自动控制原理稳态误差分析

合集下载

自动控制原理-第4章新 稳态误差与准确性分析

自动控制原理-第4章新 稳态误差与准确性分析

第4章 稳态误差与准确性分析控制系统的动态响应表征了系统的动态性能,它是控制系统的重要特性之一。

控制系统的稳态误差则是系统控制精度的一种度量,是系统的准确性能指标。

由于系统自身的结构参数、输入作用的类型(控制量或扰动量)以及输入函数的形式(阶跃、斜坡或加速度等)不同,控制系统的稳态输出不可能在任意情况下都与输入量(希望的输出)一致或相当,也不可能在任何形式的扰动下都能准确地恢复到原来的平衡位置,因而会产生原理性稳态误差。

通常把在阶跃输入作用下没有原理性稳态误差的系统称为无差系统;而把有原理性稳态误差的系统称为有差系统。

此外,系统中存在的不灵敏区、间隙、零漂等非线性因素也会造成附加的稳态误差。

可以说,控制系统的误差是不可避免的。

但是这些不是本章所要研究的内容。

本章讨论的是系统在没有随机干扰作用,元件也是理想的线性元件的情况下,系统仍然可能存在的误差。

控制系统设计的其中一个指标,就是尽量减小系统的稳态误差,或者使误差小于某容许值,以提高系统的准确性。

而系统的稳态误差,应该是在系统稳定的前提下研究才有意义;对于不稳定的系统而言,根本不存在研究稳态误差的可能性。

本章主要讨论线性控制系统由于系统结构、输入作用形式和系统类型所产生的稳态误差,即原理性稳态误差的计算方法,其中包括系统类型与稳态误差的关系,同时介绍定量描述系统误差的系数,静态误差系数和动态误差系数。

4.1 误差与稳态误差对于实际系统来说,输出量常常不能绝对精确地达到所期望的数值,期望的数值与实际输出的差就是所谓的误差。

4.1.1误差与偏差系统的误差e (t )是以系统输出端为基准来定义的,设x or (t )是控制系统所希望的输出,x o (t )是其实际的输出,则误差e (t )定义为)()()(o o t x t x t e r -=误差e (t )的Laplace 变换为E 1(s),则)()()(o o 1s X s X s E r -= (4-1) 系统的偏差差ε(t )是以系统输入端为基准来定义的。

《自动控制原理》第六章:控制系统误差分析

《自动控制原理》第六章:控制系统误差分析
X i (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )

G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1

K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv

1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度

定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)

《自动控制原理》第三第讲

《自动控制原理》第三第讲

误差系数 Kp Kv Ka
单位阶跃 输入
r(t) = u(t)
单位速度 输入
r(t) = t
单位加速 度输入
r(t) = 1 t 2 2
0
K0 0
1 1+K
I
∞ K0
0
II
∞ ∞K
0


1

K
1
0
K
1. 稳态误差与输入信号有关;与开环增益有关;与积分环节的个 数有关。
2. 减小或消除稳态误差的方法: a、增加开环放大系数K; b、提高系统的型号数;
R(s)
E(s) -
G1 ( s)
+ G2 (s) C(s)
H (s) (b)
通常,给定输入作用产生的误差为系统的给定误差
(E=R-HC),扰动作用产生的误差为扰动误差。认为扰动输入时 系统的理想输出为零,故从输出端的误差信号为:
En
= C理想
− C实际
=
−C实际
=
−Cn
= − G2 1+ G1G2 H
=
lim sv+1R(s)
s→0
lim sv + K
s→0
由上式可见, ess 与系统的型号v﹑开环增益K及输入信号
的形式及大小有关,由于工程实际上的输入信号多为阶跃信号
﹑斜坡信号(即等速度信号) ﹑抛物线信号(即等加速度信号) 或者为这三种信号的组合, 所以下面只讨论这三种信号作用 下的稳态误差问题.
Ka
m
G(s)H (s)
=
K sv
∏ (τ is +1)
i =1
n−v
∏ (Tjs +1)

《自动控制原理》第三章 35 稳态误差计算

《自动控制原理》第三章 35 稳态误差计算

两种定义的联系: E ' ( s ) E ( s ) H (s)
H ( s ) 1时, E ( s ) E ' ( s )
能源与动力学院 第三章 线性系统的时域分析法
3
1. 误差与稳态误差的定义…
e(t ) L1[ E (s)] L1[e (s) R (s)] L1[ R (s) ] 1 G(s)H (s)
3-6 线性系统的稳态误差计算 (Steady-state error)
稳定性 系统性能 动态性能
稳态性能 稳态误差
稳态性能
原理性误差 结构性误差 (附加稳态误差)
系统结构 输入类型、形式 摩擦,间隙 死区等非线性
能源与动力学院
第三章 线性系统的时域分析法
1
3-6 线性系统稳态误差计算
本节内容:
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
ets (t ) ess (t ) 稳态误差
ess ( )
Lim
s0
sE (s)
Lim
s0
1
sR (s) G(s)H
(s)
ess():终值误差 条件s: E(s)在右半平面及析 虚( 轴原 上点 解除外)
能源与动力学院 第三章 线性系统的时域分析法
4
1. 误差与稳态误差的定义…
例1
R(s) E(S)
误差与稳态误差的定义 系统的类型 输入作用下稳态误差计算 扰动作用下稳态误差 减小或消除稳态误差的措施

自动控制原理_第3章2

自动控制原理_第3章2

令Gc (s)
通信技术研究所
G f ( s) G( s)
, 得C (s) G( s) R( s) C ( s)
13
<例3-15>r(t)=1,n(t)=1 ,求ess
通信技术研究所
14
1 2 <例3-16> r (t ) 1 t t ,求ess 2 注:E=R-C
K (1s 1)( 2 s 1) ( m s 1) 1 K , ess (1) 0, K p lim 0 1 K s 0 s (T 1s 1)(T2 s 1) (T j s 1)
s 0
s
K (1s 1)( 2 s 1) ( m s 1) , ess 0 (2) 1, K p lim 1 s 0 s (T 1s 1)(T2 s 1) (T j s 1) K (1s 1)( 2 s 1) ( m s 1) 2, K p lim 2 , ess 0 ( 3) s 0 s (T 1s 1)(T2 s 1) (T j s 1)
s
K (1s 1)( 2 s 1) ( m s 1) 0, Kv lims 0 0, ess ( 1) s (T1s 1)(T2 s 1) (T j s 1) s 0 K (1s 1)( 2 s 1) ( m s 1) 1 K , ess (2) 1, Kv lims 1 s (T1s 1)(T2 s 1) (Tj s 1) K s 0 K (1s 1)( 2 s 1) ( m s 1) (3) 2, Kv lims 2 , ess 0 s (T1s 1)(T2 s 1) (T j s 1) s 0

自动控制原理3.6 线性系统的稳态误差

自动控制原理3.6 线性系统的稳态误差
§3 — 6 稳态误差的分析计算
系统稳态误差是系统的稳态性能指标,是系统控 制精度的一种度量,它是控制系统设计中的一项重要 技术指标。 一、误差与稳态误差:
1、误差:被控量的希望值 c0(t )和实际值 c(t )之差:
(t) c0(t) c(t)
2、稳态误差:当 t 时系统误差的极限值:
二、给定输入下的稳态误差与静态误差系数:
1、阶跃

入下的esr与静
态位置误
差系数K

p
r(t) A 1(t),R(s) A
s
esr
令K

p
lim sE(s)
s0

lim
s0
Gk
(s
lim
s0
)
1
s A
A
Gk s
esr
1
lim
As0
Gk
1 Kp
(
s)
0型:K p
ess

lim (t)
t
§3---6 稳态误差的分析计算
稳态误差的分析计算(续)
▲稳态误差是指在稳定条件下,加入输入信号后经 过足够长的时间,其瞬时响应已衰减到微不足道时, 稳态响应的期望值与实际值之差。因此,只有稳定 的系统讨论稳态误差才有意义。
●单位反馈系统的r(t)即为要求值:r(t) c0(t)

lim
s0
K
G0(s)

K

esr

A 1 K
1型:K p

lim
s0
K s
G0(s)


esr 0
1型以上:同1型一样ess 0

《自动控制原理》稳定性和稳态误差

《自动控制原理》稳定性和稳态误差

7-5 离散系统的稳定性和稳定误差 回顾:线性连续系统 稳定性和稳态误差问题:线性离散系统 稳定性和稳态误差 ?分析:sT e z =,首先研究s 平面与z 平面的关系。

一.s 域到z 域的映射s 域到z 域的关系: sT e z = S → Zs 域中的任意点可表示为ωσj s +=,映射到z 域则为 T j T T j e e e z ωσωσ==+)(ωσj s += ━━━━━━━━→ T e z σ=,T z ω=∠ (7—84)问题:s 平面上的点、线、面 如何映射到 z 平面?(1) s 平面上虚轴的映射虚轴:0=σ,ω=∞-→0→∞分析:0=σ时,1==T e z σ,ω=∞-→0→∞时,T z ω=∠==∞-→0→∞ 以原点为圆心的单位圆,经沿着单位圆转过无穷多圈分析:T 采样周期,单位[sec], 采样频率,单位[1/sec] f s =1/T采样角频率 s ω,单位[rad/sec] , T s /2πω=ω=2/s ω-→0→2/s ω时,T z ω=∠=π-→0→π 正好逆时针转一圈ω=2/s ω→s ω→2/3s ω时,T z ω=∠=π→π2→π3 又逆时针转一圈由图可见:可以把s平面划分为无穷多条平行于实轴的周期带,其中从-ωs/2到ωs/2的周期带称为主要带,其余的周期带叫做次要带。

(2) 等σ线映射s 平面上的等σ垂线,映射到z 平面上是以Te z σ=为半径的圆 s 平面上的虚轴映射为z 平面上的单位圆左半s 平面上的等σ线映射为z 平面上的同心圆,在单位圆内 右半s平面上的等σ线映射为z 平面上的同心圆,在单位圆外(3) 等ω线映射在特定采样周期T 情况下,由式(7-84)可知,s 平面的等ω水平线,映射到z 平面上的轨迹,是一簇从原点出发的映射,其相角T z ω=∠从正实轴计量,如图7-36所示。

由图可见,s 平面上2/s ωω=水平线,在z 平面上正好为负实轴。

自动控制原理稳态误差

自动控制原理稳态误差

自动控制原理稳态误差稳态误差是自动控制系统中一个非常重要的概念,它直接关系到系统的稳定性和准确性。

在控制系统中,我们经常会遇到一些误差,这些误差可能会影响系统的性能和稳定性。

因此,了解稳态误差的概念和计算方法对于控制系统的设计和分析都非常重要。

首先,我们来看一下稳态误差的定义。

稳态误差是指系统在稳定工作状态下,输出信号与期望值之间的差异。

换句话说,当输入信号保持不变时,系统输出与期望输出之间的偏差就是稳态误差。

稳态误差通常用于衡量系统的准确性和稳定性,它是评价控制系统性能的重要指标之一。

接下来,我们来看一下稳态误差的分类。

在自动控制系统中,稳态误差可以分为四种类型,静态误差、动态误差、稳态误差和瞬态误差。

静态误差是指系统在稳定工作状态下,输出信号与期望值之间的偏差;动态误差是指系统在工作过程中,输出信号与期望值之间的波动;稳态误差是指系统在长时间工作后,输出信号与期望值之间的偏差;瞬态误差是指系统在瞬时工作过程中,输出信号与期望值之间的偏差。

这四种误差类型各有特点,对于控制系统的设计和分析都有着重要的意义。

然后,我们来看一下稳态误差的计算方法。

在实际工程中,我们通常会用一些指标来衡量系统的稳态误差,比如静态误差增益、动态误差增益、稳态误差增益和瞬态误差增益等。

这些增益值可以帮助我们更好地了解系统的稳定性和准确性,从而指导控制系统的设计和分析工作。

最后,我们来看一下如何通过调节控制系统的参数来减小稳态误差。

在实际工程中,我们通常会通过调节控制系统的参数来改善系统的稳定性和准确性。

比如,可以通过增加控制器增益、改变控制器结构、优化控制器参数等方法来减小系统的稳态误差。

通过这些方法,我们可以更好地提高控制系统的性能和稳定性,从而更好地满足工程实际应用的需求。

总之,稳态误差是自动控制系统中一个非常重要的概念,它直接关系到系统的稳定性和准确性。

了解稳态误差的概念和计算方法对于控制系统的设计和分析都非常重要。

自动控制原理实验报告--控制系统的稳定性和稳态误差

自动控制原理实验报告--控制系统的稳定性和稳态误差

本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。

二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。

即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。

当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。

conv( )函数的调用是允许多级嵌套的。

例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。

2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。

判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。

对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。

MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。

自动控制原理稳态误差

自动控制原理稳态误差

自动控制原理稳态误差相关的基本原理引言自动控制原理是研究如何通过对被控对象进行测量和调节,使其输出达到期望值的一门学科。

在实际应用中,我们往往希望被控对象能够快速、准确地达到期望值,并且能够稳定在该期望值附近。

然而,由于各种因素的影响,被控对象在实际操作中往往会存在一定的误差。

稳态误差就是描述系统输出与期望值之间的偏差。

稳态误差的定义稳态误差是指系统在长时间运行后,输出与期望值之间的持续偏差。

通常使用误差函数来描述稳态误差,常见的有积分误差、百分比偏差等。

稳态误差分类根据系统输入信号和输出响应之间的关系,稳态误差可以分为以下几种类型:阶跃输入信号下的稳态误差当输入信号为阶跃函数时,系统响应过程中存在一个阶段性变化。

根据输出与期望值之间的偏差大小和持续时间的不同,可以将阶跃输入信号下的稳态误差分为零稳态误差、常数稳态误差和无限稳态误差三种情况。

零稳态误差当系统输出在长时间运行后与期望值完全一致时,称系统具有零稳态误差。

这意味着系统能够快速、准确地响应输入信号,并最终达到期望值。

常数稳态误差当系统输出在长时间运行后与期望值存在一个固定的偏差时,称系统具有常数稳态误差。

虽然系统能够达到期望值附近,但始终存在一个固定的偏差。

无限稳态误差当系统输出在长时间运行后与期望值之间的偏差持续增大,并且无法消除时,称系统具有无限稳态误差。

这种情况下,系统无法达到期望值。

正弦输入信号下的稳态误差当输入信号为正弦函数时,系统响应过程中存在周期性变化。

对于正弦输入信号下的稳态误差,我们通常关注其幅频特性和相频特性。

幅频特性描述了输出信号的幅值与输入信号频率之间的关系。

对于稳定系统,幅频特性通常是一个函数,它可以用来衡量系统对不同频率的正弦输入信号的响应能力。

当幅频特性在某个频率处衰减到0时,称该频率为系统的截止频率。

相频特性相频特性描述了输出信号与输入信号相位之间的关系。

对于稳定系统,相频特性通常是一个函数,它可以用来衡量系统对不同相位的正弦输入信号的响应能力。

自动控制原理第8章 误差分析

自动控制原理第8章 误差分析
在一般情况下,分子阶次为m,分母阶 次为n的开环传递函数可表示为
G( s)H (s)
K ( i s 1) s (T j s 1)
j 1 i 1 n
m
式中,K为开环增益;τi和Tj为时间常数 ;υ为开环系统在s平面坐标原点上的极 点的重数。也是系统积分环节的个数。
2017/6/16
第8章 误差分析
3
引 言
误差的分类 给定稳态误差(由给定输入引起的稳态 误差) 对于随动系统,给定输入变化,要 求系统输出量以一定的精度跟随输入量的 变化,因而用给定稳态误差来衡量系统的 稳态性能。 扰动稳态误差(由扰动输入引起的稳态 误差) 对恒值系统,给定输入通常是不变 的,需要分析输出量在扰动作用下所受到 的影响,因而用扰动稳态误差来衡量系统 的稳态性能。
2 t /T e ( t ) T e 其中, ts
随时间增长逐渐衰减至 ess (t) T( t T) 表明稳态误差 ess 零; (2)当 r(t ) sin t 时, R( s) / ( s2 2 ) s T 1 由于 E(s)
1 ( s )( s 2 2 ) T T 2 2 1 s 1 T
s T 2 3 1 2 2 T 1 s2 2 T 2 2 1 )
T T 2 2 cos t 2 2 sin t 2 2 T 1 T 1
2017/6/16
第8章 误差分析
11
8.1 稳态误差的基本概念
2017/6/16
第8章 误差分析
9
8.1 稳态误差的基本概念
【例8-1】设单位反馈系统的开环传递函 数为 G( s) 1 / Ts ,输入信号分别为 r(t ) t 2 / 2以及 r (t ) sin t ,试求控制 系统的稳态误差。 2 r ( t ) t / 2 时, R( s) 1/ s3 ,求得 解:(1)当

自动控制原理误差分析知识点总结

自动控制原理误差分析知识点总结

自动控制原理误差分析知识点总结自动控制是现代科学技术的重要组成部分,广泛应用于各个领域。

误差分析是自动控制中的一个关键概念,用于评估实际输出与期望输出之间的差异,并通过相应的控制策略来减小该差异。

本文将对自动控制原理中的误差分析知识点进行总结。

一、误差定义与分类在自动控制中,误差是指实际输出值与期望输出值之间的差别。

根据误差的来源和性质,可以将误差分为系统误差和随机误差两类。

1. 系统误差:指由于系统本身结构、参数、非线性等因素引起的误差,具有一定的规律性和可预测性。

2. 随机误差:指由于外界干扰、测量误差等原因引起的误差,具有无规律性和不可预测性。

二、误差分析方法为了准确评估误差并找到相应的控制策略,可以采用以下常用的误差分析方法。

1. 均方根误差(Root Mean Square Error, RMSE):通过计算误差的平方和的均值再开方得到,用于评估系统的总体误差水平。

2. 最大偏差(Maximum Deviation):指实际输出值与期望输出值之间的最大差异,用于评估系统的极端误差情况。

3. 稳态误差(Steady-state Error):指系统在稳态下输出值与期望输出值之间的差别,用于评估系统的稳定性能。

4. 频域分析:通过对系统的频率响应进行分析,评估不同频率下的误差变化情况,用于优化系统的频率特性。

三、误差补偿控制方法误差分析的目的是找到相应的控制策略来减小误差,常用的误差补偿控制方法包括:1. 比例控制(Proportional Control):根据误差的大小进行比例调整,控制输出与期望输出之间的比例关系。

2. 积分控制(Integral Control):通过积分误差以消除稳态误差,使输出趋于期望输出。

3. 微分控制(Derivative Control):通过对误差的变化率进行调整,改善系统的动态响应特性。

4. 预测控制(Predictive Control):基于模型对未来误差进行预测,提前采取相应控制策略以减小误差。

自动控制原理稳态误差

自动控制原理稳态误差

自动控制原理稳态误差
在自动控制原理中,稳态误差是指系统在达到稳态时,输出值与期望值之间的差异。

稳态误差的大小和系统的控制算法有关,常用的控制算法包括比例控制、积分控制和微分控制。

比例控制是最简单的控制算法,通过调整比例增益来控制系统的输出。

然而,比例控制往往会产生稳态误差。

当比例增益增大时,稳态误差会减小,但系统的稳定性可能会受到影响。

当比例增益调整得过大时,系统可能会变得不稳定。

为了降低稳态误差,可以采用积分控制。

积分控制通过对误差进行积分来调整系统的输出。

积分控制可以消除稳态误差,但会引入超调现象,导致系统的动态响应变差。

为了解决超调问题,可以采用微分控制。

微分控制通过对误差进行微分来调整系统的输出。

微分控制可以提高系统的响应速度,但可能导致系统的稳态误差增加。

为了综合利用比例控制、积分控制和微分控制的优势,可以采用PID控制。

PID控制是一种常用的自动控制算法,通过对误差进行比例、积分和微分操作来调整系统的输出。

PID控制可
以同时减小稳态误差和超调现象,提高系统的稳定性和响应速度。

综上所述,稳态误差是自动控制系统中常见的问题,可以通过调整控制算法的参数来减小稳态误差。

但需要根据具体的系统要求和性能指标来选择合适的控制算法和参数。

自动控制原理 第三章第5

自动控制原理  第三章第5
E(s) R(s) H(s)C(s)
2
(2)从输出端定义:
误差 E'(s) 等于系统希望输出量的希望值
Cr (s)与实际值C(s)之差。
E ' (s)
Cr
(s)
C(s)
1 H (S )
R(s)
C(s)
R(s)
1 Cr (s) H (s)
E(s)
G1 ( s)
N (s)
C(s)
G2 (s)
3
i 1
n
(Tj S 1)
j 1
S0 K S
K p
K
Kp
limG(s)H (s)
s0
G(0)H (0)
K s
Kp
K
Kv
lim sG(s)H (s)
s0
s
s
Kv 0
Kv
K
Kv
0 1 1
0 1
Ka
lim sG(s)H (s)
s0
s2
K s
KKaa
0 K
1 2
都跟系统的型别有关,下面按系统型别分类
输入信号
r (t )
1 2
t2
,
sin t,试求系统的稳态误差。
解:
当r (t )
1 2
t 2时
E(s)
e
(s)R(s)
1
R(s) G(s)
1
S3
1
1 TS
1 S2
1
S
1 T
反变换得:
e(t )
T
e2
1t T
T (t
T)
ess
lim e(t)
t
7
当r(t) sin t时,

自动控制原理3.6 控制系统的稳态误差

自动控制原理3.6 控制系统的稳态误差
R(s) + - B(s) H(s) Gc(s) + + Go(s) C(s)
反馈控制系统的一般结构图 R(s)——给定参考输入r(t)的象函数;C(s)——输出c(t)的象函数 N(s)——扰动量n(t)的象函数; B(s)——反馈量的象函数 Gc(s)——控制环节的传递函数; Go(s)——被控对象的传递函数 H(s)——反馈环节的传递函数
G c ( s )G o ( s ) H ( s ) B ( s ) H ( s )C ( s ) R(s) 1 G c ( s )G o ( s ) H ( s )
响应的期望值就是R(s),所以系统给定误差的象函数
应是:
1 Er ( s) R( s) B( s) R( s) 1 Gc ( s )Go ( s ) H ( s ) 1 R( s) e ( s) R( s) 1 G(s)
由扰动输入信号引起的误差称为扰动稳态误差,
它反映了系统抑制扰动的能力。 对于恒值调节系统,给定的参考输入是不怎么变 化的,需要分析稳态响应在扰动作用于系统后所
受到的影响。因此,常以扰动稳态误差去衡量恒
值调节系统的稳态性能。
二、系统的类型
设系统的开环传递函数为:
Gc ( s ) K1 ( j s 1) s ( i s 1)
统的稳态误差总是不可避免的;

当稳态误差足够小可以忽略不计的时候,可以认为
系统的稳态误差为零,这种系统称为无差系统,而 稳态误差不为零的系统则称为有差系统; 应当强调的是,只有当系统稳定时,分析系统的稳 态误差才有意义!!

一、误差与稳态误差
根据控制系统的一般结构,可定义系统的误差与稳态 误差。 N(s)
其中, G ( s ) Gc ( s )Go ( s ) H ( s ) 为开环传递函数。

自动控制原理3-2

自动控制原理3-2

根据稳态误差计算式:
S • R(S) ess=Lim e(t)= Lim[S • E(S)]= Lim s0 1 + G(S) t s 0 1 • S
s 0
针对输入信号r(t)=1(t), R(S)=1/S S ess=Lim s 0 1 + G(S) 1 = 1 + G(0)
静态位置误差系数Kp=Lim G(S) = G(0)
E(S)=R(S) – B(S) = R(S)
• R(S)
1 = • R(S) 1 + G(S) 1 E(S) e(S) = = 1 + G(S) R(S)
R(S)
E(S)
G(S)
C(S)
B(S) –
1 E(S) 误差传递函数e(S) = = 1 + G(S) R(S)
e(S)取决于系统结构、参数。
j=1
1 ess = 1+k
对于Ⅰ型系统, Kp=, ess =0 对于Ⅱ型II型以上系统,Kp=, ess =0 静态误差系数Kp定量描述了:
控制系统跟踪单位阶跃函数形式输入信号的能力。
例:位置随动系统
R(S) E(S) –
5
1 S(S+1)
C(S)
求:系统输入单位阶跃信号时稳态性能指标ess 解:对于单位反馈系统, 5 1 Gk(S) =G(S) = 5• = S(S+1) S(S+1) 得:系统型号为I型 开环增益K=5
当>2时,系统是Ⅱ型以上系统。 以开环传递函数在S平面原点上极点数目分类优点:
根据已知的输入信号形式,可迅速判断系统是否存在 稳态误差以及误差的大小。
2. 静态误差系数 (1) r(t)=1(t)作用下的稳态误差ess

自动控制原理 第七章 稳态误差

自动控制原理 第七章 稳态误差

ess=
V
lim s
s→0
k sν
kv
·
r(t)=At2/2 R(s)=A/s3
ess=
A
lim s2·
s→0
k sν
ka
取不同的ν 稳态误差
静态误差系数
R·1(t V·t At2/2 R·1(t V·t At2/2
)R 0型 1+ k
)
∞∞ k
00
Ⅰ型 0
V
k


k0
Ⅱ型 0
0
A
k

∞k
r(t)=R·1(t)
典型输入下的稳态误差与静态误差系数
R(s) E(s) G(s)H(s) C(s)
E(s)=R(s
1
)
1+G(s)H(s)
若系统稳定,
则可用终值定理求ess
R(s)
ess=
lim
s→0
s
1+
k sν
G0H0
r(t)=R·1(t) R(s)=R/s
R
ess=
1+
lim k s→0 sν
kp
r(t)=V·t R(s)=V/s2
N(s )
R(s) E(s )
k1 T1s+1
k2
C(s
s(T2s+1) )
令R(s)=0,En(s) = -C(s) =
s
(T1s+1)+ k1Gn(s) (T1s+1)(T2s+1) + k1k2
N(s)
令分子=0,得Gn(s) = - (T1s+1)/k1
2 按扰动的稳t态从补0→偿∞全过设程系统这稳就定是,按N(扰s)=动1/的s ,全则补偿

自动控制原理稳态误差知识点总结

自动控制原理稳态误差知识点总结

自动控制原理稳态误差知识点总结自动控制系统是现代工程领域广泛应用的一种技术手段,稳态误差是自动控制系统中常见的问题之一。

本文将对自动控制原理中稳态误差的知识点进行总结,并以简明扼要的方式进行介绍。

1. 稳态误差的定义稳态误差是指系统在稳定状态下输出与期望输出之间的差值。

也就是说,当输入信号经过一段时间后,系统输出的值与期望输出值之间可能存在一定的偏差。

2. 稳态误差的分类稳态误差可以分为零稳态误差和非零稳态误差两种类型。

2.1 零稳态误差当输入信号为恒定值时,系统输出达到稳定状态后仍存在一定的误差,这种误差称为零稳态误差。

零稳态误差可以进一步分为四种类型:常数型、比例型、积分型和比例积分型。

2.1.1 常数型误差常数型误差是指系统输出与期望输出之间存在一个常数的差值。

通常情况下,常数型误差发生在开环控制系统中,无法通过反馈调节来消除。

2.1.2 比例型误差比例型误差是指系统输出与期望输出的差值与系统输出的值成比例关系。

比例型误差通常发生在比例控制系统中,可以通过调节比例增益来减小误差。

2.1.3 积分型误差积分型误差是指系统输出与期望输出的差值与时间的积分关系。

积分型误差通常发生在积分控制系统中,可以通过增加积分时间常数来减小误差。

2.1.4 比例积分型误差比例积分型误差是指系统输出与期望输出的差值与时间的积分关系,并且与系统输出的值成比例关系。

比例积分型误差通常发生在比例积分控制系统中,可以通过调节比例增益和积分时间常数来减小误差。

2.2 非零稳态误差非零稳态误差是指系统输出与期望输出之间的差值在稳定状态下不为零。

非零稳态误差通常出现在闭环控制系统中,主要原因是系统的特性引起的。

3. 稳态误差的影响因素稳态误差的大小和减小程度受多个因素的影响,包括输入信号的特性、系统的传递函数、控制器的参数等。

3.1 输入信号的特性输入信号的特性对稳态误差有直接影响。

例如,当输入信号是阶跃信号时,可能会引起常数型误差;当输入信号是斜坡信号时,可能会引起比例型误差。

自动控制原理线性定常系统的稳态误差

自动控制原理线性定常系统的稳态误差

实验四 线性定常系统的稳态误差一、实验目的1. 通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系;2. 研究系统的开环增益K 对稳态误差的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。

三、实验内容1. 观测0型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;2. 观测I 型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;3. 观测II 型二阶系统的单位斜坡响应和单位抛物坡,并实测它们的稳态误差。

四、实验原理通常控制系统的方框图如图4-1所示。

其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。

图4-1单闭环控制系统由图4-1求得:)()()(11)(S R S H S G S E += (4-1)由上式可知,系统的误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。

如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差:)(lim 0S SE e s ss →= (4-2)本实验就是研究系统的稳态误差与上述因素间的关系。

下面叙述0型、I 型、II 型系统对三种不同输入信号所产生的稳态误差ss e 。

1.0型二阶系统设0型二阶系统的方框图如图4-2所示。

根据式(4-2),可以计算出该系统对阶跃和斜坡输入时的稳态误差:图4-2 0型二阶系统的方框图1)单位阶跃输入(1()R s s =):3112)1.01)(2.01()1.01)(2.01(lim 0=⨯+++++⨯=→S S S S S S e S ss 2)单位斜坡输入(21()R s s =):∞=⨯+++++⨯=→2012)1.01)(2.01()1.01)(2.01(lim S S S S S S e S ss 上述结果表明0型系统只能跟踪阶跃输入,但有稳态误差存在,其计算公式为:Pss K R e +=10,其中)()(lim 0S S H S G K p →≅,R 0为阶跃信号的幅值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟台南山学院课程实验报告
课程名称自动控制原理班级电气工程
1204
实验日期2014.12.14
姓名张莹学号20120201
4015
实验成绩
实验名称实验二稳态误差分析
实验目的及要求目的:
1. 学习Matlab仿真软件的使用。

2. 用Matlab对于0型、Ⅰ型、Ⅱ型单位负反馈系统,求出当给定信号分别为单位脉冲、单位阶跃和单位斜坡时系统响应及稳态误差。

要求:
1.编写实验程序。

2.用Matlab仿真实验结果。

3.写出实验报告




Matlab仿真软件
实验内容1、单位脉冲响应及稳态误差
程序代码及仿真结果如下:
>> t=0:0.1:15;
[num1,den1]=cloop([1],[1 1]); [num2,den2]=cloop([1],[1 1 0]); [num3,den3]=cloop([4 1],[1 1 0 0]); y1=impulse(num1,den1,t);
y2=impulse(num2,den2,t);
y3=impulse(num3,den3,t);
>> subplot(311);plot(t,y1);
>> subplot(312);plot(t,y2);
>> subplot(313);plot(t,y3);
>> er1=0-y1(length(t));
>> er2=0-y2(length(t));
>> er3=0-y3(length(t));
0510150
0.5
1
051015-0.5
0.5
1
051015
-10
1
2
2、单位阶跃响应及稳态误差
程序代码及仿真结果如下:
>> t=0:0.1:20;
[num1,den1]=cloop([1],[1 1]);
[num2,den2]=cloop([1],[1 1 0]);
[num3,den3]=cloop([4 1],[1 1 0 0]);
y1=impulse(num1,den1,t);
y2=impulse(num2,den2,t);
y3=impulse(num3,den3,t);
subplot(311);plot(t,y1);
subplot(312);plot(t,y2);
subplot(313);plot(t,y3);
er1=1-y1(length(t));
er2=1-y2(length(t));
er3=1-y3(length(t));
024681012141618200
0.5
1
02468101214161820-0.5
0.5
1
02468101214161820
-10
1
2
3、单位斜坡响应及稳态误差
程序代码及仿真结果如下:
>> t=0:0.1:20;
>> t1=0:0.1:100;
>> [num1,den1]=cloop([1],[1 1]);
[num2,den2]=cloop([1],[1 1 0]);
[num3,den3]=cloop([4 1],[1 1 0 0]);
>> y1=step(num1,[den1 0],t1);
y2=step(num2,[den2 0],t);
y3=step(num3,[den3 0],t);
>> subplot(311);plot(t1,y1,t1,t1);
subplot(312);plot(t,y2,t,t);
subplot(313);plot(t,y3,t,t);
>> er1=t1(length(t1))-y1(length(t1));
er2=t(length(t))-y2(length(t));
er3=t(length(t))-y3(length(t));
0102030405060708090100
50
100
02468101214161820
10
2002468101214161820
010
20


一般,能正常工作的自动控制系统应该是稳定的并具有较好的平稳性,同时,还应根据实际工程的需要,使系统的响应速度和稳态控制精度满足一定的要求。


语。

相关文档
最新文档