八年级数学上册第十四章期末复习提纲.doc
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)(带答案)
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
八年级上册数学第十四章知识点总结
八年级上册数学第十四章知识点总结第十四章一次函数一、知识点1. 函数:在某一变化过程中,有两个变量x和y,对于x的每一个取值,y都有唯一确定的值与之对应,那么就说y是x的函数,x叫做自变量。
2. 一次函数:一般地,如果y与x之间的函数关系式为y=kx+b(k≠0,k,b是常数),那么y随x增大而增大,我们就称它为一次函数。
3. 正比例函数:对于两个相关联的变量x,y,如果它们的函数关系式中,k,b为常数且k≠0,那么就称y按照关于x的一次函数关系随x变化。
4. 正比例函数图象:一般地,当我们把形如y=kx(k≠0)的函数的图象画在同一个直角坐标系中时,正比例函数的图象是经过原点的一条直线。
二、理解与应用1. 理解一次函数的概念:我们需要关注函数的表达方式和形式(即定义),了解常数k的几何意义,并理解b的含义。
2. 应用一次函数解决实际问题:我们要能够将实际问题转化为数学问题,通过运用一次函数的性质来求解。
例如,我们可以利用一次函数的增减性来解决问题,根据实际情况做出选择。
3. 注意在解题过程中运用画图辅助的方法:利用图象可以直观地看出两个变量之间的变化关系,有助于我们更好地理解问题,找到解题的关键点。
三、例题解析【例】已知正比例函数y=kx的图象经过点(2,4),求k的值并画出这个函数的图象。
【解析】根据题目中的条件,我们可以直接将点(2,4)代入函数表达式中求得k的值。
根据所求得的k值,我们可以画出这个函数的图象。
通过观察图象,我们可以更好地理解一次函数与自变量之间的关系。
解:将点(2,4)代入函数表达式中,可得k=2×4=8。
画出这个函数的图象如下:这个图象是一条经过原点和点(2,4)的直线。
通过观察图象,我们可以发现当x>0时,y随x的增大而增大。
这对于我们解决实际问题非常有帮助。
四、练习题请完成以下练习题,尝试运用一次函数的知识来解决实际问题。
1. 已知正比例函数y=kx的图象经过点(3,2),求k的值并画出这个函数的图象。
八年级数学上册第十四章整式的乘法与因式分解重点知识点大全(带答案)
八年级数学上册第十四章整式的乘法与因式分解重点知识点大全单选题1、下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a−b2C.−a2+b2D.−a2−b2答案:C分析:根据平方差公式的定义判断即可;A、原式不能利用平方差公式进行因式分解,不符合题意;B、原式不能利用平方差公式进行因式分解,不符合题意;C、原式=(b−a)(b+a),能利用平方差公式进行因式分解,符合题意;D、原式不能利用平方差公式进行因式分解,不符合题意,故选:C.小提示:本题主要考查了平方差公式分解因式,准确判断是解题的关键.2、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.3、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;4、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.5、下列式子中,正确的有( )①m3∙m5=m15;②(a3)4=a7;③(-a2)3=-(a3)2;④(3x2)2=6x6A.0个B.1个C.2个D.3个答案:B分析:根据同底数幂的乘法、幂的乘方、积的乘方逐一分析判断即可.解:①m3⋅m5=m8,故该项错误;②(a3)4=a12,故该项错误;③(−a2)3=−a6,−(a3)2=−a6,故该项正确;④(3x2)2=9x4,故该项不正确;综上所述,正确的只有③,故选:B.小提示:本题考查同底数幂的乘法、幂的乘方、积的乘方,掌握运算法则是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若x2+2(k+1)x+4是完全平方式,则k的值为()A.+1B.﹣3C.﹣1或3D.1或﹣3答案:D分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+2(k+1)x+4是完全平方式,∴2(k+1)=±4,解得:k=1或-3,故D正确.故选:D.小提示:本题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知a2+14b2=2a−b−2,则3a−12b的值为()A.4B.2C.−2D.−4答案:A分析:根据a2+14b2=2a−b−2,变形可得:a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0,因此可求出a=1,b=−2,把a和b代入3a−12b即可求解.∵a2+14b2=2a−b−2∴a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0即(a−1)2=0,(12b+1)2=0∴求得:a=1,b=−2∴把a和b代入3a−12b得:3×1−12×(−2)=4故选:A小提示:本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.填空题11、多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=_____.答案:﹣2分析:根据题意只要使含x3项和x2项的系数为0即可求解.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.所以答案是:﹣2.小提示:本题主要考查多项式的系数,关键是根据题意列出式子计算求解即可.12、分解因式:x2y+xy2=______.答案:xy(x+y)分析:利用提公因式法即可求解.x2y+xy2=xy(x+y),所以答案是:xy(x+y).小提示:本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.13、已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.答案:2分析:将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为2.小提示:本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.14、观察下列等式:①32−12=4×2;②42−22=4×3;③52−32=4×4;④62−42=4×5;…,第n(n为正整数)个等式为________.答案:(n+2)2−n2=4(n+1)分析:利用已知数据得出变化规律,进而得出答案即可.解:由32−12=4×2,42−22=4×3,52−32=4×4,62−42=4×5,…,可得:(n+2)2−n2=(n+2+n)(n+2−n)=4(n+1),即:(n+2)2−n2=4(n+1).故答案是:(n+2)2−n2=4(n+1).小提示:此题主要考查了数字变化规律以及平方差公式,得出数字变化规律是解题关键.15、若(m+2022)2=10,则(m+2021)(m+2023)=______.答案:9分析:先将m+2021变形为m+2022−1,m+2023变形为m+2022+1,然后把(m+2022)看作一个整体,利用平方差公式来求解.解:∵(m+2022)2=10,∴(m+2021)(m+2023)=(m+2022−1)(m+2022+1)=(m+2022)2−1=10-1=9.所以答案是:9.小提示:本题考查了平方差公式,代数式求值,解题的关键是熟练掌握平方差公式:(a+b)(a−b)=a2−解答题16、先化简,再求值:(3x +2)(3x −2)−5x (x −1)−(2x −1)2,其中x =−13. 答案:9x -5,−8分析:先计算乘法,再计算加减,然后把x =−13代入化简后的结果,即可求解. 解:(3x +2)(3x −2)−5x (x −1)−(2x −1)2=9x 2−4−5x 2+5x −4x 2+4x −1=9x −5当x =−13时,原式=−13×9−5=−8小提示:本题主要考查了整式的混合运算——化简求值,熟练掌握整式的混合运算法则是解题的关键.17、化简:3(a ﹣2)(a +2)﹣(a ﹣1)2.答案:2a 2+2a -13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a ﹣2)(a +2)﹣(a ﹣1)2=3(a 2-4)-(a 2-2a +1)=3a 2-12-a 2+2a -1=2a 2+2a -13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.18、爱动脑筋的小明在学习《幂的运算》时发现:若a m =a n (a >0,且a ≠1,m 、n 都是正整数),则m =n ,例如:若5m =54,则m =4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x ×32x =236,求x 的值;(2)如果3x+2+3x+1=108,求x 的值.答案:(1)x =5分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.。
人教版数学八年级上册 第十四章 小结与复习
考点讲练
考点一 幂的运算
例1 下列计算正确的是 ( D )
A.(a2)3=a5
B.a ·a3=a3
C.(2a)2=2a2
D.a2 ·a3=a5
例2 计算:(2a)3(b3)2÷4a3b4. 解:原式 = 8a3b6÷4a3b4
= 2a3-3b6-4 = 2b2.
练一练
1. 下列计算不正确的是( D )
解:(1) 原式=(x+2y)(x-2y)(x2-4y2) =(x2-4y2)2 = x4-8x2y2+16y4.
(2) 原式=[a+(b-3)][(a-(b-3)] =a2-(b-3)2 =a2-b2+6b-9.
8.(惠山区期中)已知 x+y=6,x2+y2=22 ,求: (1) xy 的值;
(2) (x-y)2-4 的值.
解析:题 (1) 运用完全平方公式 (x+y)2=x2+2xy+y2 ,变形得到:2xy=(x+y)2-(x2+y2);
题 (2) 运用完全平方公式 (x-y)2=x2-2xy+y2, 已知 x2+y2 和 xy 的值,整体带入求解.
(1) xy 的值; 解:(1) 根据完全平方公式: (x+y)2=x2+2xy+y2,
A = (2x3 - 4x2 - x)÷2x
A = x2 - 2x -
5. (庐阳区校级期中)一个长方形把它的宽增加 2 cm, 长减少 3 cm ,这个长方形恰好变成一个与它等面积 的正方形,求这个长方形的周长.
解:设正方形边长为 x cm, 则长方形的宽为 (x - 2) cm,长为 (x + 3) cm, 由题意得:x2 = (x - 2)(x + 3), 解得 x = 6,则长方形宽为 4 cm、长为 9 cm, 长方形周长为 26 cm.
八年级的上册数学知识点第十四章
八年级的上册数学知识点第十四章在八年级上册数学的学习中,第十四章是非常重要的一章,其内容是面积和体积的计算。
本章的学习,将使同学们了解到如何正确地计算面积和体积,掌握一些基本的公式和方法,为以后的数学学习奠定坚实的基础。
一、平面图形面积计算本章的第一部分是平面图形的面积计算。
平面图形面积的计算方法有很多,比如直接测量、利用公式计算等等。
以下是具体的内容:1.矩形、正方形面积计算矩形、正方形的面积计算都非常简单。
矩形的面积等于长乘以宽,即S=长×宽;正方形的面积等于边长的平方,即S=边长×边长。
直接套用公式即可。
2.三角形、梯形面积计算三角形、梯形的面积计算就需要一些公式来辅助了。
三角形的面积等于底乘以高的一半,即S=(底×高)/2;梯形的面积等于上底加下底再乘以高的一半,即S=(上底+下底)×高/2。
3.圆的面积计算圆的面积计算需要用到π的数值。
圆的面积等于π乘以半径的平方,即S=πr²。
π的数值可以用3.14近似代替。
二、立体图形体积计算本章的第二部分是立体图形的体积计算。
立体图形体积的计算方法也有很多,比如直接测量、利用公式计算等等。
以下是具体的内容:1.长方体、正方体体积计算长方体、正方体的体积计算也非常简单。
长方体的体积等于长×宽×高,即V=长×宽×高;正方体的体积等于边长的立方,即V=边长×边长×边长。
同样地,直接套用公式即可。
2.棱锥、棱柱、圆柱、圆锥体积计算棱锥、棱柱、圆柱、圆锥的体积计算就需要一些公式来辅助了。
棱锥的体积等于底面积乘以高再除以3,即V=底面积×高/3;棱柱的体积等于底面积乘以高,即V=底面积×高;圆柱的体积等于底面积乘以高,即V=πr²h;圆锥的体积等于底面积乘以高再除以3,即V=πr²h/3。
三、总结本章学习的重点是面积和体积的计算方法。
八年级数学上册第十四章期末复习提纲
八年级数学上册第十四章期末复习提纲第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:用整式表示的函数,自变量的取值范围是全体实数。
用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤列表注意:列表时自变量由小到大,相差一样,有时需对称。
描点:。
六、函数有三种表示形式:列表法图像法解析式法七、正比例函数与一次函数的概念:一般地,形如y=x的函数叫做正比例函数.其中叫做比例系数。
一般地,形如y=x+b的函数叫做一次函数.当b=0时,y=x+b即为y=x,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数概念如果y=x+b,那么y叫x的一次函数.当b=0时,一次函数y=x也叫正比例函数.图像一条直线性质>0时,y随x的增大而增大;<0时,y随x的增大而减小.直线y=x+b的位置与、b符号之间的关系.>0,b>0;>0,b<0;>0,b=0<0,b>0;<0,b<0<0,b=0一次函数表达式的确定求一次函数y=x+b时,需要由两个点来确定;求正比例函数y=x时,只需一个点即可.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.第十五章整式乘除与因式分解一.回顾知识点主要知识回顾:幂的运算性质:a?an=a+n同底数幂相乘,底数不变,指数相加.=an幂的乘方,底数不变,指数相乘.积的乘方等于各因式乘方的积.=a-n同底数幂相除,底数不变,指数相减.零指数幂的概念:a0=1任何一个不等于零的数的零指数幂都等于l.负指数幂的概念:a-p=任何一个不等于零的数的-p指数幂,等于这个数的p 指数幂的倒数.也可表示为:单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.乘法公式:①平方差公式:=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:2=a2+2ab+b2=a2-2ab+b2文字语言叙述:两个数的和的平方等于这两个数的平方和加上这两个数的积的2倍.因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;因式分解必须是恒等变形;因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.提公因式法掌握提公因式法的概念;提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;提公因式法的步骤:步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的项的系数是负的,一般要提出“-”号,使括号内的项的系数是正的.公式法:运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=②完全平方公式:a2+2ab+b2=2a2-2ab+b2=2。
八年级数学上册第十四章整式的乘法与因式分解知识归纳
第十四章整式的乘法与因式分解
14。
1 整式的乘法
同底数幂的乘法:a m ·a n = a m + n(m、n都是正整数)
幂的乘方:(a m)n = a m n(m、n都是正整数)
积的乘方:(ab)n = a n b n(n为正整数)
同底数幂的除法: a m ÷ a n = a m - n(a ≠ 0 ,m、n都是正整数,并且m>n)
零指数幂:a0 = 1(a ≠ 0 )
单项式与单项式相乘, 单项式与多项式相乘, 多项式与多项式相乘.(利用运算律和上面的运算性质解答)
14。
2 乘法公式
平方差公式:(a+b)(a-b)= a2 —b2
完全平方公式:(a+b)2 = a2 + 2ab + b2
(a—b)2 = a2—2ab + b2 添括号法则:a+b+c = a+(b+c) a-b—c = a —(b+c)举例:a—b+c = a —(b-c)
14.3 因式分解(几个整式乘积的形式)
式子的变形:这个多项式的因式分解= 把这个多项式因式分解。
1、提公因式法(多项式各项有公因式)
2、公式法(3个乘法公式左右互换)
3、十字相乘法(补充)。
八年级上册数学第十四章总复习.doc
八年级上册数学第十四章总复习【一次函数】人民教育出版社1.已知函数 y= (2m+l)x+m -3(1)若这个函数的图象经过原点,求m的值;(2)若这个图象不经过第二象限,求m的取值范围2.如图,已知直线L: y=2x+3,直线L: y=-x+5,直线li、L分别交x轴于B、C两点,li、L相交于点A⑴求A、B、C三点坐标;(2)求AABC的面积O Cx. x2题图3.已知函数图经过点P (—2, 0),且与两坐标轴成的三角形面积为3,求一次函数的解析式4.如图,大拇指与小姆指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm) 身高h(cm) 距应是多少?5.如图所示,正方形ABCD的边长为6, P是BC边上一动点,设BP=x,(0WxW6)试求四边形APCD的面积y与x的函数解析式,y是x的一次函数吗? y是x的正比例函数吗?6.小明在买新的运动鞋时发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:鞋长x (cm)…22 23 24 25 26 …码数尹•••34 36 38 40 42 ,・・请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上? (2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式yJ八(3)当鞋码是40码时,鞋长是多长?4240 -38 -36 -34 -23 24 25 26 xI I I I I A o 227.某校计划在十T期间组织教师到参加旅游,参加旅游的人数约为10~25人,甲、乙两家旅行社报价都是每人200元,经协商,甲旅行社给予每人7. 5折优惠.乙旅行社可免去一人的费用,余人8折优惠.该选择哪家旅行社支付的费用较少?8.巳知一次函数的图象过点(1, 1)与(2, -1),求此函数的解析式并求使函数值为正值的 x的范围26209.某农户种植一种经济作物,总用水量y (m 3)与种植时间x (天)之间的函数关系式如图所 示.⑴第20天的总用水量为多.少n?? ⑵当x 》20时,求y 与x 之间的函数关系式. ⑶种植时间为多少天时,总用水量达到7000m 3? 10.母亲节到了,八年五班班长发起慰问烈属王大妈的活动, 决定在“母亲节”期间全班同学利用数学课去卖鲜花筹集慰 问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1) 求同学们卖出鲜花的销售额y (元)与销售量x (支)之间的函数关系式(2) 若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元) 与销售量x (支)之间的函数关系式(3) 若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额一成本)11.某出版社出版一种中学生学习的教辅书,若该书首次出版印刷的印数不少于5000册时, 投印数x (册) 5000 8000 10000 15000 .. 成本y (元)28500 36000 41000 5 3500 .. (1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函 数“求这个一次函数的解析式;(2)如果出版社投入成本48000元,那么能印该读物多少册?12. 已知函数 y=(2m+l ) x+m -3(1)若函数图经过原点,求m 的值(3)若函数图平行直线y=3x -3,求(2) 若函数图在y 轴的截距为一2,求m 的值(4) 若这个函数是一次函数,且y 随着x 的增 大而减小,求m 的取值范围.13. 如图是某出租车单程收费y (元)与行驶路程x(千米)之间的函数关系图象,根据图象回答 下列问题(1) 当行驶8千米时,收费应为 元(2) 从图象上你能获得哪些信息?(请写出2条)① ____________________________________________________ ② ____________________________________________________ (3) 求出收费y (元)与行使x(千米)(xN3)之间的函数关系式14. 为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的, 某市规定用水收费标准为:每户每月的用水量不超过6m'时,水费按每立方米a 元收费,超过 6n?时,不超过的部分每仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9'10 月份的用水量和所交水费如I 表所示:设:某户每月用水量x (m ,),应交水费y (元) (1) 求a 、c 的值(2) 当xW6,xN6时,分别写出y 于x 的函数解析式 (3) 若该户11月用水量为8m ,,求该户11月水费?15, 已知一次函数图象经过(3, 5)和(-4, -9)两点,(1) 求此一次函数(2) 若点(m, 2)在函数图象上,求m 的值16. 一农民带上若干千克自产的土豆进城出售,为了方便,他带 了一些零钱备用,按市场价售出一些后,又降价出售,售出的土 豆千克数与他手中持有的钱数(含备用零钱)的关系,如月份 用水(费 收费(元) 9 5 7. 5 10927图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系式(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0. 4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?17.如图,la、k分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系(1)B出发时与A相距千米(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时(3)B出发后小时与A相遇(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米。
人教版八年级数学上册第十四章《整式的乘法和因式分解》知识清单,易错点,典型考点和训练点剖析
人教版八年级数学上《整式的乘法与因式分解》知识清单,易错点,典型考点和训练点剖析一.知识快递拿到第一把山门的钥匙后,图图直奔二道山门而去.为了保证把二道山门的钥匙成功拿到手,图图决定走进易错点辩析厅,磨练自己的火眼金睛.二.易错点辨析2.1 忽视符号致错例1 分解因式:-a+3a错解:-a+3a =-a (1+2a )分析:这里公因式有两部分组成,一部分是系数,提出的是-1,一部分是字母,提出的是字母a ,但是在提取的过程中,因为忽视3a 的系数符号,导致解答的错误.正解:-a+3a =-a (1-2a )易错点2:对公示理解不准致错例2 下列计算正确的是( )A.222)(y x y x +=+ B .2222)(y xy x y x --=-C .(x+2y )(x-2y )=222y x -)D .2222)(y xy x y x +-=+- 错解:选A 或选B 或选C .分析:A 所反映的公式是和的完全平方公式,展开后应该有三项,而给出的A 项只有两项,所以A 是错误的;B 所反映的公式是差的完全平方公式,展开后应该有三项,项数合理,但是y 的平方项系数确定错误,应该是加上2y ,所以选项B 是错误的;选项C 所反映的公式是平方差公式,结果应该是两数的平方差,2)2(y 应该是42y ,而不是22y ,所以选项C 是错误的.正解:选D .易错点3:整体提出公因式时不能准确确定余数致错例3 分解因式:2a-4b+2错解:2a-4b+2=2(a-2b ).分析:因式分解的实质是一种恒等变形,所以不论在形式上发生何种变化,有一点是不会改变的,这就是变形前后多项式的项数必须相同.其次,你可以利用乘法将右边回乘看看能否得到左边的多项式,如果能就说明分解是正确的,如果不能,就说明这样的分解是错误的. 最后要说明的是,当这一项被整体提取后,这个位置上余数是1,而不是0,一定要谨记. 正解:2a-4b+2=2(a-2b+1).经过自己艰辛努力,图图顺利闯过了第二道山门.走出易错厅的图图,满怀信心,直奔考点直播室而去.三.考点直播室考点1 单项式乘单项式例1如果□×3ab=32a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a分析:单项式乘单项式,要注意系数的变化,相同字母的指数的变化,单独出现的字母和指数的处理,这是解题的关键.解:选C .考点2 探求完全平方公式展开式中某项的系数例2计算2)2(+x 的结果为2x +□x+4,则“□”中的数为( )A .-2B .2C .-4D .4分析:熟记完全平方公式的展开式是解题的关键.其次就是要灵活运用对应项相同的法则. 解:因为2)2(+x =2x +4x+4,所以2x +□x+4=2x +4x+4,比较对应项,得“□”中的数为4. 所以选择D .考点3 先提取公因式后套用平方差公式分解因式例3分解因式:9a -a 2b = .分析:这里有公因式a ,所以先提出来,其次就是要将数字9写成23,从而在提后的多项式 中,生成用平方差公式的条件.解:9a -a 2b =a (9-2b )==a (23-2b )= a (3+b (3-b ).考点4 先提取公因式后套用完全平方公式分解因式例4.把代数式33x -62x y+3x 2y 分解因式,结果正确的是( )A .x (3x+y )(x-3yB .3x (2x -2xy+2y )C .x 2)3(y x - D .3x 2)(y x - 分析:先确定公因式:3x ;第二步提取公因式3x ,得到3x (2x -2xy+2y ),第三步将结果彻底化,就得到了3x 2)(y x -.解:选D .考点5 先化简后求值例5.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5分析:解答时,同学们一定要按照题目的要求来作答,否则就很难得到高分的. 解:(a +2)(a -2)+a (1-a )=a 2-4+a -a 2=a -4,当a =5时,原式=5-4=1.成功闯过第三道山门的图图,心里非常的高兴,满怀胜利的喜悦直奔庄园的正殿而去,突然图图放慢了脚步,他担心自己一旦不成功,就会前功尽弃了,为了确保最终的胜利,于是图图悄悄钻进了训练大本营,让自己变得更坚强.四.训练大本营1. 分解因式2x 2 − 4x + 2的最终结果是( )A .2x(x − 2)B .2(x 2 − 2x + 1)C .2(x − 1)2D .(2x − 2)2 2. 当x=10,y=9时,代数式2x -2y 的值是 .3. 化简:2)3(+a +a (2-a )4. 先化简,再求值.()()212x x x ++-,其中12x =-.5.化简:22)()(y x y x --+参考答案:1. C2. 193.解:原式22692a a a a =+++-89a =+4. 解:原式=22212x x x x +++-=221x +, 当12x =-时,原式=21212⎛⎫⨯-+ ⎪⎝⎭=12+1=32. 5.解:原式=222222y xy x y xy x -+-++ =xy 4.图图凭借自己扎实的数学功底,将山庄仔仔细细探了清清楚楚,同学们要学习图图这种不怕困难的学习精神,努力学好数学.欲知图图意欲何往,请听赵老师下次安排.。
八年级数学人教版(上册)第14章小结与复习
(am )n amn (m,n都是正整数)
底数不变 幂的乘方,底数__不__变__,指数___相__乘__.
侵权必究
3. 积的乘方
(ab) n = __a_n_b_n__(n_为正整数) 积的乘方,等于把积的每一个因式分别_乘__方___, 再把所得的幂__相__乘___ .
侵权必究
4. 整式的乘法
解:(1)原式=(3x)2-52 =9x2-25;
(2)原式=(-2a)2-b2 =4a2-b2;
(3)原式=(7m)2+2·7m·8n+(8n)2 (4)原式=(100+2)(100-2)
=49m2+112mn+64n2;
= 1002-22
=10000 – 4
侵权必究
考点5 因式分解 例8 下列等式从左到右的变形,属于因式分解的是( B ) A.a(x-y)=ax-ay B.x2-1=(x+1)(x-1) C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+1
侵权必究
5. 乘法公式
平方差公式: (a+b)(a-b)=a2- b2. 完全平方公式: (a+b)2 = a2 +2ab+b2 (a-b)2 =a2 - 2ab+b2.
侵权必究
6. 因式分解
因式分解:把一个多项式化为几个整式的乘积的形式, 像这样的式子变形叫做把这个多项式因式分解,也叫做把这 个多项式分解因式.
侵权必究
4.先化简再求值:[(x-y)2+(x+y)(x-y)] ÷2x,其中 x=3,y=1.5.
解:原式=(x2-2xy+y2+x2-y2) ÷2x =(2x2-2xy) ÷2x =x-y.
八年级上数学14章知识点
八年级上数学14章知识点八年级上数学的第14章主要介绍了概率论。
在我们的日常生活和学习中,概率论扮演着重要的角色,它帮助我们更好地理解和分析各种事件的发生概率。
下面是该章节的主要知识点:一、事件发生的概率事件发生的概率是指某一事件在所有可能事件中的发生比例。
事件发生的概率P(A)计算方式为:P(A) = 某一事件A的发生次数 / 所有可能事件的总次数二、互不相容事件的概率互不相容事件指两个或多个事件中,同时只能发生一个事件的情况。
如掷一枚硬币,事件A为正面朝上,事件B为反面朝上,两个事件互不相容。
若两个事件互不相容,则它们的概率和为1,即P(A) + P(B) = 1。
三、独立事件的概率独立事件指两个或多个事件中,任意一个事件的发生不影响另一个事件发生的概率。
如掷两枚硬币,事件A为第一枚硬币正面朝上,事件B为第二枚硬币正面朝上,两个事件独立。
若事件A 和事件B是独立事件,则它们的概率积等于总体事件的概率,即P(A且B) = P(A) × P(B)。
四、条件概率条件概率是指在一个事件已经发生的情况下,另一个事件发生的概率。
如从一组卡片中随机选取一张,A表示这张卡片是红色的,B表示这张卡片是A或B。
若已知事件A发生,则B的概率为条件概率P(B|A),计算公式为:P(B|A) = P(A且B) / P(A)五、全概率公式全概率公式用于求解复杂问题中的概率。
如在A、B、C三个事件中,已知它们的概率分别为P(A)、P(B)和P(C),且这三个事件互不相容,某个事件D只可能与A、B、C中的一个事件发生,若已知D与它可能发生的事件概率分别为P(D|A)、P(D|B)和P(D|C),则D的概率为:P(D) = P(A) × P(D|A) + P(B) × P(D|B) + P(C) × P(D|C)六、贝叶斯公式贝叶斯公式用于求解逆条件概率。
如从A、B、C三个箱子中各装有若干个球,其中A箱子红球多,B箱子蓝球多,C箱子两种颜色的球相等,每个箱子的概率为P(A)、P(B)和P(C),从一个箱子中随机抽出一个球,得到了红球,求这个红球来自A箱子的概率P(A|红球)。
八年级数学上册第十四章期末复习提纲
八年级数学上册第十四章期末复习提纲1. 有理数的概念与性质•有理数的定义及表示方法•有理数的相等性及大小比较•有理数的加法、减法、乘法和除法2. 两点间的距离与坐标•直角坐标系及其相关概念•两点之间的距离计算公式•坐标系中点的坐标计算公式3. 一次函数与图像•一次函数的定义及性质•一次函数的图像特点与性质•一次函数的斜率与截距的计算4. 方程与不等式•方程的定义及解的概念•解一元一次方程的方法与步骤•不等式的定义及解的概念•解一元一次不等式的方法与步骤5. 几何图形的性质与计算•平面图形的基本性质与特点•三角形的分类与性质•四边形的分类与性质•圆的基本性质与相关计算6. 统计与概率•数据的收集与整理•数据的图表展示•统计量的定义与计算•概率的定义与计算方法7. 课后习题回顾与解析•根据教材习题类型进行分类回顾•典型题目的解题思路与方法•常见错误的分析与纠正8. 重点知识与难点解析•提取本章节的重点知识点进行整理•对难点知识进行详细解析与讲解9. 拓展练习题与答案•提供一些拓展练习题,以更加全面巩固本章知识•提供相应的答案供复习时核对总结本章主要介绍了有理数、坐标系、一次函数、方程、不等式、几何图形、统计与概率等内容。
通过本章的学习,学生将掌握有理数的概念与操作方法,了解坐标系中两点间距离的计算,熟悉一次函数的性质与图像特点,掌握方程与不等式的解法等基本数学知识。
同时,通过课后习题的回顾与解析,学生能够更加深入地理解并巩固所学内容。
为了进一步提高学生的能力,还提供了拓展练习题以及答案供学生进行自主学习巩固。
希望同学们通过认真学习本章内容,充分理解与掌握相关知识点,取得优异的成绩!。
八年级数学十四章知识点
八年级数学十四章知识点八年级数学第十四章为“三角形”,是数学学科中的一个重要的知识点。
本章主要学习三角形的定义,分类,特性以及其它相关的知识点。
下面将对本章的主要知识点进行阐述。
1. 三角形的定义三角形是由三条线段组成的一个平面图形。
其中,每条线段称为三角形的边,每个内角的度数均小于180度。
2. 三角形的分类(1)按照边的长度分类①等腰三角形:两边长度相等的三角形。
②等边三角形:三边长度相等的三角形。
③普通三角形:既不是等腰三角形也不是等边三角形的三角形。
(2)按照角的大小分类①锐角三角形:三个内角均小于90度的三角形。
②钝角三角形:三个内角中最大的一个角为钝角。
③直角三角形:其中一个内角为90度的三角形。
(3)按照内角的大小分类①等角三角形:三个内角大小相等的三角形。
②锐角三角形:三个内角均小于90度的三角形。
③钝角三角形:三个内角中最大的一个角为钝角。
(4)特殊的三角形①直角三角形:其中一个内角为90度的三角形。
②等腰直角三角形:既是等腰三角形又是直角三角形的三角形。
3. 三角形的特性(1)内角和公式三角形的三个内角之和等于180度。
(2)角平分线角平分线将一个角分为两个角,它还将对边分成相等的两部分。
(3)中线连接三角形的两个中点的线段称为三角形的中线。
三角形的三条中线相交于一个点,这个点叫做三角形的重心。
(4)高线从三角形的顶点所在的顶点引一条垂线,垂直于三角形所在平面的线段称为三角形的高线。
(5)面积公式三角形的面积可以用三角形的底和高来表示,该公式为:三角形的面积=(底×高)÷2。
总之,三角形是数学中常见的几何图形之一,它的形状和属性都非常的有趣。
了解三角形的各类定义、分类、性质将有助于我们更好地理解数学问题,进而在日常应用中运用自如。
人教版初二上册数学 知识梳理与复习(第十四章 14.3)
人教版八年级上册数学 知识梳理与复习(第十四章 14.3)1.下列变形是因式分解的是( )A .a ²-b ² -1=(a+b)(a-b)-1 B.ax ²+x+b ²=x(ax+1)+b ²C.(a+2)(a-2)=a ² -4D.4x ²-9=(2x+3)(2x -3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( )A .xyzB .2xC .2zD .2xz3.将21-a ²b-ab ²提公因式后,另一个因式是( ) A. a+2b B.-a+2b C.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( )A. a ²-b ²= (a+b) (a-b)B.a ²-2ab+b ²= (a-b)²C.ab+ac=a (b+c)D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab =2,则3a ²b+ 3ab ²的值是( )A .24B .18C .12D .86.多项式x ² +x ⁶提取公因式x ²后的另一个因式是( )A .x ⁴B .x³C .x ⁴+1D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+c ²=ac+ bc+ ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=________.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、____.10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于______.11.计算:5×3⁴+9×3⁴-12×3⁴=____.12.已知a=49,b=109,则ab - 9a 的值为____.13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a ·3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x -1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.17.在下列各式中,不能用平方差公式分解因式的是( )A. -x ²+y ²B.-1-m ² C .a ²-9b ² D.4m ²-118.下列各式中不是完全平方式的是( ) A .x ²-10x+25 B .a ²+a+41C .4n ²+n+4D .9m ²+6m+119.下列四个多项式,能因式分解的是( )A.a ²+b ²B.a ²-a+2C.a ²+3bD.(x+y)²-420.若x 为任意有理数,则多项式41-x ²+x-1的值( ) A .一定为负数 B .一定为正数C .不可能为正数D .不可能为负数21.若n 为任意整数,则(n+7)²-n ²一定能被 整除 ( )A.7 B .14 C .7或14 D .7的倍数22.下列因式分解不正确的是( )A .2x³-2x= 2x (x ²-1)B .mx ²-6mx+ 9m= m(x -3)²C.3x ²-3y ²=3 (x+y)(x-y)D.x ²-2xy+y ²= (x-y)²23.若9x ²-kx+4是一个完全平方式,则k=________.24.已知x ²+6xy+9y ²+|y-1|=0,则x+y=____.25.若x ²+x+m=(x- n)²,则m=___,n=____.26.如果x+y= -3,x-y=6,则代数式2x ²-2y ²的值为____.27.若9x ²-M= (3x+y -1)(3x-y+1),则M=____.28.分解因式:4+12 (a-b)+9(a-b)²=________.29.因式分解:(1)8a³ - 2a(a+1)²; (2)m ²-4n ²+4n -1.30.已知x-y=1,xy=2,求x³y-2x ²y ²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a ,b 为何值时,多项式a ²+b ²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.【复习五】1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x ²-2x+4)9. 3m ⁴n+3m ²n 6m ²n³-3m ²n (答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y )²-x (x+2y )=(x+2y )(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b ⁴-3a ⁴b ⁴ - 3a ²b +2a ⁴b ⁴+ 3a ²b =a³b ⁴(6 -a).当a= -1, b=2时,原式=(-1)³×2⁴×[6 -(-1)]=-16×7=-112.15.∵x ²+4x-1=0,∴x ²+4x=1.∴2x ⁴+ 8x³- 4x ²-8x+1=2x ²(x ²+4x) -4(x ²+4x) +8x+1=2x ²·1 -4×1+8x+1= 2x ²+8x -3 =2(x ²+4x)-3=2×1-3=-1.16.因为2x ²+mx+n=(2x-3)(x+ 21) =2x ²-2x-23,所以m= -2, n=23-.17.B 18.C 19.D 20.C 21.A 22.A 23.±12 24.-2 25.41 21-26.-3627.(y-1)² 28.(2+3a - 3b)²29.(1)原式=2a[4a ²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m ²- (4n ²-4n+1)=m ²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2.31.(1)是.理由如下:∵28=8²- 6², 2016= 505² - 503²∴28是“神秘数”;2016是“神秘数”.(2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k)(2k+2+2k)= 2(4k+2)=4(2k+1),∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”.32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²=(x-1)²,当x-1=5时,原式=52)5(。
人教版数学八年级上册第十四章整式乘除与因式分解知识点归纳[1]
人教版数学八年级上册第十四章整式乘除与因式分解知识点归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版数学八年级上册第十四章整式乘除与因式分解知识点归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版数学八年级上册第十四章整式乘除与因式分解知识点归纳(word版可编辑修改)的全部内容。
第十四章 整式乘除与因式分解知识点归纳:一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式.如:532)()()(b a b a b a +=+•+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。
积的乘方,等于各因数乘方的积. 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减.如:3334)()()(b a ab ab ab ==÷5、零指数; 10=a ,即任何不等于零的数的零次方等于1。
二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
(人教版)杭州八年级数学上册第十四章《整式的乘法与因式分解》知识点复习
一、选择题1.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( )A .52-B .52C .5D .-5B解析:B 【分析】 把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关C 解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 4.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- A 解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.5.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .18A 解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.6.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ B解析:B【分析】 观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.7.下列计算一定正确的是( )A .235a b ab +=B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+ B解析:B【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意.故选B .【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.8.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数C解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】 ()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.9.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20A 解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.10.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .54B 解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键.二、填空题11.计算:248(21)(21)(21)(21)1+++++=___________.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键 解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.12.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故 解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 13.若2a 与()23b +互为相反数,则2-=b a ______.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答 解析:-8【分析】根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】由题意得:2a +2(3)b +=0∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.14.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .【分析】可以将草坪拼成一块完整的长方形分别表示出它的长和宽即可求出面积【详解】解:可以将草坪拼成一块完整的长方形这个长方形的长是:米宽是:米∴草坪的面积是:(平方米)故答案是:【点睛】本题考查多项式解析:22ab a b --+【分析】可以将草坪拼成一块完整的长方形,分别表示出它的长和宽即可求出面积.【详解】解:可以将草坪拼成一块完整的长方形,这个长方形的长是:112a a --=-米,宽是:1b -米,∴草坪的面积是:()()2122a b ab a b --=--+(平方米).故答案是:22ab a b --+.【点睛】本题考查多项式的乘法和图形的平移,解题的关键是通过平移的方法将不规则的图形拼成规则图形进行求解.15.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.16.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 17.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.18.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.19.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.20.分解因式:2a 2﹣8=______.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.解析:(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a2+7a+a+7-a2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.22.阅读材料:把形2++的二次三项式(或其一部分)配成完全平方式的方法叫ax bx c配方法.配方法的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.请根据阅读材料解决下列问题:(1)填空:244a a -+=__________.(2)先化简,再求值:()()()33242a b a b a b ab ab +-+-÷,其中a b 、满足2226100a a b b ++-+=.(3)若a b c 、、分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.解析:(1)()22a -;(2)25-;(3)△ABC 为等边三角形,理由见解析.【分析】(1)根据完全平方公式即可因式分解;(2)先将原式化成最简式,然后将2226100a a b b ++-+=,分成两个完全平方公式的形式,根据非负数的性质求出a 、b 的值,代入最简式中计算即可;(3)将已知等式化成几个平方和的形式,再利用非负数的性质求解即可.【详解】解:(1)∵()22442a a a -+=-,故答案为:()22a -;(2)()()()33242a b a b a b ab ab +-+-÷=()2222222a b ab a b ab -+-÷=222222223a b a b a b -+-=-∵2226100a a b b ++-+=,∴()()22130a b ++-=, ∴13a b =-=,,把13a b =-=,代入上式得:()222223213322725a b -=⨯--⨯=-=-; (3)△ABC 为等边三角形,理由如下:∵222426240a b c ab b c ++---+=,∴()()()2221310a b c b -+-+-=, ∴01010a b c b -=-=-=,,,∴1a b c ===,∴△ABC 为等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负数的应用.23.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.解析:(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.24.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:-投入)解析:(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 解析:(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________;(2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.解析:(1)(a +b )2-(a -b )2=4ab ;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,根据图1的面积和图2中白色部分的面积相等可得答案; (2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,将x +y =5,x •y 94=代入计算即可得出答案;(3)将等式(2019-m )+(m -2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,∵图1的面积和图2中白色部分的面积相等,∴(a +b )2-(a -b )2=4ab ,故答案为:(a +b )2-(a -b )2=4ab ;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,∵x +y =5,x •y =94, ∴52-(x -y )2=4×94, ∴(x -y )2=16∴x -y =±4,故答案为:±4;(3)∵(2019-m )+(m -2020)=-1,∴[(2019-m )+(m -2020)]2=1,∴(2019-m )2+2(2019-m )(m -2020)+(m -2020)2=1,∵(2019-m )2+(m -2020)2=7,∴2(2019-m )(m -2020)=1-7=-6;∴(2019-m )(m -2020)=-3.【点睛】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键. 27.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.解析:(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.28.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 解析:(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+- 22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键.。
人教版初二上册数学 知识梳理与复习(第十四章 14. 1~14.2)
人教版八年级上册数学知识梳理与复习(第十四章14. 1~14.2)1.下列各题中的两个幂是同底数幂的是( )A.-x²与(-x)³B.(-x)²与x²C.-x²与x³D.(a-b)⁵与(b-a)⁵2.下列各式中,运算正确的是( )A. a³+a⁴=a⁷B.b³·b⁴=b⁷C.C³·C⁴=c¹²D.d³·d⁴= 2d⁷3.若x a·a²= a⁵,则x的值为( )A.1 B.2 C.3 D.44.下列四个算式:①a³·a³= 2a³;②x³+x³ =x⁶;③y³·y·y²=y⁶;④z²+ z²+ z²= 3z²,其中正确的个数是( )A.1个B.2个C.3个D.4个5. 10³×10⁴=_______.6.(m-n)²(m-n)(m-n)⁵=_________.7.(-x)⁶·x⁷·x⁸=________.8.已知a=-2,求(-a)²(-a) ³a⁴的值.9.下列运算正确的是( )A.(-2²)³=2⁶B.(-x⁴)⁵=x²ᴼC.(-x²ᵐ⁺¹)²= x⁴ᵐ⁺² D.[(x+y)²]⁷=(x+y)⁹10.(-aⁿ)²·aⁿ⁺¹等于( )A.a²ⁿ⁺³B.a³ⁿ⁺¹C.-a³ⁿ⁺¹ D.-aⁿ⁺³11.下列各式中不正确的是( )A.(m⁵)⁵=m²⁵B.(a⁴)ᵐ= (a²ᵐ)² C.x²ⁿ=(-xⁿ)²D.y²ⁿ=(-y²)ⁿ12.下列四个算式:①(a⁴)⁴=a⁴⁺⁴= a⁸;②[(b²) ²]²= b2×2×2= b⁸;③[(-x)³]²=x⁶;④(-y²)³=y⁶中,其中正确的算式有( )A.0个B.1个C.2个D.3个13.填空题.(1)(5⁴)²=______ (2)=________(3)(-a³)⁴=______ (4)(y²)³·Y=_______(5)(a⁴)²+(a²)⁴=_______ (6)(a²)²·(a³)²=________(7)c·(c⁵)²·(-c)=_______ (8)[(-m⁴)⁵·(-m²)⁷]²=________(9)[(a-b)³]ᵐ·[(b-a)ᵐ]²=_________ (10)(x²)ⁿ·(xⁿ¯¹)³=________(11)当n为偶数时,[(-a²)ⁿ+(-aⁿ)²]²=________(12)已知9⁵×27²=x3,则x=_____14.比较2¹ᴼᴼ与3⁷⁵的大小.15.(-2x²y³)⁴的结果为( )A.-2x⁸y¹²B.-2x²y¹²C.16x⁶y⁷D.16x⁸y¹²16.如果(2aᵐbᵐ⁺ⁿ)³=8a⁹b¹⁵成立,则m,n的值为( )A.m=3, n=2B.m=3, n=9C.m=6, n=2D.m=2, n=517.(2×10²)³写成科学记数法的形式为( )A.6×10⁵B. 0.6×10⁷C.8×10⁵D.8×10⁶18.填空题.(1)(ab)³=________ (2)(-x²y)⁵=_______(3)=___________ (4) (0.1xy³)³=_______(5)(a ⁿb ᵐ)²=_______ (6)(x ⁿ⁺¹y ⁿ¯¹)²=_______(7)(-3ab ²)ᵐ=_______ (8) (2²b ⁵)²=______(9)[(-2xy )³]²=_______ (10) =______19.下列四个算式中,正确的是( )A .3m(5a+ 2b)=3ma+ 6mbB.-2xy( 3x ²y-2xy ²)=4x ²y³- 6x³y ²C.(x-3y)(- 6x)=6x ² - 18xyD .X ⁶y ²÷x ²y =x³y20.如果计算(2- nx - 3x ²+ mx³)(-4x ²)的结果中不含x ⁵项,那么m 应等于 ( )A .0B .1C .-1D .4121.已知(x-1)(x ²+mx+n) =x³-6x ²+11x-6,求m ,n 的值.22.对于任意自然数n ,代数式n(n+7)-(n-3)(n-2)的值能被6整除吗?23.下列多项式中,可以用平方差公式计算的是( )A .(2a - 3b)(- 2a+3b)B .(- 3a+4b)(- 4b - 3a)C .(a-b )(b-a)D .(a-b -c )(-a+b+c)24.下列计算结果正确的是( )A.(x+2)(x-2)=x ²-2 B .(x+2)(3x-2)=3x ² -4C.(ab -c)(ab+c)=a ²b ²-c ² D .(-x-y) (x+y) =x ²-y ²25.已知(a+b-3)²+|a- b+5|=0,求a ²-b ²的值,26.有两个正方体,棱长分别为a cm ,b cm ,如果a-b=3,a+b=11,求它们的表面积的差.27.下列式子中是完全平方式的是( )A.a ²+ ab+ b ²B.a ²+2a+2C.a ²-2b+b ²D.a ²-2a+128.若(x-y)²=x ²+xy+y ²+N 则N 为( )A. xy B .-xy C .3xy D .-3xy29.填空题.(1)(8-y)²= 64+____+y ²,(- x+y)²=____-2xy+y ²;(2)若kx ²+ 8x+1是一个完全平方式,则k=________,(3)若x ²+kx+91=(x-31)²,则k=_______;(4)(a-3)²-a ²=_________;(5) (xy-1)² - (xy+1)²=______.30.若x ²- 2x+y ²+6y+10 =0,求x ,y 的值.31.证明:不论x ,y 取何值,代数式x ²+ y ²+ 4x -6y+13的值都不小于0.【复习四】1.C2.B3.C4.B5. 10⁷6.(m-n )⁸ 7.x ²¹8.(-a )²·(-a )³·a ⁴=(-a )²·(-a )³·(-a )⁴=(-a )⁹= [-(-2)]⁹=2⁹.9.C 10.B 11.D 12.C13.(1)5⁸ (2)15)71( (3) a ¹² (4) y ⁷ (5) 2a ⁸ (6) a ¹ᴼ(7) -c ¹² (8) m ⁶⁸ (9) (a-b)⁵ᵐ (10) x ⁵ⁿ¯³ (11) 4a ⁴ ⁿ (12) 1614. 2¹ᴼᴼ= 4252⨯=( 2⁴)²⁵=16²⁵, 3⁷⁵= 3253⨯= (3³)²⁵=27²⁵,∵27²⁵>16²⁵, ∴2¹ᴼᴼ< 3⁷⁵.15.D 16.A 17.D18. (1) a³b³ (2) -x ¹ᴼy ⁵ (3) 278p ⁶q ⁹ (4) 0.001x³y ⁹ (5) a ²ⁿb ²ᵐ(6)x ²ⁿ⁺²y ²ⁿ¯² (7) (-3)ᵐa ᵐb ²ᵐ (8) 16b ¹ᴼ (9) 64x ⁶y ⁶ (10) 169-m ⁴n ⁶p ²19.B 20.A 21. m= -5.n=622. n(n+7)-(n-3)(n-2) =12n-6=6(2n-1),∵6(2n -1)是6的倍数,∴能被6整除.23.B 24.C 25. - 1526.表面积之差6(a ²-b ²) =6(a+b)(a-b)=6×11×3=198 (cm ²).27.D 28.D29. (1) (-16y) x ² (2)16 (3)32-(4)-6a+9 (5) -4xy 30.x ²- 2x+y ²+6y+10=0,即(x ²-2x +1)+(y ²+6y+9)=0,即(x-1)²+(y+3)²=0,解得x=1,y=-3.31.x ²+y ²+ 4x-6y+13=x ²+4x +4+y ²-6y+9=(x+2)²+(y-3)²,∵(x+2)²≥0,(y-3)²≥0,∴(x+2)²+(y-3)²≥0.∴无论x,y 取何值,x ²+y ²+ 4x-6y+ 13的值都不小于0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册第十四章期末复习提纲第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2. 求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0. 4. 解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数概念如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 图像一条直线性质 k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大). 3第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2. 求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0. 4. 解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数概念如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 图像一条直线性质 k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大). 3第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2. 求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0. 4. 解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数概念如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 图像一条直线性质 k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大). 3第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。