2020高考物理一轮复习第5章机械能第一节功和功率达标诊断高效训练

合集下载

高考物理一轮复习 第五章 机械能 第1讲 功和功率练习

高考物理一轮复习 第五章 机械能 第1讲 功和功率练习

权掇市安稳阳光实验学校第1讲功和功率考点一功和恒力做功对功的理解【典例1】(2017·全国卷Ⅱ)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心【解析】选A。

因为大圆环对小环的作用力始终与速度垂直不做功,因此A正确、B错误;从静止开始在小环下滑的过程中,大圆环对它的作用力先背离大圆环圆心,后指向大圆环圆心,故C、D项错误。

恒力做功【典例2】(多选)质量为m=2 kg的物体沿水平面向右做直线运动,t=0时刻受到一个水平向左的恒力F,如图甲所示,取水平向右为正方向,此物体的v-t 图象如图乙所示,g取10 m/s2,则( )A.物体与水平面间的动摩擦因数μ=0.5B.10 s内恒力F对物体做功102 JC.10 s末物体在计时起点位置左侧2 m处D.10 s内物体克服摩擦力做功34 J【解析】选C、D。

设物体向右做匀减速直线运动的加速度为a1,则由v-t图象得加速度大小a1=2 m/s2,方向与初速度方向相反,设物体向左做匀加速直线运动的加速度为a2,则由v-t图象得加速度大小a2=1 m/s2,方向与初速度方向相反,根据牛顿第二定律得,F+μmg=ma1,F-μmg=ma2,解得F=3 N,μ=0.05,故A错误;根据v-t图象与横轴所围成的面积表示位移得,x=12×4×8m-12×6×6 m=-2 m,负号表示物体在起点的左侧,则10 s内恒力F对物体做功W=Fx=3×2 J=6 J,故B错误,C正确;10 s内物体克服摩擦力做功W f=fs=0.05×20×(12×4×8+12×6×6) J=34 J,故D正确。

2020版高考一轮复习:第5章 1 第1节 功和功率

2020版高考一轮复习:第5章 1 第1节 功和功率

第一节功和功率【基础梳理】提示:力位移能量转化Flcos α正功不做功负功快慢WtFvcos α正常工作额定【自我诊断】判一判(1)只要物体受力的同时又发生了位移,则一定有力对物体做功.( )(2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动.( )(3)作用力做负功时,反作用力一定做正功.( )(4)力对物体做功的正负是由力和位移间的夹角大小决定的.( )(5)由P=Fv可知,发动机功率一定时,机车的牵引力与运行速度的大小成反比.( )(6)汽车上坡时换成低挡位,其目的是减小速度得到较大的牵引力.( )提示:(1)×(2)√(3)×(4)√(5)√(6)√做一做(2019·福建闽粤联合体联考)如图所示,质量相同的两物体从同一高度由静止开始运动,A沿着固定在地面上的光滑斜面下滑,B做自由落体运动.两物体分别到达地面时,下列说法正确的是( )A .重力的平均功率P A >PB B .重力的平均功率P A =P BC .重力的瞬时功率P A =P BD .重力的瞬时功率P A <P B提示:选D.设斜面的倾角为θ,高度为h ,B 做自由落体运动,运动时间t B =2hg,A 做匀加速直线运动,a =gsin θ,根据h sin θ=12gsin θt 2A 得,t A =2h gsin 2θ,可知t A >t B ;重力做功相等,根据P =W Gt知,P A <P B ,A 、B 错误;根据动能定理,mgh =12mv 2得,两物体到达地面时的速度大小均为v =2gh ,A 物体重力的瞬时功率P A =mgvsin θ,B 物体重力的瞬时功率P B =mgv ,则P A <P B ,C 错误,D 正确.对功的正负判断和大小计算【知识提炼】1.功的正负的判断方法2.计算功的方法(1)恒力做功的计算方法(2)几种力做功比较①重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.②滑动摩擦力、空气阻力、安培力做功与路径有关.③摩擦力做功有以下特点:a.单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.b.相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.c.相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=F f x 相对.3.合力做功的计算方法(2017·高考全国卷Ⅲ)如图,一质量为m ,长度为l的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l.重力加速度大小为g.在此过程中,外力做的功为( )A .19mglB .16mglC .13mgl D .12mgl [审题指导] 题中所说外力经判断为变力,不好用公式直接求解.但由于细绳为缓慢移动,就代表初末动能不变,仅从重力势能方面考虑就可以.自然就转到重力做功方面来.[解析] QM 段绳的质量为m′=23m ,未拉起时,QM 段绳的重心在QM 中点处,与M 点距离为13l ,绳的下端Q 拉到M 点时,QM 段绳的重心与M 点距离为16l ,此过程重力做功W G =-m′g ⎝ ⎛⎭⎪⎫13l -16l =-19mgl ,对绳的下端Q 拉到M 点的过程,应用动能定理,可知外力做功W =-W G =19mgl ,可知A 项正确,B 、C 、D 项错误.[答案] A【迁移题组】迁移1 对功的正、负的判断1.一辆正沿平直路面行驶的车厢内,一个面向车前进方向站立的人对车厢壁施加水平推力F ,在车前进s 的过程中,下列说法正确的是( )A .当车匀速前进时,人对车做的总功为正功B .当车加速前进时,人对车做的总功为负功C .当车减速前进时,人对车做的总功为负功D .不管车如何运动,人对车做的总功都为零解析:选B.人对车施加了三个力,分别为压力、推力F 、静摩擦力f ,根据力做功的公式及作用力和反作用力的关系判断做正功还是负功.当车匀速前进时,人对车厢壁的推力F 做的功为W F =Fs ,静摩擦力做的功为W f =-fs ,人处于平衡状态,根据作用力与反作用力的关系可知,F =f ,则人对车做的总功为零,故A 错误;当车加速前进时,人处于加速状态,车厢对人的静摩擦力f′向右且大于车厢壁对人的作用力F′,所以人对车厢的静摩擦力f 向左,静摩擦力做的功W f =-fs ,人对车厢的推力F 方向向右,做的功为W F =Fs ,因为f>F ,所以人对车做的总功为负功,故B 正确,D 错误;同理可以证明当车减速前进时,人对车做的总功为正功,故C 错误.迁移2 恒力做功的求解2.一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用W F1、W F2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F2>4W F1,W f2>2W f1B .W F2>4W F1,W f2=2W f1C .W F2<4W F1,W f2=2W f1D .W F2<4W F1,W f2<2W f1解析:选C.物体两次的加速度之比a 2∶a 1=2v t ∶v t =2∶1,位移之比l 2∶l 1=2v 2t∶v2t =2∶1,摩擦力之比f 2∶f 1=1∶1,由牛顿第二定律得F -f =ma ,则拉力之比F 2∶F 1=(ma 2+f)∶(ma 1+f)<2,做功之比W F2∶W F1=(F 2·l 2)∶(F 1·l 1)<4,W f2∶W f1=(-f 2·l 2)∶(-f 1·l 1)=2∶1,故C 正确.迁移3 变力做功的求解3.(多选)(2019·宁波模拟)如图所示,摆球质量为m ,悬线长为L ,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力F 阻的大小不变,则下列说法正确的是( )A .重力做功为mgLB .悬线的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-12F 阻πL解析:选ABD.由重力做功特点得重力做功为:W G =mgL ,A 正确;悬线的拉力始终与v 垂直,不做功,B 正确;由微元法可求得空气阻力做功为:W F 阻=-12F 阻πL ,D 正确.求变力做功的六种常用方法功率的理解和计算【知识提炼】1.平均功率的计算方法 (1)利用 P =Wt.(2)利用 P =Fvcos α,v 为物体运动的平均速度. 2.瞬时功率的计算方法(1)用P =Fvcos α,v 为t 时刻的瞬时速度.(2)用P =Fv F ,v F 为物体的速度v 在力F 方向上的分速度,v 为t 时刻的瞬时速度. (3)用P =F v v ,F v 为物体受到的外力F 在速度v 方向上的分力,v 为t 时刻的瞬时速度.【跟进题组】1.(多选)(2019·海口模拟)质量为m 的物体静止在光滑水平面上,从t =0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图所示,力的方向保持不变,则( )A .3t 0时刻的瞬时功率为 5F 20t 0mB .3t 0时刻的瞬时功率为 15F 20t 0mC .在t =0到3t 0这段时间内,水平力的平均功率为 23F 20t 04mD .在t =0到3t 0这段时间内,水平力的平均功率为 25F 20t 06m解析:选BD.2t 0时刻速度大小v 2=a 1·2t 0=2F 0m t 0,3t 0时刻的速度大小为v 3=v 2+a 2t 0=F 0m ·2t 0+3F 0m ·t 0=5F 0t 0m ,3t 0时刻力F =3F 0,所以瞬时功率P =3F 0·v 3=15F 20t 0m ,A 错、B 对;0~3t 0时间段,水平力对物体做功W =F 0x 1+3F 0x 2=F 0×12·F 0m (2t 0)2+3F 0·v 2+v 32t 0=25F 20t 202m ,平均功率P =W t =25F 20t 06m,C 错、D 对.2.(多选)(2018·高考全国卷Ⅲ)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程,( )A .矿车上升所用的时间之比为4∶5B .电机的最大牵引力之比为2∶1C .电机输出的最大功率之比为2∶1D .电机所做的功之比为4∶5解析:选AC.根据位移相同可得两图线与时间轴围成的面积相等,12v 0×2t 0=12×12v 0[2t 0+t′+(t 0+t′)],解得t′=12t 0,则对于第①次和第②次提升过程中,矿车上升所用的时间之比为2t 0∶(2t 0+12t 0)=4∶5,A 正确;加速过程中的牵引力最大,且已知两次加速时的加速度大小相等,故两次中最大牵引力相等,B 错误;由题知两次提升的过程中矿车的最大速度之比为2∶1,由功率P =Fv ,得最大功率之比为2∶1,C 正确;两次提升过程中矿车的初、末速度都为零,则电机所做的功等于克服重力做的功,重力做的功相等,故电机所做的功之比为1∶1,D 错误.机车启动问题【知识提炼】1.两种启动方式的比较(1)P =Fv. (2)F -F f =ma. (3)v =at(a 恒定). (4)Pt -F f x =ΔE k (P 恒定). 3.三个重要结论(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v =PF <v m=P F 阻. (3)机车以恒定功率运行时,牵引力做的功W =Pt.由动能定理:Pt -F 阻x =ΔE k .此式经常用于求解机车以恒定功率启动过程的位移大小.【典题例析】某汽车发动机的额定功率为60 kW ,汽车质量为5 t ,汽车在运动中所受阻力的大小恒为车重的0.1.(g 取10 m/s 2)(1)若汽车以额定功率启动,则汽车所能达到的最大速度是多大?当汽车速度达到5 m/s 时,其加速度是多大?(2)若汽车以恒定加速度0.5 m/s 2启动,则其匀加速过程能维持多长时间? [审题指导] (1)达到最大速度时,汽车处于什么状态? (2)v =5 m/s 时,牵引力多大?(3)以加速度0.5 m/s 2启动时,牵引力多大?此阶段能达到的最大速度为多少?[解析] (1)当汽车的加速度为零时,汽车的速度v 达到最大值v m ,此时牵引力与阻力相等,故最大速度为v m =P F =P F f =60×1030.1×5 000×10 m/s =12 m/sv =5 m/s 时的牵引力F 1=P v =60×1035 N =1.2×104N由F 1-F f =ma 得:a =F 1-F fm=1.2×104-0.1×5×103×105×103m/s 2=1.4 m/s 2. (2)当汽车以a′=0.5 m/s 2的加速度启动时的牵引力 F 2=ma′+F f =(5 000×0.5+0.1×5×103×10) N =7 500 N匀加速运动能达到的最大速度为v′m =P F 2=60×1037 500m/s =8 m/s由于此过程中汽车做匀加速直线运动,满足v′m =a′t 故匀加速过程能维持的时间t =v′m a ′=80.5 s =16 s.[答案] (1)12 m/s 1.4 m/s 2(2)16 s【迁移题组】迁移1 以恒定功率启动方式的求解1.某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k 1和k 2倍,最大速率分别为v 1和v 2,则( )A .v 2=k 1v 1B .v 2=k 1k 2v 1C .v 2=k 2k 1v 1D .v 2=k 2v 1解析:选B.车以最大速率行驶时,牵引力F 等于阻力F f ,即F =F f =kmg.由P =k 1mgv 1及P =k 2mgv 2,得v 2=k 1k 2v 1,故B 正确.迁移2 以恒定牵引力启动方式的求解2.当前我国“高铁”事业发展迅猛,假设一辆高速列车在机车牵引力和恒定阻力作用下,在水平轨道上由静止开始启动,其v -t 图象如图所示,已知0~t 1时间内为过原点的倾斜直线,t 1时刻达到额定功率P ,此后保持功率P 不变,在t 3时刻达到最大速度v 3,以后匀速运动.下列判断正确的是( )A .从0至t 3时间内,列车一直做匀加速直线运动B .t 2时刻的加速度大于t 1时刻的加速度C .在t 3时刻以后,机车的牵引力为零D .该列车所受的恒定阻力大小为Pv 3解析:选D.0~t 1时间内,列车做匀加速运动,t 1~t 3时间内,加速度逐渐变小,故A 、B 错误;t 3以后列车做匀速运动,牵引力大小等于阻力大小,故C 错误;匀速运动时F f =F 牵=Pv 3,故D 正确.机车启动问题的求解方法(1)机车的最大速度v max 的求法机车做匀速运动时速度最大,此时牵引力F 等于阻力F f ,故v max =P F =PF f .(2)匀加速启动时,做匀加速运动的时间t 的求法牵引力F =ma +F f ,匀加速运动的最大速度v max ′=P 额ma +F f ,时间t =v max ′a .(3)瞬时加速度a 的求法根据F =P v 求出牵引力,则加速度a =F -F fm.变力做功巧算【对点训练】(多选)如图所示,n 个完全相同、边长足够小且互不粘连的小方块依次排列,总长度为l ,总质量为M ,它们一起以速度v 在光滑水平面上滑动,某时刻开始滑上粗糙水平面.小方块与粗糙水平面之间的动摩擦因数为μ,若小方块恰能完全进入粗糙水平面,则摩擦力对所有小方块所做功的大小为( )A .12Mv 2B .Mv 2C .12μMgl D .μMgl解析:选AC.总质量为M 的小方块在进入粗糙水平面的过程中滑动摩擦力由0均匀增大,当全部进入时摩擦力达最大值μMg,总位移为l ,平均摩擦力为F f =12μMg,由功的公式可得W 1=-F f ·l =-12μM gl ,功的大小为12μMgl,C 正确,D 错误;用动能定理计算,则为W f =0-12Mv 2=-12Mv 2,其大小为12Mv 2,A 正确,B 错误.如图所示,在水平面上,有一弯曲的槽道AB ,槽道由半径分别为R2和R 的两个半圆构成.现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时刻与小球运动方向一致,则此过程中拉力所做的功为 ( )A .0B .FRC .2πFRD .32πFR 解析:选D.因为F 的方向不断改变,不能用W =Flcos α求解,但由于拉力F 的方向时刻与小球运动方向一致,可采用微元法,把小球的位移分割成许多的小段,在每一小段位移上力F 可视为恒力,F 做的总功即为F 在各个小段位移上做功的代数和,由此得W =F ⎝ ⎛⎭⎪⎫12×2π×R 2+12×2πR =32πFR ,所以本题答案为D.(建议用时:35分钟)一、单项选择题1.如图所示,两箱相同的货物,现要用电梯将它们从一楼运到二楼,其中图甲是利用扶梯台式电梯运送货物,图乙是用履带式自动电梯运送,假设两种情况下电梯都是匀速地运送货物,下列关于两电梯在运送货物时说法正确的是( )A .两种情况下电梯对货物的支持力都对货物做正功B .图乙中电梯对货物的支持力对货物做正功C .图甲中电梯对货物的支持力对货物不做功D .图乙中电梯对货物的支持力对货物不做功解析:选D.在图甲中,货物随电梯匀速上升时,货物受到的支持力竖直向上,与货物位移方向的夹角小于90°,故此种情况下支持力对货物做正功,选项C 错误;图乙中,货物受到的支持力与履带式自动电梯接触面垂直,此时货物受到的支持力与货物位移垂直,故此种情况下支持力对货物不做功,故选项A 、B 错误,D 正确.2.(2018·高考全国卷Ⅰ)高铁列车在启动阶段的运动可看做初速度为零的匀加速直线运动.在启动阶段,列车的动能 ( )A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比解析:选B.列车启动的过程中加速度恒定,由匀变速直线运动的速度与时间关系可知v =at ,且列车的动能为E k =12mv 2,由以上整理得E k =12ma 2t 2,动能与时间的平方成正比,动能与速度的平方成正比,A 、C错误;将x =12at 2代入上式得E k =max ,则列车的动能与位移成正比,B 正确;由动能与动量的关系式E k =p2可知,列车的动能与动量的平方成正比,D错误.2m3.如图所示,质量为m的小猴子在荡秋千,大猴子用水平力F缓慢将秋千拉到图示位置后由静止释放,此时藤条与竖直方向夹角为θ,小猴子到藤条悬点的长度为L,忽略藤条的质量.在此过程中正确的是( )A.缓慢上拉过程中拉力F做的功W F=FLsin θB.缓慢上拉过程中小猴子重力势能增加mgLcos θC.小猴子再次回到最低点时重力的功率为零D.由静止释放到最低点小猴子重力的功率逐渐增大解析:选C.缓慢上拉过程中拉力F是变力,由动能定理,F做的功等于克服重力做的功,即W F=mgL(1-cos θ),重力势能增加mgL(1-cos θ),选项A、B错误;小猴子由静止释放时速度为零,重力的功率为零,再次回到最低点时重力与速度方向垂直,其功率也为零,则小猴子下降过程中重力的功率先增大后减小,选项C正确、D错误.4.如图所示,细线的一端固定于O点,另一端系一小球.在水平拉力F的作用下,小球以恒定速率在竖直平面内由A点运动到B点.在此过程中拉力的瞬时功率变化情况是( )A.逐渐增大B.逐渐减小C.先增大,后减小D.先减小,后增大解析:选A.因小球速率不变,所以小球以O点为圆心做匀速圆周运动,受力如图所示,因此在切线方向上应有:mgsin θ=Fcos θ,得F=mgtan θ.则拉力F的瞬时功率P=F·v cos θ=mgv·sin θ.从A运动到B的过程中,拉力的瞬时功率随θ的增大而增大,A项正确.5.如图甲所示,轻质弹簧上端固定,下端悬挂一个质量m=0.5 kg的物块,处于静止状态.以物块所在处为原点,以竖直向下为正方向建立x轴,重力加速度g=10 m/s2.现对物块施加竖直向下的拉力F,F随x变化的情况如图乙所示.若物块运动到x=0.4 m处速度为零,则在物块下移0.4 m的过程中,弹簧弹性势能的增加量为( )A.5.5 J B.3.5 JC.2.0 J D.1.5 J解析:选A.由图线与横轴所围的“面积”可得物块下移0.4 m的过程中,拉力F做的功W=3.5 J,重力势能减少量mgx=2 J,由功能关系,弹簧弹性势能的增加量ΔE p=W+mgx=5.5 J,选项A正确.6.一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是( )解析:选A.由P -t 图象知:0~t 1内汽车以恒定功率P 1行驶,t 1~t 2内汽车以恒定功率P 2行驶.设汽车所受牵引力为F ,则由P =Fv 得,当v 增加时,F 减小,由a =F -fm 知a 减小,又因速度不可能突变,所以选项B 、C 、D 错误,选项A 正确.7.(2019·贵州遵义高三模拟)提高物体(例如汽车)运动速率的有效途径是增大发动机的功率和减小阻力因数(设阻力与物体运动速率的平方成正比,即F f =kv 2,k 是阻力因数).当发动机的额定功率为P 0时,物体运动的最大速率为v m ,如果要使物体运动的速率增大到2v m ,则下列办法可行的是( )A .阻力因数不变,使发动机额定功率增大到2P 0B .发动机额定功率不变,使阻力因数减小到k4C .阻力因数不变,使发动机额定功率增大到8P 0D .发动机额定功率不变,使阻力因数减小到k16解析:选C.物体匀速运动时,牵引力与阻力相等,由P =Fv m =F f v m =kv 3m ,要使物体运动的速率增大到2v m ,阻力因数不变时,需使发动机额定功率增大到8P 0,故A 错误,C 正确;发动机额定功率不变时,需使阻力因数减小到k8,故B 、D 错误.二、多项选择题8.我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg ,设起飞过程中发动机的推力恒为1.0×105N ;弹射器有效作用长度为100 m ,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( )A .弹射器的推力大小为1.1×106N B .弹射器对舰载机所做的功为1.1×108JC .弹射器对舰载机做功的平均功率为8.8×107W D .舰载机在弹射过程中的加速度大小为32 m/s 2解析:选ABD.对舰载机应用运动学公式v 2-02=2ax ,即802=2·a ·100,得加速度a =32 m/s 2,选项D 正确;设总推力为F ,对舰载机应用牛顿第二定律可知:F -20%F =ma ,得F =1.2×106N ,而发动机的推力为1.0×105N ,则弹射器的推力为F 推=(1.2×106-1.0×105)N =1.1×106N ,选项A 正确;弹射器对舰载机所做的功为W =F 推·l =1.1×108J ,选项B 正确;弹射过程所用的时间为t =v a =8032 s =2.5 s ,平均功率P =W t =1.1×1082.5W =4.4×107W ,选项C 错误.9.如图所示,细绳的一端绕过定滑轮与木箱相连,现以大小恒定的拉力F 拉动细绳,将静置于A 点的木箱经B 点移到C 点(AB =BC),地面平直且与木箱的动摩擦因数处处相等.设从A 到B 和从B 到C 的过程中,F 做功分别为W 1、W 2,克服摩擦力做功分别为Q 1、Q 2,木箱经过B 、C 时的动能和F 的功率分别为E kB 、E kC 和P B 、P C ,则下列关系一定成立的有( )A .W 1>W 2B .Q 1>Q 2C .E kB >E kCD .P B >P C解析:选AB.F 做功W =Flcos α(α为绳与水平方向的夹角),AB 段和BC 段相比较,F 大小相同,l 相同,而α逐渐增大,故W 1>W 2,A 正确;木箱运动过程中,支持力逐渐减小,摩擦力逐渐减小,故Q 1>Q 2,B 正确;因为Fcos α与摩擦力的大小关系无法确定,木箱运动情况不能确定,故动能关系、功率关系无法确定,C 、D 错误.10.(2016·高考全国卷Ⅱ)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功解析:选BD.由于两球由同种材料制成,甲球的质量大于乙球的质量,因此甲球的体积大于乙球的体积,甲球的半径大于乙球的半径,设球的半径为r ,根据牛顿第二定律,下落过程中mg -kr =ma ,a =g -kr ρ×43πr3=g -3k4πρr 2,可知,球下落过程做匀变速直线运动,且下落过程中半径大的球下落的加速度大,因此甲球下落的加速度大,由h =12at 2可知,下落相同的距离,甲球所用的时间短,A 、C 项错误;由v 2=2ah 可知,甲球末速度的大小大于乙球末速度的大小,B 项正确;由于甲球受到的阻力大,因此克服阻力做的功多,D 项正确.11.我国高铁技术处于世界领先水平.和谐号动车组是由动车和拖车编组而成的,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1∶2解析:选BD.启动时,动车组做加速运动,加速度方向向前,乘客受到竖直向下的重力和车厢对乘客的作用力,由牛顿第二定律可知,这两个力的合力方向向前,所以启动时乘客受到车厢作用力的方向一定倾斜向前,选项A 错误;设每节车厢质量为m ,动车组在水平直轨道上运行过程中阻力与车重成正比,则有每节车厢所受阻力f =kmg.设动车组匀加速直线运行的加速度为a ,每节动车的牵引力为F ,对8节车厢组成的动车组整体,由牛顿第二定律,2F -8f =8ma ;设第5节车厢对第6节车厢的拉车为F 5,隔离第6、7、8节车厢,把第6、7、8节车厢作为整体进行受力分析,由牛顿第二定律得,F 5-3f =3ma ,解得F 5=3F4;设第6节车厢对第7节车厢的拉力为F 6,隔离第7、8节车厢,把第7、8节车厢作为整体进行受力分析,由牛顿第二定律得,F 6-2f =2ma ,解得F 6=F2;第5、6节车厢与第6、7节车厢间的作用力之比为F 5∶F 6=3F 4∶F2=3∶2,选项B 正确;关闭发动机后,动车组在阻力作用下滑行,由匀变速直线运动规律,滑行距离x =v22a ′,与关闭发动机时速度的二次方成正比,选项C 错误;设每节动车的额定功率为P ,当有2节动车带6节拖车时,2P =8f·v 1m ;当改为4节动车带4节拖车时,4P =8f·v 2m ,联立解得v 1m ∶v 2m =1∶2,选项D 正确.12.(2019·广东揭阳模拟)质量为400 kg 的赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加速度a 与速度的倒数1v的关系如图所示,则赛车( )A .速度随时间均匀增大B .加速度随时间均匀增大C .输出功率为160 kWD .所受阻力大小为1 600 N解析:选CD.由题图可知,加速度是变化的,故赛车做变加速直线运动,选项A 错误;由P =F·v 和F -F 阻=ma 可得a =P m ·1v -F 阻m ,由此式可知,赛车速度增大时,加速度逐渐减小,故赛车做加速度逐渐减小的加速运动,选项B 错误;由a =P m ·1v -F 阻m 结合a -1v 图象可得F 阻=4m(N),P =400m(W),代入数据解得F 阻=1 600 N ,P =160 kW ,选项C 、D 正确.三、非选择题13.某汽车集团公司研制了一辆燃油与电动混合动力赛车,燃油发动机单独工作时的额定功率为P ,蓄电池供电的电力发动机单独工作时的额定功率为3P4,已知赛车运动过程中受到的阻力恒定.(1)若燃油发动机单独工作时的最大速度为120 km/h ,则两台发动机同时工作时的最大速度为多少? (2)若赛车先单独启动电力发动机从静止开始做匀加速直线运动,经过t 1时间达到额定功率,然后以燃油发动机的额定功率单独启动继续加速,又经过t 2时间达到最大速度v 0,赛车总质量为m ,求赛车的整个加速距离.解析:(1)燃油发动机单独工作,P =F 1v 1=fv 1 两台发动机同时工作,P +3P4=F 2v 2=fv 2最大速度v 2=7v 14=210 km/h.(2)燃油发动机的额定功率为P ,最大速度为v 0, 阻力f =Pv 0匀加速过程功率随时间均匀增加,发动机的平均功率为3P8,设总路程为s ,由动能定理有3P 8t 1+Pt 2-fs =12mv 20 解得s =P (3t 1+8t 2)v 0-4mv 308P.答案:(1)210 km/h (2)P (3t 1+8t 2)v 0-4mv 38P。

高三物理一轮复习第5章机械能第1节功功率课后限时训练

高三物理一轮复习第5章机械能第1节功功率课后限时训练

第1节 功 功率(建议用时:40分钟)1.运动员在110米栏比赛中,主要有起跑加速、途中匀速跨栏和加速冲刺三个阶段,运动员的脚与地面间不会发生相对滑动,以下说法正确的是( )A .加速阶段地面对运动员的摩擦力做正功B .匀速阶段地面对运动员的摩擦力做负功C .由于运动员的脚与地面间不发生相对滑动,所以不论加速还是匀速,地面对运动员的摩擦力始终不对运动员做功D .无论加速阶段还是匀速阶段,地面对运动员的摩擦力始终做负功C [因运动员的脚与地面间不发生相对滑动,故地面对运动员的静摩擦力对运动员不做功,A 、B 、D 均错误,C 正确.]2.高二某同学参加引体向上体能测试,在20 s 内完成10次标准动作,每次引体向上的高度约为50 cm ,则此过程中该同学克服重力做功的平均功率最接近于( )【导学号:】A .0B .150 WC .300 WD .450 WB [该同学的质量约为60 kg ,引体向上的高度为50 cm ,该同学做功的平均功率为P =W t =n mgh t=150 W ,选项B 正确.] 3.如图5­1­4所示,两个互相垂直的力F 1与F 2作用在同一物体上,使物体通过一段位移的过程中,力F 1对物体做功4 J ,力F 2对物体做功3 J ,则力F 1与F 2的合力对物体做功为( )图5­1 ­4A .7 JB .1 JC .5 JD .3.5 JA [力F 1与F 2的合力做的功等于F 1与F 2做功的代数和,即W 合=W 1+W 2=(4+3)J =7 J .]4.起重机以0.5 m/s 的速度将质量为300 kg 的重物匀速提升了2 m ,此过程中起重机做功为(g 取10 m/s 2)( )【导学号:】A .3 000 JB .6 000 JC .15 000 JD .60 000 J B [重物匀速提升过程中起重机做功等于克服重力做的功,所以起重机做功W =mgh =6 000 J ,B 正确.]5.一人乘电梯从1楼到20楼,在此过程中经历了先加速,后匀速,再减速的运动过程,则电梯对人的支持力的做功情况是( )A.加速时做正功,匀速时不做功,减速时做负功B.加速时做正功,匀速和减速时做负功C.加速和匀速时做正功,减速时做负功D.始终做正功D[在加速、匀速、减速的过程中,支持力与人的位移方向始终相同,所以支持力始终对人做正功,故D正确.]6.某飞船返回舱进入大气层后,在离地面20 km处打开减速伞,如图5­1­5所示.在返回舱减速下降的过程中( )图5­1­5A.合力做负功B.重力做负功C.空气阻力做正功D.伞绳拉力做正功A[返回舱减速下降,合力方向向上,做负功,A选项正确.重力做正功,空气阻力做负功,伞绳拉力做负功,B、C、D选项错误.]7.一张桌子始终静止在水平地面上,一根木棒沿着水平桌面从A运动到B,发生的位移为x,如图5­1­6所示,若棒与桌面间的摩擦力大小为F f,则棒对桌面的摩擦力和桌面对棒的摩擦力做的功各为( )图5­1­6【导学号:】A.-F f x,-F f x B.F f x,-F f xC.0,-F f x D.-F f x,0C棒对桌面的摩擦力和桌面对棒的摩擦力,为一对作用力和反作用力,大小相等,方向相反,从A运动到B的过程中,棒受到桌面的摩擦力为F f,位移为x,摩擦力做的是负功,所以桌面对棒的摩擦力做的功为-F f x,桌面受到的摩擦力的大小也为F f,但桌面没动,位移是0,所以棒对桌面的摩擦力做的功为0,C项正确.]8.如图5­1­7所示,匈牙利大力士希恩考·若尔特曾用牙齿拉动50 t的A320客机.他把一条绳索的一端系在飞机下方的前轮处,另一端用牙齿紧紧咬住,在52 s的时间内将客机拉动了约40 m.假设大力士牙齿的拉力约为5×103N,绳子与水平方向的夹角θ约为30°,则飞机在被拉动的过程中( )图5­1 ­7A.重力做功约为2.0×107 JB.拉力做功约为1.7×105 JC.克服阻力做功约为1.5×105 JD.合外力做功约为2.0×105 JB[重力做功W G=0,A选项错误;拉力做功W F=Fl cos θ=5×103×40×cos 30° J≈1.7×105J,B选项正确;由动能定理:W F-W f=ΔE k=0,所以合外力做功为零,克服阻力做功W f=W F≈1.7×105 J,C、D选项错误.]9.坐在雪橇上的人与雪橇的总质量为m,如图5­1­8所示在与水平面成θ角的恒定拉力F作用下,沿水平地面向右移动了一段距离l.已知雪橇与地面间的动摩擦因数为μ,雪橇受到的( )图5­1 ­8【导学号:】A.支持力做功为mglB.重力做功为mglC.拉力做功为Fl cos θD.滑动摩擦力做功为-μmglC[支持力和重力与位移垂直,不做功,选项A、B错误;拉力和摩擦力分别做功为W =Fl cos θ,W=-μ(mg-F sin θ)l,选项C正确,D错误.]10.如图5­1­9所示,以一定的初速度竖直向上抛出质量为m的小球,它上升的最大高度为h,空气阻力的大小恒为f.则从抛出点至回到原出发点的过程中,各力做功的情况正确的是( )图5­1­9A.重力做的功为2mghB.空气阻力做的功为-2fhC.空气阻力做的功为2fhD.物体克服重力做的功为-mghB[取向上为正方向,则整个过程中重力做的功为0,因为上升时重力做负功,下降时重力做正功,二者大小相等,故重力做的总功为0,选项A、D错误;上升时,阻力的方向竖直向下,位移为正的,故阻力做负功,下降时阻力向上为正,但位移是向下为负,故阻力仍做负功,所以空气阻力做的总功为-2fh,选项B正确,C错误.]11.(加试要求)如图5­1­10所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度α沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止.则关于斜面对物体m的支持力和摩擦力的下列说法中错误的是( )图5­1­10A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功B [支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 是错误的.]12.(加试要求)(多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图5­1­11所示.下列判断正确的是( )图5­1 ­11【导学号:】A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶4AD [第1 s 末质点的速度v 1=F 1m t 1=31×1 m/s=3 m/s. 第2 s 末质点的速度v 2=v 1+F 2m t 2=⎝ ⎛⎭⎪⎫3+11×1m/s =4 m/s. 则第2 s 内外力做功W 2=12mv 22-12mv 21=3.5 J. 0~2 s 内外力的平均功率P =12mv 22t =0.5×1×422W =4 W. 选项A 正确,选项B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W=9 W ,第2 s 末外力的瞬时功率P 2=F 2v 2=1×4 W=4 W ,故P 1∶P 2=9∶4,选项C 错误,选项D 正确.]13.(加试要求)(2017·浙江省名校协作体高二联考)(多选)质量为2 kg 的物体置于水平面上,在运动方向上受到水平拉力F 的作用,沿水平方向做匀变速直线运动,2 s 后撤去F ,其运动的v ­t 图象如图5­1­12所示,g 取10 m/s 2,则下列说法中正确的是( )图5­1­12A .拉力F 对物体做功150 JB .拉力F 对物体做功500 JC .物体克服摩擦力做功100 JD .物体克服摩擦力做功175 JAD [设摩擦力大小为F f ,在0~2 s 内,a 1=2.5 m/s 2,F -F f =ma 1,位移x 1=5+10×22m =15 m ,在2~6 s 内,a 2=-2.5 m/s 2,x 2=10×42m =20 m ,只受摩擦力F f 作用,故F f =-ma 2=5 N ,代入上式得F =10 N ,则拉力F 做功为W F =F ·x 1=150 J ,摩擦力做功W f =-F f (x 1+x 2)=-5×(15 +20)J =-175 J ,即物体克服摩擦力做功175 J .]14.一台起重机从静止起匀加速地将质量m =1.0×103 kg 的货物竖直吊起,在2 s 末货物的速度v =4 m/s.求起重机在这2 s 内的平均功率及2 s 末的瞬时功率.(g 取10 m/s 2)【解析】 货物匀加速运动,由速度公式可得v =at所以a =v t =2 m/s 22 s 内的位移是x =12at 2=4 m 由牛顿第二定律可得F -mg =ma ,所以F =mg +ma =1.0×103×10 N+1.0×103×2N=12 000 N起重机做的功为W =Fx =12 000×4 J=48 000 J所以起重机在这2 s 内的平均功率为: P =W t =48 0002W =24 000 W 起重机在2 s 末的瞬时功率为:P ′=Fv =12 000×4 W=48 000 W.【答案】 24 000 W 48 000 W15.如图5­1­13所示,一个质量为m =2 kg 的物体受到与水平面成37°角的斜向下方的推力F =10 N 的作用,在水平地面上移动了距离x 1=2 m 后撤去推力,此物体又滑行了x 2=1.6 m 的距离后停止运动,动摩擦因数为0.2(g 取10 m/s 2),求:图5­1­13(1)推力F 对物体做的功;(2)全过程中摩擦力对物体所做的功.【导学号:】【解析】 (1)推力做功由W =Fl cos α得 W F =Fx 1cos 37°=10×2×0.8 J=16 J.(2)撤去外力前,由受力分析可知竖直方向F N1=mg +F sin37°=26 N所以摩擦力做功W f1=μF N1x1cos 180°=0.2×26×2×(-1) J=-10.4 J 撤去外力后F N2=mg=20 NW f2=μF N2x2cos 180°=0.2×20×1.6×(-1) J=-6.4 J 故W f=W f1+W f2=-16.8 J.【答案】(1)16 J (2)-16.8 J。

高考物理一轮复习 第五章 第1课 功、功率练习

高考物理一轮复习 第五章 第1课 功、功率练习

第五章功能关系和机械能考试大纲新课程标准1.功和功率Ⅱ2.动能和动能定理Ⅱ3.重力做功与重力势能Ⅱ4.功能关系、机械能守恒定律及其应用Ⅱ5.实验:探究动能定理6.实验:验证机械能守恒定律(1)举例说明功是能量变化的量度,理解功和功率.关心生活和生产中常见机械功率的大小及其意义.(2)通过实验,探究恒力做功与物体动能变化的关系.理解动能和动能定理,用动能定理解释生活和生产中的有关问题.(3)理解重力势能.知道重力势能的变化与重力做功的关系.(4)通过实验,验证机械能守恒定律.理解机械能守恒定律.用机械能守恒定律分析生活和生产中的有关问题.(5)了解自然界中存在多形式的能量.知道能量守恒是最基本、最普遍的自然规律之一.(6)通过能量守恒以及能量转化和转移的方向性,认识提高效率的重要性,了解能源与人类生存和社会发展的关系,知道可持续发展的重大意义.复习策略:承上源头牛顿定律流活水,启下技法功能关系凌绝顶.记忆秘诀:功功率能是标量,无须细节定势能,切分数段求总功,能量转化功量度.第一单元功和功率、动能定理第1课功、功率考点一功1.做功的两个要素.(1)物体受到力的作用.(2)物体在力的方向上发生一段位移.2.公式.W=Fscos α.(1)α是力与位移方向之间的夹角,s 为物体对地的位移. (2)该公式只适用于恒力做功. 3.功的正负.力与位移的夹角 功的正负 物理意义 0≤α<π2W>0 力对物体做正功π2<α≤π W<0 力对物体做负功,或者说物体克服这个力做了功 α=π2W =0力对物体不做功考点二 功率 1.物理意义.描述力对物体做功的快慢. 2.公式.(1)P =Wt(P 为时间t 内的平均功率).(2)P =Fv . 3.额定功率.机械正常工作时的最大功率. 4.实际功率.机械实际工作时的功率,要求不能大于额定功率.,1.一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的有用功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升为止,物体上升的高度为h ,则整个过程中,下列说法错误的是(A )A .钢绳的最大拉力为Pv 2B .钢绳的最大拉力为Pv 1C .重物的最大速度v 2=PmgD .重物匀加速运动的加速度为Pmv 1-g解析:由F -mg =ma 和P =Fv 可知,重物匀加速上升过程中钢绳拉力大于重力且不变,达到最大功率P 后,随v 增加,钢绳拉力F 变小,当F =mg 时重物达最大速度v 2,故v 2=Pmg ,最大拉力F =mg +ma =P v 1,A 错误,B 、C 正确.由P v 1-mg =ma 得:a =Pmv 1-g ,D 正确.2.汽车在平直的公路上以恒定的功率启动,设阻力恒定,则图中关于汽车运动过程中加速度、速度随时间变化的关系,以下判断正确的是(AB )A .汽车的加速度—时间图象可用图乙描述B .汽车的速度—时间图象可用图甲描述C .汽车的加速度—时间图象可用图丁描述D .汽车的速度—时间图象可用图丙描述解析:由牛顿第二定律得F -f =ma ,F =P v ,即Pv -f =ma ,随着v 的增大,物体做加速度减小的加速运动,在vt 图象上斜率应越来越小,故甲为汽车的速度—时间图象,B 对D 错;因速度增加得越来越慢,由a =P mv -fm 知,加速度减小得越来越慢,最后趋于零,故图乙为汽车加速度—时间图象,A 对C 错.3.一物体在水平面上,受恒定的水平拉力和摩擦力作用沿直线运动,已知在第1秒内合力对物体做的功为45 J ,在第1秒末撤去拉力,其vt 图象如图所示,g 取10 m/s 2,则(AD )A .物体的质量为10 kgB .物体与水平面的动摩擦因数为0.2C .第1秒内摩擦力对物体做的功为-60 JD .第1秒内拉力对物体做的功为60 J解析:由图象知1~4 s 内的加速度a 1=μg =1 m/s 2,则μ=0.1,B 错,第1秒的加速度a =3 m/s 2,位移s =1.5 m ,合外力的功W =mas =45 J ,则m =W as =453×1.5kg =10 kg ,A 对,摩擦力的功W f =-μmgs=-0.1×10×10×1.5 J =-15 J ,C 错,拉力的功W F =F·s=(μmg+ma)s =(0.1×10×10+10×3)×1.5 J =60 J ,D 对.课时作业一、单项选择题1.关于摩擦力做功的下列说法正确的是(A )A .滑动摩擦力阻碍物体的相对运动,但可能做正功B .静摩擦力和滑动摩擦力一定都做负功C .静摩擦力起着阻碍物体相对运动趋势的作用,一定不做功D .系统内两物体间的相互作用的一对摩擦力做功的总和恒等于0 2.一人乘电梯从1楼到20楼,在此过程中经历了先加速,后匀速,再减速的运动过程,则电梯支持力对人做功情况是(D)A.加速时做正功,匀速时不做功,减速时做负功B.加速时做正功,匀速和减速时做负功C.加速和匀速时做正功,减速时做负功D.始终做正功解析:支持力始终竖直向上,与位移同向,α=0°,故支持力始终做正功,D正确.3.在距地面高5 m的平台上,以25 m/s的速率竖直向上抛出一质量为1 kg的石块,不计空气阻力,取g=10 m/s2,则抛出后第三秒内重力对石块所做的功是(D) A.-100 J B.50 J C.100 J D.0 J解析:石块在2 s末与3 s末在同一位置,故第3 s内位移为0,所以第3 s内重力做功为零.4.如图所示,质量相同的两物体处于同一高度,A沿固定在地面上的光滑斜面下滑,B 自由下落,最后到达同一水平面,则(A)A.重力对两物体做的功相同B.重力的平均功率相同C.到达底端时重力的瞬时功率相同D.到达底端时两物体的动能相同,速度相同解析:由于两个物体质量相同、下落高度相同,所以重力对两物体做的功相同,A选项正确.由于下落的时间不同,所以重力的平均功率不相同,B选项错误.根据机械能守恒可知,两物体到达底端时动能相同,即速度大小相同、方向不同,D选项错误.由瞬时功率的计算式可得P A=mgvcos θ,P B=mgv,因此,到达底端时重力的瞬时功率P A<P B,C选项错误.5.一滑块在水平地面上沿直线滑行,t=0时其速度为1 m/s,从此刻开始在滑块运动方向上再施加一水平作用力F,力F和滑块的速率v随时间的变化规律分别如图甲和乙所示.设在第1秒内、第2秒内、第3秒内力F对滑块做的功分别为W1、W2、W3,则以下关系正确的是(B)A.W1=W2=W3 B.W1<W2<W3C.W1<W3<W2 D.W1=W2<W3解析:力F 做的功等于每段恒力F 与该段滑块运动的位移数值(vt 图象中图象与坐标轴围成的面积)的乘积,第1秒内,位移为一个小三角形面积S ;第2秒内,位移也为一个小三角形面积S ;第3秒内,位移为两个小三角形面积2S ,故W 1=1S ,W 2=3S ,W 3=4S ,所以W 1<W 2<W 3.二、不定项选择题6.水平地面上有一木箱,木箱与地面之间的动摩擦因数为μ(0<μ<1).现对木箱施加一拉力F ,使木箱做匀速直线运动.设F 的方向与水平面夹角为θ,如图所示,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则(AC )A .F 先减小后增大B .F 一直增大C .F 的功率减小D .F 的功率不变解析:由木箱受力平衡可知:Fcos θ=μ(G-Fsin θ),即F =μGcos θ+μsin θ=μG1+μ2cos (θ-φ),故F 先减小后变大.根据P =Fvcos θ=μGv1+μtan θ可知F 的功率减小.故A 、C 正确.7.如图所示是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若小车在平直的公路上以初速度v 0开始加速行驶,经过时间t ,前进了距离l ,达到最大速度v max ,设此过程中电动机功率恒为额定功率P ,受的阻力恒为F f ,则此过程中电动机所做的功为(AD )A .F f v max t B.Pt2C .F f t v 0+v max 2 D.12mv 2max +F f l -12mv 2解析:因小车以恒定的功率运动,故此过程小车电动机做功为W =Pt =F f v max t ,A 正确,B 错误.由动能定理可得W -F f ·l =12mv 2max -12mv 20,得:W =12mv 2max -12mv 20+F f l.故D 正确,C 错误.8.质量为m 的物体静止在光滑水平面上,从t =0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图所示,力的方向保持不变,则(BD )A .3t 0时刻的瞬时功率为5F 20t 0mB .3t 0时刻的瞬时功率为15F 20t 0mC .在t =0到3t 0这段时间内,水平力的平均功率为23F 20t 04mD .在t =0到3t 0这段时间内,水平力的平均功率为25F 20t 06m解析:2t 0时速度v 1=F 0m ·2t 0,0~2t 0内位移x 1=F 02m ·(2t 0)2=2·F 0t 20m,F 做功W 1=F 0x 1=2F 20t 2m.3t 0时速度v 2=3F 0m ·t 0+v 1=5F 0m·t 0,3t 0时刻瞬时功率:P =3F 0·v 2=15F 20t 0m,故B 正确.2t 0~3t 0内位移x 2=v 1t 0+13F 02m ·t 20=7F 0t 202m ,F 做的功W 2=3F 0x 2=21F 20t 22m .0~3t 0内F 的平均功率P =W 1+W 23t 0=25F 20t 06m.故D 正确.9.提高介质中物体(如汽车)运动速率的有效途径是增大发动机的功率和减小阻力因数(设介质阻力与物体运动速率的平方成正比,即f =kv 2,k 是阻力因数).当发动机的额定功率为P 0时,物体运动的最大速度为v m ,如果要使物体运动速率增大到2v m ,则下列办法可行的是(CD )A .阻力因数不变,使发动机额定功率增大到2P 0B .发动机额定功率不变,使阻力因数减小到k4C .阻力因数不变,使发动机额定功率增大到8P 0D .发动机额定功率不变,使阻力因数减小到k8解析:本题考查的是机车启动中牵引力的功率问题,物体运动的最大速度为匀速运动时的速度,此时牵引力与阻力相等,由公式P 0=Fv m =f·v m =kv 2m ·v m =kv 3m ,若速率增大到2v m ,则牵引力的功率的表达式为P′=8k′v 3m ,则当阻力因数不变时,即k =k′时,则P′=8P 0,A 项错误,C 项正确;当发动机额定功率不变时,即P 0=P′时,则k =8k′,k ′=k8,D 项正确,B 项错误.10.一物块放在水平面上,在水平拉力F 作用下做直线运动,运动的vt 图象如图所示,则有关该力F 的功率Pt 图象可能是如图中的(BC )解析:由于题目未讲水平面是否光滑,故应分情况讨论,若水平面光滑,0~t 1段F 为恒力,速度线性增加,故功率也线性增大,t 1~t 2段F 为零,功率为零,t 2~t 3段F 反向,仍为恒力,速度线性减小,故功率也线性减小,故C 项正确.若水平面不光滑,由于t 1、t 2时刻后一小段时间内,F 突然减小,故功率突然减小,故B 项正确.三、非选择题11.如图所示,一个质量为m 的小物块被推力F 从倾角为θ、高为h 的光滑斜面底端推至顶端,求:(1)斜面对小物块的支持力做的功W 1; (2)重力对小物块做的功W 2; (3)推力F 对小物块做的功W 3.解析:(1)对小物块进行受力分析,如图所示.可知:支持力F N 垂直于位移s ,故W 1=0; (2)重力mg 与位移s 的夹角为(90°+θ), 由此得:W 2=mgs·cos(90°+θ)=-mgh. (3)推力F 与位移s 的夹角为θ,由此得:W 3=Fs·cos θ=Fh·cot θ. 答案:(1)0 (2)-mgh (3) Fh·cot θ12.第24届世界大学生冬运会某滑雪道为曲线轨道,滑雪道长s =2.5×103m ,竖直高度h =720 m .运动员从该滑道顶端由静止开始滑下,经t =200 s 到达滑雪道底端时速度v=30 m/s ,人和滑雪板的总质量m =80 kg ,取g =10 m/s 2,求人和滑雪板(1)到达底端时的动能;(2)在滑动过程中重力做功的功率.解析:(1)到达底端时的动能E k =12mv 2,代入数据得E k =3.6×104J.(2)在滑动过程中重力做的功W =mgh , 功率P =Wt,代入数据解得P =2.88×103 W.答案:(1)3.6×104 J (2)2.88×103W13.静止在水平地面上的木箱,质量m =50 kg.木箱与地面间的动摩擦因数μ=0.4,若用大小为400 N、方向与水平方向成37°角的斜向上的拉力拉木箱从静止开始运动,使木箱能够到达50 m远处,拉力最少做多少功?(cos 37°=0.8,取g=10 m/s2) 解析:欲使拉力做功最少,须使拉力作用的位移最小,故重物应先在拉力作用下加速,再撤去拉力使木箱减速,到达50 m处时速度恰好减为0.设加速时加速度的大小为a1,减速时加速度的大小为a2.由牛顿第二定律得,加速时有:水平方向:Fcos 37°-μF N=ma1,竖直方向:Fsin 37°+F N-mg=0,减速时有:μmg=ma2,且有v2=2a1x1=2a2x2,x1+x2=x,联立以上各式解得:x1≈24 m.由功的定义,有:W=Fx1cos 37°=400×24×0.8 J=7.68×103 J.答案:7.68×103 J。

高三物理一轮复习 第五章 机械能 第1讲 功和功率

高三物理一轮复习 第五章 机械能 第1讲 功和功率

解析 人对车施加了三个力,分别为压力、推力 F、静摩擦 力 f,根据力做功的公式及作用力和反作用力的关系判断做正功 还是负功.则对各选项分析如下:A 项,当车匀速前进时,人对 车厢的推力 F 做的功为 WF=Fs,静摩擦力做的功为 Wf=fs,人 处于平衡状态,则 F=f,故人对车做的总功为零,A 项错误;B 项,当车加速前进时,人处于加速状态,车厢对人的静摩擦力 f′向右且大于车厢壁对人的作用力 F′,所以人对车厢的静摩擦
力 f 向左,静摩擦力做的功 Wf=-fs,人对车厢的推力 F 方向向 右,做的功为 WF=Fs,因为 f>F,所以人对车做的总功为负功, 故 B 项正确;C 项,同理可以证明当车减速前进时,人对车做的 总功为正功,故 C 项错误;D 项,目的 考查功的公式的应用、动能定理的应用
2.(2015·福建上杭一中检测)(多选)质量为 m 的物体始终固 定在倾角为 θ 的斜面上,下列说法正确的是( )
A.若斜面水平向右匀速运动距离 l,斜面对物体没有做功 B.若斜面向上匀速运动距离 l,斜面对物体做功为 mgl C.若斜面水平向左以加速度 a 运动距离 l,斜面对物体做功 为 mal D.若斜面向下以加速度 a 运动距离 l,斜面对物体做功为 m(g+a)l
(3)额定功率:是指机器正常工作时的最大输出功率,也就是 机器铭牌上的标称值.
(4)实际功率:是指机器在工作中实际输出的功率.
(5)发动机的功率是牵引力的功率,而不是合外力的功率.P =Fv 中,F 指的是机车的牵引力.在 P 一定时,F 与 v 成反比; 在 F 一定时.P 与 v 成正比.
5.机车的启动的两类问题分析 (1)在额定功率下启动: 机车以恒定功率启动.若运动过程中 所受阻力 f 不变,由于牵引力 F=Pv0,根 据牛顿第二定律得:F-f=ma,即物体 的加速度 a=mP0v-mf ,可见机车在启动过程中随着速度的增大, 加速度变小;当其加速度 a=0 时,机车的速度达到最大 vm=Pf0, 以后机车做匀速直线运动,v-t 图如图所示.

高三一轮复习秘籍-第五章第1讲 功和功率

高三一轮复习秘籍-第五章第1讲 功和功率

第五章机械能第1讲功和功率过好双基关————回扣基础知识训练基础题目一、功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)恒力F的方向与位移l的方向一致时:W=Fl.(2)恒力F的方向与位移l的方向成某一夹角α时:W=Fl cosα.5.功的正负(1)当0≤α<π时,W>0,力对物体做正功.2<α≤π时,W<0,力对物体做负功,或者说物体克服这个力做了功.(2)当π2(3)当α=π时,W=0,力对物体不做功.26.一对作用力与反作用力的功做功情形图例备注都做正功(1)一对相互作用力做的总功与参考系无关(2)一对相互作用力做的总功W =Fl cos α.l 是相对位移,α是F 与l 间的方向夹角(3)一对相互作用力做的总功可正、可负,也可为零都做负功一正一负一为零一为正一为负二、功率1.定义:功与完成这些功所用时间的比值.2.物理意义:描述力对物体做功的快慢.3.公式:(1)P =W t,P 描述时间t 内力对物体做功的快慢.(2)P =Fv①v 为平均速度,则P 为平均功率.②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.研透命题点————细研考纲和真题分析突破命题点命题点一功的分析和计算1.常用办法对于恒力做功利用W=Fl cosα;对于变力做功可利用动能定理(W=ΔE k);对于机车启动问题中的恒定功率启动问题,牵引力的功可以利用W=Pt. 2.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点:①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能的情况,内能Q=F f x相对.◆类型1恒力功的分析和计算【例1】如图所示,木块B上表面是水平的,木块A置于B上,并与B 保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中()A.A所受的合外力对A不做功B.B对A的弹力做正功C.B对A的摩擦力做正功D.A对B做正功答案C解析A、B一起沿固定的光滑斜面由静止开始下滑,加速度为g sinθ(θ为斜面倾角),由于A速度增大,由动能定理知,A所受的合外力对A做正功,对A受力分析,可知B对A的支持力方向竖直向上,B对A的摩擦力方向水平向左,故B对A的摩擦力做正功,B对A的弹力做负功,A、B错误,C正确;A与B相对静止,由牛顿第二定律及几何关系可知A对B的作用力垂直斜面向下,A对B不做功,D错误.【变式1】在一次跳绳体能测试中,一位体重约为50kg的同学,一分钟内连续跳了140下,若该同学每次跳跃的腾空时间为0.2s,重力加速度g 取10m/s2,则他在这一分钟内克服重力做的功约为()A.3500J B.14000J C.1000J D.2500J答案A解析G=mg=50×10N=500N,腾空时间为0.2s表示上升过程用时0.1s,上升的高度为h=0.05m,则起跳一次克服重力做的功W0=Gh=500N×0.05 m=25J,1分钟内跳了140次,则一分钟内克服重力做功W=140W0=140×25 J=3500J,故选A.【变式2】一滑块在水平地面上沿直线滑行,t=0时其速度为1m/s,从此刻开始在滑块运动方向上再施加一水平作用力F,力F、滑块的速率v随时间的变化规律分别如图甲和乙所示,设在第1s 内、第2s 内、第3s 内力F 对滑块做的功分别为W 1、W 2、W 3,则以下关系正确的是()A .W 1=W 2=W 3B .W 1<W 2<W 3C .W 1<W 3<W 2D .W 1=W 2<W 3答案B 解析在第1s 内,滑块的位移为x 1=12×1×1m =0.5m ,力F 做的功为W 1=F 1x 1=1×0.5J =0.5J ;第2s 内,滑块的位移为x 2=12×1×1m =0.5m ,力F 做的功为W 2=F 2x 2=3×0.5J =1.5J ;第3s 内,滑块的位移为x 3=1×1m =1m ,力F 做的功为W 3=F 3x 3=2×1J =2J ,所以W 1<W 2<W 3,故选B.◆类型2变力功的分析与计算方法以例说法图例应用动能定理用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)微元法质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR等效转换法恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(h sin α-h sin β)平均力法弹簧由伸长x 1被继续拉至伸长x 2的过程中,克服弹力做功W =kx 1+kx 22·(x 2-x 1)图像法一水平拉力拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x 0【例2】(多选)如图所示,摆球质量为m ,悬线的长为L ,把悬线拉到水平位置后放手.设在摆球从A 点运动到B 点的过程中空气阻力F 阻的大小不变,则下列说法正确的是()A .重力做功为mgLB .绳的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-F 阻·12πL 答案ABD 解析小球下落过程中,重力做功为mgL ,A 正确;绳的拉力始终与速度方向垂直,拉力做功为0,B 正确;空气阻力F 阻大小不变,方向始终与速度方向相反,故空气阻力F 阻做功为-F 阻·12πL ,C 错误,D 正确.方法1利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和,此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题.【变式3】如图所示,在一半径为R =6m 的圆弧形桥面的底端A ,某人把一质量为m =8kg 的物块(可看成质点).用大小始终为F =75N 的拉力从底端缓慢拉到桥面顶端B (圆弧AB 在同一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g 取10m/s 2,sin 37°=0.6,cos 37°=0.8.求这一过程中:(1)拉力F 做的功;(2)桥面对物块的摩擦力做的功.答案(1)376.8J (2)-136.8J解析(1)将圆弧AB ︵分成很多小段l 1、l 2…l n ,拉力在每一小段上做的功为W 1、W 2…W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos 37°、W 2=Fl 2cos 37°…W n =Fl n cos 37°所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos37°·16·2πR ≈376.8J.(2)重力G 做的功W G =-mgR (1-cos 60°)=-240J ,因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0所以W f =-W F -W G =-376.8J +240J =-136.8J.方法2用F -x 图像求变力做功在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图形).【变式4】一物体所受的力F 随位移x 变化的图像如图所示,求在这一过程中,力F 对物体做的功为()A .3JB .6JC .7JD .8J 答案B 解析力F 对物体做的功等于图线与横轴x 所包围面积的代数和,即W 1=12×(3+4)×2J =7J ;W 2=-12×(5-4)×2J =-1J 所以力F 对物体做的功为W =7J -1J =6J.故选项B 正确.方法3用动能定理求变力做功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功.因为使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.【变式5】(多选)如图所示,一个质量为m=1kg的带孔小球穿在固定的粗糙水平长横杆上,小球与横杆间的动摩擦因数为μ=0.6.某时刻小球获得一个水平向右的瞬时速度v0=15m/s,同时小球受到一个竖直向上的作用力F,F与速度的平方成正比,比例常数为k=0.4,重力加速度为g=10m/s2,则小球运动的整个过程中()A.作用力F对小球做功为0B.作用力F对小球做功为-112.5J C.摩擦力对小球做功为-112.5J D.摩擦力对小球做功为-100J答案AD解析对小球受力分析可知,初始状态F=kv2=0.4v2,当v0=15m/s,F0=90N>mg=10N,则小球受力如图所示.因为小球所受的作用力F与位移方向垂直,所以作用力F对小球做功为零,A正确,B错误;“小球运动的整个过程中”指从初态至稳定状态的过程.由于小球受到杆的向下的弹力,小球受到与运动方向相反的沿杆的摩擦力f,但由于F=kv2,随着小球的减速运动,导致F 减小.由于竖直方向上合力为零,则杆给小球的弹力F N 减小,当F =mg 时,小球达到匀速状态,有kv 22=mg ,解得v 2=5m/s ,在这个过程中弹力在变化,因此摩擦力是变力.在v 0=15m/s 到v 2=5m/s 过程中,小球受到重力mg ,向上的拉力F 、向下的弹力F N ,只有摩擦力做功,对小球用动能定理,有W f =12mv 22-12mv 20=-100J ,D 正确,C 错误.方法4“转化法”求变力做功通过转换研究的对象,可将变力做功转化为恒力做功,用W =Fl cos α求解,如轻绳通过定滑轮拉动物体运动过程中拉力做功问题.【变式6】如图所示,固定的光滑竖直杆上套着一个滑块,滑块用轻绳系着绕过光滑的定滑轮O .现以大小不变的拉力F 拉绳,使滑块从A 点起由静止开始上升.滑块运动到C 点时速度最大.已知滑块质量为m ,滑轮O 到竖直杆的距离为d ,∠OAO ′=37°,∠OCO ′=53°,重力加速度为g .求:(sin 37°=0.6,cos 37°=0.8)(1)拉力F 的大小;(2)滑块由A 到C 过程中拉力F 做的功.答案(1)53mg (2)2536mgd 解析(1)根据共点力的平衡条件,在C 点有F cos 53°=mg ,解得F =53mg .(2)由能量的转化与守恒可知,拉力F 对绳端点做的功就等于绳的拉力F 对滑块做的功滑轮与A 间绳长L 1=dsin 37°滑轮与C 间绳长L 2=d sin 53°滑轮右侧绳子增大的长度ΔL =L 1-L 2=d sin 37°-d sin 53°=5d12拉力做功W =F ΔL =2536mgd .1.公式P =Wt和P =Fv 的区别P =Wt 是功率的定义式,P =Fv 是功率的计算式.2.平均功率的计算方法(1)利用P =W t.(2)利用P =F ·v cos α,其中v 为物体运动的平均速度.3.瞬时功率的计算方法(1)利用公式P=Fv cosα,其中v为t时刻的瞬时速度.(2)P=F·v F,其中v F为物体的速度v在力F方向上的分速度.(3)P=F v·v,其中F v为物体受到的外力F在速度v方向上的分力.【例3】质量m=20kg的物体,在大小恒定的水平外力F的作用下,沿水平面做直线运动.0~2s内F与运动方向相反,2~4s内F与运动方向相同,物体的v-t图像如图所示.g取10m/s2,则()A.拉力F的大小为100NB.物体在4s时拉力的瞬时功率为120WC.4s内拉力所做的功为480JD.4s内物体克服摩擦力做的功为320J答案B解析取物体初速度方向为正方向,由题图可知物体与水平面间存在摩擦力,由题图可知0~2s内,-F-f=ma1且a1=-5m/s2;2~4s内,-F+f=ma2且a2=-1m/s2,联立以上两式解得F=60N,f=40N,A错误;由P =Fv,得4s时拉力的瞬时功率为120W,B正确;由W=Fx,0~2s内,W1=-Fx1,2~4s内,W2=Fx2,由题图可知x1=10m,x2=2m,代入数据解得,4s 内拉力所做的功为-480J ,C 错误;摩擦力做功W =fs ,摩擦力始终与速度方向相反,故s 为路程,由题图可求得总路程为12m,4s 内物体克服摩擦力做的功为480J ,D 错误.【变式7】如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则()A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3答案B解析对小滑环,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角);由图中的直角三角形可知,小滑环的位移s =2R sin θ,所以t =2sa=4Rg,t 与θ无关,即t 1=t 2=t 3;根据W =mgh 可知三个环重力做的功W 1>W 2>W 3,根据P =Wt 可知P 1>P 2>P 3,故B 正确,A 、C 、D 错误.1.两种启动方式两种方式以恒定功率启动以恒定加速度启动P -t 图和v -t 图OA 段过程分析v ↑⇒F =P不变v↓⇒a =F -F 阻m↓a =F -F 阻m不变⇒F 不变v ↑⇒P =Fv ↑直到P =P 额=Fv 1运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t 0=v 1aAB 段过程分析F =F 阻⇒a =0⇒v m =P F 阻v ↑⇒F =P 额v ↓⇒a =F -F 阻m↓运动性质以v m 做匀速直线运动加速度减小的加速直线运动BC 段F =F 阻⇒a =0⇒以v m =P 额F 阻做匀速直线运动2.三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m=P F min =PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,但速度不是最大,v=P额F<v m=P额F阻.(3)机车以恒定功率启动时,牵引力做的功W=Pt.由动能定理得:Pt-F阻x =ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.【例4】(2021·湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的.总质量为m的动车组在平直的轨道上行驶,该动车组有四节动力车厢,每节车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k为常量).动车组能达到的最大速度为v m.下列说法正确的是()A.动车组在匀加速启动过程中,牵引力恒定不变B.若四节动力车厢输出功率均为额定值,则动车组从静止开始做匀加速运动C.若四节动力车厢输出的总功率为2.25P,则动车组匀速行驶的速度为34v m D.若四节动力车厢输出功率均为额定值,动车组从静止启动,经过时间t达到最大速度v m,则这一过程中该动车组克服阻力做的功为12mv2m-Pt答案C解析动车组在匀加速启动过程中,F-kv=ma,a不变,v增大,F则也增大,选项A错误;若四节动力车厢输出功率均为额定值,则4Pv-kv=ma,知随着v增大,a减小,选项B错误;当动车组达到最大速度v m时,满足4Pv m-kv m=0;若四节动力车厢总功率为2.25P,动车组匀速行驶时满足2.25Pv-kv=0,联立可得v=34v m,选项C正确;动车组从静止启动到达到最大速度v m,由动能定理得4Pt-W f=12mv2m-0,解得W f=4Pt-12mv2m,选项D错误.【变式8】某兴趣小组对一辆自制遥控小车的性能进行研究,他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v-t图像,如图所示(除2~10s时间段内的图像为曲线外,其余时间段图像均为直线).已知小车运动的过程中,2~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行.小车的质量为1kg,可认为在整个过程中小车所受到的阻力大小不变.求:(1)小车所受到的阻力大小及0~2s时间内电动机提供的牵引力大小;(2)小车匀速行驶阶段的功率;(3)小车在0~10s 运动过程中位移的大小.答案(1)0.75N1.25N(2)2.25W(3)19.7m解析(1)由图象可得,在14~18s 内:a 3=Δv 3Δt 3=0-318-14m/s 2=-0.75m/s 2小车受到阻力大小:f =m |a 3|=0.75N 在0~2s 内:a 1=Δv 1Δt 1=12m/s 2=0.5m/s 2由F -f =ma 1得,电动机提供的牵引力大小F =ma 1+f =1.25N即小车所受到的阻力大小为0.75N,0~2s 时间内电动机提供的牵引力大小为1.25N.(2)在10~14s 内小车做匀速直线运动,F ′=f故小车匀速行驶阶段的功率:P =F ′v =0.75×3W =2.25W.(3)根据速度-时间图象与时间轴围成的“面积”等于物体的位移,可得0~2s 内,x 1=12×2×1m =1m2~10s 内,根据动能定理有:Pt -fx 2=12mv 2-12mv 21解得:x 2=18.7m故小车在加速过程中的位移为:x =x 1+x 2=19.7m 即小车在0~10s 运动过程中位移的大小为19.7m【变式9】一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v 的图像如图所示.若已知汽车的质量,则根据图像所给信息,不能求出的物理量是()A .汽车的功率B .汽车行驶的最大速度C .汽车受到的阻力D .汽车运动到最大速度所需的时间答案D解析由F -F f =ma 、P =Fv 可得a =P m ·1v -F f m ,由a -1v 图象可知,Pm=k =40m 2·s -3,可求出汽车的功率P ,由a =0时1v m =0.05m -1·s ,可得汽车行驶的最大速度v m =20m/s ,再由v m =PF f ,可求出汽车受到的阻力F f ,但无法求出汽车运动到最大速度所需的时间.。

(浙江选考)版高考物理一轮复习 第五章 机械能及其守恒定律 第1节 功和功率达标检测(含解析)-人教

(浙江选考)版高考物理一轮复习 第五章 机械能及其守恒定律 第1节 功和功率达标检测(含解析)-人教

第1节 功和功率 1.(2017·11月浙江选考)如下列图,质量为60 kg 的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒.重心在c点,其垂线与脚、两手连线中点间的距离Oa 、Ob 分别为0.9 m 和0.6m .假设她在1 min 内做了30个俯卧撑,每次肩部上升的距离均为0.4 m ,如此抑制重力做的功和相应的功率约为( )A .430 J ,7 WB .4 300 J ,70 WC .720 J ,12 WD .7 200 J ,120 W 答案:B2.质量为m 的汽车,启动后沿平直路面行驶,如果发动机的功率恒为P ,且行驶过程中受到的摩擦阻力大小一定,汽车能够达到最大速度为v ,那么当汽车的速度为13v 时,汽车的瞬时加速度的大小为( )A.P mvB.2P mvC.3P mvD.4P mv解析:选B.以恒定功率起步的机车,因P =Fv ,v 逐渐增大,F 逐渐减小,即牵引力逐渐减小,所以机车做加速度逐渐减小的加速运动,当牵引力等于阻力时,不再加速,速度达到最大,可知阻力为f =F =P v ,如此当速度为13v 时,可求得牵引力F ′=P 13v =3P v ,如此此时的加速度为a =F ′-f m =2P mv,故此题的正确选项为B. 3.当前我国“高铁〞事业开展迅猛,假设一辆高速列车在机车牵引力和恒定阻力作用下,在水平轨道上由静止开始启动,其v -t 图象如下列图,0~t 1时间内为过原点的倾斜直线,t 1时刻达到额定功率P ,此后保持功率P不变,在t 3时刻达到最大速度v 3,以后匀速运动.如下判断正确的答案是( )A .从0至t 3时间内,列车一直做匀加速直线运动B .t 2时刻的加速度大于t 1时刻的加速度C .在t 3时刻以后,机车的牵引力为零D .该列车所受的恒定阻力大小为P v 3解析:选D.0~t 1时间内,列车做匀加速运动,t 1~t 3时间内,加速度逐渐变小,故A 、B 错误;t 3以后列车做匀速运动,牵引力大小等于阻力大小,故C 错误;匀速运动时F f =F牵=Pv3,故D正确.4.(2017·11月浙江选考)如下列图是具有登高平台的消防车,具有一定质量的伸缩臂能够在5 min内使承载4人的登高平台(人连同平台的总质量为400 kg)上升60 m到达灭火位置.此后,在登高平台上的消防员用水炮灭火,水炮的出水量为3 m3/min,水离开炮口时的速率为20 m/s,如此用于( )A.水炮工作的发动机输出功率约为1×104 WB.水炮工作的发动机输出功率约为4×104 WC.水炮工作的发动机输出功率约为2.4×106 WD.伸缩臂抬升登高平台的发动机输出功率约为800 W答案:B[课后达标]一、选择题1.一辆汽车在平直公路上从静止开始运动,假设汽车的功率保持不变,所受的阻力恒定,如此如下说法正确的答案是( )A.汽车一直做匀加速运动B.汽车先匀加速运动,后匀速运动C.汽车先匀加速运动,后匀减速运动直至静止D.汽车做加速度越来越小的加速运动,直至匀速运动答案:D2.设飞机飞行中所受阻力与其速度的平方成正比,假设飞机以速度v匀速飞行,其发动机功率为P,如此飞机以3v匀速飞行时,其发动机的功率为( )A.3P B.9PC.27P D.无法确定答案:C3.(2020·湖州质检)如下列图,细线的一端固定于O点,另一端系一小球,在水平拉力作用下,小球以恒定速率在竖直平面内由A点运动到B点,在此过程中拉力的瞬时功率变化情况是( )A.逐渐增大B.逐渐减小C.先增大,后减小D.先减小,后增大答案:A4.如下列图,木板可绕固定水平轴O 转动.木板从水平位置OA 缓慢转到OB 位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2 J .用F N 表示物块受到的支持力,用F f 表示物块受到的摩擦力.在此过程中,以下判断正确的答案是( )A .F N 和F f 对物块都不做功B .F N 对物块做功为2 J ,F f 对物块不做功C .F N 对物块不做功,F f 对物块做功为2 JD .F N 和F f 对物块所做功的代数和为0答案:B5.中国已成为世界上高铁运营里程最长、在建规模最大的国家.报道称,新一代高速列车正常持续运行牵引功率达 9 000 kW ,速度为300 km/h.假设一列高速列车从杭州到金华运行路程为150 km ,如此( )A .列车从杭州到金华在动力上消耗的电能约为9 000 kW ·hB .列车正常持续运行时的阻力大小约为105NC .如果该列车以150 km/h 运动,如此牵引功率为4 500 kWD .假设从杭州到金华阻力大小不变,如此列车抑制阻力做功大小等于阻力与位移的乘积解析:选B.根据题意,不知道该列车运行时间,所以无法求出杭州到金华列车消耗的电能,A 错误;根据P =Fv 可知,F =1.08×105 N ,B 正确;列车的瞬时速度为150 km/h ,但不能确定是匀速运动还是其他运动,所以不能确定牵引功率,C 错误;假设阻力大小不变,如此抑制阻力做功应该为阻力大小与其路程的乘积,D 错误.6.(2020·丽水高三期中)如下列图为牵引力F 和车速的倒数1v的关系图象,假设汽车质量为2×103kg ,它由静止开始沿平直的公路行驶,设阻力恒定且最大车速为30 m/s ,如此( )A .汽车所受的阻力为6×103NB .汽车的速度为15 m/s 时,功率为6×104 WC .汽车匀加速运动的加速度为3 m/s 2D .汽车匀加速所需的时间为7.5 s答案:B7.(2020·温州乐清期中)塔吊吊起货物沿竖直方向匀速上升过程中,钢丝绳对货物的拉力与其功率变化说法正确的答案是( )A .拉力增大,功率不变B .拉力不变,功率变大C .拉力减小,功率变大D .拉力不变,功率不变解析:选D.因为货物匀速上升,知F =mg ,如此拉力不变,根据P =Fv 知,拉力功率不变.故D 正确,A 、B 、C 错误.8.“激流勇进〞是一种常见的水上机动游乐设备,常见于主题游乐园中.游客们在一定安全装置的束缚下,沿着设计好的水道漂行.其间通常会有至少一次大幅度的机械提升和瞬时跌落.图中所示为游客们正坐在皮筏艇上从高处沿斜坡水道向下加速滑行,在此过程中如下说法正确的答案是( )A .合力对游客做负功B .皮筏艇对游客不做功C .重力对游客做正功D .游客的机械能增加 答案:C9.(2020·宁波质检)汽车发动机的额定功率是60 kW ,汽车的质量为2×103kg ,在平直路面上行驶,受到的阻力是车重的0.1.假设汽车从静止出发,以0.5 m/s 2的加速度做匀加速运动,如此出发50 s 时,汽车发动机的实际功率为(g 取10 m/s 2)( )A .25 kWB .50 kWC .60 kWD .75 kW解析:选C.汽车受到的阻力F f =0.1mg =2 000 N ,汽车以0.5 m/s 2的加速度做匀加速运动,由牛顿第二定律得F -F f =ma ,解得F =3 000 N ,假设50 s 内车做匀加速运动,如此v =at =25 m/s ,50 s 末汽车功率P =Fv =75 000 W =75 kW ,但汽车发动机的额定功率是60 kW ,如此50 s 内车不是匀加速运动,而是先匀加速运动后变加速运动,出发50 s 时,汽车发动机的实际功率为60 kW ,故C 正确.10.一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v的关系图象如下列图.假设汽车的质量,如此根据图象所给的信息,不能求出的物理量是( ) A .汽车的功率B .汽车行驶的最大速度C .汽车所受到的阻力D .汽车运动到最大速度所需的时间解析:选D.由F -F f =ma ,P =Fv 可得:a =P m ·1v -F f m ,对应图线可知,P m=k =40,可求出汽车的功率P ,由a =0时,1v m =0.05可得:v m =20 m/s ,再由v m =P F f,可求出汽车受到的阻力F f ,但无法求出汽车运动到最大速度的时间.11.(2020·浙江温岭高二月考)如图是武广铁路上某机车在性能测试过程中的v -t 图象,测试时机车先以恒定的牵引力F 启动发动机使机车在水平铁轨上由静止开始运动,t 1时刻机车关闭发动机,到t 2时刻机车完全停下.图象中θ>α,设整个测试过程中牵引力F 做的功和抑制摩擦力f 做的功分别为W 1、W 2,0~t 1时间内F 做功的平均功率和全过程抑制摩擦力f 做功的平均功率分别为P 1、P 2,如此如下判断正确的答案是( )A .W 1>W 2,F =2fB .W 1=W 2,F >2fC .P 1<P 2,F >2fD .P 1=P 2,F =2f解析:选B.机车整个运动过程中,根据动能定理有W 1-W 2=0,所以W 1=W 2,又P 1=W 1t 1,P 2=W 2t 2,因t 2>t 1,所以P 1>P 2;根据牛顿第二定律,机车的牵引力为F 时的加速度大小a 1=F -f m ,关闭发动机后机车加速度大小a 2=f m,根据v -t 图象斜率的意义可知a 1>a 2,即F -f >f ,所以有F >2f ,综上分析可知,B 正确.12.如下列图,汽车停在缓坡上,要求驾驶员在保证汽车不后退的前提下向上启动,这就是汽车驾驶中的“坡道起步〞,驾驶员的正确操作是:变速杆挂入低速挡,徐徐踩下加速踏板,然后慢慢松开离合器,同时松开手刹,汽车慢慢启动,如下说法正确的答案是( )A .变速杆挂入低速挡,是为了增大汽车的输出功率B .变速杆挂入低速挡,是为了能够提供较大的牵引力C .徐徐踩下加速踏板,是为了让牵引力对汽车做更多的功D .徐徐踩下加速踏板,是为了让汽车的输出功率保持为额定功率解析:选B.由P =Fv 可知,在功率一定的情况下,当速度减小时,汽车的牵引力就会增大,此时更容易上坡,如此换低速挡,增大牵引力,故A 错误,B 正确;徐徐踩下加速踏板,发动机的输出功率增大,根据P =Fv 可知,是为了增大牵引力,故C 、D 错误.13.一物体在粗糙的水平面上滑行.从某时刻起,对该物体再施加一水平恒力F ,如此在此后的一段时间内( )A .如果物体改做匀速运动,如此力F 一定对物体做负功B .如果物体改做匀加速直线运动,如此力F 一定对物体做正功C .如果物体仍做匀减速运动,如此力F 一定对物体做负功D .如果物体改做曲线运动,如此力F 一定对物体不做功解析:选B.物体在粗糙的水平面上做匀减速直线运动.施加一水平恒力F 后,如果物体改做匀速运动,如此力F 一定与摩擦力等大、反向,与物体运动方向一样,对物体做正功,A 错误;如果物体改做匀加速直线运动,如此力F 一定与物体运动方向一样,且大于摩擦力,力F 对物体做正功,B 正确;如果物体仍做匀减速运动,如此力F 可能与物体运动方向一样,但大小小于摩擦力,对物体做正功,也可能与物体运动方向相反,对物体做负功,C 错误;只要物体受力F 与物体运动方向不共线,物体就做曲线运动,力F 与速度的夹角既可以是锐角也可以是钝角,还可以是直角,各种做功情况都有可能,D 错误.14.(2020·舟山高二期中)在水平面上,有一弯曲的槽道弧AB ,槽道由半径分别为R2和R 的两个半圆构成(如下列图),现用大小恒为F 的拉力将一光滑小球从A 点沿滑槽道拉至B 点,假设拉力F 的方向时时刻刻均与小球运动方向一致,如此此过程中拉力所做的功为( )A .0B .FRC.32πFR D .2πFR 解析:选C.虽然拉力方向时刻改变,但力与运动方向始终一致,用微元法,在很小的一段位移内可以看成恒力,小球的路程为πR +πR 2,如此拉力做的功为32πFR ,故C 正确.二、非选择题15.如图甲所示,在水平路段AB 上有一质量为2×103kg 的汽车,正以10 m/s 的速度向右匀速运动,汽车前方的水平路段BC 较粗糙,汽车通过整个ABC 路段的v -t 图象如图乙所示(在t =15 s 处水平虚线与曲线相切),运动过程中汽车发动机的输出功率保持20 kW 不变,假设汽车在两个路段上受到的阻力(含地面摩擦力和空气阻力等)各自有恒定的大小.求:(1)汽车在AB 路段上运动时所受的阻力F f1;(2)汽车刚好到达B 点时的加速度a ;(3)BC 路段的长度.解析:(1)汽车在AB 路段时,有F 1=F f1,P =F 1v 1,F f1=P v 1,联立解得: F f1=20×10310N =2 000 N. (2)t =15 s 时汽车处于平衡态,有F 2=F f2, P =F 2v 2,F f2=P v 2, 联立解得:F f2=20×1035 N =4 000 N. t =5 s 时汽车开始减速运动,有F 1-F f2=ma ,解得a =-1 m/s 2.(3)Pt -F f2x =12mv 22-12mv 21 解得x =68.75 m.答案:(1)2 000 N (2)-1 m/s 2(3)68.75 m。

2020年高考物理一轮复习课件5.1 第1节 功和功率

2020年高考物理一轮复习课件5.1 第1节 功和功率
法二:先求各个力做的功W1、W2、W3、…,再应用W合 =W1+W2+W3+…求合外力做的功。
第五章
第1节 功和功率
考点要求
基础夯实
多维课堂
模型方法
-16-
考点一 考点二 考点三
例1(2018·内蒙古包头期末)如图所示,质量为m的物体置于倾角
为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面
(1)当0°≤α<90°时,W>0,力对物体做正功 。 (2)当90°<α≤180°时,W<0,力对物体做负功 ,或者说物体克服 这个力做了功。 (3)当α=90°时,W=0,力对物体不做功 。
第五章
基础夯实 自我诊断
第1节 功和功率
考点要求
基础夯实
多维课堂
模型方法
-7-
二、功率
1.物理意义:描述力对物体做功的快慢 。
A.W1>W2、P1>P2 B.W1=W2、P1<P2 C.W1=W2、P1>P2 D.W1<W2、P1<P2
关闭
由功的定义 W=Flcos α 可知,W1=W2,由于物体沿粗糙地面运动时加
速度较小,通过相同位移所用时间较长,所以根据 P=������������可知,P1<P2,故
B 正确。
关闭
B
关闭
货物的加速度向上,由牛顿第二定律有 F-mg=ma,起重机的拉力
F=mg+ma=11 000 N。货物的位移是 l=12at2=0.5 m,做功为 W=Fl=5
500 J,故 D 正确。
关闭
D
解析 答案
第五章
第1节 功和功率
考点要求

(人教版)2020年度高考物理一轮复习 第五章 机械能 第1讲 功和功率课时达标训练

(人教版)2020年度高考物理一轮复习 第五章 机械能 第1讲 功和功率课时达标训练

1 功和功率一、选择题(1~6题为单项选择题,7~11题为多项选择题)1.如图1所示,甲、乙两物体之间存在相互作用的滑动摩擦力,甲对乙的滑动摩擦力对乙做了负功,则乙对甲的滑动摩擦力对甲( )图1A .可能做正功,也可能做负功,也可能不做功B .可能做正功,也可能做负功,但不可能不做功C .可能做正功,也可能不做功,但不可能做负功D .可能做负功,也可能不做功,但不可能做正功解析 若甲固定不动,乙在甲表面滑动,则乙对甲的滑动摩擦力对甲不做功;若乙向右运动的同时甲向左运动,则甲、乙间的一对滑动摩擦力均做负功;若水平地面光滑,静止的甲在乙的滑动摩擦力带动下做加速运动,则乙对甲的滑动摩擦力对甲做正功,所以只有选项A 正确。

答案 A2.同一恒力按同样的方式施于物体上,使它分别沿着粗糙水平地面和光滑水平地面移动相同一段距离时,恒力做的功和平均功率分别为W 1、P 1和W 2、P 2,则二者的关系是( ) A .W 1>W 2、P 1>P 2 B .W 1=W 2、P 1<P 2 C .W 1=W 2、P 1>P 2 D .W 1<W 2、P 1<P 2解析 由功的定义W =Fl cos α可知,W 1=W 2,由于沿粗糙地面运动时加速度较小,通过相同位移所用时间较长,所以根据P =W t可知,P 1<P 2,故B 正确。

答案 B3.(2017·安徽期中测试)A 、B 两物体的质量之比m A ∶m B =2∶1,它们以相同的初速度v 0在水平面上做匀减速直线运动,直到停止,其速度—时间图象如图2所示。

那么,A 、B 两物体所受摩擦力之比F A ∶F B 与A 、B 两物体克服摩擦阻力做功之比W A ∶W B 分别为( )图2A .2∶1,4∶1B .4∶1,2∶1C .1∶4,1∶2D .1∶2,1∶4解析 由v -t 图象可知:a A ∶a B =2∶1,又由F =ma ,m A ∶m B =2∶1,可得F A ∶F B =4∶1;又由题图中面积关系可知A 、B 位移之比x A ∶x B =1∶2,由做功公式W =Fx ,可得W A ∶W B =2∶1,故选B 。

【物理】2020届一轮复习人教版第五章第一节功和功率学案

【物理】2020届一轮复习人教版第五章第一节功和功率学案

第五章⎪⎪⎪机械能守恒定律第一节功和功率知识内容 必考要求1.追寻守恒量——能量b 2.功c 3.功率c[巩固基础]1.追寻守恒量物体由于运动而具有的能量叫做动能;相互作用的物体凭借其位置而具有的能量叫做势能。

2.功(1)做功的必要因素力和物体在力的方向上发生的位移。

(2)计算公式W =Fl cos α,即力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦值这三者的乘积。

(3)功的正负①当0≤α<π2时,W >0,力对物体做正功。

②当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功。

③当α=π2时,W =0,力对物体不做功。

[提升能力][例1] (2018·宁波模拟)如图所示,摆球质量为m ,悬线的长为L ,把悬线拉到水平位置后放手。

设在摆球从A 点运动到B 点的过程中空气阻力F 阻的大小不变,则下列说法正确的是( )A .重力做功为0B .绳的拉力做正功C .空气阻力F 阻做功为-mghD .空气阻力F 阻做功为-12F 阻πL[解析] 小球下落过程中,重力做功为mgL ,A 错误;绳的拉力始终与速度方向垂直,拉力做功为0,B 错误;空气阻力F 阻大小不变,方向始终与速度方向相反,故空气阻力F阻做功为-F 阻·12πL ,C错误、D 正确。

[答案] D[例2] 如图所示,一个质量为m =2 kg 的物体受到与水平面成37°角的斜向下方的推力F =10 N 的作用,在水平地面上移动了距离x 1=2 m 后撤去推力,此物体又滑行了x 2=1.6 m 的距离后停止运动,动摩擦因数为0.2(g 取10 m/s 2),求:(1)推力F 对物体做的功;(2)全过程中摩擦力对物体所做的功。

[解析] (1)推力做功由公式W =Fl cos α得 W F =Fx 1cos 37°=10×2×0.8 J =16 J 。

【高中教育】最新(新课标)高考物理一轮复习第5章机械能第一节功和功率达标诊断高效训练

【高中教育】最新(新课标)高考物理一轮复习第5章机械能第一节功和功率达标诊断高效训练

——教学资料参考参考范本——【高中教育】最新(新课标)高考物理一轮复习第5章机械能第一节功和功率达标诊断高效训练______年______月______日____________________部门(建议用时:60分钟)一、单项选择题1。

一个成年人以正常的速度骑自行车,受到的阻力为其总重力的0。

02,则成年人骑自行车行驶时的功率最接近于( )A.1 W B.10 WC.100 W D.1 000 W解析:选C。

设人和车的总质量为100 kg,匀速行驶时的速率为5 m/s,匀速行驶时的牵引力与阻力大小相等,即F=0。

02mg=20 N,则人骑自行车行驶时的功率为P=Fv=100 W,故C正确.2.同一恒力按同样的方式施于物体上,使它分别沿着粗糙水平地面和光滑水平地面移动相同一段距离时,恒力做的功和平均功率分别为W1、P1和W2、P2,则二者的关系是( )A.W1>W2、P1>P2 B.W1=W2、P1<P2C.W1=W2、P1>P2 D.W1<W2、P1<P2解析:选B。

由功的定义W=Flcos α可知,W1=W2,由于沿粗糙地面运动时加速度较小,通过相同位移所用时间较长,所以根据P=可知,P1<P2,故B正确.3.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h,空气阻力的大小恒为F,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为( )A.0 B.-FhC.Fh D.-2Fh解析:选D。

阻力与小球速度方向始终相反,故阻力一直做负功,W=-Fh+(-Fh)=-2Fh,D选项正确.4。

有一固定轨道ABCD如图所示,AB段为四分之一光滑圆弧轨道,其半径为R,BC段是水平光滑轨道,CD段是光滑斜面轨道,BC和斜面CD间用一小段光滑圆弧连接.有编号为1、2、3、4完全相同的4个小球(小球不能视为质点,其半径r<R),紧挨在一起从圆弧轨道上某处由静止释放,经平面BC到斜面CD上,忽略一切阻力,则下列说法正确的是( )A.四个小球在整个运动过程中始终不分离B.在圆弧轨道上运动时,2号球对3号球不做功C.在CD斜面轨道上运动时,2号球对3号球做正功D.在CD斜面轨道上运动时,2号球对3号球做负功解析:选A。

(浙江选考)2020版高考物理一轮复习 第5章 机械能 第1讲 功 功率学案

(浙江选考)2020版高考物理一轮复习 第5章 机械能 第1讲 功 功率学案

第1讲 功 功率[选考导航]知识排查功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功。

2.做功的两个要素 (1)作用在物体上的力;(2)物体在力的方向上发生的位移。

3.公式:W =Fl cos__α。

如图1所示。

图1(1)α是力与位移方向之间的夹角,l 为力的作用点的位移。

(2)该公式只适用于恒力做功。

4.功的正负(1)当0°≤α<90°时,W >0,力对物体做正功。

(2)当90°<α≤180°时,W <0,力对物体做负功,或者说物体克服这个力做了功。

(3)当α=90°时,W =0,力对物体不做功。

功率1.定义:功与完成这些功所用时间的比值。

2.物理意义:描述力对物体做功的快慢。

3.公式(1)P =W t,P 为时间t 内的平均功率。

(2)P =Fv cos__α(α为F 与v 的夹角) ①v 为平均速度,则P 为平均功率。

②v 为瞬时速度,则P 为瞬时功率。

小题速练1.思考判断(1)物体受力同时又有位移发生,则力一定对物体做功( ) (2)滑动摩擦力一定对物体做负功( )(3)作用力对物体做正功,反作用力一定对物体做负功( ) (4)汽车功率P =Fv 中的F 指汽车所受的合外力( )(5)汽车上坡时,司机必须换挡,其目的是减小速度,得到较大的牵引力( ) (6)以恒定功率启动的机车,在加速过程中发动机做的功可用公式W =Pt 计算( ) 答案 (1)× (2)× (3)× (4)× (5)√ (6)√2.(2018·广西南宁模拟)关于功的概念,下列说法正确的是( ) A.物体受力越大,位移越大,力对物体做功越多 B.合力的功等于各分力功的矢量和 C.摩擦力可以对物体做正功D.功有正、负,但正、负不表示方向,而表示大小解析 因功的决定因素为力、位移及二者的夹角,若力大、位移大,但两者夹角为90°时,则做功为0,故选项A 错误;合力的功等于各分力功的代数和,选项B 错误;摩擦力可以做正功,也可以做负功,这要看摩擦力与位移的方向关系,故选项C 正确;功是标量,有正、负之分,但功的正、负不是表示方向,而是表示力对物体做功的效果,所以选项D 错误。

(新课标)2020届高考物理一轮总复习必修部分第5章机械能及其守恒定律第1讲功和功率随堂集训

(新课标)2020届高考物理一轮总复习必修部分第5章机械能及其守恒定律第1讲功和功率随堂集训

第1讲功和功率1. [2020 •课标全国卷U ]」k .... ■: -- !片——['■Kon t一汽车在平直公路上行驶。

从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示。

假定汽车所受阻力的大小 f 恒定不变。

下列描述该汽车的速度 V 随时解析在v-t 图象中,图线的斜率代表汽车运动时的加速度,由牛顿第二定律P l可得:在0〜t i 时间内,V■ — f = ma ①当速度V 不变时,加速度a 为零,在v-t 图 象中为一条水平线;②当速度 v 变大时,加速度a 变小,在v-t 图象中为一条斜率 P 2逐渐减小的曲线,选项 B 、D 错误;同理,在t i 〜t 2时间内,-—f 二ma 图象变化 情况与0〜t i 时间内情况相似,由于汽车在运动过程中速度不会发生突变, 故选项CI)( )错误,选项A 正确2. [2020 •浙江高考](多选)我国科学家正在研制航母舰载机使用的电磁弹射 器。

舰载机总质量为3.0 X 104 kg ,设起飞过程中发动机的推力恒为 1.0 X 105N;弹 射器有效作用长度为100 m ,推力恒定。

要求舰载机在水平弹射结束时速度大小达 到80 m/s 。

弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻 力为总推力的20%则( )A. 弹射器的推力大小为1.1 X 106 NB. 弹射器对舰载机所做的功为1.1 X 108 JC.弹射器对舰载机做功的平均功率为 8.8 X107 W2D. 舰载机在弹射过程中的加速度大小为 32m/s答案 ABDD 项正确;根据牛顿第二定律,F 发+ F 弹一0.2(F 发+ F 弹)_ ma 可求得弹射器的推力 大小F 弹_ 1.1 X 106 N ,A 项正确;弹射器对舰载机做的功为 W _ 1.1 X 106X 100 J _8v 80 一1.1 X 10 J ,B 项正确;弹射过程的时间t _-_花s _2.5 s ,弹射器做功的平均功a 32 率 P _-_4.4 X 107 W, C 项错误。

(新课标)2020届高考物理一轮总复习 必修部分 第5章 机械能及其守恒定律 第1讲 功和功率限时规范特训

(新课标)2020届高考物理一轮总复习 必修部分 第5章 机械能及其守恒定律 第1讲 功和功率限时规范特训

第1讲功和功率时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。

其中1~6为单选,7~10为多选)1.[2020·宁波期末]如图所示,木块B上表面是水平的,当木块A置于B上,并与B保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中( ) A.A所受的合外力对A不做功B.B对A的弹力做正功C.B对A的摩擦力做正功D.A对B做正功答案 C解析AB一起沿固定的光滑斜面由静止开始下滑,加速度为gsinθ。

A所受的合外力沿斜面向下,对A做正功,B对A的摩擦力做正功,B对A的弹力做负功,选项A、B错误C正确。

A对B不做功,选项D错误。

2.如图所示,质量为m的小球以初速度v水平抛出,恰好垂直打在倾角为θ的斜面上,则球落在斜面上时重力的瞬时功率为(不计空气阻力)( )A.mgv0tanθ B.mgvtanθC.mgvsinθD.mgvcosθ答案 B解析小球落在斜面上时重力的瞬时功率为P=mgvy ,而vytanθ=v,所以P=mgvtanθ,B正确。

3.如图所示,站在做匀加速直线运动的车厢里的人向前推车厢壁,以下关于人对车做功的说法中正确的是( )A.做正功B.做负功C.不做功D.无法确定答案 B解析要判断人对车所做的功,首先要分析人对车有几个作用力。

在水平方向上,人对车的作用力有两个:一个是人对车壁向前的推力F,另一个是人对车厢地板向后的摩擦力F′。

由于人随车向前做匀加速运动,所以车对人的总作用力是向前的,根据牛顿第三定律可判断出人对车的总作用力是向后的。

最后根据功的公式可判断出人对车做的总功为负功,所以只有答案B是正确的。

4.[2020·保定模拟]质量为5×103kg的汽车在水平路面上由静止开始以加速度a=2 m/s2开始做匀加速直线运动,所受阻力是1.0×103 N,则汽车匀加速起动过程中( )A.第1 s内汽车所受牵引力做功为1.0×104 JB.第1 s内汽车所受合力的平均功率20 kWC.第1 s末汽车所受合力的瞬时功率为22 kWD.第1 s末汽车所受牵引力的瞬时功率为22 kW答案 D解析据牛顿第二定律F-f=ma得牵引力F=f+ma=1.1×104N。

2020版高考物理一轮复习教师用书_5 第五章 机械能及其守恒定律1 第一节 功和功率 (3)

2020版高考物理一轮复习教师用书_5 第五章 机械能及其守恒定律1 第一节 功和功率 (3)

第三节机械能守恒定律【基础梳理】提示:mgh地球参考平面-ΔE p弹性形变形变量-ΔE p重力或弹力重力或弹力E′k+E′p-ΔE pΔE B减【自我诊断】判一判(1)克服重力做功,物体的重力势能一定增加.()(2)重力势能的变化与零势能参考面的选取有关.()(3)弹簧弹力做负功时,弹性势能减少.()(4)物体在速度增大时,其机械能可能在减小.()(5)物体所受合外力为零时,机械能一定守恒.()(6)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒.()提示:(1)√(2)×(3)×(4)√(5)×(6)√做一做把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).忽略弹簧的质量和空气阻力.则小球从A位置运动到C位置的过程中,下列说法正确的是()A.经过位置B时小球的加速度为0B.经过位置B时小球的速度最大C.小球、地球、弹簧所组成系统的机械能守恒D.小球、地球、弹簧所组成系统的机械能先增大后减小提示:C机械能守恒的判断【知识提炼】(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力或弹力做功”不等于“只受重力或弹力作用”.(2)对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.(3)对于系统机械能是否守恒,可以根据能量的转化进行判断.严格地讲,机械能守恒定律的条件应该是对一个系统而言,外力对系统不做功(表明系统与外界之间无能量交换),系统内除了重力和弹力以外,无其他摩擦和介质阻力做功(表明系统内不存在机械能与其他形式之间的转换),则系统的机械能守恒.【跟进题组】1.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒解析:选CD.甲图中重力和弹簧弹力做功,系统机械能守恒,但弹簧的弹性势能增加,A的机械能减少,A错;B物体下滑,B对A的弹力做功,A的动能增加,B的机械能减少,B错;丙图中A、B组成的系统只有重力做功,机械能守恒,C对;丁图中小球受重力和拉力作用,但都不做功,小球动能不变,机械能守恒,D对.2.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是( )A .子弹的机械能守恒B .木块的机械能守恒C .子弹和木块总机械能守恒D .子弹和木块上摆过程中机械能守恒解析:选D.子弹射入木块过程,系统中摩擦力做负功,机械能减少;而共同上摆过程,系统只有重力做功,机械能守恒.综上所述,整个过程机械能减少,减少部分等于克服摩擦力做功产生的热量.单个物体的机械能守恒问题 【知识提炼】1.机械能守恒定律的表达式2.求解单个物体机械能守恒问题的基本思路【典题例析】(2016·高考全国卷Ⅲ)如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.[审题指导] 对小球从开始下落到运动过程中一直只有重力做功,满足机械能守恒条件.利用圆周运动的向心力知识就可判断能否到达C 点.[解析] (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得 E k A =mg R4①设小球在B 点的动能为E k B ,同理有 E k B =mg 5R4② 由①②式得E k B ∶E k A =5∶1.③ (2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力F N 应满足F N ≥0④ 设小球在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有F N +mg =m v 2CR 2⑤由④⑤式得,v C 应满足mg ≤m 2v 2CR⑥ 由机械能守恒有mg R 4=12m v 2C⑦由⑥⑦式可知,小球恰好可以沿轨道运动到C 点. [答案] (1)5∶1 (2)见解析【迁移题组】迁移1 机械能守恒定律在圆周运动中的应用1.一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R ,圆轨道2的半径是轨道1的1.8倍,小球的质量为m ,若小球恰好能通过轨道2的最高点B ,则小球在轨道1上经过A 处时对轨道的压力为( )A .2mgB .3mgC .4mgD .5mg解析:选C.小球恰好能通过轨道2的最高点B 时,有mg =m v 2B1.8R ,小球在轨道1上经过A 处时,有F +mg =m v 2AR ,根据机械能守恒定律,有1.6mgR +12m v 2B =12m v 2A ,解得F =4mg ,由牛顿第三定律可知,小球对轨道的压力F ′=F =4mg ,选项C 正确.迁移2 机械能守恒定律在平抛运动中的应用2.如图,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小.解析:(1)设环到b 点时速度为v b ,圆弧轨道半径为r ,小环从a 到b 由机械能守恒有 mgr =12m v 2b①环与bc 段轨道间无相互作用力,从b 到c 环做平抛运动 h =12gt 2② s =v b t③ 联立可得r =s 24h④代入数据得r =0.25 m.(2)环从b 点由静止下滑至c 点过程中机械能守恒,设到c 点时速度为v c ,则 mgh =12m v 2c⑤ 在bc 段两次过程中环沿同一轨迹运动,经过同一点时速度方向相同 设环在c 点时速度与水平方向间的夹角为θ,则环做平抛运动时 tan θ=v yv b⑥ v y =gt⑦联立②③⑥⑦式可得 tan θ=22⑧则环从b 点由静止开始滑到c 点时速度的水平分量v cx 为v cx =v c cos θ⑨ 联立⑤⑧⑨三式可得 v cx =2310 m/s.答案:(1)0.25 m (2)2310 m/s多个物体(连接体)的机械能守恒问题【知识提炼】1.多物体机械能守恒问题的解题思路2.多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”. (1)轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等. ②用好两物体的位移大小关系或竖直方向高度变化的关系.③对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒.(2)轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.(3)轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.②含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.③弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.④由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【典题例析】(多选)如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g .则( )A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg[审题指导] 首先判断机械能是否守恒,然后把两滑块的速度关系找出来,利用机械能守恒定律求解问题.[解析] 由题意知,系统机械能守恒.设某时刻a 、b 的速度分别为v a 、v b .此时刚性轻杆与竖直杆的夹角为θ,分别将v a 、v b 分解,如图.因为刚性杆不可伸长,所以沿杆的分速度v ∥与v ′∥是相等的,即v a cos θ=v b sin θ.当a 滑至地面时θ=90°,此时v b =0,由系统机械能守恒得mgh =12m v 2a ,解得v a =2gh ,选项B 正确;同时由于b 初、末速度均为零,运动过程中其动能先增大后减小,即杆对b 先做正功后做负功,选项A 错误;杆对b 的作用力先是推力后是拉力,对a 则先是阻力后是动力,即a 的加速度在受到杆的向下的拉力作用时大于g ,选项C 错误;b 的动能最大时,杆对a 、b 的作用力为零,此时a 的机械能最小,b 只受重力和支持力,所以b 对地面的压力大小为mg ,选项D 正确.[答案] BD【迁移题组】迁移1 轻绳模型 1.(2019·哈尔滨六中检测)如图所示,物体A 的质量为M ,圆环B 的质量为m ,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l =4 m ,现从静止释放圆环.不计定滑轮和空气的阻力,g 取10 m/s 2,若圆环下降h =3 m 时的速度v =5 m/s ,则A 和B 的质量关系为( )A .M m =3529B .M m =79C .M m =3925D .M m =1519解析:选A.圆环下降3 m 后的速度可以按如图所示分解,故可得v A =v cos θ=v h h 2+l2,A 、B 和绳子看成一个整体,整体只有重力做功,机械能守恒,当圆环下降h =3 m 时,根据机械能守恒可得mgh =Mgh A +12m v 2+12M v 2A ,其中h A =h 2+l 2-l ,联立可得M m =3529,故A正确.迁移2 轻杆模型 2.(2019·山东烟台模拟)如图所示,可视为质点的小球A 和B 用一根长为0.2 m 的轻杆相连,两球质量均为1 kg ,开始时两小球置于光滑的水平面上,并给两小球一个大小为2 m/s ,方向水平向左的初速度,经过一段时间,两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,重力加速度g 取10 m/s 2,在两小球的速度减小为零的过程中,下列判断正确的是( )A .杆对小球A 做负功B .小球A 的机械能守恒C .杆对小球B 做正功D .小球B 速度为零时距水平面的高度为0.15 m解析:选D.由于两小球组成的系统机械能守恒,设两小球的速度减为零时,B 小球上升的高度为h ,则由机械能守恒定律可得mgh +mg (h +L sin 30°)=12·2m v 20,其中L 为轻杆的长度,v 0为两小球的初速度,代入数据解得h =0.15 m ,选项D 正确;在A 球沿斜面上升过程中,设杆对A 球做的功为W ,则由动能定理可得-mg (h +L sin 30°)+W =0-12m v 20,代入数据解得W =0.5 J ,选项A 、B 错误;设杆对小球B 做的功为W ′,对小球B ,由动能定理可知-mgh +W ′=0-12m v 20,代入数据解得W ′=-0.5 J ,选项C 错误.迁移3 轻弹簧模型 3.(2016·高考全国卷Ⅱ)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动.重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.解析:(1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得E p =12M v 2B +μMg ·4l ②联立①②式,取M =m 并代入题给数据得v B =6gl③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足m v 2l-mg ≥0 ④设P 滑到D 点时的速度为v D ,由机械能守恒定律得 12m v 2B =12m v 2D+mg ·2l ⑤ 联立③⑤式得v D =2gl⑥ v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦ P 落回到AB 上的位置与B 点之间的距离为s =v D t ⑧ 联立⑥⑦⑧式得s =22l .⑨(2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知5mgl >μMg ·4l ⑩ 要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有12M v 2B≤Mgl ⑪联立①②⑩⑪式得53m ≤M <52m .答案:见解析迁移4 非质点类模型4.有一条长为L =2 m 的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB .522 m/sC . 5 m/sD .352m/s 解析:选B.设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为E =E p +E k =-12×2mg ×L 4sin θ-12×2mg ×L 4+0=-14mgL (1+sin θ)链条全部滑出后,动能为 E ′k =12×2m v 2重力势能为E ′p =-2mg L2由机械能守恒可得E =E ′k +E ′p 即-14mgL (1+sin θ)=m v 2-mgL解得v =12gL (3-sin θ)=12×10×2×(3-0.5) m/s =522m/s 故B 正确,A 、C 、D 错误.机械能守恒定律的应用球到达最低点时的速度大小;球到达最低点的过程中,杆对球在圆环右侧区域内能达到的最高点位【对点训练】如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将环从与定滑轮等高的A 处由静止释放,当环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环刚释放时轻绳中的张力等于2mgB .环到达B 处时,重物上升的高度为(2-1)dC .环在B 处的速度与重物上升的速度大小之比为22D .环减少的机械能大于重物增加的机械能解析:选B.环释放后重物加速上升,故绳中张力一定大于2mg ,A 项错误;环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将B 处环速度v 进行正交分解,重物上升的速度与其分速度v 1大小相等,v 1=v cos 45°=22v ,所以,环在B 处的速度与重物上升的速度大小之比等于2,C 项错误;环和重物组成的系统机械能守恒,故D 项错误.(多选)(2019·哈尔滨模拟)将质量分别为m 和2m 的两个小球A 和B ,用长为2L 的轻杆相连,如图所示,在杆的中点O 处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B 球顺时针转动到最低位置的过程中(不计一切摩擦)( )A .A 、B 两球的线速度大小始终不相等B .重力对B 球做功的瞬时功率先增大后减小C .B 球转动到最低位置时的速度大小为 23gL D .杆对B 球做正功,B 球机械能不守恒解析:选BC.A 、B 两球用轻杆相连共轴转动,角速度大小始终相等,转动半径相等,所以两球的线速度大小也相等,选项A 错误;杆在水平位置时,重力对B 球做功的瞬时功率为零,杆在竖直位置时,B 球的重力方向和速度方向垂直,重力对B 球做功的瞬时功率也为零,但在其他位置重力对B 球做功的瞬时功率不为零,因此,重力对B 球做功的瞬时功率先增大后减小,选项B 正确;设B 球转动到最低位置时速度为v ,两球线速度大小相等,对A 、B 两球和杆组成的系统,由机械能守恒定律得2mgL -mgL =12(2m )v 2+12m v 2,解得v=23gL ,选项C 正确;B 球的重力势能减少了2mgL ,动能增加了23mgL ,机械能减少了,所以杆对B 球做负功,选项D 错误.(建议用时:35分钟)一、单项选择题1.(2019·北京模拟)将一个物体以初动能E 0竖直向上抛出,落回地面时物体的动能为E 02.设空气阻力恒定,如果将它以初动能4E 0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )A .3E 0B .2E 0C .1.5E 0D .E 0解析:选A.设动能为E 0,其初速度为v 0,上升高度为h ;当动能为4E 0,则初速度为2v 0,上升高度为h ′.由于在上升过程中加速度相同,根据v 2=2gh 可知,h ′=4h 根据动能定理设摩擦力大小为f ,则f ×2h =E 02,因此f ×4h =E 0.因此在升到最高处其重力势能为3E 0,所以答案为A.2.(2019·无锡模拟)如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )A .斜劈对小球的弹力不做功B .斜劈与小球组成的系统机械能守恒C .斜劈的机械能守恒D .小球重力势能减少量等于斜劈动能的增加量解析:选B.不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B 正确,C 、D 错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A 错误.3.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大解析:选A.不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等,故只有选项A 正确.4.(2019·兰州模拟)如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2RB .5R 3C.4R3D .2R 3解析:选C.设A 、B 的质量分别为2m 、m ,当A 落到地面上时,B 恰好运动到与圆柱轴心等高处,以A 、B 整体为研究对象,则A 、B 组成的系统机械能守恒,故有2mgR -mgR =12(2m +m )v 2,A 落到地面上以后,B 仍以速度v 竖直上抛,上升的高度为h =v 22g ,解得h =13R ,故B 上升的总高度为R +h =43R ,选项C 正确. 5.如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变解析:选B.圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=3L,根据机械能守恒定律,弹簧的弹性势能增加了ΔE p=mgh=3mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.6.如图所示,竖直平面内的半圆形光滑轨道,其半径为R,小球A、B质量分别为m A、m B,A和B之间用一根长为l(l<R)的轻杆相连,从图示位置由静止释放,球和杆只能在同一竖直面内运动,下列说法正确的是()A.若m A<m B,B在右侧上升的最大高度与A的起始高度相同B.若m A>m B,B在右侧上升的最大高度与A的起始高度相同C.在A下滑过程中轻杆对A做负功,对B做正功D.A在下滑过程中减少的重力势能等于A与B增加的动能解析:选C.选轨道最低点为零势能点,根据系统机械能守恒条件可知A和B组成的系统机械能守恒,如果B在右侧上升的最大高度与A的起始高度相同,则有m A gh-m B gh=0,则有m A=m B,故选项A、B错误;小球A下滑、B上升过程中小球B机械能增加,则小球A机械能减少,说明轻杆对A做负功,对B做正功,故选项C正确;A下滑过程中减少的重力势能等于B上升过程中增加的重力势能和A与B增加的动能之和,故选项D错误.7.如图所示,粗细均匀、两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为( )A . 18ghB . 16ghC .14gh D .12gh解析:选A.当两液面高度相等时,减少的重力势能转化为整个液体的动能,如解析图所示,由机械能守恒定律可得18mg ·12h =12m v 2,解得v =18gh . 二、多项选择题 8.(2019·宁波调研)某娱乐项目中,参与者抛出一小球去撞击触发器,从而进入下一关.现在将这个娱乐项目进行简化,假设参与者从触发器的正下方以速率v 竖直上抛一小球,小球恰好击中触发器.若参与者仍在刚才的抛出点,沿A 、B 、C 、D 四个不同的光滑轨道分别以速率v 抛出小球,如图所示.则小球能够击中触发器的可能是( )解析:选CD.竖直上抛时小球恰好击中触发器,则由-mgh =0-12m v 2,h =2R 得v =2gR .沿图A 中轨道以速率v 抛出小球,小球沿光滑圆弧内表面做圆周运动,到达最高点的速率应大于或等于gR ,所以小球不能到达圆弧最高点,即不能击中触发器.沿图B 中轨道以速率v 抛出小球,小球沿光滑斜面上滑一段后做斜抛运动,最高点具有水平方向的速度,所以也不能击中触发器.图C 及图D 中小球在轨道最高点速度均可以为零,由机械能守恒定律可知小球能够击中触发器.9.(2019·苏北四市调研)如图所示,固定在竖直面内的光滑圆环半径为R ,圆环上套有质量分别为m 和2m 的小球A 、B (均可看做质点),且小球A 、B 用一长为2R 的轻质细杆相连,在小球B 从最高点由静止开始沿圆环下滑至最低点的过程中(已知重力加速度为g ),下列说法正确的是( )A .A 球增加的机械能等于B 球减少的机械能 B .A 球增加的重力势能等于B 球减少的重力势能C .A 球的最大速度为2gR3D .细杆对A 球做的功为83mgR解析:选AD.系统机械能守恒的实质可以理解为是一种机械能的转移,此题的情景就是A 球增加的机械能等于B 球减少的机械能,A 对,B 错;根据机械能守恒定律有:2mg ·2R -mg ·2R =12×3m v 2,所以A 球的最大速度为4gR3,C 错;根据功能关系,细杆对A 球做的功等于A 球增加的机械能,即W A =12m v 2+mg ·2R =83mgR ,故D 对.10.把质量是0.2 kg 的小球放在竖立的弹簧上,并把球往下按至A 的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C (图丙).途中经过位置B 时弹簧正好处于自由状态(图乙).已知B 、A 的高度差为0.1 m ,C 、B 的高度差为 0.2 m ,弹簧的质量和空气阻力都可以忽略,重力加速度g =10 m/s 2.则下列说法正确的是( )A .小球从A 上升至B 的过程中,弹簧的弹性势能一直减小,小球的动能一直增加 B .小球从B 上升到C 的过程中,小球的动能一直减小,势能一直增加 C .小球在位置A 时,弹簧的弹性势能为0.6 JD .小球从位置A 上升至C 的过程中,小球的最大动能为 0.4 J解析:选BC.小球从A 上升到B 的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A 、B 之间某处的合力为零,速度最大,对应动能最大,选项A 错误;小球从B 上升到C 的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B 正确;根据机械能守恒定律,小球在位置A 时,弹簧的弹性势能为E p =mgh AC =0.2×10×0.3 J=0.6 J ,选项C 正确;小球在B 点时的动能为E k =mgh BC =0.4 J <E km ,选项D 错误. 11.(2019·温州高三模拟)如图所示,在竖直平面内半径为R 的四分之一圆弧轨道AB 、水平轨道BC 与斜面CD 平滑连接在一起,斜面足够长.在圆弧轨道上静止着N 个半径为r (r ≪R )的光滑小球(小球无明显形变),小球恰好将圆弧轨道铺满,从最高点A 到最低点B 依次标记为1、2、3…、N .现将圆弧轨道末端B 处的阻挡物拿走,N 个小球由静止开始沿轨道运动,不计摩擦与空气阻力,下列说法正确的是( )A .N 个小球在运动过程中始终不会散开B .第1个小球从A 到B 过程中机械能守恒C .第1个小球到达B 点前第N 个小球做匀加速运动D .第1个小球到达最低点的速度v <gR解析:选AD.在下滑的过程中,水平面上的小球要做匀速运动,而曲面上的小球要做加速运动,则后面的小球对前面的小球有向前挤压的作用,所以小球之间始终相互挤压,冲上斜面后后面的小球把前面的小球往上压,所以小球之间始终相互挤压,故N 个小球在运动过程中始终不会散开,故A 正确;第一个小球在下落过程中受到挤压,所以有外力对小球做功,小球的机械能不守恒,故B 错误;由于小球在下落过程中速度发生变化,相互间的挤压力变化,所以第N 个小球不可能做匀加速运动,故C 错误;当重心下降R2时,根据机械能守恒定律得:12m v 2=mg ·R 2,解得:v =gR ;同样对整体在AB 段时,重心低于R2,所以第1个小球到达最低点的速度v <gR ,故D 正确.12.如图所示,滑块A 、B 的质量均为m ,A 套在固定倾斜直杆上,倾斜直杆与水平面成45°角,B 套在固定水平直杆上,两直杆分离不接触,两直杆间的距离忽略不计且杆足够长,A 、B 通过铰链用长度为L 的刚性轻杆(初始时轻杆与水平面成30°角)连接,A 、B 从静止释放,B 沿水平面向右运动,不计一切摩擦,滑块A 、B 均视为质点,在运动的过程中,下列说法正确的是( )A .当A 到达与B 同一水平面时v B =22v A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考物理一轮复习第5章机械能第一节功和功率达标诊
断高效训练
(建议用时:60分钟)
一、单项选择题
1. 一个成年人以正常的速度骑自行车,受到的阻力为其总重力的0.02,则成年人骑自行车行驶时的功率最接近于( )
A.1 W B.10 W
C.100 W D.1 000 W
解析:选C.设人和车的总质量为100 kg,匀速行驶时的速率为5 m/s,匀速行驶时的牵引力与阻力大小相等,即F=0.02mg=20 N,则人骑自行车行驶时的功率为P=Fv=100 W,故C正确.
2.同一恒力按同样的方式施于物体上,使它分别沿着粗糙水平地面和光滑水平地面移动相同一段距离时,恒力做的功和平均功率分别为W1、P1和W2、P2,则二者的关系是( )
A.W1>W2、P1>P2 B.W1=W2、P1<P2
C.W1=W2、P1>P2 D.W1<W2、P1<P2
解析:选B.由功的定义W=Flcos α可知,W1=W2,由于沿粗糙地面运动时加速度较小,通过相同位移所用时间较长,所以根据P=可知,P1<P2,故B正确.
3.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h,空气阻力的大小恒为F,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为( ) A.0 B.-Fh
C.Fh D.-2Fh
解析:选D.阻力与小球速度方向始终相反,故阻力一直做负功,W=-Fh+(-Fh)=
-2Fh,D选项正确.
4.有一固定轨道ABCD如图所示,AB段为四分之一光滑圆弧轨道,其半径为R,BC段是水平光滑轨道,CD段是光滑斜面轨道,BC和斜面CD间用一小段光滑圆弧连接.有编号为1、2、3、4完全相同的4个小球(小球不能视为质点,其半径r<R),紧挨在一起从圆弧轨道上某处由静止释放,经平面BC到斜面CD上,忽略一切阻力,则下列说法正确的是( )
A.四个小球在整个运动过程中始终不分离
B.在圆弧轨道上运动时,2号球对3号球不做功
C.在CD斜面轨道上运动时,2号球对3号球做正功
D.在CD斜面轨道上运动时,2号球对3号球做负功
解析:选 A.圆弧轨道越低的位置切线的倾角越小,加速度越小,故相邻小球之间有挤压力,小球在水平面上速度相同,无挤压不分离,在斜面上加速度相同,无挤压也不分离,故B、C、D错误,A正确.
5.(2018·甘肃兰州一中月考)一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1秒内受到2 N的水平外力作用,第2秒内受到同方向的1 N的外力作用.下列判断正确的是( )
A.0~2 s内外力的平均功率是 W
B.第2秒内外力所做的功是 J
C.第2秒末外力的瞬时功率最大
D.第1秒内与第2秒内质点动能增加量的比值是1∶1
解析:选A.由牛顿第二定律和运动学公式求出1 s末、2 s末速度的大小分别为:v1=2 m/s、v2=3 m/s,故合力做功为W=mv2=4.5 J,功率为P== W= W,所以A 对;第2 s内外力所做的功W2=mv-mv=2.5 J,所以B错;1 s末、2 s末功率分别为4 W、3 W,所以C错;第1秒内与第2秒内动能增加量分别为:mv=2 J,mv-mv=2.5 J,比值为4∶5,所以D错.
二、多项选择题
6.(2018·河北邯郸月考)里约奥运会男子100米决赛中,牙买加名将博尔特以9秒81的成绩夺得冠军.博尔特在比赛中,主要有起跑加速、途中匀速和加速冲刺三个阶段,他的脚与地面间不会发生相对滑动,以下说法正确的是( )
A.加速阶段地面对人的摩擦力做正功
B.匀速阶段地面对人的摩擦力不做功
C.由于人的脚与地面间不发生相对滑动,所以不论加速还是匀速,地面对人的摩擦力始终不做功
D.无论加速还是匀速阶段,地面对人的摩擦力始终做负功
解析:选BC.由题意知,人的脚与地面间的摩擦力是静摩擦力,该力的作用点并没有发生位移,所以地面对人的摩擦力始终不做功,选项B、C正确.
7.(2018·湖北联考)在离水平地面h高处将一质量为m的小球水平抛出,在空中运动的过程中所受空气阻力大小恒为f,落地时小球距抛出点的水平距离为x,速率为v.那么,在小球运动的过程中( )
A.重力做功为mgh
B.克服空气阻力做的功为f·h2+x2
C.落地时,重力的瞬时功率为mgv
D.重力势能和机械能都逐渐减少
解析:选AD.重力做功为WG=mgh,A正确;空气阻力做功与经过的路程有关,而小球经过的路程大于,故克服空气阻力做的功大于f·,B错误;落地时,重力的瞬时功率为重力与沿重力方向的分速度的乘积,故落地时重力的瞬时功率小于mgv,C错误;重力做正功,重力势能减少,空气阻力做负功,机械能减少,D正确.8.(2018·河南南阳一中月考)如图所示为汽车的加速度和车速的倒数的关系图象.若汽车质量为2×103 kg,它由静止开始沿平直公路行驶,且行驶中阻力恒定,最大车速为30 m/s,则( )
A.汽车所受阻力为2×103 N
B.汽车匀加速所需时间为5 s
C.汽车匀加速的加速度为3 m/s2
D.汽车在车速为5 m/s时,功率为6×104 W
解析:选AB.设汽车所受阻力大小为f,由汽车的加速度和车速倒数的关系图象可知,汽车从静止开始先做匀加速运动,加速度a=2 m/s2,直到速度达到v1=10 m/s,则匀加速阶段所用时间为t==5 s,此时汽车的牵引力功率达到最大,即Pm=(f+ma)v1;接下来做加速度逐渐减小的变加速运动,汽车的牵引力功率保持不变,当速度达到v2=30 m/s时,加速度为零,此时Pm=fv2,则解得f=2×103 N,Pm=6×104 W,当汽车在车速为5 m/s时,功率为=3×104 W,A、B正确,C、D错误.
三、非选择题
9.(2018·江西鹰潭一中模拟)质量为m的汽车以恒定的功率P在平直的公路上行驶,汽车匀速运动的速度为v1,则当汽车以较小的速度v2行驶时,汽车的加速度为多少?解析:汽车以恒定的功率在公路上行驶时,由于速度逐渐增加,牵引力减小,汽车做加速度减小的加速运动,直到加速度减为零时做匀速运动,设匀速运动时牵引力为F,阻力为Ff,则F=Ff,P=Fv1=Ffv1,所以Ff=P
v1
根据牛顿第二定律可知
a===.
答案:P(v1-v2)
mv1v2
10.质量为2 kg的物体静止在水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.t=0时,物体受到方向不变的水平拉力F 的作用,F的大小在不同时间段内有不同的值,具体情况如表格所示(g取10 m/s2).求:
(1)4 s
(2)6~8 s内拉力所做的功;
(3)8 s内拉力的平均功率.
解析:(1)在0~2 s内,拉力等于4 N,最大静摩擦力等于4 N,故物体静止.
在2~4 s内,拉力F=8 N,由牛顿第二定律得
F-μmg=ma
解得a=2 m/s2
位移为x1=a(Δt)2=4 m
4 s末物体的速度大小v=aΔt=4 m/s
4 s末拉力的瞬时功率P=Fv=8×4 W=32 W.
(2)在4~6 s内,拉力等于4 N,滑动摩擦力等于4 N,故物体做匀速直线运动.
位移x2=vΔt=4×2 m=8 m
在6~8 s内,拉力仍然是F=8 N,物体的加速度大小仍为a=2 m/s2.
位移x3=vΔt+a(Δt)2=12 m
拉力所做的功W=Fx3=8×12 J=96 J.
(3)8 s内拉力做功W=0+8×4 J+4×8 J+96 J=160 J
平均功率P==20 W.
答案:(1)32 W (2)96 J (3)20 W
11.(2018·常州模拟)高速连续曝光照相机可在底片上重叠形成多个图像.现利用这架照相机对MD­2000家用汽车的加速性能进行研究,如图为汽车做匀加速直线运动时三次曝光的照片,图中汽车的实际长度为4 m,照相机每两次曝光的时间间隔为2.0 s.已知该汽车的质量为1 000 kg,额定功率为90 kW,汽车运动过程中所受的阻力始终为1 500 N.
(1)试利用图示,求该汽车的加速度大小.
(2)若汽车由静止开始以此加速度做匀加速运动,匀加速运动状态最多能保持多长时间.
(3)汽车所能达到的最大速度是多大.
(4)若该汽车从静止开始运动,牵引力不超过3 000 N,求汽车运动2 400 m所用的
最短时间(汽车已经达到最大速度).
解析:(1)由题图可得汽车在第1个2.0 s时间内的位移x1=9 m,第2个2.0 s时间内的位移x2=15 m
汽车的加速度a==1.5 m/s2.
(2)由F-Ff=ma得,汽车牵引力
F=Ff+ma=(1 500+1 000×1.5)N=3 000 N
汽车做匀加速运动的末速度
v== m/s=30 m/s
匀加速运动保持的时间t1== s=20 s.
(3)汽车所能达到的最大速度
vm== m/s=60 m/s.
(4)由(1)、(2)知匀加速运动的时间t1=20 s,运动的距离x1′=t1=×20 m=300 m 所以,后阶段以恒定功率运动的距离
x2′=(2 400-300)m=2 100 m
对后阶段以恒定功率运动,有:
P额t2-Ffx2′=m(v-v2)
解得t2=50 s
所以最短时间为t总=t1+t2=(20+50)s=70 s.
答案:(1)1.5 m/s2 (2)20 s (3)60 m/s (4)70 s。

相关文档
最新文档