. 综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).(1)若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.(2)设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.二、经典例题领悟好[例3] (2013·福建高考节选)已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)求函数f (x )的极值;(2)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. [解] (1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值, 且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值. (2)当a =1时,f (x )=x -1+1ex .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)化为1k -1=x e x . 令g (x )=x e x ,则有g ′(x )=(1+x )e x . 令g ′(x )=0,得x =-1,当x 变化时,g ′(x ),g (x )的变化情况如下表:当x =-1时,g (x )min =-1e ,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎡⎭⎫-1e ,+∞. 所以当1k -1∈⎝⎛⎭⎫-∞,-1e 时,方程(*)无实数解, 解得k 的取值范围是(1-e,1). 综合①②,得k 的最大值为1.(1)求函数y =f (x )在某个区间上的极值的步骤: 第一步:求导数f ′(x );第二步:求方程f ′(x )=0的根x 0; 第三步:检查f ′(x )在x =x 0左右的符号; ①左正右负⇔f (x )在x =x 0处取极大值; ②左负右正⇔f (x )在x =x 0处取极小值.(2)求函数y =f (x )在区间[a ,b ]上的最大值与最小值的步骤: 第一步:求函数y =f (x )在区间(a ,b )内的极值(极大值或极小值);第二步:将y =f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个为最大值,最小的一个为最小值.三、预测押题不能少3.已知函数f (x )=ax -2x-3ln x ,其中a 为常数.(1)当函数f (x )的图像在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f (x )在⎣⎡⎦⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围. 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′⎝⎛⎭⎫23=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x 2,由f ′(x )=0,得x =2. 于是可得下表:∴f (x )min (2)f ′(x )=a +2x 2-3x =ax 2-3x +2x 2(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0,⎝⎛⎭⎪⎪⎫也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h (0)>0, 解得0<a <98.故a 的取值范围为⎝⎛⎭⎫0,98.导数已由解决问题的辅助工具上升为解决问题的必不可少的工具,利用导数解决函数的单调性与最值的命题趋势较强,各套试题多以压轴题呈现,大多将导数与函数、不等式、方程、数列交汇命题,考查不等式证明,方程根的讨论,求参数范围.一、经典例题领悟好[例1] (2013·辽宁省五校模拟)已知函数f (x )=a ln x +1(a >0). (1)当x >0时,求证:f (x )-1≥a ⎝⎛⎭⎫1-1x ; (2)在区间(1,e)上f (x )>x 恒成立,求实数a 的范围. (1)学审题——审结论之逆向分析结论――→构造函数 φ(x )=f (x )-1-a ⎝⎛⎭⎫1-1x ――→求导 φ′(x )―→φ(x )最小值―→结论. (2)学审题——审条件之审视结构条件――→转化a >x -1ln x ―――――→构造函数 g (x )=x -1ln x ――→求导 g ′(x )=ln x -x -1x (ln x )2――――→构造函数 h (x )=ln x -x -1x――→求导 h ′(x )―→h (x )>h (1)=0―→g ′(x )>0―→g (x )<g (e)―→a 的范围. 用“思想”——尝试用“函数与方程思想”解题(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎫1-1x =a ln x -a ⎝⎛⎭⎫1-1x (x >0), 则φ′(x )=a x -ax 2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝⎛⎭⎫1-1x . (2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2. 令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).(1)本题三次利用函数思想,第(2)问中首先分离常数,变为a >x -1ln x ,再构造函数g (x ),求其最值确定a 的范围.(2)导数综合应用题型中应用函数思想的常见类型: ①构造新函数求最值解决不等式恒成立问题; ②构造新函数利用性质解决不等式证明问题; ③构造新函数求零点解决方程解的问题. 二、预测押题不能少1.已知函数f (x )=e x (x 2+ax -a ),其中a 是常数. (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若存在实数k ,使得关于x 的方程f (x )=k 在[0,+∞)上有两个不相等的实数根,求k 的取值范围.解:(1)由f (x )=e x (x 2+ax -a )可得, f ′(x )=e x [x 2+(a +2)x ]. 当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e. (2)令f ′(x )=e x [x 2+(a +2)x ]=0, 解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根. 当-(a +2)>0,即a <-2时,f ′(x ),f (x )随x 的变化情况如下表:由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=a +4ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a (-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .一、经典例题领悟好[例2] (2012·福建高考)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A.14B.15C.16D.17[解析] 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =10⎰x d x =23x3210=23, 又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=∫10(x -x )d x =16, S正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[答案] C定积分的考查往往是确定被积函数直接求阴影部分的面积,而几何概型的考查也是两部分面积或长度等的比值.本题却把定积分求面积与几何概型相结合,突破了二者之间的隔膜,建立了联系,新颖、独特,令人耳目一新,并且难度并没有因此而加大,实属好题.二、预测押题不能少2.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -y 2≥0},若向区域Ω内随机投一点P ,则点P 落入区域A 的概率是________.解析:画出草图,可知所求概率P =S 阴影S △AOB=∫40x d x 18=23x 324018=16318=827.答案:827对导数考查其综合应用,命题综合性较强,试题不断追求创新,如2013年安徽卷以下面这个例题从创新的角度考查导数综合应用.一、经典例题领悟好[例3] (2013·安徽高考)设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}. (1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. [解] (1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a 1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝⎛⎭⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a1+a 2,则d ′(a )=1-a 2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故 当1-k ≤a <1时,d ′(a )>0,d (a )单调递增; 当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或 a =1+k 处取得. 而d (1-k )d (1+k )=1-k1+(1-k )21+k 1+(1+k )2=2-k 2-k 32-k 2+k 3<1, 故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k,1+k ]上取得最小值1-k2-2k +k 2.本题以函数的形式给出,求解一元二次不等式,从而表示出I ,在利用导数求最小值,比较d (1-k )与d (1+k )大小时,也可以作差.二、预测押题不能少3.设a >0,b >0,已知函数f (x )=ax +bx +1.(1)当a ≠b 时,讨论函数f (x )的单调性;(2)当x >0时,称f (x )为a ,b 关于x 的加权平均数.①判断f (1),f ⎝⎛⎭⎫b a ,f ⎝⎛⎭⎫b a 是否成等比数列,并证明f ⎝⎛⎭⎫b a ≤f ⎝⎛⎭⎫b a ; ②a ,b 的几何平均数记为G .称2aba +b 为a ,b 的调和平均数,记为H .若H ≤f (x )≤G ,求x的取值范围.解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞), f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减. (2)计算得f (1)=a +b 2>0,f ⎝⎛⎭⎫b a =2ab a +b >0,f ⎝⎛⎭⎫b a =ab >0. 故f (1)f ⎝⎛⎭⎫b a =a +b 2·2aba +b =ab =⎣⎡⎦⎤f ⎝⎛⎭⎫b a 2, 即f (1)f ⎝⎛⎭⎫b a =⎣⎡⎦⎤f⎝⎛⎭⎫b a 2.(*) 所以f (1),f ⎝⎛⎭⎫b a ,f ⎝⎛⎭⎫b a 成等比数列. 因为a +b 2≥ab ,即f (1)≥f ⎝⎛⎭⎫b a . 由(*)得f ⎝⎛⎭⎫b a ≤f⎝⎛⎭⎫b a . ②由①知f ⎝⎛⎭⎫b a =H ,f ⎝⎛⎭⎫b a =G . 故由H ≤f (x )≤G , 得f ⎝⎛⎭⎫b a ≤f (x )≤f ⎝⎛⎭⎫b a .(**) 当a =b 时,f ⎝⎛⎭⎫b a =f (x )=f ⎝⎛⎭⎫b a =a . 这时,x 的取值范围为(0,+∞); 当a >b 时,0<b a <1,从而ba <ba,由f (x )在(0,+∞)上单调递增与(**)式, 得ba≤x ≤b a ,即x 的取值范围为⎣⎡⎦⎤ba,b a ; 当a <b 时,b a >1,从而ba >ba,由f (x )在(0,+∞)上单调递减与(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎡⎦⎤b a ,b a . 综上,当a =b 时,x 的取值范围为(0,+∞);当a >b 时,x 的取值范围为⎣⎡⎦⎤b a,b a ; 当a <b 时,x 的取值范围为⎣⎡⎦⎤b a ,b a .。
2014高考数学一轮复习第二章函数及其表示训练理新人教A版
【创新设计】2014高考数学一轮复习第二章函数及其表示训练理新人教A版第一节函数及其表示[备考方向要明了][归纳·知识整合]1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:12 30°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x -1,x 表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. [自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3) ———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. ③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝ ⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式.解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A.124B.112C.16 D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.[答案] A ———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12B.45C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); (3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项. 2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,,x 2,x ∈[1,+,若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2B .y =ln e x与y =e ln xC .y =x -x +x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,-x ,x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6. 6.(2013·泰安模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则函数f (3)=________.解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则ff+f f+…+f f=________.解析:令b =1,∵f a +f a=f (1)=1,∴f f+f f+…+f f=2 011.答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2;当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B图象与事实相吻合.2.下列对应关系是集合P上的函数的是________.(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x∈P,y∈Q;(3)P={三角形},Q={x|x>0},对应关系f:对P中三角形求面积与集合Q中元素对应.解析:对于(1),集合P中元素0在集合Q中没有对应元素,故(1)不是函数;对于(3)集合P不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数:(1)y=x-2·x+2,y=x2-4;(2)y=x,y=3t3;(3)y=|x|,y=(x)2.解:∵y=x-2·x+2的定义域为{x|x≥2},y=x2-4的定义域为{x|x≥2或x≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y=3t3=t,∴y=x与y=3t3是同一函数.(3)∵y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},∴它们不是同一函数.4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.第二节 函数的定义域和值域[备考方向要明了][归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个?提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x是圆满函数;②y=2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系? 提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=4-xx -1有意义,只需⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.下表表示y 是x 的函数,则函数的值域是( )A .[2,5]B .NC .(0,20]D .{2,3,4,5}解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 3.若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)解析:选A 根据题意得log 12(2x +1)>0, 即0<2x +1<1,解得-12<x <0,即x ∈⎝ ⎛⎭⎪⎫-12,0. 4.(教材改编题)函数y =f (x )的图象如图所示,则函数y =f (x )的定义域为________,值域为________.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7),值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.(教材改编题)若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:∵x -4有意义,∴x -4≥0,即x ≥4. 又∵y =x 2-6x +7=(x -3)2-2, ∴y min =(4-3)2-2=1-2=-1. ∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] (1)(2012·山东高考)函数f (x )=1x ++ 4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________.[自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. (2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8.∴函数y =f (x )的定义域为[-1,8]. [答案] (1)B (2)[-1,8]本例(2)改为f (x )的定义域为[0,3],求y =f (x 2-1)的定义域. 解:∵y =f (x )的定义域为[0,3], ∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2].———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________. (2)已知f (x )的定义域是[-2,4],求f (x 2-3x )的定义域.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ](2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].[例2] 求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x. [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}. 法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1,即函数值域是{y |y ∈R ,y ≠1}.(2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(3)法一:(基本不等式法)当x >0时,x +4x≥2x ×4x=4, 当且仅当x =2时“=”成立;当x <0时,x +4x =-(-x -4x)≤-4,当且仅当x =-2时“=”成立.即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2.x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增,当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减. 故x =-2时,f (x )极大值=f (-2)=-4;x =2时,f (x )极小值=f (2)=4.即函数的值域为(-∞,-4]∪[4,+∞).若将本例(3)改为“y =x -4x”,如何求解?解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x的值域为R .———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.分离常数法:形如y =cx +dax +ba的函数可用此法求值域.单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域. (1)y =x 2+2x ,x ∈[0,3];(2)y =x 2-xx 2-x +1;(3)y =log 3x +log x 3-1.解:(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎢⎡⎭⎪⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t-1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1, 当且仅当t =1t即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎢⎡⎦⎥⎤-t +⎝ ⎛⎭⎪⎫-1t -1≤-2-1=-3.当且仅当-t =-1t 即log 3x =-1,x =13时,等号成立.综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] 已知函数f (x )=ax 2+bx .若至少存在一个正实数b ,使得函数f (x )的定义域与值域相同,求实数a 的值.[自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎥⎤-∞,-b a ∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎢⎡⎦⎥⎤0,-b a , 由于此时f (x )max =f ⎝ ⎛⎭⎪⎫-b 2a =b2-a ,故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a , 则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4.综上所述,a 的值为0或-4. ——————————————————— 由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ], ∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13, ∴a =2,b =4,a +b =6. 答案:61种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例](2013·福州模拟)函数f(x)=x+2x+1-1-x的定义域为________________.[解析] ∵要使函数f(x)=x+2x+1-1-x有意义,则⎩⎪⎨⎪⎧1-x≥0,x+1≠0,∴⎩⎪⎨⎪⎧x≤1,x≠-1,∴函数f(x)的定义域为{x|x≤1,且x≠-1}.[答案] (-∞,-1)∪(-1,1][易误辨析]1.本题若将函数f(x)的解析式化简为f(x)=(x+1)-1-x后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练]1.若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( ) A.⎣⎢⎡⎦⎥⎤12,5B.⎣⎢⎡⎦⎥⎤56,5C.⎣⎢⎡⎦⎥⎤2,103D.⎣⎢⎡⎦⎥⎤3,103解析:选C 令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数.又因为g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1fx 的值域为⎣⎢⎡⎦⎥⎤2,103.2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________. 解析:令2+x =t ,则x =(t -2)2(t ≥2). ∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0, 即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题(本大题共6小题,每小题5分,共30分)1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( ) A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <5解析:选D 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,2x >10-2x ,即52<x <5. 3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.(2013·南昌模拟)函数y = x x --lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}解析:选B 由⎩⎪⎨⎪⎧x x -,1x>0,得x ≥1.5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2, 2 ]解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2. 6.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g x ,gx -x ,x ≥g x ,则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B. )[0,+∞C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题(本大题共3小题,每小题5分,共15分) 7.函数y =16-x -x2的定义域是________.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2) 8.设x ≥2,则函数y =x +x +x +1的最小值是______.解析:y =x ++x ++1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t=t+4t +5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 答案:2839.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈,2].当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]三、解答题(本大题共3小题,每小题12分,共36分)10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间. ∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域. 解:依题意有x >0,l (x )=x -2+32=x 2-8x +25,所以y =x l x =xx 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝ ⎛⎭⎪⎫1x -4252+925,所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l x 的值域是⎝ ⎛⎦⎥⎤0,53. 12.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. ∵二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, ∴g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x解析:选A 当x >0时,1x有意义,因此函数y =1x的定义域为{x |x >0}.对于A ,函数f (x )=ln x 的定义域为{x |x >0}; 对于B ,函数f (x )=1x的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ; 对于D ,函数f (x )=e x的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.函数y =x +-x 2-3x +4的定义域为( )A .[-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)由f (x )=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],知f (x )∈⎣⎢⎡⎦⎥⎤13,3,令t =f (x )∈⎣⎢⎡⎦⎥⎤13,3 记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有: ①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a , ③当13<a <3时,g (x )的最小值h (a )=3-a 2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧hm =n 2,h n =m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m +n =6,这与m >n >3矛盾,故不存在满足题中条件的m ,n 的值.第三节 函数的单调性与最值[备考方向要明了][归纳·知识整合]1.函数的单调性 (1)单调函数的定义:(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 具有(严格的)单调性,这一区间叫做y =f (x )的单调区间.[探究] 1.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞),这种表示法对吗?提示:首先函数的单调区间只能用区间表示,不能用集合或不等式的形式表示;如果一个函数有多个单调区间应分别写,分开表示,不能用并集符号“∪”联结,也不能用“或”联结.2.函数f (x )在区间[a ,b ]上单调递增与函数f (x )的单调递增区间为[a ,b ]含义相同吗? 提示:含义不同.f (x )在区间[a ,b ]上单调递增并不能排除f (x )在其他区间上单调递增,而f (x )的单调递增区间为[a ,b ]意味着f (x )在其他区间上不可能单调递增.2.函数的最值 [探究] 3.函数的单调性、最大(小)值反映在其图象上有什么特征?提示:函数的单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.[自测·牛刀小试]1.(教材习题改编)函数f (x )=2x -1,x ∈[2,6],则下列说法正确的有( ) ①函数f (x )为减函数;②函数f (x )为增函数;③函数f (x )的最大值为2;④函数f (x )的最小值为25.A .①③B .①③④C .②③④D .②④解析:选B 易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )min =f (6)=25,f (x )max=f (2)=2.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.3.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C ∵函数f (x )为R 上的减函数,且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1), ∴⎪⎪⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0. ∴x ∈(-1,0)∪(0,1).4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为________;f (x )max =________.解析:∵函数f (x )=x 2-2x 的对称轴为x =1.∴函数f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为[1,4],单调递减区间为[-2,1). 又f (-2)=4+4=8,f (4)=16-8=8. ∴f (x )max =8. 答案:[1,4] 85.(教材习题改编)若函数f (x )=4x 2-kx -8在[5,20]上是单调递增函数,则实数k 的取值范围是________.解析:∵函数f (x )=4x 2-kx -8的对称轴为x =k8,又函数f (x )在[5,20]上为增函数, ∴k8≤5,即k ≤40. 答案:(-∞,40][例1] 已知函数f (x )= x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数. [自主解答] (1)由2f (1)=f (-1), 可得22-2a = 2+a ,得a =23. (2)证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)= x 21+1-ax 1- x 22+1+ax 2=x 21+1- x 22+1-a (x 1-x 2) =x 21-x 22x 21+1+ x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+ x 22+1-a . ∵0≤x 1< x 21+1,0<x 2< x 22+1, ∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0, ∴f (x )在[0,+∞)上单调递减. ——————————————————— 判断或证明函数的单调性的两种方法(1)利用定义的基本步骤是:。
高考数学一轮复习 第2单元 函数、导数及其应用听课学案 理
——————————新学期新成绩新目标新方向——————————第二单元函数、导数及其应用第4讲函数概念及其表示课前双击巩固1.函数与映射的概念2.函数的三要素函数由、和对应关系三个要素构成.在函数y=f(x),x∈A中,x叫作自变量,x的取值范围A叫作函数的.与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的.3.函数的表示法函数的常用表示方法:、、.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的,这样的函数通常叫作分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.常用结论1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为.(6)函数f(x)=xα的定义域为{x|x∈R且x≠0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为;当a<0时,值域为.(3)y=(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.题组一常识题1.[教材改编]以下属于函数的有.(填序号)①y=±;②y2=x-1;③y=+;④y=x2-2(x∈N).2.[教材改编]已知函数f(x)=若f[f(e)]=2a,则实数a= .3.[教材改编]函数f(x)=的定义域是.4.[教材改编]已知集合A={1,2,3,4},B={a,b,c},f:A→B为从集合A到集合B的一个函数,那么该函数的值域C的不同情况有种.题组二常错题◆索引:对函数概念理解不透彻;对分段函数解不等式时忘记范围;换元法求解析式,反解忽视范围;对函数值域理解不透彻.5.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是.(填序号)①f:x→y=x;②f:x→y=x;③f:x→y=x;④f:x→y=.6.设函数f(x)=则使得f(x)≥1的自变量x的取值范围为.7.已知f()=x-1,则f(x)= .8.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有个.课堂考点探究探究点一函数的定义域考向1求给定函数解析式的定义域1 (1)[2017·洛阳调研]下列函数中,其定义域和值域分别与函数y=e ln x的定义域和值域相同的是()A.y=xB.y=ln xC.y=D.y=10x(2)[2017·揭阳二模]函数f(x)=+lg(6-3x)的定义域为()A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2][总结反思] 已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可.考向2求抽象函数的定义域2 (1)若函数y=f(x)的定义域为[-1,1),则函数y=f(x2-3)的定义域为.(2)已知f(2x)的定义域是[-1,2],则f(log2x)的定义域为.[总结反思] (1)若f(x)的定义域为[m,n],则在f[g(x)]中,m≤g(x)≤n,从中解得x的范围即为f[g(x)]的定义域;(2)若f[g(x)]的定义域为[m,n],则由m≤x≤n确定g(x)的范围,即为f(x)的定义域.考向3已知定义域求参数范围3 (1)设f(x)的定义域为[0,1],要使函数f(x-a)+f(x+a)有定义,则a的取值范围为()A.B.C.D.∪(2)已知函数y=的定义域为R,则实数m的取值范围是.[总结反思] 根据函数的定义域,将问题转化为含参数的不等式(组),进而求解参数范围.强化演练1.【考向2】已知函数y=f(x)的定义域是[-2,3],则y=f(2x-1)的定义域是()A.B.[-1,4]C. D.[-5,5]2.【考向2】若函数y=f(x)的定义域为[0,2],则函数g(x)=的定义域是()A.[0,1)B.[0,1]C.[0,1)∪(1,4]D.(0,1)3.【考向1】[2017·江西重点中学盟校联考]函数y=ln1++的定义域为.4.【考向3】函数f(x)=的定义域为R,则实数a的取值范围是.5.【考向3】记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.若B⊆A,则实数a的取值范围为.探究点二函数的解析式4 (1)已知f=ln x,则f(x)= .(2)已知f(x)是二次函数且f(0)=5,f(x+1)-f(x)=x-1,则f(x)= .(3)已知函数f(x)的定义域为(0,+∞),且f(x)=3·f+1,则f(x)= .[总结反思] 求函数解析式的常用方法:(1)待定系数法:已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f(x)与f(或f(-x))的关系式,可根据已知条件再构造出另外一个等式,两等式组成方程组,通过解方程组求出f(x).(4)配凑法:由已知条件f[g(x)]=F(x),可将F(x)改写成关于g(x)的解析式,然后以x替代g(x),便得f(x)的解析式.式题 (1)已知f(+1)=x+2,则f(x)= .(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x<0时,f(x)= .(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)= .探究点三分段函数考向1分段函数的函数求值问题5 (1)[2017·河南新乡二模]已知函数f(x)=则f[f(-1)]= .(2)[2017·抚州七校联考]设函数f(x)=则f(3)+f(4)= .[总结反思] 求分段函数的函数值时务必要确定自变量所在的区间及其对应关系,对于复合函数的求值问题,应由里到外地依次求值.考向2分段函数的自变量求值问题6 [2017·湘潭一中、长沙一中等六校联考]已知f(x)=若f(a)=2,则a的取值为()A.2B.-1或2C.±1或2D.1或2[总结反思] 与分段函数有关的自变量的求值问题,求解关键是分类讨论思想的应用.考向3分段函数与方程、不等式问题7 (1)已知函数f(x)=若f(a)>,则实数a的取值范围是()A.(-1,0)∪(,+∞)B.(-1,)C.(-1,0)∪D.(2)[2017·渭南二模]设f(x)=若f[f(4)]=,则a= .[总结反思] 涉及与分段函数有关的不等式与方程问题,主要表现为解不等式(或方程).若自变量取值不确定,则要分类讨论求解;若自变量取值确定,则只需依据自变量的情况,直接代入相应解析式求解.强化演练1.【考向1】[2017·桂林中学三模]已知函数f(x)=则f(2+log32)的值为()A.-B.C. D.-542.【考向1】已知a>0且a≠1,函数f(x)=满足f(0)=2,f(-1)=3,则f[f(-3)]=()A.-3B.-2C.3D.23.【考向2】[2017·石家庄二中三模]已知函数f(x)=若f(2-a)=1,则a=()A.-2B.-1C.-1或-D.24.【考向3】已知函数f(x)=则满足f(a)≥2的实数a的取值范围是()A.(-∞,-2)∪(0,+∞)B.(-1,0)C.(-2,0)D.(-∞,-1]∪[0,+∞)5.【考向3】设函数f(x)=则满足f[f(a)]=2f(a)的a的取值范围是()A .B.[0,1]C .D.[1,+∞)第5讲函数的单调性与最值课前双击巩固1.单调函数的定义自左向右看图像是2.单调区间的定义如果函数y=f(x)在区间D上是,那么就说函数y=f(x)在这一区间具有(严格的)单调性, 叫作函数y=f(x)的单调区间.3.函数的最值常用结论1.复合函数的单调性函数y=f (u ),u=φ(x ),在函数y=f [φ(x )]的定义域上,如果y=f (u ),u=φ(x )的单调性相同,则y=f [φ(x )]单调递增;如果y=f (u ),u=φ(x )的单调性相反,则y=f [φ(x )]单调递减. 2.单调性定义的等价形式 设任意x 1,x 2∈[a ,b ],x 1≠x 2.(1)若有(x 1-x 2)[f (x 1)-f (x 2)]>0或>0,则f (x )在闭区间[a ,b ]上是增函数.(2)若有(x 1-x 2)[f (x 1)-f (x 2)]<0或<0,则f (x )在闭区间[a ,b ]上是减函数.3.函数单调性的常用结论(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k>0,则kf (x )与f (x )单调性相同,若k<0,则kf (x )与f (x )单调性相反.(3)函数y=f (x )(f (x )>0)在公共定义域内与y=-f (x ),y=的单调性相反.(4)函数y=f (x )(f (x )≥0)在公共定义域内与y=的单调性相同.题组一 常识题1.[教材改编]函数f(x)=(2a-1)x-3是R上的减函数,则a的取值范围是.2.[教材改编]函数f(x)=(x-2)2+5(x∈[-3,3])的单调递增区间是;单调递减区间是.3.[教材改编]函数f(x)=(x∈[2,5])的最大值与最小值之和等于.4.函数f(x)=|x-a|+1在[2,+∞)上是增函数,则实数a的取值范围是.题组二常错题◆索引:求单调区间忘记定义域导致出错;对于分段函数,一般不能整体单调,只能分段单调;利用单调性解不等式忘记在单调区间内求解;混淆“单调区间”与“在区间上单调”两个概念.5.函数f(x)=ln(4+3x-x2)的单调递减区间是.6.已知函数f(x)=满足对任意的实数x1≠x2,都有<0成立,则实数a的取值范围为.7.函数y=f(x)是定义在[-2,2]上的减函数,且f(a+1)<f(2a),则实数a的取值范围是.8.(1)若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是.(2)若函数f(x)=x2+2(a-1)x+2的单调递减区间为(-∞,4],则a的值为.课堂考点探究探究点一函数单调性的判断与证明1 判断函数f(x)=(a>0),x∈(-1,1)的单调性,并加以证明.[总结反思] (1)定义法证明函数单调性的一般步骤:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断f(x1)-f(x2)的正负);⑤下结论(即指出函数f(x)在给定的区间D上的单调性).(2)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”.式题 [2017·南阳一中月考]下列函数中,在(0,+∞)上单调递增的函数是()A.y=-x2+1B.y=|x-1|C.y=x3D.y=2-x探究点二求函数的单调区间2 (1)[2017·全国卷Ⅱ]函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)(2)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的单调递减区间是.[总结反思] 求函数单调区间的常见方法:(1)定义法;(2)图像法;(3)导数法.求复合函数单调区间的一般解题步骤为:①确定函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,其依据是“同增异减”.式题 (1) 函数y=的单调递增区间为()A.(1,+∞)B.C.D.(2)函数f(x)=(a-1)x+2在R上单调递增,则函数g(x)=a|x-2|的单调递减区间是. 探究点三函数单调性的应用考向1利用函数的单调性比较大小3 (1)[2017·吉林实验中学二模]设a=log52,b=,c=log73,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.b>c>aD.a>b>c(2)[2017·达州二诊]已知f(x)是定义在(0,+∞)上的单调函数,且对任意x∈(0,+∞),f[f(x)-ln x]=e+1,设a=f,b=f,c=f(log2π),则a,b,c的大小关系是.(用“>”号连接表示)[总结反思] 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.考向2利用函数的单调性解决不等式问题4 (1)已知函数f的定义域为R,对任意x1<x2,都有f-f<x1-x2,且f=-4,则不等式f>lo|3x-1|-1的解集为()A.B.C.∪D.∪(2)[2017·云南师大附中月考]已知函数f(x)=e x+x3,若f(x2)<f(3x-2),则实数x的取值范围是.[总结反思] 解函数不等式的理论依据是函数单调性的定义,具体步骤是:(1)将函数不等式转化成f(x1)>f(x2)的形式;(2)考查函数f(x)的单调性;(3)据函数f(x)的单调性去掉法则“f”,转化为形如“x1>x2”或“x1<x2”的常规不等式,从而得解.考向3利用函数的单调性求最值问题5 设函数f(x)=+2016sin x,x∈-,的最大值为M,最小值为N,那么M+N= .[总结反思] 若函数在区间[a,b]上单调,则必在区间的端点处取得最值;若函数在区间[a,b]上不单调,则最小值为函数在该区间内的极小值和区间端点值中最小的值,最大值为函数在该区间内的极大值和区间端点值中最大的值.考向4利用函数的单调性求参数6 [2017·南充三模]已知f(x)=是(-∞,+∞)上的增函数,那么实数a的取值范围是()A.(0,3)B.(1,3)C.(1,+∞)D.[总结反思] (1)根据函数的单调性,将题设条件转化为含参数的不等式(组),即可求出参数的值或范围;(2)若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.强化演练1.【考向1】已知函数f(x)满足对任意的x1,x2∈(0,+∞),恒有(x1-x2)·[f(x1)-f(x2)]<0成立.若a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<aB.b<a<cC.b<c<aD.a<b<c2.【考向2】已知函数f(x)=ln x+2x,若f(x2-4)<2,则实数x的取值范围是.3.【考向3】[2017·青岛一模]已知函数f(x)=则函数f(x)的最大值是.4.【考向4】若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.5.【考向4】[2017·武汉调研]若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则实数a 的取值范围为.第6讲函数的奇偶性与周期性课前双击巩固1.函数的奇偶性2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个,那么这个就叫作f(x)的最小正周期.常用结论1.奇(偶)函数定义的等价形式(1)f(-x)=f(x)⇔f(-x)-f(x)=0⇔=1⇔f(x)为偶函数;(2)f(-x)=-f(x)⇔f(-x)+f(x)=0⇔=-1⇔f(x)为奇函数.2.对f(x)的定义域内任一自变量的值x,最小正周期为T(1)若f(x+a)=-f(x),则T=2|a|;(2)若f(x+a)=,则T=2|a|;(3)若f(x+a)=f(x+b),则T=|a-b|.3.函数图像的对称关系(1)若函数f(x)满足关系f(a+x)=f(b-x),则f(x)的图像关于直线x=对称;(2)若函数f(x)满足关系f(a+x)=-f(b-x),则f(x)的图像关于点对称.题组一常识题1.[教材改编]函数f(x)=x2-1,f(x)=x3,f(x)=x2+cos x,f(x)=+|x|中,偶函数的个数是.2.[教材改编]若奇函数f(x)在区间[a,b]上是减函数,则它在[-b,-a]上是函数;若偶函数f(x)在区间[a,b]上是增函数,则它在[-b,-a]上是函数.3.[教材改编]已知f(x)为奇函数,当x>0时,f(x)=-1,则f(-2)= .4.[教材改编]已知函数f(x)满足f(x+3)=f(x),当x∈(0,1]时,f(x)=log4(x2+3),则f(2017)= .题组二常错题◆索引:判定奇偶性时,不化简解析式导致出错;找不到周期函数的周期从而求不出结果;性质应用不熟练,找不到解题方法;利用奇偶性求解析式时忽略定义域.5.函数f(x)=是(填“奇”“偶”“非奇非偶”)函数.6.具有性质f=-f(x)的函数,我们称为满足“倒负”变换的函数.有下列函数:①f(x)=x-;②f(x)=x+;③f(x)=其中满足“倒负”变换的函数是.(填序号)7.已知定义在R上的函数f(x)满足f(x)=-f,且f(1)=2,则f(2017)= .8.设函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+4x-3,则函数f(x)的解析式为f(x)=.课堂考点探究探究点一函数奇偶性的判断1 (1)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数(2)下列函数奇偶性的判断,正确的是()①f(x)=+;②f(x)=;③f(x)=A.①是奇函数,②是奇函数,③是偶函数B.①是偶函数,②是奇函数,③是偶函数C.①既是奇函数又是偶函数,②是奇函数,③是奇函数D.①既是奇函数又是偶函数,②是偶函数,③是偶函数[总结反思] 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0 (偶函数)是否成立.式题 (1)[2017·衡水中学三调]已知函数f(x)=,g(x)=,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)+g(x)是奇函数C.h(x)=f(x)g(x)是奇函数D.h(x)=f(x)g(x)是偶函数(2)下列函数中,既不是奇函数也不是偶函数的是()A.f(x)=x+sin 2xB.f(x)=x2-cos xC.f(x)=3x-D.f(x)=x2+tan x探究点二函数的周期性2 (1)已知函数f(x)满足f x-=f x+,当x∈0,时,f(x)=ln(x2-x+1),则函数f(x)在区间(0,6]上的零点个数是()A.3B.4C.5D.6(2) [2017·芜湖二模]已知定义在R上的函数f(x)满足f(4)=2-,且对任意的x都有f(x+2)=,则f(2018)=()A.-2-B.-2+C.2-D.2+[总结反思] (1)只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T.(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.式题已知函数f(x)是定义在R上的周期为3的周期函数,当x∈(1,4]时,f(x)=3x-1,则f(1)+f(2)+f(3)+…+f(100)= .探究点三函数性质的综合应用考向1奇偶性的应用3 (1)[2017·福建四地六校联考]设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=()A.-B.C.2D.-2(2)[2017·许昌二模]已知函数f(x)=的最大值为M,最小值为m,则M+m等于()A.0B.2C.4D.8[总结反思] 利用函数的奇偶性可以解决以下问题:(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性得出方程(组),进而得出参数的值.(4)画函数图像:利用奇偶性可画出函数在另一对称区间上的图像.(5)求特殊值:利用奇函数的最大值与最小值和为零可求一些特殊结构的函数值.考向2奇偶性与单调性4 (1)已知f(x)是奇函数,并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A. B.C.-D.-(2)设偶函数f(x)满足f(x)=2x-4(x≥0),则满足f(a-2)>0的实数a的取值范围为()A.(2,+∞)B.(4,+∞)C.(0,4)D.(-∞,0)∪(4,+∞)[总结反思] (1)利用偶函数在关于坐标原点对称的区间上单调性相反、奇函数在关于坐标原点对称的区间上单调性相同,可以把函数不等式化为一般的不等式;(2)注意偶函数性质f(x)=f(|x|)的应用.考向3奇偶性与周期性5 (1)[2017·广州花都区二模]已知奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=1,则f(2016)+f(2017)=()A.-2B.1C.0D.-1(2)若偶函数y=f(x),x∈R满足f(x+2)=-f(x),且当x∈[0,2]时,f(x)=2-x2,则方程f(x)=sin |x|在[-10,10]内的根的个数为.[总结反思] 利用函数的奇偶性和周期性把所求的函数值转化到已知函数解析式的区间上的函数值,把未知区间上的函数性质转化为已知区间上的函数性质.考向4奇偶性﹑周期性与单调性6 (1)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10](2)[2017·哈尔滨六中二模]定义在R上的奇函数f(x)满足f x+=f(x),当x∈0,时,f(x)=lo(1-x),则f(x)在区间1,内是()A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<0[总结反思] 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.强化演练1.【考向1】[2018·济南外国语学校月考]已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)=()A. B.C.πD.2.【考向2】[2017·大连二模]已知定义在R上的偶函数f(x)在[0,+∞)上单调递增,若f(ln x)<f(2),则x的取值范围是()A.(0,e2)B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2)3.【考向4】已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)4.【考向3】设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f= .5.【考向3】[2017·武汉模拟]设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x≤1时,f(x)=2x-1.则f+f(1)+f+f(2)+f= .第7讲二次函数与幂函数课前双击巩固1.二次函数的图像和性质上单调递增上单调递减2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图像和性质比较常用结论1.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0).(2)顶点式:f(x)=a(x-m)2+n(a≠0).(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件(1)“ax2+bx+c>0(a≠0)恒成立”的充要条件是“a>0且Δ<0”.(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.题组一常识题1.[教材改编]若函数f(x)=4x2-kx-8在上是单调函数,则实数k的取值范围是.2.[教材改编]已知幂函数y=f(x)的图像过点(2,),则函数f(x)= .3.[教材改编]已知f(x)=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是.4.[教材改编]若函数y=x2+(a+2)x+3,x∈[a,b]的图像关于直线x=1对称,则b= .题组二常错题◆索引:图像特征把握不准出错;二次函数的单调性理解不到位;幂函数的图像掌握不到位.5.如图2-7-1,若a<0,b>0,则函数y=ax2+bx的大致图像是(填序号).图2-7-16.设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)(填“>”“<”或“=”)0.7.若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是.8.已知当x∈时,函数y=x p的图像在直线y=x的上方,则p的取值范围是.课堂考点探究探究点一幂函数的图像和性质1 (1)若幂函数y=f(x)的图像过点(4,2),则幂函数y=f(x)的图像大致是()图2-7-2(2)[2017·南阳一中月考]已知函数f(x)=(m2-m-1)是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0.若a,b∈R且a+b>0,ab<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断[总结反思] 幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.式题幂函数的图像经过点2,,则它的单调递增区间是()A.(0,+∞)B.[0,+∞)C.(-∞,+∞)D.(-∞,0)探究点二二次函数的解析式2 (1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)= .(2)已知二次函数f(x)的图像经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)= .[总结反思] 求二次函数解析式的三个策略:(1)已知三个点坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图像与x轴两交点的坐标,宜选用零点式.式题 (1)已知二次函数f(x)与x轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f(x)= .(2)若函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式为f(x)= .探究点三二次函数的图像与性质考向1二次函数的单调性问题3 (1)[2017·安徽江淮十校三模]函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.与x有关,不确定(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是()A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2][总结反思] (1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解;(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考向2二次函数的最值问题4 已知函数f(x)=ax2-2x(a>0),求函数f(x)在区间[0,2]上的最小值.[总结反思] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分类讨论求解.考向3二次函数中的恒成立问题5 (1)[2017·仙桃中学月考]已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,若不等式f(x)>2x+m在区间[-1,1]上恒成立,则实数m的取值范围为.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则a的最大值为.[总结反思] 二次函数中恒成立问题的解题关键是根据二次函数的对称性、单调性等得出关于参数的不等式,进而求得参数范围.强化演练1.【考向1】函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为()A.-3B.13C.7D.52.【考向2】若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为()A. [-3,3]B.[-1,3]C.{-3,3}D.{-1,-3,3}3.【考向2】[2017·皖北联考]若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a 的值为.4.【考向3】已知函数y=f(x)是偶函数,当x>0时,f(x)=(x-1)2,若当x ∈-2,-时,n≤f(x)≤m恒成立,则m-n的最小值为.5.【考向3】已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,则实数a的取值范围为.第8讲指数与指数函数课前双击巩固1.根式x=±,记作=叫作,2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:=(a>0,m,n∈N*且n>1).②正数的负分数指数幂:==(a>0,m,n∈N*且n>1).③0的正分数指数幂等于,0的负分数指数幂.(2)有理数指数幂的性质①a r a s= (a>0,r,s∈Q);② (a r)s= (a>0,r,s∈Q);③ (ab)r= (a>0,b>0,r∈Q).3.指数函数的图像与性质常用结论1.指数函数y=a x+b(a>0且a≠1)的图像恒过定点(0,1+b).2.指数函数y=a x(a>0且a≠1)的图像以x轴为渐近线.题组一常识题1.[教材改编]若x+x-1=3,则x2-x-2= .2.[教材改编]已知2x-1<23-x,则x的取值范围是.3.[教材改编]函数y=a x-1+2(a>0且a≠1)的图像恒过定点.4.[教材改编]下列所给函数中值域为(0,+∞)的是.(填序号)①y=-5x,②y=,③y=,④y=.题组二常错题◆索引:忽略n的范围导致式子(a∈R)化简出错;不能正确理解指数函数的概念致错;指数函数问题时刻注意底数的两种情况;复合函数问题隐含指数函数值域大于零的情况.5.计算+= .6.若函数f(x)=(a2-3)·a x为指数函数,则a= .7.若函数f(x)=a x在[-1,1]上的最大值为2,则a= .8.设函数f(x)=ax2+bx+c(a>0)满足f(1-x)=f(1+x),则f(2x)与f(3x)的大小关系是.课堂考点探究探究点一指数幂的化简与求值1 (1)[2017·兰州铁一中月考]已知a-=3(a>0),则a2+a+a-2+a-1的值为()A.13-B.11-C.13+D.11+(2)计算0.02+2560.75--72= .[总结反思] 指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.式题 (1)计算:×2+3π0= .(2)已知a,b是方程x2-6x+4=0的两根,且a>b>0,则= .探究点二指数函数的图像及应用2 (1)函数y=1-e|x|的图像大致是()图2-8-1(2)[2017·天津河西区二模]已知f(x)=|2x-1|,当a<b<c时,有f(a)>f(c)>f(b),则必有()A.a<0,b<0,c<0B.a<0,b>0,c>0C.2-a<2cD.1<2a+2c<2[总结反思] (1)研究指数函数y=a x(a>0,a≠1)的图像要抓住三个特殊点:(1,a),(0,1),-1,.(2)与指数函数有关的函数图像问题的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往结合相应的指数型函数图像,利用数形结合求解.式题 (1)在同一平面直角坐标系中,函数y=a x(a>0且a≠1)与y=(1-a)x的图像可能是()图2-8-2(2)已知函数y=的图像与指数函数y=a x的图像关于y轴对称,则实数a的值为()A.1B.2C.4D.8探究点三指数函数的性质及应用考向1比较指数式的大小3 (1)[2017·遂宁三诊]已知a=,b=,c=2,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b(2)若-1<a<0,则3a,,a3的大小关系是(用“>”连接).[总结反思] 指数式的大小比较,靠的就是指数函数的单调性,当所比较的指数式的底数小于0时,要先根据指数式的运算法则把底数化为正数,再根据指数函数的性质比较其大小.考向2解简单的指数方程或不等式4 (1)已知函数f(x)=则不等式f(x)<f的解集是.(2)方程4x+|1-2x|=11的解为.[总结反思] (1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).考向3指数函数性质的综合问题5 (1)函数f(x)=a+(a,b∈R)是奇函数,且图像经过点ln 3,,则函数f(x)的值域为()A.(-1,1)B.(-2,2)C.(-3,3)D.(-4,4)(2)若不等式1+2x+4x·a>0在x∈时恒成立,则实数a的取值范围是.[总结反思] 指数函数性质的重点是其单调性,解题中注意利用单调性实现问题的转化.强化演练1.【考向1】[2017·南昌一模]已知a=,b=,c=,则()A.a<b<cB.c<b<aC.c<a<bD.b<c<a2.【考向2】若存在正数x使2x(x-a)<1成立,则a的取值范围是()A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)3.【考向2】已知实数a≠1,函数f(x)=若f(1-a)=f(a-1),则a的值为.4.【考向2】若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为.5.【考向3】已知函数f(x)=b·a x(其中a,b为常数且a>0,a≠1)的图像经过点A(1,6),B(3,24).若不等式+-m≥0在x∈(-∞,1]时恒成立,则实数m的取值范围为.第9讲对数与对数函数课前双击巩固。
2014年高考全程复习构想高三理科一轮复习资料第二章导数及其应用2.2
2.函数的极值与导数 (1)函数的极小值 函数 y=f(x)在点 x=a 的函数值 f(a)比它在 x=a 附近其他 点的函数值都小,f′(a)=0;而且在点 x=a 附近的左侧④ __________,右侧⑤__________,则点 a 叫做函数 y=f(x)的极 小值点,f(a)叫做函数 y=f(x)的极小值. (2)函数的极大值 函数 y=f(x)在点 x=b 的函数值 f(b)比它在点 x=b 附近的 其他点的函数值都大,f′(b)=0;而且在点 x=b 附近的左侧 ⑥__________,右侧⑦________,则点 b 叫做函数 y=f(x)的极 大值点,f(b)叫做函数 y=f(x)的极大值.极小值点,极大值点 统称为极值点,极大值和极小值统称为极值.
3. a∈R, 设 若函数 y=eax+3x, x∈R 有大于零的极值点, 则( ) A.a>-3 B.a<-3 1 1 C.a>-3 D.a<-3
解析:f′(x)=3+aeax,若函数在 x∈R 上有大于零的极值 点,即 f′(x)=3+aeax=0 有正根.当有 f′(x)=3+aeax=0 成 1 3 立时,显然有 a<0,此时 x= ln-a.由 x>0 知参数 a 的取值 a 范围为 a<-3. 答案:B
题型二 函数的极值与导数 例 2 已知函数 f(x)=x3+mx2-m2x+1(m 为常数,且 m>0) 有极大值 9. (1)求 m 的值; (2)若斜率为-5 的直线是曲线 y=f(x)的切线,求此直线方 程.
解析:(1)f′(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则 x 1 =-m 或 x=3m. 当 x 变化时,f′(x)与 f(x)的变化情况如下表:
从而可知,当 x=-m 时,函数 f(x)取得极大值 9, 即 f(-m)=-m3+m3+m3+1=9,∴m=2.
2014年高考数学一轮复习第2章函数、导数及其应用12精品训练理(含解析)新人教B版
2014年高考数学一轮复习 第2章 函数、导数及其应用12精品训练 理(含解析)新人教B 版[命题报告·教师用书独具]1.(2012年高考辽宁卷)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 解析:根据函数的导数小于0的解集就是函数的单调减区间求解.由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B2.(2012年高考陕西卷)设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 解析:利用导数法求解.∵f (x )=2x +ln x (x >0),∴f ′(x )=-2x 2+1x.由f ′(x )=0解得x =2.当x ∈(0,2)时,f ′(x )<0,f (x )为减函数; 当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数. ∴x =2为f (x )的极小值点. 答案:D3.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:依题意得,当x ∈(-∞,c )时,f ′(x ) >0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ),选C.答案:C4.若f (x )=-12(x -2)2+b ln x 在(1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)解析:由题意可知f ′(x )=-(x -2)+b x≤0在(1,+∞)上恒成立,即b ≤x (x -2)在x ∈(1,+∞)上恒成立,由于φ(x )=x (x -2)=x 2-2x (x ∈(1,+∞))的值域是(-1,+∞),故只要b ≤-1即可.正确选项为C.答案:C5.已知函数的图象如图所示,则其函数解析式可能是( )A .f (x )=x 2-2ln|x | B .f (x )=x 2-ln|x | C .f (x )=|x |-2ln|x | D .f (x )=|x |-ln|x |解析:经分析知,函数正的极小值点的横坐标应小于1,对四个选项求导可知选B 项. 答案:B 二、填空题6.(2013年扬州检测)若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.解析:f ′(x )=3x 2+2x +m ,由f ′(x )≥0,得m ≥-3x 2-2x ,令g (x )=-3x 2-2x ,则g (x )=-3⎝⎛⎭⎪⎫x +132+13≤13.∴m ≥13.答案:⎣⎢⎡⎭⎪⎫13,+∞ 7.(2013年济宁模拟)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是________.解析:f ′(x )=3x 2-6b .当b ≤0时,f ′(x )≥0恒成立,函数f (x )无极值. 当b >0时,令3x 2-6b =0得x =±2b .由函数f (x )在(0,1)内有极小值,可得0<2b <1, ∴0<b <12.答案:⎝ ⎛⎭⎪⎫0,12 8.函数f (x )=x ln x 的单调递增区间是________.解析:函数f (x )的定义域为(0,+∞),∵f ′(x )=ln x +1由f ′(x )>0,得x >1e,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 答案:⎝ ⎛⎭⎪⎫1e ,+∞9.已知函数f (x )=-12x 2+4x -3ln x 在 [t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或者t <3<t +1,得0<t <1或者2<t <3.答案:(0,1)∪(2,3) 三、解答题10.已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x =1和x =-23处都取得极值.(1)求a ,b 的值;(2)求函数f (x )的单调递增区间.解析:(1)∵f (x )=x 3+ax 2+bx +c ,∴f ′(x )=3x 2+2ax +b .由题易知,⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫-23=0,f=0,解得⎩⎪⎨⎪⎧a =-12,b =-2.(2)由(1)知,f ′(x )=3x 2-x -2=(3x +2)(x -1), ∵当x ∈⎣⎢⎡⎭⎪⎫-1,-23时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-23,1时,f ′(x )<0;当x ∈(1,2]时,f ′(x )>0.∴f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-1,-23和(1,2]. 11.(2013年兰州调研)已知实数a >0,函数f (x )=ax (x -2)2(x ∈R )有极大值32. (1)求函数f (x )的单调区间; (2)求实数a 的值.解析:(1)f (x )=ax 3-4ax 2+4ax ,f ′(x )=3ax 2-8ax +4a .令f ′(x )=0,得3ax 2-8ax +4a =0. ∵a ≠0,∴3x 2-8x +4=0,∴x =23或x =2.∵a >0,∴当x ∈⎝ ⎛⎭⎪⎫-∞,23或x ∈(2,+∞)时,f ′(x )>0. ∴函数f (x )的单调递增区间为⎝⎛⎭⎪⎫-∞,23和(2,+∞);∵当x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0,∴函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫23,2. (2)∵当x ∈⎝⎛⎭⎪⎫-∞,23时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,∴f (x )在x =23时取得极大值,即a ·23⎝ ⎛⎭⎪⎫23-22=32.∴a =27.12.(能力提升)已知函数f (x )=1x+a ln(x +1).(1)当a =2时,求f (x )的单调区间和极值;(2)若f (x )在[2,4]上为单调函数,求实数a 的取值范围.解析:(1)由x ≠0且x +1>0得函数f (x )的定义域为(-1,0)∪(0,+∞),又f ′(x )=-1x 2+2x +1=2x 2-x -1x 2x +=x -x +x 2x+,由f ′(x )>0得-1<x <-12或x >1,由f ′(x )<0得-12<x <0或0<x <1,所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-1,-12和(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫-12,0和(0,1). f (x )和f ′(x )随x 的变化情况如下表:由表知f (x )的极大值为f ⎝ ⎛⎭⎪⎫-2=-2-2ln 2,极小值为f (1)=1+2ln 2.(2)f ′(x )=ax 2-x -1x 2x +,若f (x )在区间[2,4]上为增函数,则当x ∈[2,4]时,f ′(x )≥0恒成立,即ax 2-x -1x 2x +≥0,则a ≥x +1x 2,当x ∈[2,4]时,x +1x 2=1x +1x 2≤34,所以a ≥34.若f (x )在区间[2,4]上为减函数,则当x ∈[2,4]时,f ′(x )≤0恒成立,即ax 2-x -1x 2x +≤0,则a ≤x +1x 2, 当x ∈[2,4]时,x +1x 2=1x +1x 2≥516,所以a ≤516. 综上得a ≥34或a ≤516.[因材施教·学生备选练习]1.(2013年长春模拟)已知函数f (x )=13x 3+12ax 2+bx +c 在x 1处取得极大值,在x 2处取得极小值,且满足x 1∈(-1,1),x 2∈(2,4),则a +2b 的取值范围是( )A .(-11,-3)B .(-6,-4)C .(-11,3)D .(-16,-8)解析:依题意得,f ′(x )=x 2+ax +b ,x 1,x 2是方程f ′(x )=0的两个根,于是有⎩⎪⎨⎪⎧f -=-2+a -+b =1-a +b >0,f=12+a +b =1+a +b <0,f =22+2a +b =4+2a +b <0,f=42+4a +b =16+4a +b >0,如图,在坐标平面内画出该不等式组表示的平面区域,阴影部分表示的四边形的四个顶点的坐标分别为(-3,-4),(-1,-2),(-3,2),(-5,4),经验证得:当a =-5,b =4时,z =a +2b 取得最大值3;当a =-3,b =-4时,z =a +2b 取得最小值-11.于是z =a +2b 的取值范围是 (-11,3),故选C.答案:C2.(2013年广州模拟)已知函数f (x )=ln(2ax +1)+x 33-x 2-2ax (a ∈R ).(1)若x =2为f (x )的极值点,求实数a 的值;(2)若y =f (x )在[3,+∞)上为增函数,求实数a 的取值范围; (3)当a =-12时,方程f (1-x )=-x 33+b x有实根,求实数b 的最大值.解析:(1)f ′(x )=2a 2ax +1+x 2-2x -2a =x [2ax 2+-4a x -a 2+2ax +1.因为x =2为f (x )的极值点,所以f ′(2)=0, 即2a4a +1-2a =0,解得a =0. (2)因为函数f (x )在区间[3,+∞)上为增函数, 所以f ′(x )=x [2ax 2+-4a x -a 2+2ax +1≥0在区间[3,+∞)上恒成立.①当a =0时,f ′(x )=x (x -2)≥0在[3,+∞)上恒成立,所以f (x )在[3,+∞)上为增函数,故a =0符合题意.②当a ≠0时,由函数f (x )的定义域可知,必须有2ax +1>0对x ≥3恒成立,故只能a >0, 所以2ax 2+(1-4a )x -(4a 2+2)≥0在[3,+∞)上恒成立. 令函数g (x )=2ax 2+(1-4a )x -(4a 2+2),其对称轴为x =1-14a,因为a >0,所以1-14a<1,要使g (x )≥0在[3,+∞)上恒成立,只要g (3)≥0即可,即g (3)=-4a 2+6a +1≥0,所以3-134≤a ≤3+134.因为a >0,所以0<a ≤3+134.综上所述,a 的取值范围为⎣⎢⎡⎦⎥⎤0,3+134.(3)当a =-12时,方程f (1-x )=-x 33+b x可化为ln x -(1-x )2+(1-x )=b x.问题转化为b =x ln x -x (1-x )2+x (1-x )=x ln x +x 2-x 3在(0,+∞)上有解,即求函数g (x )=x ln x +x 2-x 3的值域.因为函数g (x )=x (ln x +x -x 2),令函数h (x )=ln x +x -x 2(x >0), 则h ′(x )=1x+1-2x =x +-xx,所以当0<x <1时,h ′(x )>0,从而函数h (x )在(0,1)上为增函数,当x >1时,h ′(x )<0,从而函数h (x )在(1,+∞)上为减函数,因此h (x )≤h (1)=0.而x >0,所以b =x ·h (x )≤0, 因此当x =1时,b 取得最大值0.。
【创新方案】2014届高考数学一轮复习 2.1 函数、导数及其应用讲解与练习 理 新人教A版
第一节函数及其表示[备考方向要明了]考什么怎么考1.了解构成函数的要素,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 1.考查方式多为选择题或填空题.2.函数的表示方法是高考的常考内容,特别是图象法与解析式更是高考的常客,如2012年新课标全国T10等.3.分段函数是高考的重点也是热点,常以求解函数值,由函数值求自变量以及与不等式相关的问题为主,如2012年某某T3等.[归纳·知识整合]1.函数与映射的概念函数映射两集合A,B A,B是两个非空数集A,B是两个非空集合对应关系f:A→B 按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中有唯一确定的数f(x)和它对应按某一个确定的对应关系f,对于集合A中的任意一个元素x在集合B中都有唯一确定的元素y与之对应名称f:A→B为从集合A到集合B的一个函数对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B是一个映射[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值X围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个 D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012·某某高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________.解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:1230°函数与映射的概念[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0-1,x <0表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.[自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1x ≥0,-1x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3) ———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:x x ≤11<x <2 x ≥2y123③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值X 围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.求函数的解析式[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+ 2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝ ⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式. 解:(1)令t = x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.分段函数求值[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +1,x <4,则f (2+log 23)的值为( )A.124B.112C.16D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.[答案] A ——————————————————— 解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的X 围求自变量值或自变量的取值X 围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值X 围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·某某高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值X 围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1) 解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 21a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项.2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,1,x 2,x ∈[1,+∞,若f (x )>4,则x 的取值X 围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值X 围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2B .y =ln e x与y =e ln xC .y =x -1x +3x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,lg -x ,x <0,则f (f (-10))=( )A.12B.14 C .1 D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013·某某模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1,∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6.6.(2013·某某模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x=1x-x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则函数f (3)=________.解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则f 2f 1+f 3f 2+…+f 2 012f 2 011=________.解析:令b =1,∵f a +1f a=f (1)=1,∴f 2f 1+f 3f 2+…+f 2 012f 2 011=2 011. 答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值X 围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值X 围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B 图象与事实相吻合.2.下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; (2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应. 解析:对于(1),集合P 中元素0在集合Q 中没有对应元素,故(1)不是函数;对于(3)集合P 不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数: (1)y =x -2·x +2,y =x 2-4; (2)y =x ,y =3t 3; (3)y =|x |,y =(x )2.解:∵y =x -2·x +2的定义域为{x |x ≥2},y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y =3t 3=t , ∴y =x 与y =3t 3是同一函数.(3)∵y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0}, ∴它们不是同一函数.4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.。
【优化方案】2014届高考数学(理科-大纲版)一轮复习配套:14.2-导数的应用(共40张)PPT课
∴函数 f(x)的单调递减区间为(0, a).
【名师点评】 对于含有参数的函数研究单调性时,要根据
参数是否影响f′(x)正负取值来确定是否讨论参数.
目录
考点2 用导数求函数的极值 对于求极值的问题,首先明确函数的定义域,并用导数为0的 点把定义域分割成几部分,然后列表并判断导数在各部分取 值的正负,极值点从表中就很清楚地显示出来.
∴x=1 为极小值点,极小值 f(1),f(1)=ln 2. 【思维总结】 求函数的极值点就是求f′(x)=0的点.但应 注意f′(x)=0是必要条件,而不是充分条件.
目录
跟踪训练 (2011·高考安徽卷)设 f(x极值点; (2)若 f(x)为 R 上的单调函数,求 a 的取值范围.
目录
【解】 依题意知函数的定义域为(0,+∞).
∵f′(x)=x-ax,∴①当 a≤0 时,f(x)的单调递增区间为(0,+
∞);②当 a>0 时,f′(x)=x-ax=x+
ax- x
a,令 f′(x)>0,
有 x> a,
∴函数 f(x)的单调递增区间为( a,+∞);
令 f′(x)<0,有 0<x< a,
§14.2 导数的应用
本节目录
教
考
考
知
材
点
向
能
回
探
瞭
演
顾
究
望
练
夯
讲
把
轻
实
练
脉
松
双
互
高
闯
基
动
考
关
教材回顾夯实双基
基础梳理 1.函数的单调性与导数的符号的关系(在某个区间上)
导数f′(x)的符号 f′(x)>0 f′(x)<0 f′(x)=0
2014年高考数学第一轮复习:导数及其应用-推荐下载
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分 150 分.考试时间 120 分钟.
第Ⅰ卷(选择题 共 60 分)
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的)
1.如图,设 D 是图中边长为 4 的正方形区域, E 是 D 内函数 y x2 图象下方的点构成的 区域.向 D 中随机投一点,则该点落入 E 中的概率为( )
令 '(x) 0,得x或 0 x 2 a .
x
1)dx
若 a 2 , (x) 0 ,则(x) 在 R 上单调递减,不存在极大值,舍去;
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
高考数学一轮总复习第二章函数、导数及其应用第一节函数及其表示课件理
第一节 函数(hánshù)及其表示
第一页,共18页。
为( )
(1)(2014·山东卷)函数 f(x)= (log21x)2-1的定义域
A.0,12
B.(2,+∞)
C.0,12∪(2,+∞) D.0,21∪[2,+∞)
第二页,共18页。
解析:要使函数 f(x)有意义,需使(log2x)2-1>0,即(log2x)2>1, ∴log2x>1 或 log2x<-1.
第十二页,共18页。
(2)∵2f(x)-f(-x)=lg(x+1), ∴2f(-x)-f(x)=lg(1-x). 解方程组22ff((-x)x)--f(f(-xx))==llgg((1x+ -1x)),得 f(x)=32lg(x+1) +13lg(1-x). 答案:(1)x2-1(x≥1) (2)23lg(x+1)+13lg(1-x)
第十一页,共18页。
(1)已知 f( x+1)=x+2 x,则 f(x)=________. (2)已知 2f(x)-f(-x)=lg(x+1),则 f(x)=________. 解析:(1)令 x+1=t,则 t≥1, x=t-1, 所以 f(t)=(t-1)2+2(t-1)=t2-1, 所以 f(x)=x2-1(x≥1).
第七页,共18页。
(1)已知 f2x+1=lg x,求 f(x)的解析式. (2)已知 f(x)是二次函数且 f(0)=2,f(x+1)-f(x)=x-1,求 f(x) 的解析式. (3)已知 f(x)+2f1x=x(x≠0),求 f(x)的解析式.
第八页,共18页。
解:(1)令2x+1=t,由于 x>0,∴t>1 且 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0),由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)-ax2-bx=x-1,即 2ax+a+ b=x-1,
2014高考数学(理)一轮复习学案课件 第2编 导数及其运算
考点 四
返回
返回
返回
考点 五
返回
返回
返回
返回
返回
真题再现
返回
返回
误区警示
返回
规律探究
返回
即时巩固
返回
返回
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
学案11 导数及其运算
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
返回
考点 一
考点突破
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
考点 三
返回
返回
ห้องสมุดไป่ตู้
返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二篇检测试题(时间:120分钟满分:150分)【选题明细表】一、选择题(每小题5分,共60分)1.(2012济南模拟)函数y=ln(2-x-x2)的定义域是( C)(A)(-1,2)(B)(-∞,-2)∪(1,+∞)(C)(-2,1)(D)[-2,1)解析:由题意得2-x-x2>0,即x2+x-2<0,解得-2<x<1.故选C.2.(2012年高考陕西卷)下列函数中,既是奇函数又是增函数的为( D)(A)y=x+1 (B)y=-x3(C)y=(D)y=x|x|解析:y=x+1是非奇非偶函数但为增函数,y=-x3是奇函数但为减函数,y=是奇函数,定义域上不单调,y=x|x|为奇函数也为增函数.故选D.3.已知f(x)=,则f(f(1))等于( D)(A)0 (B)1 (C)2 (D)3解析:因为f(x)=所以f(1)=0,f(f(1))=3.故选D.4.(2012西安一模)已知符号函数sgn(x)=则函数f(x)=sgn(ln x)-ln x 的零点个数为( C)(A)1 (B)2(C)3 (D)4解析:依题意得f(x)=sgn(ln x)-ln x=令f(x)=0得x=e,1,,所以函数有3个零点,故选C.5.(2012吉林模拟)当x∈(1,2)时,不等式(x-1)2<logx恒成立,则实数a的取a值范围为( C)(A)(2,3](B)[4,+∞)(C)(1,2](D)[2,4)解析:令y1=(x-1)2,y2=log a x,∵x∈(1,2)时,y1∈(0,1),要使(x-1)2<log a x恒成立,则∴1<a≤2,故选C.6.(2012河北石家庄质检)牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间y与储藏温度x的关系为指数型函数y=ka x,若牛奶在0 ℃的冰箱中,保鲜时间约为100 h,在5 ℃的冰箱中,保鲜时间约是80 h,那么在10 ℃时的保鲜时间是( C)(A)49 h (B)56 h (C)64 h(D)76 h解析:由题意知,所以k=100,a5=,则当x=10时,y=100×a10=100×=64.故选C.7.函数y=e|ln x|-|x-1|的图象大致为( D)解析:由y=e|ln x|-|x-1|=可以判断选项D符合.8.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( A)(A)4x-y-3=0 (B)x+4y-5=0(C)4x-y+3=0 (D)x+4y+3=0解析:切线l的斜率k=4,设切点的坐标为(x0,y0),则k=4=4,∴x 0=1,∴切点为(1,1),即y-1=4(x-1),∴4x-y-3=0.故选A.9.若f(x)=是R上的单调递增函数,则实数a的取值范围为( B)(A)[-4,8](B)[4,8)(C)(4,8)(D)(1,8)解析:由题意可知,4->0且4-+2≤a1,解得4≤a<8.故选B.10.(2012福州市高三第一学期期末质量检查)已知g(x)为三次函数f(x)=x3+x2-2ax(a≠0)的导函数,则它们的图象可能是( D)解析:由已知得g(x)=ax2+ax-2a=a(x+2)(x-1),∴g(x)的图象与x轴的交点坐标为(-2,0),(1,0),且-2和1是函数f(x)的极值点,故选D.11.已知f(x)=aln x+x2(a>0),若对任意两个不等的正实数x1、x2都有≥2恒成立,则a的取值范围是( A)(A)[1,+∞)(B)(1,+∞)(C)(0,1)(D)(0,1]解析:由于=k≥2恒成立,所以f'(x)≥2恒成立.又f'(x)=+x,故+x≥2,又x>0,所以a≥-x2+2x,而g(x)=-x2+2x在(0,+∞)上的最大值为1,所以a≥1.故选A.12.(2012年高考重庆卷)设函数f(x)在R上可导,其导函数为f'(x),且函数y=(1-x)f'(x)的图象如图所示,则下列结论中一定成立的是( D)(A)函数f(x)有极大值f(2)和极小值f(1)(B)函数f(x)有极大值f(-2)和极小值f(1)(C)函数f(x)有极大值f(2)和极小值f(-2)(D)函数f(x)有极大值f(-2)和极小值f(2)解析:由图象可知,当x<-2时,y>0,1-x>0,所以f'(x)>0,当-2<x<1时,y<0,1-x>0,所以f'(x)<0,当1<x<2时,y>0,1-x<0,所以f'(x)<0,当x>2时,y<0,1-x<0,所以f'(x)>0.所以函数f(x)有极大值f(-2)和极小值f(2).故选D.二、填空题(每小题4分,共16分)13.(2012浙江嘉兴模拟)若f(x)=则f(f(-2))=.解析:∵f(-2)=|-2-1|=3,∴f(3)=log33=1,即f(f(-2))=1.答案:114.设函数f(x)的图象关于y轴对称,又已知f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为.解析:因为函数f(x)的图象关于y轴对称,所以该函数是偶函数,又f(1)=0,所以f(-1)=0,又已知f(x)在(0,+∞)上为减函数,所以f(x)在(-∞,0)上为增函数,<0可化为xf(x)<0,所以当x>0时,解集为{x|x>1},当x<0时,解集为{x|-1<x<0}.综上可知,不等式的解集为(-1,0)∪(1,+∞).答案:(-1,0)∪(1,+∞)15.若直角坐标平面内两点P,Q满足条件:①P,Q都在函数f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与点对(Q,P)为同一个“友好点对”).已知函数f(x)=则f(x)的“友好点对”有个.解析:设x<0,则问题转化为关于x的方程(2x2+4x+1)+=0,即e x=-x2-2x-有几个负数解问题.记y1=e x,y2=-(x+1)2+,当x=-1时,<,所以函数y1的图象与y2的图象有两个交点(如图),且横坐标均为负数,故所求“友好点对”共有2个.答案:216.(2012山东日照模拟)已知函数f(x)=,g(x)=lo x,记函数h(x)=则不等式h(x)≥的解集为.解析:记f(x)与g(x)的图象交点的横坐标为x=x0,而f==<1=lo,f(1)==>0=lo1,∴x0∈,得h(x)的图象如图所示,而h=f=,∴不等式h(x)≥的解集为.答案:三、解答题(共74分)17.(本小题满分12分)已知函数f(x)=x2+(x≠0,常数a∈R).(1)当a=2时,解不等式f(x)-f(x-1)>2x-1;(2)讨论函数f(x)的奇偶性,并说明理由.解:(1)当a=2时,f(x)=x2+,f(x-1)=(x-1)2+,由x2+-(x-1)2->2x-1,得->0,x(x-1)<0,0<x<1,所以原不等式的解集为{x|0<x<1}.(2)f(x)的定义域为(-∞,0)∪(0,+∞),当a=0时,f(x)=x2,f(-x)=x2=f(x),所以f(x)是偶函数.当a≠0时,f(x)+f(-x)=2x2≠0(x≠0),f(x)-f(-x)=≠0(x≠0),所以f(x)既不是奇函数,也不是偶函数.18.(本小题满分12分)(2012浙江嘉兴模拟)已知函数f(x)=--ax(a∈R).(1)当a=时,求函数f(x)的单调区间;(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.解:(1)当a=时,f(x)=--x,f'(x)=[(e x )2-3e x+2]=(e x-1)(e x-2),令f'(x)=0,得e x=1或e x=2,即x=0或x=ln 2,令f'(x)>0,则x<0或x>ln 2,令f'(x)<0,则0<x<ln 2,∴f(x)在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减.(2)f'(x)=+-a,令e x=t,由于x∈[-1,1],∴t∈.令h(t)=+,h'(t)=-=,∴当t∈时h'(t)<0,函数h(t)为单调减函数;当t∈(,e]时h'(t)>0,函数h(t)为单调增函数,∴≤h(t)≤e+.∵函数f(x)在[-1,1]上为单调函数,∴若函数在[-1,1]上单调递增,则a≤+对t∈[,e]恒成立,所以a≤;若函数f(x)在[-1,1]上单调递减,则a≥+对t∈恒成立,所以a≥e+,综上可得a≤或a≥e+.19.(本小题满分12分)已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.解:(1)g(x)=+2=+2,因为|x|≥0,所以0<≤1,即2<g(x)≤3,故g(x)的值域是(2,3].(2)由f(x)-g(x)=0得2x--2=0,当x≤0时,显然不满足方程,即只有x>0时满足2x--2=0,整理得(2x)2-2·2x-1=0,(2x-1)2=2,故2x=1±,因为2x>0,所以2x=1+,即x=log 2(1+).20.(本小题满分12分)(2012宁化模拟)据预测,某旅游景区游客人数在500至1300人之间,游客人数x(人)与游客的消费总额y(元)之间近似满足关系y=-x2+2400x-1000000.(1)若该景区游客消费总额不低于400000元时,求景区游客人数的范围;(2)当景区游客的人数为多少人时,游客的人均消费额最高?并求出游客的人均最高消费额.解:(1)由题意,得-x2+2400x-1000000≥400000,x2-2400x+1400000≤0,得1000≤x≤1400,又500≤x≤1300,所以景区游客人数的范围是1000至1300人.(2)设游客的人均消费额为,则==-(x+)+2400≤400,当且仅当x=1000时等号成立.即当景区游客的人数为1000人时,游客的人均消费额最高,最高消费额为400元.21.(本小题满分12分)(2013宜宾市高三考试)设f(x)=ae x++b(a>0).(1)求f(x)在[0,+∞)上的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=x,求a,b的值.解:(1)设t=e x(t≥1),则y=at++b⇒y'=a-=.①当a≥1时,y'≥0⇒y=at++b在t≥1上是增函数,得当t=1(x=0)时,f(x)的最小值为a++b.②当0<a<1时,y=at++b≥2+b,当且仅当at=1时,f(x)的最小值为b+2.(2)f (x )=ae x ++b ⇒f'(x )=ae x -,由题意得⇒⇒22.(本小题满分14分)(2012洛阳统考)设函数f (x )=ln (x-1)+(a ∈R ).(1)求函数f (x )的单调区间;(2)如果当x>1,且x ≠2时,>恒成立,求实数a 的取值范围. 解:(1)由题易知函数f (x )的定义域为(1,+∞).f'(x )=-=.设g (x )=x 2-2ax+2a ,Δ=4a 2-8a=4a (a-2).①当Δ≤0,即0≤a ≤2时,g (x )≥0,所以f'(x )≥0,f (x )在(1,+∞)上是增函数.②当a<0时,g (x )的对称轴为x=a ,当x>1时,g (x )>g (1)>0,所以f'(x )>0,f (x )在(1,+∞)上是增函数.③当a>2时,设x 1,x 2(x 1<x 2)是方程x 2-2ax+2a=0的两个根,则x 1=a->1,x 2=a+.当1<x<x 1或x>x 2时,f'(x )>0,f (x )在(1,x 1),(x 2,+∞)上是增函数.当x 1<x<x 2时,f'(x )<0,f (x )在(x 1,x 2)上是减函数.综上,当a≤2时,f(x)的单调递增区间为(1,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间为(1,a-),(a+,+∞),单调递减区间为(a-,a+).(2)>可化为>0,即[f(x)-a]>0.(*)令h(x)=f(x)-a,由(1)知,①当a≤2时,f(x)在(1,+∞)上是增函数,所以h(x)在(1,+∞)上是增函数.因为当1<x<2时,h(x)<h(2)=0,(*)式成立;当x>2时,h(x)>h(2)=0,(*)式成立,所以,当a≤2时,(*)式成立.②当a>2时,因为f(x)在(x1,2)上是减函数,所以h(x)在(x1,2)上是减函数,所以当x1<x<2时,h(x)>h(2)=0,(*)式不成立.综上,a的取值范围为(-∞,2].。