高数(大一上)
大一上学期高数知识点大全
大一上学期高数知识点大全1. 代数的基本概念1.1. 实数和复数1.2. 整式与分式1.3. 幂与根1.4. 指数与对数2. 函数与极限2.1. 函数的基本概念2.2. 一次函数与二次函数2.3. 指数函数与对数函数2.4. 极限的定义与性质3. 导数与微分3.1. 导数的定义与性质3.2. 常见函数的导数3.3. 高阶导数3.4. 微分的定义与应用4. 积分与不定积分4.1. 不定积分的定义与性质 4.2. 基本积分公式4.3. 定积分的定义与性质4.4. 牛顿-莱布尼茨公式5. 一元函数的应用5.1. 函数的增减性与最值问题 5.2. 函数与导数的几何意义 5.3. 曲线的图像与拐点5.4. 泰勒展开与近似计算6. 二元函数与多元函数6.1. 二元函数的性质与图像 6.2. 多元函数的极值与最值6.3. 偏导数与全微分6.4. 隐函数与参数方程7. 重积分与曲线积分7.1. 二重积分的定义与计算 7.2. 三重积分的定义与计算 7.3. 曲线积分的定义与计算 7.4. 曲面积分的定义与计算8. 空间解析几何8.1. 点、直线和平面的方程 8.2. 空间曲线与曲面8.3. 空间向量与坐标系8.4. 空间几何运算和投影9. 常微分方程9.1. 基本概念与一阶微分方程9.2. 可降阶的一阶微分方程9.3. 二阶线性常微分方程9.4. 高阶常微分方程的初值问题以上是大一上学期高等数学的主要知识点,通过深入学习这些内容,可以为后续学习及应用数学打下坚实的基础。
希望对你的学习有所帮助!。
大一高数上册课本知识点
大一高数上册课本知识点高等数学作为大一学生必修的一门课程,是培养学生抽象思维、逻辑推理和数学建模能力的基础。
下面将介绍大一高数上册课本的主要知识点,帮助同学们更好地理解和掌握这门课程。
一、函数与极限1. 函数概念:函数的定义、函数的三要素、常用函数的性质等;2. 一次函数与二次函数:函数的图像、基本性质、解析式、最值、单调性等;3. 指数函数与对数函数:指数函数、对数函数、性质与图像、指数方程与对数方程;4. 三角函数:正弦函数、余弦函数、正切函数、性质与图像、和差化积等;5. 极限与连续:函数极限的定义、性质、常用极限运算法则、连续函数的定义与性质等。
二、导数与微分1. 导数的概念:导数的定义、基本性质、几何意义、导数运算法则等;2. 常见函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算;3. 高阶导数与导数的应用:高阶导数的定义、求解、函数的单调性与凹凸性、传导方程等;4. 微分学基本定理与应用:微分中值定理、极值判别法、应用题等。
三、定积分与不定积分1. 定积分的概念:定积分的定义、性质、几何意义;2. 定积分的计算:基本初等函数的定积分计算、换元法、分部积分法、定积分的几何应用等;3. 不定积分:不定积分的定义、性质、基本性质、变量代换法、分部积分法等;4. 定积分与不定积分的关系:牛顿—莱布尼茨公式、微积分基本定理等。
四、微分方程1. 微分方程基本概念:微分方程的定义、阶数、线性微分方程、常微分方程等;2. 一阶常微分方程:可分离变量方程、一阶线性方程、齐次线性方程、一阶线性齐次方程等;3. 高阶常微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程、常系数齐次线性方程等;4. 微分方程的应用:生物、物理、工程、经济等领域实际问题的建模和求解。
五、向量代数与空间解析几何1. 向量的定义、性质与运算:向量的概念、向量的线性运算、数量积、向量积等;2. 空间直线与平面:直线的方程与性质、平面的方程与性质、空间几何问题求解等;3. 空间向量的相关内容:向量方程、点线面距离、平面与平面的位置关系等。
文科大一上高数知识点
文科大一上高数知识点高等数学是文科大一上的一门重要课程,它是建立在初等数学基础之上,通过对函数、极限、导数和积分等概念的学习,进一步拓展了数学的应用范围和思维方式。
下面将介绍文科大一上高数的核心知识点。
一、函数与极限1. 函数的概念与性质函数是一种特殊的关系,用来表达两个变量之间的对应关系。
它包括定义域、值域、奇偶性、单调性等概念。
2. 极限的概念与性质极限是函数在某一点无穷接近于某个值的过程,它包括左极限、右极限、无穷极限等概念。
极限的运算法则和极限存在性的判定也是高数的核心内容。
二、导数与微分1. 导数的定义与性质导数是函数在某一点的变化率,表示函数在该点的切线斜率。
它可以通过极限的方法进行定义,并包括导数的四则运算、复合函数求导和隐函数求导等内容。
2. 微分的概念与应用微分是导数的微小变化,可以用来描述函数在某一点的线性近似。
在实际问题中,微分可用于求函数的极值、函数表达式的近似计算等。
三、不定积分与定积分1. 不定积分的定义与性质不定积分是求一个函数的原函数的过程,记作∫f(x)dx。
它与导数的关系由牛顿-莱布尼茨公式给出,包括基本积分公式、分部积分法、换元积分法等。
2. 定积分的概念与应用定积分是求函数在一定区间上的面积或曲线长度的过程,记作∫[a,b]f(x)dx。
它由不定积分的性质引出,包括定积分的几何应用、牛顿-莱布尼茨公式的应用等。
四、常微分方程常微分方程是关于未知函数及其导数的方程,是研究变化过程的数学工具。
它可以分为一阶和高阶两类,包括可分离变量方程、一阶线性方程、高阶常系数齐次与非齐次线性方程等。
这些是文科大一上高数的核心知识点,通过学习这些知识,可以帮助学生建立数学思维,培养分析问题和解决问题的能力。
在掌握这些基础知识的基础上,文科生还可以通过拓展阅读,进一步了解高数在社会科学研究、经济学和管理学等领域的应用,从而提高对数学的认识和运用能力。
高数笔记大一上知识点汇总
高数笔记大一上知识点汇总[第一章:数列与极限]1. 数列的概念数列是按照一定规律排列的一系列数的集合。
数列中的每个数称为该数列的项。
2. 数列的分类- 等差数列:数列中每两项之间的差值都相等。
- 等比数列:数列中每两项之间的比值都相等。
- 递推数列:数列中的每一项都能由前面的项通过某种规律推算得到。
3. 数列的通项公式在某些规律的数列中,我们可以找到一种公式来表示该数列的第n项,这个公式被称为数列的通项公式。
4. 数列的前n项和数列的前n项和表示数列从第一项到第n项的求和结果。
对于等差数列、等比数列和递推数列,都有相应的求和公式。
5. 极限的概念极限是数列或函数在某一点或无穷远处的趋势或趋近值。
6. 数列的极限- 数列的收敛:当数列的项越来越接近某个确定的数时,可以说该数列收敛于该数。
- 数列的发散:当数列的项没有接近某个确定的数的情况下,可以说该数列发散。
7. 极限的性质与运算法则- 极限唯一性:数列的极限只能有一个。
- 有界性:收敛的数列是有界的,即数列中的所有项都在某个范围内。
- 收敛数列的极限运算法则:对于两个收敛数列的和、差、积、商,其极限仍可通过相应的运算得到。
[第二章:导数与微分]1. 函数的极限函数的极限表示当自变量趋近于某个值时,函数值的趋势或趋近值。
2. 导数的定义导数表示函数在某一点处的变化率或斜率。
可以通过导数来刻画函数曲线在某一点的切线的斜率。
3. 导数的运算法则- 常数倍法则:导数与常数倍之间有简单的线性关系。
- 和差法则:导数的和的导数等于各个导数之和。
- 乘积法则:导数的乘积等于前一个导数乘以后一个函数的值再加上后一个导数乘以前一个函数的值。
- 商法则:导数的商等于分子的导数乘以分母的值减去分母的导数乘以分子的值,再除以分母的平方。
4. 高阶导数函数的导数也可以求导,得到的导函数称为原函数的高阶导数。
5. 隐函数与参数方程的求导对于隐函数和参数方程,我们可以使用求导法则来求取导数。
高数1大一上知识点总结
高数1大一上知识点总结高等数学是大学理科类专业中的一门重要的基础课程,它为我们后续学习更深入的数学知识打下了坚实的基础。
大一上学期的高等数学1主要包含了数列与极限、函数与极限、导数与微分等内容。
接下来,我将对这些知识点进行总结。
一、数列与极限数列是由一系列实数按一定顺序排列而成的集合。
数列的极限是指当数列中的元素无限接近某个常数时的结果。
对于数列的极限的求解,主要有极限的性质、夹逼定理、Stolz定理等方法。
通过掌握这些方法,我们可以判断数列是否收敛以及求解极限值。
二、函数与极限函数是用来描述数值之间的关系的,而函数的极限则是描述函数在某点附近的取值变化趋势。
我们可以通过函数的极限来判断函数在某一点是否连续,进而进行更深入的讨论。
同时,函数的极限也与其导数密切相关,是后续学习微积分的重要基础。
三、导数与微分导数是描述函数在某一点附近的变化率,它的几何意义是函数曲线在该点处的切线斜率。
通过对函数求导,我们可以研究函数的极值、拐点以及函数曲线的形态。
微分则是将函数的变化量表示为自变量的变化量与函数的导数的乘积,是微积分中的一项重要运算。
在导数与微分的学习中,我们需要掌握导数的基本运算法则,如乘法法则、除法法则、链式法则等,并能够应用导数来求解函数的最值、函数图像的特性等问题。
此外,对于隐函数和参数方程的导数求解也应加以注意。
四、常微分方程常微分方程是指含有未知函数及其导数的方程,它是数学与现实问题相结合的桥梁。
通过对常微分方程的理解和求解,我们可以解决许多实际问题,如物理、化学、生物等领域中的动力学问题。
在常微分方程的学习中,最常见的是一阶常微分方程的求解。
我们需要掌握分离变量法、齐次方程法、常数变易法等常见的解题方法,并能够应用这些方法解决具体问题。
以上就是大一上学期高等数学1的主要知识点总结。
通过对这些知识点的学习,我们可以建立起扎实的数学基础,为后续学习打下坚实的基础。
同时,我们还应注重理论联系实际,将所学知识应用于实际问题的解决中,以锻炼自己的综合思考和解决问题的能力。
大一高数上所有知识点总结
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大一上学期高数知识点汇总
大一上学期高数知识点汇总高等数学是大一学生所必修的一门课程,也是建立数学思维和能力的基础。
在上学期的学习中,我们学习了许多重要的高数知识点,下面将对这些知识点进行简要的汇总。
一、函数与极限1. 函数的概念与性质- 函数的定义:一个自变量与一个因变量之间的对应关系。
- 函数的性质:单调性、奇偶性、周期性等。
2. 极限的概念- 极限的定义:当自变量趋近于某个值时,函数值的趋势。
- 极限的计算:利用极限的四则运算法则、夹逼定理等方法计算。
3. 连续与间断- 连续的定义与判定:函数在某点连续的条件。
- 间断的分类与分析:可去间断点、跳跃间断点、无穷间断点等。
二、导数与微分1. 导数的定义与计算- 导数的定义:函数在某点的变化率。
- 导数的计算方法:利用导数的基本公式、导数的四则运算法则等。
2. 导数的几何意义与应用- 导数的几何意义:切线斜率、曲线的凹凸性等。
- 导数在实际问题中的应用:最优化问题、函数图像的研究等。
3. 微分与微分近似- 微分的定义与计算:函数在某点的微小变化值。
- 微分近似的应用:利用微分进行函数近似计算。
三、积分与不定积分1. 定积分与计算- 定积分的定义:函数在区间上的面积。
- 定积分的计算方法:利用定积分的性质、基本公式等。
2. 不定积分与计算- 不定积分的定义:函数的原函数。
- 不定积分的计算方法:利用不定积分的性质、基本积分公式等。
3. 积分的几何意义与应用- 积分的几何意义:曲线下的面积、曲线的长度等。
- 积分在实际问题中的应用:物理问题、经济问题等。
四、微分方程1. 微分方程的定义与解法- 微分方程的定义:含有函数及其导数的方程。
- 微分方程的解法:分离变量法、齐次方程法、一阶线性方程法等。
2. 初值问题与边值问题- 初值问题的解法:给定初始条件的微分方程求解。
- 边值问题的解法:给定边界条件的微分方程求解。
以上是大一上学期高等数学的主要知识点汇总,通过对这些知识点的深入理解和掌握,可以为我们建立扎实的数学基础,为以后的学习打下坚实的基础。
高数大一上知识点有哪些
高数大一上知识点有哪些高等数学是大一上学期的一门重要课程,它是建立在高中数学基础之上的一门学科,旨在培养学生的数学思维能力和解决实际问题的能力。
本文将介绍高数大一上的主要知识点,帮助读者全面了解这门课程。
一、数列与极限1. 数列的概念和性质:数列的定义、递推公式、通项公式等;2. 数列的极限:数列的极限定义、数列极限存在准则、数列极限的性质等;3. 常见数列的极限:等差数列、等比数列、级数等;4. 极限的四则运算:极限乘法法则、极限加法法则等。
二、函数与映射1. 函数的概念和性质:函数的定义、定义域、值域、图像等;2. 基本初等函数:幂函数、指数函数、对数函数、三角函数等;3. 反函数与复合函数:反函数定义、复合函数定义、求解复合函数的方法等;4. 一些特殊函数:取整函数、符号函数、阶乘函数等。
三、导数与微分1. 导数的定义与计算:导数的定义、导数的基本性质、导数的计算方法等;2. 基本函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数;3. 高阶导数与隐函数求导:高阶导数定义、求解高阶导数的方法、隐函数的导数计算等;4. 微分与线性化:微分的概念、微分的性质、线性化与微分的应用等。
四、微分中值定理与应用1. 罗尔定理与拉格朗日中值定理:中值定理的概念、罗尔定理的条件和结论、拉格朗日中值定理的条件和结论等;2. 闭区间上函数性质的应用:零点存在性、最值存在性等;3. 函数的单调性、凹凸性与拐点:单调性的定义与判断、凹凸性的定义与判断、拐点的定义与判断等;4. 泰勒公式与导数的应用:泰勒公式的定义、泰勒公式的展开、泰勒公式在函数逼近和求极限中的应用。
五、不定积分与定积分1. 不定积分的定义与性质:不定积分的定义、换元积分法、分部积分法等;2. 基本积分公式与常见积分:幂函数积分、三角函数积分、指数函数积分等;3. 定积分的概念与性质:定积分的定义、定积分的计算法则、定积分的性质等;4. 定积分的应用:求面积、求弧长、求体积等。
大一高等数学教材课本目录
大一高等数学教材课本目录第一章函数与极限1.1 实数与数轴1.2 函数概念和图像1.3 函数的极限1.4 极限的性质1.5 无穷小量与无穷大量1.6 极限存在准则1.7 常用极限1.8 函数连续概念1.9 连续函数性质第二章导数与微分2.1 导数的定义2.2 基本导数公式2.3 高阶导数2.4 微分中值定理2.5 泰勒公式与展开2.6 隐函数导数2.7 弧微分与相对误差2.8 函数的单调性与凹凸性第三章微分中值定理与导数应用 3.1 高阶导数的应用3.2 导数在近似计算中的应用3.3 中值定理的证明3.4 罗尔中值定理与其应用3.5 拉格朗日中值定理与其应用 3.6 卡内尔中值定理与其应用3.7 泰勒中值定理及其应用第四章不定积分4.1 不定积分的定义与符号4.2 基本积分表4.3 定积分与微元法4.4 牛顿-莱布尼兹公式4.5 分部积分法4.6 有理分式的积分4.7 函数积分法4.8 徒手计算的积分第五章定积分5.1 定积分定义与性质5.2 定积分的几何意义5.3 定积分的计算方法5.4 定积分在几何学中的应用5.5 牛顿-莱布尼兹公式的积分形式 5.6 广义积分的定义与判敛5.7 瑕积分的计算方法第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 齐次微分方程6.4 一阶线性微分方程6.5 高阶线性微分方程6.6 化简与降阶第七章多元函数及其偏导数7.1 二元函数的概念与图像7.2 二元函数的极限与连续性 7.3 偏导数的定义与几何意义 7.4 偏导数的计算方法7.5 高阶偏导数与混合偏导数 7.6 隐函数偏导数7.7 多元函数的微分学基本定理 7.8 方向导数与梯度第八章多重积分8.1 二重积分概念与性质8.2 二重积分的计算方法8.3 二重积分在几何学中的应用 8.4 三重积分概念与性质8.5 三重积分的计算方法8.6 三重积分在几何学中的应用第九章曲线与曲面积分9.1 曲线积分的概念与性质9.2 第一类曲线积分的计算方法9.3 第二类曲线积分的计算方法9.4 曲面积分的概念与性质9.5 曲面积分的计算方法9.6 格林公式与高斯公式第十章空间曲线与格林公式10.1 空间曲线的参数方程10.2 第一类曲线积分10.3 第二类曲线积分10.4 空间曲面的参数方程10.5 曲面的面积与曲面元10.6 曲面积分10.7 格林公式和高斯公式的空间推广第十一章广义积分11.1 广义积分的概念与性质11.2 广义积分判敛方法11.3 正项级数的判敛11.4 参数积分的连续性条件11.5 瑕积分的计算方法第十二章泰勒展开与无穷级数12.1 函数的泰勒展开12.2 常用函数的泰勒展开式12.3 泰勒展开的应用12.4 函数项级数与定理12.5 幂级数的求和与收敛域12.6 函数项级数的运算与应用以上为大一高等数学教材的目录,各章节主要包括基础概念的介绍,公式的推导及性质的阐述,相关定理的证明,以及典型例题和习题的讲解。
大一上高数必考知识点
大一上高数必考知识点高等数学作为理工科类专业的一门重要基础课程,对于大一学生而言,是一门必考的重要科目。
本文将围绕大一上学期高等数学课程的必考知识点展开讨论,以便同学们能够针对这些知识点有针对性地进行复习。
一、极限与连续1. 函数的极限与极限的运算法则- 函数极限的定义与性质- 极限的四则运算法则- 夹逼准则和单调有界准则2. 连续与间断- 连续函数的定义与性质- 闭区间上连续函数的性质- 间断点的分类与性质二、导数与微分1. 导数的概念与求导法则- 导数定义与基本性质- 基本函数的导数与常数法则- 乘积、商、复合函数求导法则2. 高阶导数与高阶导数的运算- 高阶导数的定义- 高阶导数的运算法则- 高阶导数与微分的关系三、一元函数的微分学应用1. 函数的极值与最值- 极值的必要条件与充分条件- 最大值与最小值的存在性2. 曲线的凸凹性与拐点- 凸函数与凹函数的定义与性质- 凸凹性与拐点的判定方法3. 泰勒公式与应用- 泰勒公式的定义与形式- 泰勒公式在近似计算中的应用四、不定积分与定积分1. 不定积分的概念与性质- 不定积分与原函数的关系- 不定积分的基本性质与运算法则2. 定积分的概念与性质- 定积分的定义与性质- 牛顿-莱布尼茨公式与定积分的计算3. 定积分的应用- 定积分在几何问题中的应用- 定积分在物理问题中的应用五、级数1. 数项级数的概念与性质- 数项级数的收敛与发散- 收敛级数的性质与运算法则2. 常见级数的收敛性质- 等比级数和调和级数的收敛性- 幂级数的收敛区间与收敛域3. 函数展开为幂级数- 函数展开的定义与条件- 常见函数的幂级数展开综上所述,大一上学期高等数学的必考知识点包括极限与连续、导数与微分、一元函数的微分学应用、不定积分与定积分以及级数等内容。
希望同学们能够针对这些知识点进行系统性的学习和复习,为考试打下坚实的基础。
祝各位同学在高等数学考试中取得优异的成绩!。
大一上学期高数全部知识点
大一上学期高数全部知识点一、函数与极限在大一上学期的高等数学课程中,学习了函数与极限的相关知识。
函数是数学中的基础概念,它描述了自变量与因变量之间的关系。
而极限则是函数变化过程中趋于某一值的特性。
1. 函数基本概念函数是一个映射关系,将一个自变量的值映射到唯一的因变量的值上。
函数的定义域、值域、图像是其中重要的概念。
2. 极限的定义与性质极限描述了函数在接近某一点时的趋势。
通过极限的定义,可以判断函数在某一点是否收敛。
同时,我们也学习了极限的性质,如极限的唯一性、四则运算法则等。
3. 函数的连续性连续性是函数的重要性质,它描述了函数在某一点附近变化的平滑程度。
我们学习了连续函数的定义以及连续函数的运算法则。
二、导数与微分导数与微分是高等数学中另一个重要的知识点,它描述了函数在某一点的变化率。
1. 导数的定义与性质导数描述了函数在某一点附近的变化趋势,是函数变化率的一个重要指标。
我们学习了导数的定义、导数的运算法则以及高阶导数的概念。
2. 常用函数的导数在具体求导的过程中,我们学习了常用函数的导数计算方法,如常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 微分的概念与应用微分是导数的一个重要应用,它描述了函数在某一点的局部线性逼近。
微分可以用于函数近似计算、优化问题等领域。
三、积分与应用积分是高等数学中的另一个核心概念,它描述了函数在一定区间上的累积效应。
1. 不定积分与定积分不定积分是积分的基本形式,它表示了在导数的反演过程中。
定积分则是对函数在一定区间上的累积效应进行计算。
2. 定积分的计算方法我们学习了定积分的计算方法,如换元法、分部积分法、定积分的性质等。
通过这些方法,可以有效地计算复杂函数的定积分。
3. 积分的应用积分可以用于计算曲线的长度、曲线下的面积、物体的质量、重心等众多问题。
在学习过程中,我们也接触了一些具体的应用例子,如求弧长、求面积等。
四、级数与数列级数与数列是大一上学期高数课程的最后一个重要知识点,它描述了无穷多项之和的性质。
高数大一上知识点详细总结
高数大一上知识点详细总结高等数学是大一上学期的一门重要课程,它是理工科学生必修的一门基础课程。
本文将从微积分、数列与级数、函数与极限三个方面对高等数学大一上学期的知识点进行详细总结。
一、微积分1. 函数与极限a. 函数的概念:函数是一种映射关系,将一个自变量映射到一个因变量上。
常见的函数类型有线性函数、多项式函数、指数函数、对数函数等。
b. 极限的定义:极限是函数在某一点或无穷远点的趋势。
通过极限的计算,可以求得函数在某一点处的导数、积分等。
c. 极限的性质:极限具有唯一性、有界性、保序性等性质,这些性质在计算过程中非常重要。
2. 导数与微分a. 导数的定义:导数是函数在某一点处的斜率,表示函数在该点的变化率。
b. 导数的计算方法:常见的导数计算方法有利用定义计算、使用导数的性质(和、差、积、商规则)、使用特殊函数的导数公式等。
c. 微分的定义:微分是函数在某一点处的线性逼近,是导数与自变量增量的乘积。
3. 积分与不定积分a. 积分的概念:积分是导数的逆运算,表示函数在一定区间上的累积效应。
b. 不定积分的计算方法:常见的不定积分计算方法有基本积分公式、代换法、分部积分法等。
c. 定积分的概念:定积分是函数在一定区间上的面积,可以用积分的特性进行计算。
二、数列与级数1. 数列a. 数列的概念:数列是按照一定规律排列的一组数。
b. 数列的极限:数列的极限反映了数列中数值的趋势。
常见的极限有有界数列、单调有界数列、数列的收敛与发散等。
c. 数列的计算方法:常见的数列计算方法有通项公式、递推公式等。
2. 级数a. 级数的概念:级数是数列部分和的无穷累加。
b. 级数的收敛与发散:级数的收敛性表示级数的和是否有限,发散性表示级数的和为无穷大。
c. 常见的级数判定方法:常见的级数判定方法有比较判别法、比值判别法、根值判别法等。
三、函数与极限1. 函数的性质与图像a. 函数的奇偶性:奇函数满足$f(-x)=-f(x)$,偶函数满足$f(-x)=f(x)$。
高数大一上册知识点笔记
高数大一上册知识点笔记1. 函数与极限:- 函数的概念及基本性质- 极限的定义与性质- 极限运算法则2. 导数与微分:- 导数的定义与计算- 导数的几何意义与物理意义- 微分的概念与计算3. 微分中值定理与高阶导数:- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 高阶导数的概念与计算4. 不定积分与定积分:- 不定积分的定义与基本性质- 基本积分公式与常用积分公式 - 定积分的概念与性质- 牛顿-莱布尼茨公式5. 定积分的应用:- 曲线长度与曲面面积- 物理应用:质量、质心与静力学6. 微分方程:- 高阶导数与高阶线性微分方程 - 一阶线性微分方程- 可分离变量的一阶微分方程- 齐次线性微分方程7. 无穷级数:- 数列极限与数列的收敛性质 - 正项级数与收敛判别法- 收敛级数的性质- 幂级数及其收敛域8. 函数序列与函数级数:- 函数序列的定义与性质- 函数序列的一致收敛性- 麦克劳林级数与泰勒级数9. 空间解析几何:- 空间直线与平面的方程- 空间曲线与曲面的方程- 空间直线与平面的位置关系 - 空间曲线与曲面的位置关系10. 多元函数与偏导数:- 多元函数的概念与性质- 偏导数的定义与计算- 高阶偏导数与混合偏导数11. 多元函数的极值与条件极值: - 多元函数的极值与最大最小值 - 条件极值与拉格朗日乘数法12. 重积分:- 二重积分的概念与计算- 二重积分的性质与应用- 三重积分的概念与计算- 三重积分的性质与应用13. 曲线与曲面积分:- 第一类曲线积分的概念与计算 - 第二类曲线积分的概念与计算- 曲面积分的概念与计算14. 广义积分:- 广义积分的概念与收敛性- 参数积分的概念与性质- Gamma函数与Beta函数的定义与性质这些是高数大一上册的主要知识点笔记,对于每个知识点,可以进一步展开,提供详细的定义、定理、公式和实例,以帮助理解和掌握相关内容。
大一上学期的高数课程重点在于奠定基础,熟练掌握这些知识点对于后续的学习和应用都具有重要意义。
大一第一学期高数知识点
大一第一学期高数知识点在大一的第一学期,高等数学(又称高数)是必修课程之一,对于理工科的学生来说,掌握高数知识点是十分重要的。
本文将介绍大一第一学期高数的主要知识点,包括函数与极限、导数与微分、高阶导数与泰勒展开、不定积分和定积分五个部分。
一、函数与极限1. 函数的概念:函数是两个集合之间的一种映射关系,常用符号表示为y=f(x)。
2. 极限的概念:极限是数列或函数逐渐趋近于某个值的过程,包括左极限、右极限和无穷极限。
3. 极限的性质:包括四则运算法则、绝对值法则、比较法则等。
4. 常见函数的极限:如幂函数、指数函数、对数函数等。
二、导数与微分1. 导数的概念:导数描述了函数在某一点的变化率,也可以理解为函数曲线在该点的切线斜率。
2. 导数的计算方法:使用极限定义、基本导数法则、求导公式等方法计算导数。
3. 常见函数的导数:如幂函数、指数函数、对数函数、三角函数等。
4. 微分的概念:微分是导数的一种近似表示,表示函数在某一点附近的增量。
5. 微分的计算方法:使用微分公式和微分运算法则等方法计算微分。
三、高阶导数与泰勒展开1. 高阶导数的概念:高阶导数表示导数的导数,如二阶导数、三阶导数等。
2. 高阶导数的计算方法:通过对原函数多次求导来计算高阶导数。
3. 泰勒展开的概念:泰勒展开是一种使用多项式逼近函数的方法,可将函数在某点附近展开成幂级数。
4. 泰勒展开的计算方法:使用公式对函数进行泰勒展开。
四、不定积分1. 不定积分的概念:不定积分是求解函数的原函数的过程,表示为∫f(x)dx。
2. 基本积分公式:包括幂函数积分、三角函数积分、指数函数积分等基本公式。
3. 换元积分法:使用换元法将原函数转化为容易求解的形式。
4. 分部积分法:使用分部积分公式对复杂函数进行求积分。
五、定积分1. 定积分的概念:定积分是计算曲线下面的面积的方法,表示为∫[a,b]f(x)dx。
2. 定积分的性质:包括线性性质、区间可加性、积分中值定理等性质。
大一上学期高数必考知识点
大一上学期高数必考知识点高等数学作为大学数学的基础课程之一,对于大一学生来说是必修的科目之一。
在大一上学期,高等数学主要包括微积分和数学分析两大部分。
本文将针对大一上学期高数的必考知识点进行详细介绍,并按照相应的格式展开讨论。
一、微积分1. 函数与极限函数是微积分的基石,我们首先需要了解函数的定义和性质,常见的函数有多项式函数、指数函数、对数函数、三角函数等。
在函数的讨论中,我们需要掌握函数的定义域、值域、奇偶性、单调性等概念。
极限是微积分的核心概念之一,我们需要理解极限的定义以及相关的性质。
例如,极限存在的充要条件、无穷小和无穷大、函数的极限运算法则等。
2. 导数与微分导数是描述函数变化率的概念,在微积分中是非常重要的。
我们需要熟悉导数的定义和性质,掌握常见函数的导数公式,并能够运用导数求解函数的极值、切线方程、函数图像等问题。
微分是导数的基本应用,我们需要了解微分的定义、微分形式的不确定性、微分中值定理等内容。
3. 积分与定积分积分是导数的逆运算,是微积分的另一个重要内容。
我们需要了解积分的定义和性质,熟悉常用函数的不定积分公式,并能够运用积分计算函数的面积、曲线长度、旋转体体积等问题。
定积分是对函数在一定区间上的积分运算,我们需要理解定积分的定义和性质,掌握定积分的计算方法,熟练应用定积分求解曲线下面积、平均值、定积分中值定理等问题。
二、数学分析1. 数列与级数数列是数学分析的基础概念,我们需要理解数列的定义和性质,研究数列的极限、收敛性、单调性等问题。
此外,我们还需要了解常见数列的求和、求极限的方法。
级数是数列的和的概念,我们需要掌握级数的定义和性质,理解收敛级数与发散级数的区别,学习常见级数的求和方法。
2. 函数列与函数级数函数列是函数的序列,我们需要了解函数列的收敛性、一致收敛性等概念,以及函数列的极限与函数的关系。
函数级数是函数的无穷级数,我们需要学习函数级数的定义和性质,研究函数级数的收敛域、一致收敛性等问题。
(完整版)大一高数第一章函数、极限与连续
(完整版)⼤⼀⾼数第⼀章函数、极限与连续第⼀章函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为⾃然科学的中⼼问题.与之相适应,数学在经历了两千多年的发展之后进⼊了⼀个被称为“⾼等数学时期”的新时代,这⼀时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究⽐“形”更重要,以积极的态度开展对“⽆限”的研究,由常量数学发展为变量数学,微积分的创⽴更是这⼀时期最突出的成就之⼀.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的⼀种基本⽅法,⽽连续性则是函数的⼀种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍⾼等数学的⼀些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作⽤的⽆穷⼩量的概念和性质.此外,还给出了两个极其重要的极限.随后,运⽤极限的概念引⼊函数的连续性概念,它是客观世界中⼴泛存在的连续变化这⼀现象的数学描述.第⼀节变量与函数⼀、变量及其变化范围的常⽤表⽰法在⾃然现象或⼯程技术中,常常会遇到各种各样的量.有⼀种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这⼀类量叫做变量;另⼀类量在考察过程中保持不变,它取同样的数值,我们把这⼀类量叫做常量.变量的变化有跳跃性的,如⾃然数由⼩到⼤变化、数列的变化等,⽽更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何⼀个数.变量取值范围常⽤区间来表⽰.满⾜不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ,即 ,{|}a b x a x b =≤≤;满⾜不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满⾜不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即(,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有⽆限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤??,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞??,, (){|}a x a x +∞=<<+∞,,等等. 这⾥记号“-∞”与“+∞”分别表⽰“负⽆穷⼤”与“正⽆穷⼤”.邻域也是常⽤的⼀类区间.设0x 是⼀个给定的实数,δ是某⼀正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中⼼,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去⼼δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ?=<-<图1-1下⾯两个数集(){}000,|U x δx x δx x ?-=-<<,(){}000,|U x δx xx x δ?+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们⽤0()U x ,0()x oU 分别表⽰0x 的某邻域和0x 的某去⼼邻域,(),x δ-oU ,(),U x δ?+分别表⽰0x 的某左邻域和0x 的某右邻域.⼆、函数的概念在⾼等数学中除了考察变量的取值范围之外,我们还要研究在同⼀个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复⼒与它的形变,等等.我们关⼼的是变量与变量之间的相互依赖关系,最常见的⼀类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某⼀法则f ,使得对于每个数x A ∈,均有⼀个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为⾃变量,y 称为因变量,()f x 表⽰函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈?称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上⽤“() ,y f x x A =∈”表⽰函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定⼀个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表⽰使函数有意义的范围,即⾃变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取⾮负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的⾃变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表⽰两个变量之间的⼀种对应关系.例如,⽓温曲线给出了⽓温与时间的对应关系,三⾓函数表列出了⾓度与三⾓函数值的对应关系.因此,⽓温曲线和三⾓函数表表⽰的都是函数关系.这种⽤曲线和列表给出函数的⽅法,分别称为图⽰法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三⾓函数与反三⾓函数都是⽤公式法表⽰的函数.从⼏何上看,在平⾯直⾓坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所⽰).函数()y f x =的图像通常是⼀条曲线,()y f x =也称为这条曲线的⽅程.这样,函数的⼀些特性常常可借助于⼏何直观来发现;相反,⼀些⼏何问题,有时也可借助于函数来作理论探讨.现在我们举⼀个具体函数的例⼦.图1-2例1求函数y . 解要使数学式⼦有意义,x 必须满⾜> ,240,10x x ?-≥??-??即 >2,1.x x ?≤由此有 12x <≤,因此函数的定义域为(12??,.有时⼀个函数在其定义域的不同⼦集上要⽤不同的表达式来表⽰对应法则,称这种函数为分段函数.下⾯给出⼀些今后常⽤的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥?==?-? 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所⽰. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -??===的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所⽰.图1-3 图1-4例4 最⼤取整函数y x =,其中x 表⽰不超过x 的最⼤整数.例如,113??-=-,00=,12??=??,π3=等等.函数y x =的定义域()()D f =-∞+∞,,值域(){}R f =整数.⼀般地,y x n ==,1n x n ≤<+,120,,n =±±L ,,如图1-5所⽰.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯⼀的,这样定义的函数称为单值函数.若给定⼀个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯⼀的,我们称这种法则g 确定了⼀个多值函数.例如,设变量x 与y之间的对应法则由⽅程2225x y +=给出,显然,对每个55[,]x ∈-,由⽅程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =⼀个值;当55(,)x ∈-时,对应的y 有两个值.所以这个⽅程确定了⼀个多值函数.对于多值函数,往往只要附加⼀些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分⽀.例如,由⽅程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到⼀个单值分⽀()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则,就可以得到⼀个单值分⽀22()25y g x x ==--.关系的,如⾼度为⼀定值的圆柱体的体积与其底⾯圆半径r 的关系,就是通过另外⼀个变量其底⾯圆⾯积S 建⽴起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ?.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =?=,x D ∈,它的定义域为D ,变量u 称为中间变量.这⾥值得注意的是,D 不⼀定是函数()u g x =的定义域()D g ,但()D D g ?.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,⽽()(0,)D f =+∞.因此,11,D -=,⽽此时1()0,R f g =.两个函数的复合也可推⼴到多个函数复合的情形.例如, log a µxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u µx =复合⽽成.⼜形如()log ()()()a v x u x v x y u x a ==()0u x >()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合⽽成. ⽽y =可看成由y =sin u v =,2v x =复合⽽成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合⽽成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131x x x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每⼀个y 值,都有只从关系式()y f x =中唯⼀确定的x 值与之对应,则得到⼀个定义在()R f 上的以y 为⾃变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从⼏何上看,函数()y f x =与其反函数()1x f y -=有同⼀图像.但⼈们习惯上⽤x 表⽰⾃变量,y 表⽰因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是⾃变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所⽰.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞??,对每⼀个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从⽽2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的⼀⼀映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解函数()1y f x =+可看成由()y f u =,1u x =+复合⽽成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合⽽成.因为()11x u f u x u-==+,0u ≠,即1u y u -=,从⽽,()11u y -=-, 11u y=-,所以 ()111y f u u-==-,因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的⼏种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任⼀x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的⼀个上界(或下界);否则,称()f x 在D 上⽆上界(或⽆下界).若函数()f x 在D 上既有上界⼜有下界,则称()f x 在D 上有界;否则,称()f x 在D 上⽆界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任⼀x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任⼀()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内⽆上界,但有下界. 从⼏何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所⽰.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从⼏何上看,若()y f x =是严格单调函数,则任意⼀条平⾏于x 轴的直线与它的图像最多交于⼀点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所⽰.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ??-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在⼀个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成⽴的常数T 称为()f x 的周期,通常,函数的周期是指它的最⼩正周期,即:使上式成⽴的最⼩正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最⼩正周期,例如,狄利克雷(Dirichlet )函数为数为⽆数10 ,) (,x D x x ?=??有理,理.任意正有理数都是它的周期,但此函数没有最⼩正周期.四、函数应⽤举例下⾯通过⼏个具体的问题,说明如何建⽴函数关系式.例8 ⽕车站收取⾏李费的规定如下:当⾏李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的⾏李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =?+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤?=?+->?这是⼀个分段函数,其图像如图1-9所⽰.图1-9例9 某⼈每天上午到培训基地A 学习,下午到超市B ⼯作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或⼯作的地⽅吃.A B C ,,位于⼀条平直的马路⼀侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打⼯者在这条马路的A 与B 之间何处找⼀宿舍(设随处可找到),才能使每天往返的路程最短. 解如图1-10所⽰,设所找宿舍D 距基地A 为x (km ),⽤f x ()表⽰每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(),当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤?=?+≤≤?这是⼀个分段函数,如图1-11所⽰,在30,上,()f x 是单调减少,在38,上,()f x 是单调增加.从图像可知,在3x =处,函数值最⼩.这说明,打⼯者在酒店C 处找宿舍,每天⾛的路程最短.图1-11五、基本初等函数初等数学⾥已详细介绍了幂函数、指数函数、对数函数、三⾓函数、反三⾓函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的⽅便,下⾯我们再对这⼏类函数作⼀简单介绍.1. 幂函数函数µy x = (µ是常数)称为幂函数.幂函数µy x =的定义域随µ的不同⽽异,但⽆论µ为何值,函数在()0+∞,内总是有定义的. 当0µ>时,µy x =在)0+∞??,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12µ=,1µ=,2µ=时幂函数在第⼀象限的图像. 当0µ<时,µy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12µ=-,1µ=-,2µ=-时幂函数在第⼀象限的图像.图1-12 图1-132. 指数函数函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上⽅. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所⽰.以常数e 271828182.=L 为底的指数函数e x y =是科技中常⽤的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所⽰.科学技术中常⽤以e 为底的对数函数e log y x =,图1-15它被称为⾃然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常⽤的对数函数,简记作g l y x =.4. 三⾓函数常⽤的三⾓函数有正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =,余切函数 cot y x =,其中⾃变量x 以弧度作单位来表⽰.它们的图形如图1-16,图1-17,图1-18和图1-19所⽰,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ??=+ ??,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常⽤的三⾓函数还有正割函数sec y x =;余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三⾓函数常⽤的反三⾓函数有反正弦函数 arcsin y x = (如图1-20);反余弦函数 arccos y x = (如图1-21);反正切函数 arctan y x = (如图1-22);反余切函数arccot y x = (如图1-23).它们分别称为三⾓函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三⾓函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每⼀个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每⼀个单调增加(或减少)的⼦区间上存在反函数.例如,sin y x=在闭区间,22ππ??-上单调增加,从⽽存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-,值域为,22ππ??-.反正弦函数arcsin y x =在11,-上是单调增加的,它的图像如图1-20中实线部分所⽰. 类似地,可以定义其他三个反三⾓函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-,值域为π0,,在1,1-上是单调减少的,其图像如图1-21中实线部分所⽰.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22??-,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所⽰.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所⽰.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能⽤⼀个式⼦表⽰的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同⼦集⽤不同表达式来表⽰对应关系的,有些分段函数也可以不分段⽽表⽰出来,分段只是为了更加明确函数关系⽽已.例如,绝对值函数也可以表⽰成y x =1,,()0,x a f x x a ? 也可表⽰成1()12f x ? = ??.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是⼯程和物理问题中很有⽤的⼀类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx x+ ()x -∞<<+∞,其图像如图1-24和图1-25所⽰图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成⽴.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =,反双曲余弦函数 arch y x =,反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所⽰.利⽤求反函数的⽅法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞??,,在)1+∞??,上单调增加,如图1-27所⽰,利⽤求反函数的⽅法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所⽰.容易求得a rth 1ln 1xy x x+==-.第⼆节数列的极限⼀、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按⾃变量增⼤的次序依次排列出来,就称之为⼀个⽆穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为⼀项,⽽()n x f n =称为⼀般项.对于⼀个数列,我们感兴趣的是当n ⽆限增⼤时,n x 的变化趋势.我们看下列例⼦:数列 12,,,,231nn +L L (1-2-1) 的项随n 增⼤时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增⼤时,其值越来越⼤,且⽆限增⼤;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n ⽆限增⼤时,⽆穷数列{}n x 的⼀般项n x ⽆限地趋近于某⼀个常数a (即n x a -⽆限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们⽤观察法可以判断数列{}1n n -,1(1)n n -??-,{}2都有极限,其极限分别为1,20,.但什么叫做“n x ⽆限地接近a ”呢?在中学教材中没有进⾏理论上的说明.我们知道,两个数a 与b 之间的接近程度可以⽤这两个数之差的绝对值b a -来度量.在数轴上b a -表⽰点a 与点b 之间的距离,b a -越⼩,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=,我们知道,当n 越来越⼤时,1n 越来越⼩,从⽽n x 越来越接近1.因为只要n ⾜够⼤, 11n x n-=就可以⼩于任意给定的正数,如现在给出⼀个很⼩的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下⾯不等式1110000n x -<成⽴.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时⽆限接近于1的实质.⼀般地,对数列{}n x 有以下定义.定义2 设{}n x 为⼀数列,若存在常数a 对任意给定的正数ε(⽆论多么⼩),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,⼀般说来,N 将随ε减⼩⽽增⼤,这样的N 也不是唯⼀的.显然,如果已经证明了符合要求的N 存在,则⽐这个N ⼤的任何正整数均符合要求,在以后有关数列极限的叙述中,如⽆特殊声明,N 均表⽰正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”⼀个⼏何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上⽤它们的对应点表⽰出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所⽰图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,⽽只有有限个点(⾄多只有N 个点)在这区间以外.为了以后叙述的⽅便,我们这⾥介绍⼏个符号,符号“?”表⽰“对于任意的”、“对于所有的”或“对于每⼀个”;符号“?”表⽰“存在”;符号“{}ax m X ”表⽰数集X 中的最⼤数;符号“{}min X ”表⽰数集X 中的最⼩数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε??>,?正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε?>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε?>,取ln /ln21N ε= ???,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明π1lim cos04n n n →∞=. 证由于ππ111cos 0cos 44n n n n n -=≤,故0ε?>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε?>,取1N ε??=,则当n N >时,有π1cos 04n εn -<.由极限定义可知π1lim cos 04n n n →∞=. ⽤极限的定义来求极限是不太⽅便的,在本章的以后篇幅中,将逐步介绍其他求极限的⽅法.⼆、数列极限的性质定理1(惟⼀性)若数列收敛,则其极限惟⼀. 证设数列{}n x 收敛,反设极限不惟⼀:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ?>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<,(1-2-6) 20N ?>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成⽴,显然⽭盾.该⽭盾证明了收敛数列{}n x 的极限必惟⼀.定义3 设有数列{}n x ,若存在正数M ,使对⼀切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是⽆界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界⼜有下界. 例3 数列{}211n +有界;数列{}2n 有下界⽽⽆上界;数列{}2n -有上界⽽⽆下界;数列{}11nn --()既⽆上界⼜⽆下界.定理2(有界性)若数列{}n x 收敛,则数列{}n x 有界.证设lim n n x a →∞=,由极限定义,0ε?>,且1ε<,0N ?>,当n N >时,1||n x a ε-<<,从⽽<1n x a +.取{}12m 1,,,,N M ax a x x x =+?,则有n x M ≤,对⼀切123,,,n =L ,成⽴,即{}n x 有界.定理2 的逆命题不成⽴,例如数列{}1()n -有界,但它不收敛.定理3(保号性)若lim n n x a →∞=,0a >(或0a <),则0N ?>,当n N >时,0n x >(或0n x <).证由极限定义,对02aε=>,0N ?>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论设有数列{}n x ,0N ?> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),⽽不能由0n x > (或0n x <)推出其极限(若存在)也⼤于0(或⼩于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下⾯我们给出数列的⼦列的概念.定义4 在数列{}n x 中保持原有的次序⾃左向右任意选取⽆穷多个项构成⼀个新的数列,称它为{}n x 的⼀个⼦列.在选出的⼦列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的⼦列可记为{}k n x .k 表⽰k n x 在⼦列{}k n x 中是第k 项,k n 表⽰k n x 在原数列{}n x 中是第k n 项.显然,对每⼀个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在⼦列{}k n x 中的下标是k ⽽不是k n ,因此{}k n x 收敛于a 的定义是:0ε?>,0K ?>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何⼦列{k n x }都收敛,且都以a 为极限. 证先证充分性.由于{}n x 本⾝也可看成是它的⼀个⼦列,故由条件得证. 下⾯证明必要性.由lim n k x a →∞=,0ε?>,0N ?>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4⽤来判别数列{}n x 发散有时是很⽅便的.如果在数列{}n x 中有⼀个⼦列发散,或者有两个⼦列不收敛于同⼀极限值,则可断⾔{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解在{}n x 中选取两个⼦列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ; ()*164πsin ,8k k N +??∈,即()ππ16420sin ,sin ,88k ??+??. 显然,第⼀个⼦列收敛于0,⽽第⼆个⼦列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满⾜121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满⾜121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成⽴时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ??+?? ??收敛.证根据收敛准则,只需证明11nn ??+?? ??单调增加且有上界(或单调减少且有下界).由⼆项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L ,逐项⽐较n x 与1n x +的每⼀项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,⼜111112!3!!n x n <+++++L 211111222n <+++++L。
高数知识点大一上学期
高数知识点大一上学期一、导数与微分导数与微分是高数学习的重要基础,它们是描述函数变化率和变化趋势的工具。
导数表示函数某一点的瞬时变化率,微分则是通过导数来近似描述函数的变化。
1. 导数的定义导数表示函数在某一点处的变化率,一般用f'(x)或dy/dx来表示。
导数的定义为:f'(x) = lim (h→0) [f(x+h) - f(x)] / h2. 导数的几何意义导数可以理解为函数曲线在某一点处的切线斜率。
当导数为正时,函数曲线上升;当导数为负时,函数曲线下降;当导数为零时,函数曲线达到极值点。
3. 常见函数的导数公式- 常数函数:f(x) = C,导数为 f'(x) = 0;- 幂函数:f(x) = x^n,导数为 f'(x) = n * x^(n-1);- 指数函数:f(x) = a^x,导数为 f'(x) = ln(a) * a^x;- 对数函数:f(x) = loga(x),导数为 f'(x) = 1 / (x * ln(a));- 三角函数:sin(x)、cos(x)、tan(x) 等的导数公式。
4. 微分的定义微分主要是通过导数来近似描述函数的变化情况。
如果函数f(x)在某一点x0处可导,则函数f(x)在x0处的微分为:df(x) = f'(x0) * dx二、极限与连续性极限与连续性是高数中的重要概念,它们用于研究函数在一点或一段区间的性质。
1. 极限的定义极限表示函数在某一点或某一区间的趋近情况。
设函数f(x),当x无限接近某一点a时,如果存在一个常数L,使得对于任意给定的正数ε,总存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - L| < ε成立,则称函数f(x)在点a处的极限为L,记作:lim (x→a) f(x) = L2. 常用的极限公式- 基本极限:- lim (x→0) sin(x) / x = 1- lim (x→∞) (1 + 1/x)^x = e- 无穷小量与无穷大量:- lim (x→∞) 1 / x = 0- lim (x→0) sin(x) / x = 1- 极限的四则运算法则:- lim (x→a) [f(x) ± g(x)] = lim (x→a) f(x) ± lim (x→a) g(x)- lim (x→a) [f(x) * g(x)] = lim (x→a) f(x) * lim (x→a) g(x)- lim (x→a) f(x) / g(x) = lim (x→a) f(x) / lim (x→a) g(x),其中lim (x→a) g(x) ≠ 03. 连续性的定义函数在某一点连续表示函数在该点的极限等于函数在该点的取值,即lim (x→a) f(x) = f(a)。
大一上高数基础知识点
大一上高数基础知识点
大一上的高等数学主要包括以下几个基础知识点:
1.实数与函数
-实数的基本性质:有理数与无理数、实数的大小比较、实数的稠密
性等。
-函数的概念:自变量、因变量、定义域、值域等。
-函数的表示与性质:显函数、隐函数、参数方程等。
2.三角函数与函数的性质
-三角函数的定义:正弦函数、余弦函数、正切函数等。
-三角函数的性质:周期性、奇偶性、单调性等。
-三角函数的图像与性质:正弦函数图像、余弦函数图像、正切函数
图像等。
3.一元函数的极限与连续性
-函数的极限:极限的定义、极限的性质、极限的计算等。
-连续函数:连续的概念、连续函数的性质、连续函数的计算等。
4.一元函数的导数与微分
-函数的导数:导数的定义、导数的性质、导数的计算、高阶导数等。
-函数的微分:微分的定义、微分的性质、微分的计算等。
5.函数的应用
-函数的极值与最值:极大值、极小值、最大值、最小值等。
-函数的图像与曲线的描绘:对称性、渐近线、拐点等。
-函数与导数的应用:函数的单调性、函数的凸凹性、最优化等。
6.一元函数的不定积分
-不定积分的概念与性质:不定积分的定义、不定积分的性质、常用积分公式等。
-不定积分的计算:基本积分公式、换元积分法、分部积分法等。
以上是大一上高等数学的基础知识点,理解并掌握这些知识点是学好高等数学的基础。
在学习过程中,需要进行大量的练习以加深对这些知识的理解和应用能力的培养。
大一上高数要掌握的知识点
大一上高数要掌握的知识点大一上学期的高等数学是大多数理工类专业的必修课程,它是数学基础学科中的重要一环。
下面将详细介绍在大一上高数课程中需要掌握的知识点。
一、导数与微分1. 函数的导数概念及性质2. 常见初等函数的导数公式3. 利用导数求函数的极值及凹凸性4. 高阶导数和Leibniz公式5. 隐函数与参数方程的导数二、函数与极限1. 函数极限的定义与性质2. 极限的运算法则3. 无穷大与无穷小的概念4. 函数连续性与间断点5. 一元函数的中值定理及应用三、微分学的应用1. 泰勒展开与近似计算2. 函数的极值与最值问题3. 最优化问题与约束条件4. 法向量与切线方程5. 微分学在自然科学与工程领域的应用四、不定积分与定积分1. 不定积分的概念和基本性质2. 常见初等函数的不定积分公式3. 分部积分法与换元积分法4. 定积分的定义及性质5. 牛顿—莱布尼茨公式与定积分的计算五、多元函数微分学基础1. 高维空间与点集的表示2. 多元函数的极限与连续性3. 偏导数与全微分的定义4. 隐函数与逆函数求导5. 多元函数的极值与最优化六、常微分方程初步1. 常微分方程基本概念与初值问题2. 一阶常微分方程的解法3. 高阶线性常微分方程4. 变量分离与常微分方程的应用5. 线性常微分方程组基础七、级数与幂级数1. 数列与级数的概念及性质2. 常见数列的收敛性判定3. 正项级数的审敛法4. 幂级数的收敛域与求和5. 泰勒级数与幂级数的应用以上是大一上高等数学课程中需要掌握的主要知识点,通过学习这些内容,可以构建起扎实的数学基础,为后续课程打下坚实的基础。
希望同学们能够认真学习,理解掌握这些知识,提升数学能力。
大一上高数知识点概念
大一上高数知识点概念高等数学是大学本科中一门基础性较强的学科,大一上学期所学的高数知识点涵盖了微积分的初步概念和应用。
本文将简要介绍大一上高数的主要知识点和相关概念。
一、函数及其性质函数是数学中的基本概念之一,它描述了一个变量与另一个变量之间的依赖关系。
函数的性质包括定义域、值域、奇偶性、周期性等。
另外,函数的图像也是研究函数性质的一种重要方式。
二、极限与连续极限是数学分析的核心内容之一,它描述了函数在某一点附近的变化趋势。
极限的求解可以通过直接代入、夹逼定理、洛必达法则等方法。
连续性是函数的一种重要性质,一个函数在某点连续意味着函数在该点的极限存在且与函数值相等。
三、导数与微分导数是函数在某一点的变化率,它描述了函数曲线在该点的切线斜率。
导数的求解可以通过极限的定义或导数的基本公式进行计算。
微分是导数的几何实质,它表示了函数在某一点的线性近似。
四、高阶导数与泰勒展开高阶导数是导数的导数,它描述了函数变化率的变化率。
泰勒展开是一种通过导数求解函数在某点附近的近似值的方法,它利用了函数在该点的导数信息。
五、不定积分与定积分不定积分是导数的逆运算,它用于求解函数的原函数。
定积分是求解函数在某一区间上的累积量,它可以用于计算曲线与坐标轴之间的面积或弧长。
六、级数级数是一系列数项按照特定规则求和的结果。
收敛级数是指级数的部分和有极限,而发散级数则没有。
级数的收敛性可通过比较判别法、比值判别法、根值判别法等方法进行判断。
七、多元函数及其偏导数多元函数是包含多个自变量的函数,其求导需要使用偏导数。
偏导数描述了函数在某一变量上的变化率,常用于研究函数在多维空间中的性质。
八、二重积分与三重积分二重积分用于计算二维平面上的面积,三重积分则用于计算三维空间中的体积或质量。
积分的计算可以通过换元法、分部积分法等技巧进行。
九、常微分方程常微分方程是描述函数导数与自变量之间关系的方程。
常微分方程的解可以通过分离变量、齐次方程、常数变易法等方法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江工商大学200 3/2004学年第一学期期末考试试卷课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: .一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为 4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(x e x f x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( ) A 、等于0 B 、等于1 C 、等于e D 、不存在3、曲线x xe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101x dxC 、⎰+∞+02/31x dxD 、⎰+∞22ln xx dx 5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( )A 、)()(x g x f -<-B 、)()(x g x f '<'C 、)(lim )(lim 00x g x f x x x x →→<D 、⎰⎰<0000)()(x x dx x g dx x f 三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xy y x 确定,求0|=x dy 。
4、求函数)101292arctan()(23-+-=x x x x f 的单调区间。
5、)1ln()(2-=x x f ,求)()(x f n6、求⎰+dx x x 2/32)1(arctan7、求dx x x ⎰+-312|44|8、在曲线21xy =上求一点,使该点切线被两坐标轴所截的线段最短。
四、应用题(满分8分) 答题要求:写出详细计算过程一个圆锥形的容器,顶朝上,底边半径1米,高2米,盛满水,要将水全部抽出底面需要做多少功?五、(本题满分6分) 设)(x f 是),(+∞-∞上非负连续的偶函数,且当0≥x 时,)(x f 单调增加。
(1)对任意给定的常数b a <,求常数ξ,使得0)()(=++⎰ba dx x f x ξξ(2)证明(1)中所得的ξ是惟一的。
答题要求:写出详细过程。
浙江工商大学200 4/2005学年第一学期期末考试试卷课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: .一、填空(每小题2分,满分20分)1、)(x f 的定义域为)2,1(,则)12(+x f 的定义域为 2、=+∞→x x x x sin 1lim 23、函数⎪⎩⎪⎨⎧≤>+=0,20,)1()(1x x ax x f x 在0=x 处连续,则=a 4、=)(tan x e d5、设x y ln =,则=)(n y6、设函数)(x f 在0x x =处可导,则=--→h h x f x f h )2()(lim 0007、已知C x dx x f +=⎰sin )(,则=)(x f8、=++⎰+-112)]1ln(2[dx x x9、x xe y y y =-'+''2的特解形式(不必精确计算)为10、已知dt e y x t ⎰-=220,则='=1|x y 二、单项选择(每小题3分,满分15分)1、函数||)(x x x f =在 0=x 处( )A 、连续且可导B 、连续不可导C 、可导不连续D 、不连续且不可导2、当0→x 时,变量x cos 1-是2x 的( )A 、等价无穷小B 、同阶无穷小但不等价C 、高阶无穷小D 、低阶无穷小3、曲线11623+-=x x y 在)2,0( 内的一段弧是( ) A 、上升,凹的 B 、上升,凸的 C 、下降,凹的 D 、下降,凸的4、广义积分⎰+∞+11dx x k 是收敛的,则k 满足( ) A 、2-≤k B 、2-<k C 、1-≤k D 、1-<k5、设在区间]1,0[上0)(>''x f ,由中值定理,必有( )A 、)0()1()0()1(f f f f ->'>'B 、)0()0()1()1(f f f f '>->'C 、)0()1()0()1(f f f f '>'>-D 、)0()1()0()1(f f f f '>->'三、计算题(每小题6分,共36分)答题要求:写出详细计算过程1、求)(lim x x x x -++∞→2、求)1ln(ln lim 0-+→x x e x3、利用变换2)(x e x z y =求微分方程23)14(42x e y x y x y -=-+'-''的通解。
4、求dx xe x xx ⎰-+)ln 1(5、⎰-2ln 01dx e x6、设⎩⎨⎧<≥+=0,00,2)(x x x x f ,求⎰-41)2(dx x f四、计算下列各题(每小题7分,满分14分) 答题要求:写出详细计算过程1、设平面图形D 由x y x y ==,2所围成,求D 的面积,并求D 绕x 轴旋转一周所形成的体积。
2、求曲线⎩⎨⎧+==+-t t y t e x x 201sin 3在0=t 处的切线方程。
五、 (本题满分9分) 答题要求:写出详细计算过程试确定c b a ,,的值,使抛物线c bx ax y ++=2满足:(1)过点)0,0(和)1,1(;(2)曲线向上凸;(3)与x 轴所围的面积最小。
六、(本题满分6分) 设)(x f 是),0[+∞上连续,单调非减且0)(≥x f ,试证函数⎪⎩⎪⎨⎧=>=⎰000)(1)(0x x dt t f t x x F x n,在),0[+∞上连续且单调非减(其中0>n )。
答题要求:写出详细过程。
浙江工商大学2005 /2006学年第一学期期末考试试卷课程名称: 高等数学(上) 考试方式: 闭卷 完成时限: 120分钟 班级名称: 学号: 姓名:一、填空(每小题2分,满分20分) 1.=--++∞→)11(lim 22x x x x2.,lim e c x c x xx =⎪⎭⎫ ⎝⎛-+∞→则c =3.函数⎪⎩⎪⎨⎧=≠=002sin )(x ax xxx f ,在),(∞+-∞处连续,则a =4.设4tancos cos 22π++=x x y ,则=y d5.设),arccos (arcsin )(x x x x f +=则=')22(f 6.已知曲线bx ax y +=2在x =1处取到极值,则a 、b 应满足条件 7.已知c e x x x f x +=⎰33d )(,则f (x )=8.⎰+∞-=02d 3x x e x9.设f (x )在[]1,0存在二阶连续导数,且1)1(,0)0(='='f f ,则⎰='''1)()(dx x f x f10.微分方程x xe y y 242-='+''的特解形式=*y __二、单项选择(每小题3分,满分15分)1.⎪⎩⎪⎨⎧≤+>=.0),1ln(,0,1cos )(x x x xx x f 则x = 0是f (x )的( )。
(A )连续点 (B )可去间断点 (C )无穷间断点 (D )跳跃间断点 2.当0→x ,下列无穷小中与x 不等价的是( )。
(A )x tan (B )1-x e (C )11-+x (D ))1ln(+x 3.曲线x xe y =的拐点是( )。
(A )2 (B )22-e (C ))2,2(2e (D ))2,2(2---e 4、若321,,y y y 是微分方程)()()(x f y x q y x p y =+'+''三个线性无关的解,21,C C 是任意常数,则该方程的通解为 ( )(A)32211y y C y C ++(B) 1312211)()(y y y C y y C +-+-(C) )()(312211y y C y y C -+-(D) 1312211)()(y y y C y y C ++++5.设两曲线 y = f (x )与 y = g (x )相交于两点(x 1,y 1)和(x 2,y 2),且0)(,0)(>>x g x f ,则此两曲线所围平面图形绕x 轴旋转一周所得的旋转体体积为( )。
(A )[]⎰-212)()(x x dx x g x f π(B )[][]⎰-2122)()(x x dx x g x f π(C )[][]dx x g dx x f x x x x 222121)()(⎰⎰-ππ(D ){[][]}⎰-2122)()(x xdx x g x f π三、计算下列各题(每小题6分,满分42分) 1.求 )1ln(ln lim 0-+→xx e x2. 设 51lim21=-++→xbax x x ,求a ,b 的值。
3. 已知⎩⎨⎧+=-=221t t y t x ,求22d d ,d d x yx y4.设0ln ln =++x y xy ,求dxdy5.求2ln(1)x dx +⎰ 6.求⎰-3124x xdx7、求微分方程y y x '-=''的通解。
四、应用题(每小题9分,满分18分)1. 求抛物线342-+-=x x y 及其在点(0,-3)和(3,0)处的切线围成图形的面积。
2. 设圆锥体的母线长a 为常数,试确定其高h ,使圆锥体体积达到最大。
五、证明题(本题满分5分)设()f x 在(),-∞+∞内具有连续的二阶导数,且(0)0f =,试证:()0()(0)0f x xg x xf x ⎧≠⎪=⎨⎪'=⎩具有连续的一阶导数。