湖南省长沙市2017-2018学年八年级地理下学期期中试题新人教版-精选

合集下载

湖南省长沙市长沙县2023-2024学年八年级下学期4月期中考试道德与法治试卷(含答案)

湖南省长沙市长沙县2023-2024学年八年级下学期4月期中考试道德与法治试卷(含答案)

湖南省长沙市长沙县2023-2024学年八年级下学期4月期中考试道德与法治试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.“锦绣河山收拾好,万民尽作主人翁。

”这句诗表明( )①我国是人民民主专政的社会主义国家②国家的一切权力属于人民③有一万个人是国家的主人翁④国家的权力属于公民A.①②B.②③C.③④D.①④2.砥砺百载,幸福亿万人。

2024年是伟大的中国共产党诞生103周年。

回望这波澜壮阔的一百多年,党带领全国各族人民,披荆斩棘、艰苦奋斗、开拓创新,不仅使中国人民“站起来”,而且使中国人民“富起来”“强起来”,创造了一个又一个令世人瞩目的奇迹,不断朝着实现共产主义的最高理想奋进。

这表明( )A.中国共产党始终代表最广大公民的根本利益B.中国共产党始终是执政党,坚持以人为本、执政为民C.中国共产党始终坚持实现共产主义的奋斗目标D.中国共产党始终坚持以中国特色社会主义理论为指导3.二〇二四年新年贺词中,国家主席习近平说了下图中这句话。

习近平主席的话厚重而温暖,体现了( )②说明我国公民享有广泛的民主权利③党和政府尊重和保障人权④党和政府全心全意为人民服务的宗旨A.①②B.①③C.②④D.③④4.我国宪法第三条规定:“中华人民共和国的国家机构实行民主集中制的原则。

”下列选项不能体现国家机构贯彻这一原则的是( )①某公司召开员工大会,听取员工的意见和诉求②民法典修订中多次向社会征询意见,并由全国人大审议通过③某小区物业管理委员会将物业费由每平方米2元提高到2.2元④全国人大审议通过国务院总理李强所作的《政府工作报告》A.①②B.①③C.②③D.②④5.马克思说:“宪法是法律的法律。

”这句话说明宪法( )A.具有最高的法律效力B.确认公民的一切权利C.制定和修改程序严格D.是所有法律的总和6.党的二十大报告强调,要完善以宪法为核心的中国特色社会主义法律体系,加强宪法实施和监督,健全保证宪法全面实施的制度体系。

2017-2018学年中图版八年级下册地理 6.1东南亚 同步测试-教学文档

2017-2018学年中图版八年级下册地理 6.1东南亚 同步测试-教学文档

2019-2019学年中图版八年级下册地理6.1东南亚同步测试一、单选题(共13题;共32分)1.与我国山水相连的地区是()A. 东南亚B. 南亚C. 西亚D. 中亚2.目前,世界上最大的橡胶生产国是()A. 泰国B. 越南C. 菲律宾D. 马来西亚3.下列4幅图中示意马六甲海峡的是()。

A. B. C. D.4.具有“山河相间,纵列分布”特点的地区在()A. 中南半岛B. 印度半岛C. 马来群岛D. 日本群岛5.陈毅《致缅甸友人》:“我住江之头,君住江之尾。

彼此情无限,共饮一江水……山山皆北向,条条南流水。

”据此,回答下面的小题。

(1)根据该诗,下列有关中南半岛地形的叙述,正确的是()A. 山脉、河流多东西方向延伸B. 地势南高北低C. 大江、大河都流入太平洋D. 山河相间,南北纵列分布(2)我国境内的澜沧江流经中南半岛的名称是()A. 红河B. 萨尔温江C. 湄南河D. 湄公河6.下列河流中,流经国家最多的是()A. 红河B. 湄公河C. 萨尔温江D. 伊洛瓦底江7.“我住江之头,君住江之尾…山山皆向北,条条南流水”,诗中描述东南亚的地理特征是( )A. 山河相间,纵列分布B. 大江东去,千沟万壑C. 水流平缓,一望无际D. 九曲回肠,林海雪原8.东南亚地处“十字路口”,扼守这个路口的“咽喉”是()A. 巴拿马运河B. 苏伊士运河C. 霍尔木兹海峡D. 马六甲海峡9.东南亚流经国家最多的、在我国称澜沧江的河流是()A. 湄南河B. 湄公河C. 红河D. 伊洛瓦底江10.东南亚成为世界最大的热带经济作物产地的自然原因主要是()A. 热量、水分充足B. 山地多,土壤肥沃C. 种植历史悠久D. 该地区对热带经济作物的需求量大11.中南半岛的地形特点是()A. 山河相间,纵列分布B. 地形崎岖,火山众多C. 南高北低,以平原为主D. 西高东低,以高原为主12.印度尼西亚是世界上最大的群岛国家,如图为印度尼西亚地理位置示意图,读图完成小题。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

最新2017~2018度第二学期期中八年级地理试卷及答题纸、答案

最新2017~2018度第二学期期中八年级地理试卷及答题纸、答案

2017-2018学年度第二学期期中考试八年级地理试卷总分:100 考试时间:60分钟一、单项选择题:下列各小题的四个选项中,只有一项是符合题意的。

本大题共25小题,每小题选对得2分,共50分。

图1为“经纬网示意图”,读图完成1~4题。

1、A地的经纬度是A.东经140°,北纬80° B.西经140°,南纬80°C. 东经80°,北纬140°D.西经80°,南纬140°2、A地位于D地的A.西北方向B.东北方向C.西南方向D.东南方向3、D地处在五带中的A.北温带B.热带C.南温带D.南寒带4、有极昼极夜现象的是A.A地B.B地图1C.C地D.D地图2为“某地等高线地形图”,读图完成5~6题。

5、丙处的地形部位是A.山顶B.鞍部C.陡崖D.山谷6、乙处的海拔高度是A.460米B.470米C.480米D.490米7、绘一张学校操场平面图,适合采用的比例尺为A.1:1000B.1:10000000 图2C.0:1000D.0:10000000图3为“大洲和大洋的分布图”,读图完成8~10题。

8、A大洲为A.南美洲B.北美洲C.非洲D.大洋洲9、3大洋为A.太平洋B.大西洋C.印度洋D.北冰洋10、D和E的分界线是A.乌拉尔河B.白令海峡C.土耳其海峡D.苏伊士运河图3图4为“六大板块示意图”,读图完成11~12题。

11、澳大利亚位于A.亚欧板块B.太平洋板块C.印度洋板块D.南极洲板块12、日本有“地震国”之称,2011年3月11日日本东部沿海发生里氏9.0级大地震。

日本多地震的原因是A.日本位于太平洋中,风浪大B.日本国土面积小,稳定性差C.日本位于亚欧板块与太平洋板块的交界处,地壳活跃D.日本位于亚欧板块与印度洋板块的交界处,地壳活跃图4图5为“东南亚气候类型分布图”,读图完成13~14题。

13、东南亚马来群岛上的气候类型为A.热带沙漠气候B.亚热带季风气候C.热带雨林气候D.热带季风气候14、一艘从东南亚驶往我国的轮船,船上装载的货物可能是A.小麦、茶叶B.苹果、柑橘C.可可、棉花D.棕油、天然橡胶图5图6为“巴西资料图”,读图完成15~17题。

2017-2018学年最新人教版八年级物理下册期末测试题及答案

2017-2018学年最新人教版八年级物理下册期末测试题及答案

2017-2018学年最新人教版八年级物理下册期末测试题及答案2017-2018学年下学期八年级期末考试物理试卷时量:60分钟满分:100分)一、选择题:(共30分,每小题3分,每小题有四个选项,只有一个是正确,请把正确答案的序号填在下列的表格中,选对得3分,不选或选错得分)1、在XXX所示的四位科学家中,最先精确测出大气压强值的物理学家是A、托里拆利B、XXXC、XXXD、帕斯卡2、你认为以下估测数据最符合实际的是()A、珠穆朗玛峰顶的大气压约为1.5×10^4 PaB、一名中学生的体重约为200 XXXC、一枚鸡蛋受到的重力约为0.5 ND、XXX将掉在地上的物理课本捡起来放在课桌上做的功约为50 J3、课堂上部分同学有“将笔放在手指上不停地转圈”的不良惯,如图所示。

手指停止拨动时笔能继续转圈的原因是A、笔受到重力的作用B、笔受到摩擦力的作用C、笔具有惯性D、手具有惯性4、如图所示的工具中,属于费力杠杆的一组是()A、①②B、①③C、②④D、③④5、下列说法中正确的是()A、跳高运动员下落过程中动能减少B、XXX沿水平方向用力推教室里的桌子却没推动,是因为他的推力等于桌子受到的摩擦力C、XXX车加速前进时,XXX车的力一定大于XXX的力D、瓶盖太紧拧不开时,通常垫上一块毛巾拧,目的是为了减小压强6、对下列四幅图,情境描述错误的是甲乙丙丁A、图甲中用电吹风向下吹漏斗中的乒乓球,球不掉落,表明气体压强与气体流速有关B、图乙中纸片不掉落、杯中的水不流出,证明了大气压的存在C、图丙中手提袋手柄宽大是为了减小对手的压强D、图丁中鱼吐出的气泡在上升未露出水面前,水对气泡的压强不变,浮力不变7、如图所示,一个装满水的饮料瓶,正放在水平桌面上时,瓶底对桌面的压力为Fa,压强为pa,倒放在水平桌面上时,瓶盖对桌面的压力为Fb,压强为pb,则()A、Fa=Fb,XXX<pbB、Fa>Fb,pa=pbC、Fa=Fb,pa=pbD、Fa<Fb,XXX<pb8、下列关于功率的说法,不正确的是()A、功率越小,做功越慢B、功率越小,效率越低C、功率越小,做功不一定越少D、功率越小,做同样多的功所用的时间越长9、体育活动中蕴含很多物理知识,下列说法正确的是()2017-2018学年下学期八年级期末考试物理试卷时量:60分钟满分:100分)一、选择题(共30分)1、如图所示的四位科学家中,最先精确测出大气压强值的物理学家是A、托里拆利B、XXXC、XXXD、帕斯卡2、以下估测数据中最符合实际的是()A、珠穆朗玛峰顶的大气压约为1.5×10^4 PaB、一名中学生的体重约为200 XXXC、一枚鸡蛋受到的重力约为0.5 ND、XXX将掉在地上的物理课本捡起来放在课桌上做的功约为50 J3、课堂上部分同学有“将笔放在手指上不停地转圈”的不良惯,如图所示。

2017-2018学年人教版七年级地理下册期中测试卷及答案

2017-2018学年人教版七年级地理下册期中测试卷及答案

2017-2018学年初一年级下学期期中考试地 理 试 卷卷面总分:100分 考试时间:60分钟 得分:一、选择题(每小题只有一个正确答案,每小题2分,共50分)“我们亚洲,山是高昂的头;我们亚洲,河像热血流…”听到这首《亚洲雄风》的歌曲,我们的脑海中会涌现出一幅壮丽山河的画卷.据此回答1﹣2题.1.《亚洲雄风》这首歌中的“山”和“河”都是亚洲之最,分别是指( ) A .天山;黄河 B .富士山;湄公河 C .青藏高原;伏尔加河 D .喜马拉雅山;长江2. “我们亚洲,河像热血流”是说亚洲河流众多,奔流不息.亚洲众多的长河呈放射状流向周边的海洋,其原因是亚洲的地势( )A .西部低、东部高B .中部高、四周低C .中部低、四周高D .西部高、东部低3.世界人口分布是不平衡的.目前除南极洲外,世界平均人口自然增长率最高和每年净增人口最多的大洲依次是( ) A .亚洲; 非洲B .拉丁美洲;亚洲C .亚洲;拉丁美洲D .非洲;亚洲4.人们叫它“海”,可是它不是“海”,而是湖泊并且这里位于欧洲和亚洲的内陆交界处,它是世界上最大的咸水湖.这是( )A .黑海B .死海C .里海D .红海 5.亚欧大陆分布最广的气候类型是( )A .热带雨林气候B .亚热带季风气候C .温带大陆性气候D .热带季风气候6.下列地点不属于亚洲与其他洲分界线的是( ) A .乌拉尔山脉、乌拉尔河 B .大高加索山脉、土耳其海峡 C .苏伊士运河、白令海峡 D .巴拿马运河、直布罗陀海峡7.下列各民族、种族与其文化艺术风格或民风民俗组合正确的是( )A .印度尼西亚的达雅克人——居住帐篷B .东西伯利亚的亚库特人——聚居在长屋里C .孟加拉人——住平顶房D .沙特阿拉伯的贝都因人——居住帐篷、身着宽大袍子 小明去年暑假随某考察团到日本考察、学习,顺便游览日本的名胜.据此回答8﹣9题.8.考察团在考察日本工业时,深深感受到其技术优势,但同时也发现其工业发展的弱点,就是( ) A .有丰富的劳动力资源 B .地域狭小,资源贫乏 C .岛国海岸线曲折 D .火山、地震的威胁大9.小明去日本旅游回来,下面是他对日本之行的描述,哪一句是假的?( )A .享受品种繁多的美味生鱼片B .游日本国的象征富士山、泡温泉C .到热带雨林探险D .观赏日本的国花樱花学校: 班级: 姓名: 学号: 密 封 线 内 不 要 答 题 ……………………………装…………………………………订…………………………线…………………………………10.日本人20岁时,要举行“成人节”仪式,这时他们会穿上心爱的()A.唐装B.西装 C.和服 D.牛仔服中央电视台2008年摄制的电视纪录片《同饮一江水》主要记录了湄公河沿岸国家人民的生活情景…据此回答11﹣12题.11.东南亚流经国家最多的在我国称澜沧江的河流是()A.湄南河B.湄公河C.红河 D.伊洛瓦底江12.湄公河和其他许多河流奔流在中南半岛的群山峡谷之中,向南流入海洋,构成了中南半岛山河分布的壮丽景观,这种景观具有的特征()A.平原壮美,一望无际 B.丘陵广布,溪水北流C.高原辽阔,雪峰连绵 D.山河相间,纵列分布13.下列地区的居民因气候湿热,人们过着聚居生活的是()A.恒河三角洲的孟加拉人 B.东西伯利亚的亚库特人C.沙特阿拉伯的贝都因人 D.加里曼丹岛的达雅克人2015年元旦,合肥的一个经贸代表团赴东南亚采购货物,并观光考察.回答14﹣15题.14.下列产品最有可能出现在订货合同中的是()A.棉花、小麦 B.橡胶、椰子C.蔬菜、牛奶 D.葡萄、棕油15.下列旅游景点中,他们最有可能游览过的是()A.富士山 B.大金塔 C.泰姬陵 D.红场16.地理主题班会上,几位同学正在描述到亚洲各地假想旅游的情景.其中不可能的()A.小明:在阿拉伯半岛上,我乘着雪橇逛街B.小悦:我在去乌拉巴托的火车上看见大草原C.小畅:我不会游泳却可以不带救生圈在死海中畅游D.小华:在沙特阿拉伯,旅店安排我们在屋顶上睡觉17.下列关于印度自然地理特点的叙述,正确的是()A.北部是山地,中部是平原,南部是高原B.全国都属于热带季风气候,全年高温多雨C.恒河流入阿拉伯海D.印度东临阿拉伯海,西临孟加拉湾18.给印度带来丰沛降水的季风是()A.6﹣9月盛行的西南季风 B.6﹣9月盛行的东南季风C.10﹣次年5月盛行的东北季风 D.10﹣次年5月盛行的西南季风19.印度软件外包产业的发源地()A.新德里 B.孟买C.班加罗尔 D.加尔各答20.下列关于俄罗斯的叙述正确的是()A.首都是乌兰巴托 B.领土跨亚欧两洲C.工业、人口主要分布在亚洲D.热带雨林面积广大21.俄罗斯在世界上占有重要地位的产业是()A.农业、畜牧业B.核工业、宇航工业 C.纺织工业,食品工业D.消费品制造业22.有“五海通航”之称的河流是()A.叶尼塞河B.伏尔加河C.乌拉尔河D.勒拿河23.处在联系亚、欧、非三大洲,沟通大西洋和印度洋的枢纽地位的地区是()A.东南亚 B.南亚 C.中美洲 D.中东24.中东绝大部分居民信仰()A.基督教 B.伊斯兰教 C.犹太教 D.天主教25.有关中东地区石油生产的叙述,正确的是()A.中东地区的石油主要分布在波斯湾及其沿岸地区B.中东地区的石油主要分布在红海岸C.中东主要产油国有沙特阿拉伯、阿富汗、以色列等D.中东地区所产石油主要输往东欧国家二、综合题(每空1分,共50分)26.读亚欧大陆轮廓图,回答下列问题。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年人教版八年级下册地理8.2干旱的宝地—塔里木盆地同步测试-教师用卷

2017-2018学年人教版八年级下册地理8.2干旱的宝地—塔里木盆地同步测试-教师用卷

1/88.2干旱的宝地—塔里木盆地同步测试一、单选题暑假期间泰安的小琦到新疆喀什看望援疆的爸爸。

读新疆局部图,回答下列各题1. 小琦到喀什后,发现这里的瓜果特别甜,你认为其原因主要是A.降水丰富,水分充足B.气温低,生长缓慢C.夏季日照充足,昼夜温差大D.人口稀少,环境污染小2. 下列情景中最有可能是小琦在塔里木盆地游览时遇到的①一路上阴雨连绵②盆地绿洲的用水主要来自天山和阿尔泰山的冰川融水③城市和人口主要分布在盆地边缘的绿洲上④在盆地内部看到许多大型的油田A.①②B.②④C.①③D.③④3. 喀什被誉为“中国的西大门”,与深圳、珠海比,喀什设立经济特区的独特优势有A. 位于西北边疆,利于和中亚国家贸易往来B. 经济基础好,农牧业发达C. 劳动力充足,科技力量雄厚D. 毗邻海洋,海陆交通便利4. 下面关于新疆的叙述,不正确的是A. 新疆气候干燥,水源是影响农业发展的最主要的自然因素B. 新疆的地形特点是“三山夹两盆”,“两盆”是指塔里木盆地和柴达木盆地C. 新疆是我国面积最大、邻国最多、位置最两的省区D. 新疆应合理放牧,培育优良畜种新疆细毛羊【答案】【小题1】C 【小题2】D 【小题3】A 【小题4】B【解析】本题考查新疆瓜果特别甜的原因。

新疆喀什地处内陆地区,属于温带大陆性气—:铁路0公路川山脉~*河流:沙漠。

聚落m 湖泊■石油G 天然气候,但由于夏季日照充足,昼夜温差大,有利于糖分的积累,这里的瓜果特别甜。

故选C。

本题考查塔里木盆地的景观。

塔里木盆地位于西北内陆地区,气候干旱,不可能一路上阴雨连绵,故①错误;盆地绿洲的用水主要来自天山和昆仑山的冰川融水,与阿尔泰山不相邻,故②错误;该盆地的城市和人口主要分布在盆地边缘的绿洲上,③正确;本区石油资源丰富,在盆地内部看到许多大型的油田,④正确。

故选D。

本题考查喀什设立经济特区的独特优势。

喀什被誉为“中国的西大门”,位于西北边疆,利于和中亚国家贸易往来,A符合题意;本区经济发展比较落后,农业不发达,故B不合题意;本区地广人稀,科技力量薄弱,故C不合题意;本区位于西北内陆地区,交通不发达,故D不合题意。

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。

湖南省长沙市浏阳市2023-2024学年八年级下学期4月期中语文试题

湖南省长沙市浏阳市2023-2024学年八年级下学期4月期中语文试题

2023-2024学年湖南省长沙市浏阳市八年级(下)期中语文试卷一、积累与运用(20分)1.(2分)为做好展板讲解,小华整理了易错字词,加点字字形或字音有误..的一项是( )A .龟.(j ūn )裂 乌龟.(gu ī) 龟.(gu ī)缩 龟.(gu ī)甲B .边塞.(sài ) 塞.(s āi )车 闭塞.(sè) 塞.(sài )翁失马C .行.(háng )辈 德行.(xíng ) 行.(háng )列 行.(háng )行出状元D .争讼.(sòng ) 斡.(wò)旋 冗.(y ǒng )杂 沟壑.(hè)2.(4分)阅读回答问题。

小阳撰写了展板“卷首语”:①自然万物,生生不息,周而复始....。

②大自然的奇美瑰丽总能给人以享受【甲】那花香鸟语令人心旷神怡;那巍峨高山令人叹为观止....;那汪洋大海令人心灵震撼。

③大自然孕育滋养了无数生命,但随着人口的增多,人类活动的频繁,空气污染【乙】温室效应等环境问题愈发严重,导致海枯石烂....。

④为了蔚蓝的天空不灰暗阴霾;为了茂密的森林不日渐稀疏;为了珍稀的动物不销声匿迹....,我们不能缄默,要倡导低碳生活方式,践行和树立可持续发展理念,严格落实政府的环保,共建美丽中国、美丽世界。

(1)(2分)展板“卷首语”中加点词语运用不.当的一处是A.周而复始B.叹为观止C.海枯石烂D.销声匿迹(2)(2分)关于文段中【甲】【乙】两处和画线处的分析,有误的一项是A.【甲】【乙】两处要添上的标点符号最恰当的分别是冒号和顿号。

B.“大自然孕育滋养了无数生命”中“孕育”和“滋养”两词的位置互换更合情理。

C.“践行和树立可持续发展理念”中“践行”和“树立”两词的位置互换更合情理。

D.“严格落实政府的环保”后面应该加上“要求”,句子结构才完整。

3.(4分)下面是同学们为倡导低碳生活拟写的标语。

湖南省长沙市雨花实验中学2017-2018学年七年级上学期期中考试道德与法治试题(解析版)

湖南省长沙市雨花实验中学2017-2018学年七年级上学期期中考试道德与法治试题(解析版)

2017-2018学年湖南省长沙市雨花区实验中学七年级(上)期中政治试卷一、单项选择(共有12小题,每题3分,共36分)1.(3分)“开学了,我是一名中学生了!”面对新的中学生活,我们的正确认识是()①中学阶段,我们站在了一个新的起点上②今天我以学校为荣,明天学校以我为荣③一心学习,不管它事④中学阶段为我们的一生奠定了重要基础。

A.①②③B.②③④C.①②④D.①③④2.(3分)孔子说:“友直,友谅,友多闻,益矣。

”这句话告诉我们()①与正直、诚信和见识广的人交朋友,是有益的②朋友丰富了我们的生活经验③友谊让我们更深刻地体悟生命的美好④友谊可以解决我们所有的困扰。

A.①②③B.①③④C.②③④D.①②④3.(3分)迪卡尔说:“最有价值的知识是关于方法的知识。

”这句话强调了()A.知识的重要性B.获得知识的方法很重要C.知识最有价值D.要学会自主学习4.(3分)小红和小华是很要好的朋友,最近小华成绩大退步,小红觉得很没面子,觉得有小华这样的朋友丢人,逐渐疏远了小华。

对此,正确的认识是()A.朋友要坦诚相见,这样做是对的B.交友要讲原则,对于朋友学习的退步,是不能宽容的C.小红是益友,因为她帮助小华进步D.真正的朋友应该互相帮助,互相关心,小红不是真正的朋友5.(3分)“认识你,记住我”说出了中学生喜欢人际交往的心声,因为通过交往()①可以找到感情的寄托,摆脱孤独,保持心情愉快②能够使我们获得纯洁的友谊③能扩大知识面,不断完善自我④可以和朋友相互激励,共同战胜困难和挫折。

A.①②③B.②③④C.①②③④D.①③④6.(3分)某中学七(1)班的学生开展了主题为“悦纳自我”的体验式活动,通过“发现珍宝”和“优点轰炸”等环节来激励内心的积极自我评价。

这个活动()A.能够帮助学生消除自卑的心理B.能够彻底解决学生的心理问题C.有利于学生正确认识和评价自己D.是通过他人的评价来认识自己的7.(3分)看一个人结交什么样的朋友,基本上就可以判定出他是一个什么样的人。

湖南省长沙市初中八年级地理下学期第一次月考试题完整版 新人教版

湖南省长沙市初中八年级地理下学期第一次月考试题完整版 新人教版

黄兴中学第一次月考八年级地理试卷班级:姓名:计分:一、单选择题(请将答案填在上面答案栏内,每小题2分)1、三江平原、松嫩平原粮食集中产区的主要粮食作物是:A、水稻B、冬小麦C、春小麦D、谷子2、以下地区不属于出口农产品基地的是:A、山东半岛B、江汉平原C、太湖平原D、珠江三角洲3、下列关于我国四大牧区的说法错误的是:A、四大牧区主要分布在非季风区B、四大牧区分布于我国西部和北部C、内蒙古东部牧草繁茂,有三河马和三河牛等优良畜种D、我国牧区的牲畜占全国总量的比重大4、我国优质长绒棉的主要产区是:A、新疆 B四川盆地 C山东 D海南5、我国水稻的主要产区所属的温度带主要是:A、亚热带和热带B、中温带C、暖温带D、寒温带6、山东省的主要油料作物是:A.大豆 B.花生 C.油菜 D.油棕7、未来10年,有望成为我国石油生产龙头的是:A新疆 B山东 C西藏 D大庆8、我国北方沿海航线的中心城市是A.青岛、大连 B.天津、烟台 C.连云港、南通 D.上海、大连9、我国目前最大的石油工业基地是:A、胜利油田 B.大庆油田 C.华北油田 D.克拉玛依油田10、可与第二亚欧大陆桥联运的海港是:A.连云港B.青岛C.南通D.宁波11、读我国四个重要的铁路枢纽示意图,分析以下说法正确的是()A.①铁路线是包兰线B.②铁路线是京九线C.③城市既是铁路枢纽,又是省会城市D.④是我国最大的城市,工业以煤炭工业为主12、具有机动灵活的特点,可以满足“门对门”服务的运输方式是A、公路运输 B.铁路运输C.航空运输D.水路运输13、上海发展和建立高新技术产业的最主要的条件是A、地理位置优越B、自然资源丰富C、科技力量雄厚D、劳动力资源充足14、下列不属于香港支柱产业的是A、金融业B、房地产业C、旅游业D、重型机械制造业15、京广线和陇海线交汇的城市是A、广州B、株洲C、郑州D、徐州16、现有10万吨磷矿石和20吨柑桔分别从宜昌运往郑州和武汉,最合理的运输方式依次是A.公路、铁路B.铁路、公路C.水运、铁路D.航空、水运17、我国种植业主要分布在A.东北、西南和东南的山区B.西部天然草场广布的地区C.东部沿海大陆架D.东部湿润、半湿润的平原和盆地18、下列关于我国工业的表述错误的是A.我国北方电力工业的主体形式是火力发电B.黑龙江省的大庆目前是我国最大的石油工业基地C.我国现已形成了门类比较齐全、布局相对合理的机械工业体系D.上海钢铁工业基地发展的有利条件是靠近铁矿和煤矿19、港澳地区在经济发展上的相同特点是A.都以采矿业为主B.都以钢铁、机械等重工业为主C.都以农业和农产品加工业为主D.都以出口加工工业为主20、台湾的经济特点是A.以农业为主的经济 B.以农副产品加工工业为主的经济C.“进口—加工一出口”型的经济D.以重工业为主的经济二.综合题(共4小题,计60分)21、读“我国主要耕地分布示意图”,回答问题。

八年级地理下册第六章第四节祖国的首都-北京测试新人教版(2021年整理)

八年级地理下册第六章第四节祖国的首都-北京测试新人教版(2021年整理)

2017-2018学年八年级地理下册第六章第四节祖国的首都-北京同步测试(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年八年级地理下册第六章第四节祖国的首都-北京同步测试(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年八年级地理下册第六章第四节祖国的首都-北京同步测试(新版)新人教版的全部内容。

祖国的首都—北京一、单选题(共15题;共32分)1。

关于首都北京的叙述,不正确的是( )A. 综合性工业城市B。

全国经济中心C。

国际交往城市和旅游胜地D。

是我国重要的电子工业中心2.下列不属于北京的名胜古迹的是()A。

颐和园B。

故宫 C. 天坛D。

秦始皇陵3.北京突出的气候特点是( )A. 冬暖夏凉B. 夏季炎热少雨C。

降水均匀D。

雨热同期4.中南海是党中央和国务院所在地,人民大会堂是全国人民代表大会常务委员会所在地,这说明北京是全国的()A. 政治中心B. 文化中心C。

宣传中心 D. 经济中心5.北京古城址变迁的主要影响因素是()A. 气候B。

战争C。

地形D。

水源6.北京故宫距今已有500多年的历史,它是()A. 明、清两代的皇宫B. 元大都城 C. 金中都城 D. 辽南京城7.下列名胜古迹被纳入《世界遗产名录》的有①明清故宫②八达岭长城③周口店北京猿人遗址④北京四合院⑤王府井商业街A. ①②③B。

②③④ C. ③④⑤D. ①③⑤8。

国家发改委2016年2月18日正式做出批复,原则同意首钢实施压产、搬迁、结构调整和环境治理的方案,并同意在河北省唐山地区曹妃甸港(曹妃甸是唐山的一个小岛屿)建设一个“具有国际先进水平”的钢铁联合企业,作为首钢搬迁的载体。

2017-2018学年八年级下期中数学试卷含答案

2017-2018学年八年级下期中数学试卷含答案

2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

人教版2017-2018学年数学八年级下学期期中带答案

人教版2017-2018学年数学八年级下学期期中带答案

数学八年级下学期期中模拟试卷一、单选题(共10题;共20分)1.下列式子中,属于最简二次根式的是()A. B. C. D.2.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=41,c=40B. a=b=5,c=5C. a:b:c=3:4:5D. a=11,b=12,c=153.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A. 90°B. 60°C. 120°D. 45°4.已知一个直角三角形的两条边长分别是6和8,则第三边长是()A. 10B. 8C. 2D. 10或25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米6.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A. AB∥CD,AD=BCB. ∠A=∠C,∠B=∠DC. AB∥CD,AD∥BCD. AB=CD,AD=BC7.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A. 16B. 15C. 14D. 138.如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为()A. 5B. 6C. 9D. 139.如图,菱形ABCD中,AB∥y轴,且B(﹣10,1)、C(2,6),则点A的坐标为()A. (﹣10,12)B. (﹣10,13)C. (﹣10,14)D. (2,12)10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A. 3B. 4C. 5D. 6二、填空题(共8题;共8分)11.若实数a、b满足,则=________.12.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为________cm.13.计算:=________.14.△ABC的周长为16,点D,E,F分别是△ABC的边AB、BC、CA的中点,连接DE,EF,DF,则△DEF的周长是________.15.一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为________ cm2.16.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=________cm.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为________.三、解答题(共3题;共15分)19.已知:如图,在▱ABCD中,对角线AC、BD相交于点O,EF过点O分别交AD、BC于点E、F.求证:OE=OF.20.如图,已知四边形ABCD是菱形,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点F、G分别在BC、CD上,MG与NF相交于点E,求证:四边形AMEN是菱形.21.如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE、AF,相交于G.求证:AF⊥BE.四、计算题(共1题;共5分)22.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.五、综合题(共3题;共30分)23.阅读下面材料,回答问题:(1)在化简 的过程中,小张和小李的化简结果不同;小张的化简如下: = = = ﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.24.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若BC=2,求AB 的长.25.如图,E 是正方形ABCD 对角线BD 上一点,EM ⊥BC ,EN ⊥CD 垂足分别是求M 、N(1)求证:AE=MN ;(2)若AE=2,∠DAE=30°,求正方形的边长.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】B8.【答案】D9.【答案】C10.【答案】D二、填空题11.【答案】12.【答案】4.813.【答案】214.【答案】815.【答案】8416.【答案】817.【答案】918.【答案】或3三、解答题19.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AEO≌△CFO(AAS),∴OE=OF.20.【答案】证明:∵MG∥AD,NF∥AB,∴四边形AMEN是平行四边形,∵四边形ABCD是菱形,∴AB=AD,∵BM=DN,∴AB﹣BM=AD﹣DN,∴AM=AN,∴四边形AMEN是菱形;21.【答案】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠AEG=90°,∴∠DAF+∠AEG=90°,∴∠AGE=90°,∴BE⊥AF.四、计算题22.【答案】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB= =10,∵S△ABC= AB•CD= AC•BC,∴CD= = =4.8五、综合题23.【答案】(1)解:小李化简正确,小张的化简结果错误.因为=| ﹣|= ﹣(2)解:原式= = = ﹣124.【答案】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2 ,∴AC=2BC=4 ,∴AB= = =6.25.【答案】(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF= AE=1,AF=AE•cos30°=2× = .∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF= +1,即正方形的边长为+1.。

2017-2018学年八年级上学期期中考试政治(人教版)试题带答案

2017-2018学年八年级上学期期中考试政治(人教版)试题带答案

2017-2018学年八年级上学期期中考试政治(人教版)试题带答案2017—2018学年度第一学期期中检测试卷八年级政治题号一二三四总分得分一、选择题:(下列各小题的备选答案,只有一个是最符合题意的。

请你选出并将它的代号字母填入下表相应的空格内,每小题1分,共12分)()1.对我们来说,在家庭关系中,最重要的是:A.与父母的关系B.与同学的关系C.与老师的关系D.与兄弟姐妹的关系()2.当我们受了委屈时,常回家诉说;当我们获得快乐时,常常与家人分享,这说明家是我们的:C.情感栖息地D.发展的大本营()3.古人云:“与善人居,如入芝兰之室,久而不闻其香,即与之化矣。

与不善人居,如入鲍鱼之肆,久而不闻其臭,亦与之化矣。

“这说明了我们:A.应广交朋友B.我们应少交朋友C.我们应慎交朋友D.我们应不交朋友()4.新型的师生关系建立在_______的基础上。

A.教师的权威B.民主平等C.现代社会D.教师的幽默感()5.真正的友谊:①能使一个人的欢乐变成几个人共有的欢乐②能办理社会糊口中的一切题目③能培养崇高的风致、宽广的胸怀④是人生最宝贵的财富。

A.①②③B.②③④C.①③④D.①②③④()6.我们对待文化差异的正确态度是:A.发展本国文化,漠视其他文化B.夸大本民族文化,歧视其他文化C.平等交流,互相研究D.抬高其他文化,贬低本国文化()7.如果说北京奥运会是中国展示给世界看,那么上海世博会就是世界展示给中国看。

世博会既是一次世界科技交流的嘉会,更是一次世界文化的碰撞会。

面对分歧文化的差异,我们应当采取的正确态度是:①照搬照抄全盘吸收②平等交流互相研究③彼此借鉴求同存异④尊重差异共同繁荣。

A.①②③B.②③④C.①②④D.①③④()8.文化的丰富性和多样性主要可以通过各具特色的______表现出来。

A.宗教B.体育活动C.文化俗D.衣服款式()9.XXX的父母在她上小学六年级时离婚了,XXX 一直不想告诉别人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省长沙市2017-2018学年八年级地理下学期期中试题总分:100分时量:60分钟考试形式:开卷一、选择题(共40分)法新社5月1日消息,北美洲国家多米尼加共和国宣布与中国建交,与台湾“断交”。

该政府表示将在晚些时候承认台湾是“中国领土不可分割的一部分”。

读右图完成1-2题。

1.右图中P国即多米尼加共和国,关于P国的地理位置叙述正确的是A.位于北温带B.位于东半球C.位于中纬度D.位于大西洋和加勒比海之间2.多米尼加共和国所在大洲最大的河流是A.密西西比河B.亚马孙河C.尼罗河D.长江美国休斯敦当地时间5月2日晚上7点,NBA季后赛继续进行,休斯敦火箭队在主场迎战犹他爵士队,而长沙某球迷观看比赛的时间是北京时间5月3日早上8点。

3.造成上述材料中两地时间差异的主要原因是A.地球的公转B.风俗习惯的差异C.地球的自转D.两地人们生活方式的差异4.下图中跨经度最广的大洲是5. 下列四个同学关于南北美洲的叙述正确的是A.李同学说:南北美洲东部都是低缓的山地高原B.王同学说:南北美洲西部都是高大的山系C.张同学说:南北美洲中部都是宽广的平原D.陈同学说:北美洲面积最大的国家是美国,南美洲面积最大的国家是巴西6.5月6日长沙天气多云,用天气符号表示是A B C D7.世界上最大的天然橡胶、棕榈油、椰子、焦麻的最大产地是:A.欧洲西部B.中东地区C.东南亚D.东亚四大文明古国是指世界古代历史上最早进入文明社会的四个国家。

依顺序分别为古巴比伦、古埃及、古代中国、古印度。

右图是四大文明古国的分布示意图,据此完成第8题8.下列关于四大文明古国的说法错误的是A.四大文明古国都在大河沿岸B.四大文明古国所在地区地势都比较平坦C.古埃及所在大洲地形以“高原为主”D.四大文明古国都位于亚洲2016 年 11 月 13 日,巴基斯坦由中国投资建设的深水港口瓜达尔港正式开航,结合右图完成9-11 题:9.有关巴基斯坦的说法,正确的是:A.境内主要的河流是恒河B.属于西亚国家C.该国濒临阿拉伯海D.该国是世界上最大的内陆国家10.中国从瓜达尔港进口的重要矿产资源是:A.煤B.铁C.石油 D金刚石11.自“一带一路”开通以来,中国与巴基斯坦在基础设施建设、能源资源、经济特区和农业水利领域的合作愈加密切,中国与巴基斯坦的合作属于A、南北对话B、南北合作C、南南合作D、北北合作博鳌亚洲论坛 2018 年年会于 4 月 8 日至 11 日在海南博鳌举行,本次年会主题为“开放创新的亚洲,繁荣发展的世界”。

年会设臵了“全球化与一带一路”、“开放的亚洲”、“创新”和“改革再出发”4 个板块,共 60 多场正式讨论。

结合右图完成 12-13题:12.有关海南省的说法正确的是A.是我国面积最大的经济特区B.海南岛是我国最大的岛屿C.海南省的气候主要为温带季风气候D.主要的少数民族为高山族13.有关博鳌亚洲论坛的意义说法不正确的是:A.有利于推动新时代亚洲一体化发展B.为亚洲乃至全世界的经济发展提供新思路和新对策C.彰显我国的大国担当D.体现我国已发展成为跻身发达国家行列ofo 小黄车是一个无桩共享单车出行平台,缔造了“无桩单车共享”模式,致力于解决城市出行问题。

用户只需在微信公众号或 App 扫一扫车上的二维码或直接输入对应车牌号,即可获得解锁密码,解锁骑行,随取随用,随时随地。

据此完成14题14.下列关于小黄车的说法正确的是:A.小黄车的大量使用会阻碍公交交通的发展B.小黄车有利于解决居民“最后一公里”的出行问题C.小黄车出行平台鼓励居民绿色出行,可以从根本上解决城市雾霾问题D.交通拥堵的城市不适宜使用小黄车15.“土地平旷,屋舍俨然,有良田美池桑竹之属”描写的最有可能是我国四大地理区域中的:A.①区域 B.②区域 C.③区域 D.④区域16.“网购”是一种新兴的购物方式,最适宜达到“送货上门”目的交通运输方式是()A.铁路 B.公路 C.航空 D.水运黄河是中华民族的母亲河,读图回答 17-18题:17图中字母序号对应的地理事物正确的是A.A省-青海省 B.B分界点-桃花峪 C.甲山脉-太行山D.F城市-郑州18.关于黄河干支流的说法,不正确的是:A.支流①是汾河,主要流经山西省B.支流②是黄河最大的支流,冲积形成渭河平原C.③是黄河上游重要的支流,形成青藏地区主要的种植农业区——雅鲁藏布江谷地D.E 至 F 河段容易发生凌汛19.4月23日,长沙市田家炳实验中学在岳阳市进行了春季研学活动,并且参观游览了君山岛和江南四大名楼之一的岳阳楼,下列关于岳阳市的说法不正确的是A.岳阳市位于湖南省东北部B.岳阳市西濒洞庭湖C.湖南著名特产“君山银针”产自岳阳D.沪昆高铁穿过岳阳市20.下列美称中,不属于湖南省的是A.世界锑都B.天府之国C.有色金属博物馆D.中国烟花之乡二.综合题(本大题共有7小题,共60分.请在答题卡指定区域内作答)21.读下面等高线地形图,完成下列各题。

(8分)(1)李村所处的地形部位是,余村所处的地形部位是。

(2)张村和丁山的相对高度约是米。

(3)根据图中信息,推算余村与大王山的水平实际距离约为千米。

22. 某中学研究性学习活动小组五名同学,在进行亚欧大陆气候课题研究过程中,发现了一些有价值的问题,请发挥你的智慧,积极参与他们的研究。

(10分)图甲图乙问题探究:(1)贝贝发现地处亚欧大陆中纬度地区的A、B、C三地气候变化有以下规律:由A到B到C,气温年较差逐渐加大,而年降水量却越来越。

请你解释造成这种现象的主要影响因素是。

(2)E地区虽然与长江中下游平原地处同一个纬度,但两地气温在7月却出现了20 ℃以上的温差。

玲玲认为主要原因是地形地势因素的影响,因为E地形区为,海拔高,气温低。

(3)小明需要了解上海市的气温和降水情况,你认为图乙中______图能帮助小明解决这一问题。

请你描述上海市的气候特征。

23. 叙利亚内战自2011年发生以来,已经持续了7年之久,西方国家和各方势力也相继介入。

2018 年 4 月 14 日,美国联合法英再次对叙利亚进行军事打击,且军事规模较一年前有所加大。

结合右图完成下题。

(6分)(1)根据右图判断叙利亚北部的地势特征是()A.西北高东南低B.东南高西北低C.东北高西南低D.西南高东北低(2)叙利亚所在地区的人们大部分信仰教。

(3)叙利亚所在的西亚地区战争和冲突不断,下列哪些是其原因(多选)。

①争夺丰富的石油资源②争夺有限的水资源③宗教和民族的矛盾④当地居民争强好战24.经济全球化,国家与国家之间的联系越来越密切。

读下列材料及图完成下题(8分)材料一美国当地时间3月22日12:30分,美国正式签署针对中国“经济侵略行为”的总统备忘录,并对价值600亿美元的中国进口产品加征关税(具体领域包括高铁装备、航空产品、新能源汽车、工业机器人、农机装备、新材料、生物医药、高性能医疗机械等)。

而作为回应,4月2日,中国国务院关税税委员会凌晨发布声明,对美国128项进口商品加征关税(具体领域包括废铝、猪肉、鲜水果、干水果、坚果、葡萄酒、改性乙醇、花旗参等)。

材料二日本首相安倍晋三17日将抵达美国总统特朗普的海湖庄园,与特朗普举行为期两天的会晤。

会谈中的一个议题就是双方之间的贸易问题。

中美日三国位置图(1)美国、中国、日本分别是世界第一、第二、第三大经济体,据材料二中美日三国位置图说出三国共同的位置特点。

(2)根据材料一,例举美国对中国加征关税的进口产品的领域有(至少一项)。

(3)从材料一中可以发现,中国向美国加征关税的产品以农产品为主,因为根据所学我们知道美国是世界第大农产品出口国。

(4)美国和日本都是发达国家,工业部门齐全,技术先进,相比较于美国,你觉得日本经济发展有哪些不利条件(至少一条)。

25.读中国四大地理区域分布图,完成下列问题(10分)(1)D区域为地区。

(2)AB两地区的分界线大致与(山脉)—(河流)一线重合。

(3)目前水果店里大量上市的菠萝主要产自于四大地理区域中的区域。

(填字母)(4)四大地理区域的划分主要依据自然环境的不同,如B地区和C地区主要根据水分的不同而划分,而D地区与其他三个地区划分的主要是根据不同。

(5)下列关于四大地理区域叙述正确的是。

(单选)①.A地区的主要耕地类型为旱地②.B地区的主要粮食作物为水稻③.C地区的主要糖料作物为甘蔗④.D地区的主要畜种之一为牦牛26. 近年来,中国高铁飞速发展,目前我国高铁线路长度已经丙甲乙中国四大地理区域分布图超过2.2万公里,。

占世界高铁通车里程的65%以上2014 年 6 月底深茂铁路全线开工建设,整个工程计划建设工期为 4 年,2018 年实现通车,随着武广高铁、厦深高铁、粤西沿海高铁、茂湛高铁先后建成通车,粤北和粤东、粤西地区都有了连接珠三角核心城市的高速或快速铁路。

结合右图完成下列问题(12分)(1)图中厦深高铁的起点厦门所在省份的简称是。

(2)不属于图中沿海高铁沿线特色文化的是()A.粤菜 B.川剧 C.客家话 D.闽南语(3)图中所示高铁主要穿越了我国四大工业基地之一的工业基地。

从工业结构来看,该工业基地是一个以为主的工业基地。

相比较于中国其他三大工业基地,其特有的优势是。

(4)丙、甲两省份之间有铁路相连,交通便利,丙省份每年都有大量劳动力输往甲省。

27.读湖南省局部图,完成下列问题(6分)(1)图中②山脉是为。

(2)湖南省水电资源非常丰富,省内最大的水电站五强溪水电站位于图中字母所代表的河流上。

(3)在我省,既被湘江穿过又被京广线穿过的城市有除了衡阳、株洲还有。

长沙实验教育集团2018年上学期初二年级段考试卷地理参考答案一、选择题二、综合题21(1)鞍部山谷(2)760(米)(3)约3(千米)22(1)少海陆(因素)(2)青藏高原(3)④夏季高温多雨,冬季温和少雨(雨热同期)23(1)A (2) 伊斯兰教(3)①②③24(1)都临太平洋 /都被30°N穿过/都主要位于北温带 /都大部分在中纬度(答案合理即可) (2)高铁装备/航空产品/新能源汽车/工业机器人/农机装备/新材料/生物医药/高性能医疗机械。

(任答一项即可)(3)一(4)国土(土地)面积狭小/矿产资源缺乏(答案合理即可)25(1)青藏(地区)(2)秦岭-淮河(3)A (4)地形(地势)(5)④26(1)闽(2)B(3)珠江三角洲轻毗邻港澳,面向东南亚/是著名的侨乡(4)京广27(1)南岭(2)A (3)长沙。

相关文档
最新文档