做一做_有理数的乘法

合集下载

有理数的乘法(一)

有理数的乘法(一)
自学要点: 1.乘法法则:
2.倒
数:
例1:计算:
(1) (-3) ×9
(2) 8×(-1)
(3) -(1/2)×(-2)
1.若mn>0,则m,n ( C ) (A) 都为正 (B) 都为负 (C) 同号 (D ) 异号
2. 如果两个有理数在数轴上的对应点
在原点的同侧,那么这两个有理数的积 ( A ) (A)一定为正 (B)一定为负 (C) 为零 (D )可能为正,也可能为负
11.已知:a,b互为相反数,c,d互 为倒数,m的绝对值是2
-5或1 则(a+b)-3cd-2m的值为____
12.计算 1.
3 8 4
1 2 (6) 3
2. 3.
(-7.6)×0.5
1 1 3 2 2 3
6.若m、n互为相反数,下列正 确的是( C ) (A)mn<0 (B) mn>0 (C) mn≤0 (D )mn≥0
7.若ab>0.a+b<0,则( B ) (A)a<0,b>0 (B)a<0,b<0 (C)a>0,b>0 (D)a>0,b<0
8.已知有理数m,n在数轴上对 应点的位置如图所示,则下 列判断正确的是( C ) m (A)m>0 (B) n<0 (C) mn<0 (D)m-n>0
o
1
n
9. 有理数a、b在数轴上的表示 如图所示,则下列结论中: ①ab<0; o a b ②a+b<0; ③a-b<0; ④a< |b| ; ①②④ ⑤-a>-b.正确的有_____

有理数的乘法2

有理数的乘法2

就坐在椅子上;伊去灶前生火,我就攀着菜橱一格一格看;伊去水井边与阿母一起洗衫,我隔着窗户喊伊:“阿--嬷!” 丽花听到了,把话传给她:“你阿敏嫃哪在叫你咧!” “做啥?”伊往我这里看了。 “莫什么代记啦!”我觉得话团太大了,说不出口。 “呷
饱碗筷也不收来洗,放在那里生蚂蚁。”阿母说。 把一副碗筷埋到井池里去的时候,伊三人都不说话,我速速说:“我去读册了。”便出门。 走到小石子路头,正打算抄田埂去追江岸路上的同学,才跨过河沟,竹林里传出话来: “阿--敏--嫃哪,回来啰,你阿嬷要
1.(1)如果2个数的乘积为负数,其中有个 1 (2)如果3个数的乘积为负数,其中有个 1或3
负因数。 负因数。
(3)如果4个数的乘积为负数,其中有个 1或3 负因数。
(4)如果5个数的乘积为负数,其中有个 1,3,5 负因数。
(5)如果101个数的乘积为负数,其中有个 1,3,…,101 负因数。
? 小时候,为着家里孩子多,零食分到每个人手上只有一点点,阿嬷总是偷偷惜我,把多的糖果、饼干、水果藏起来,趁弟妹不在时悄悄告诉我:
“米瓮内有一粒桠柑,拿去呷,莫给阿林、阿丽、阿云、阿东看到,剩一粒而已。”“斗柜内第二个抽屉毛巾盖住,用日记纸包着,有两粒金甘仔糖。”“灶前装粗糠的布袋里还有半包纽仔饼。”阿嬷的藏功是一流的,瘄边家嫁女儿送的爆米香,她藏到屋梁上去。我们的偷功
给你五角银买糖仔呷பைடு நூலகம்,快回来拿,慢一脚步就莫啰!” 可恶的丽花。我压着书包快快跑回去,把大大的五毛钱放进铅笔盒里,一天的重量都有了。 “阿嬷我要去了,阿母我要去了,‘--丽花我要去了!" 丽花咯咯笑,扬了一片水花过来. 背后,阿嬷的耳语飘来:"五角
银没给伊,伊的脚底像给店仔胶黏住,走不开脚啦!" 二十多年过了,老的愈老,年轻的也要老。每日早晨我一醒来,阿嬷便蹑手蹑脚进房劝: “你也好心,莫饮咖啡,呷点热粥才有元气!” 房里已经弥漫着咖啡的香,晨间阅读正要开始。我说:“不想呷咧,咖啡好饮。”

有理数的乘除及乘方运算

有理数的乘除及乘方运算

授课类型 C 有理数的乘除法 C 有理数的乘方 T 运用能力教学目标有理数的乘除及乘方运算教学内容1.有理数的乘除法(☆☆)1) 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 2) 有理数乘法的运算律(1)两个数相乘,交换因数的位置,积相等. ab=ba(乘法结合律)(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. abc=a(bc)(乘法结合律)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac(乘法分配律) 3)有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(2)几个数相乘,如果有一个因数为0,则积为0.在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.2.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. a ÷b=a ·1b(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. 5)倒数及有理数除法(1)乘积为1的两个数互为倒数.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是正数;0没有倒数;求一个非零有理数的倒数,只要把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数). 注意: ,a b 互为倒数,则1a b =;,a b 互为负倒数,则1a b =-.反之亦然. (2)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例4】 计算:(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ <分析>(1)小题是化带分数为假分数后约分. (2)小题是遵循括号先运算的原则. <解> (1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=9101133959211⎛⎫-⨯⨯⨯⨯=- ⎪⎝⎭(2) ()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦<教学建议>紧扣有理数乘法法则步骤,先定符号,再求绝对值,有括号的先算括号里的数.【例5】 计算:(1)1571(8)16-⨯-; (2)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ <分析> (1)小题需变形后使用分配律;(2)小题逆向应用分配律,较复杂的有理数混合运算,要注意解题方法的选取. <解> (1)()()15137187181616⎛⎫-⨯-=--⨯- ⎪⎝⎭ ()()()13718816155685687.5575.52⎛⎫=-⨯-+-⨯- ⎪⎝⎭=+=+=(2)()()9985124121616⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9--12---+-16 =()9985412121616⎛⎫⨯⎡⎤ ⎪⎣⎦⎝⎭---+-=- <教学建议> 教师可以提问学生,应该采用什么方法比较简便(即运用分配律解).【教学拓展】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭<解> (1)11110352532133537621⎛⎫⎛⎫⎛⎫⎛⎫-÷÷-=-⨯⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<教学建议> 教师可以提问学生分析式子的特点,可按法则2进行处理,转化为乘法.【例6】 已知:a 的相反数是213,b 的倒数是122-,求算式32a b a b +-的值.<分析> 利用相反数和倒数的概念求出a 、b ,然后求代数式的值. <解> 依题意2521,335a b =-=-=-, 则:52563335355452223535a b a b ⎛⎫-+⨯--- ⎪+⎝⎭==-⎛⎫-+--⨯- ⎪⎝⎭ =43131515⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=431543151313⎛⎫-⨯-=⎪⎝⎭练1.计算: (1)()()6416-÷- (2)()1751÷- <解> (1)()()()641664164-÷-=+÷= (2)()()1175117513÷-=-÷=-练2.计算:(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;(2)()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭<解> (1)小题是小数结合相乘凑成整数.(2)小题是小数化成分数,互为倒数结合相乘为1.(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =()()()330.250.54700.2527055⎛⎫⎛⎫-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=()313533530.57052510⎛⎫⎛⎫-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭(2)()113100110.033333323100322⎡⎤⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 练3. 计算: 1111122111;42612⎛⎫-⨯-+- ⎪⎝⎭<解> 直接顺向应用分配律;111112211142612⎛⎫-⨯-+- ⎪⎝⎭=()()()()937131212121242612⎛⎫⎛⎫-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=()2718(14)1310-++-+=-; 练4.计算: 735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦<解>原式=()735(36)(36)36(1)(36)1246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=21-27+30-36=-12练5.已知x 的负倒数是5,y 的相反数是-6,求算式2x yy x++的值. <解>由题意可知x =15-,y =6,所以2x y y x ++=12628512965-⨯+=-.做一做: 判断题:1.同号两数相乘,取原来的符号,并把绝对值相乘. ( ) 2.两数相乘,如果积为正数,则这两个因数都是正数. ( ) 3.两数相乘,如果积为负数,则这两个因数都是负数. ( ) 4.一个数除以-1,便得这个数的相反数.( ) 选择题:5.下面计算结果正确的是( ). (A)(-3×4)2=-144 (B)-(3×4)2=-144 (C)-3×(-4)2=-144 (D)3×(-4)2=1446.若)4(531-⋅=x ,则x =( ). (A)25- (B)25(C)52-(D)52解答题:7.判断下列乘积的符号,说明为什么? (1)(-1)×(-1)×(-1);(2));4()31()9.8(-⨯+⨯-(3)(-9)×(+10)×(-8)×(-7)×(-0.1);(4)(-4)×2×(-3)×(-5)×8.8.计算: (1));321(8.0-⨯(2));10()21(51-⨯+⨯-(3));311()211()21()32(-⨯-⨯-⨯+ (4)()113333⎛⎫⎛⎫-⨯÷-⨯ ⎪ ⎪⎝⎭⎝⎭(5))412()39()314(-⨯-÷-;(6))323()33.0()31()91(-÷⨯+÷-.有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。

《有理数的乘法》有理数PPT(第1课时)

《有理数的乘法》有理数PPT(第1课时)

【解析】同号得正,异号得负.
随堂训练
6 计算:
(1) 2 1 (-4); 2
(2) (- 7 )(- 5 ); 10 21
(3)
(-10.8)(-
257);(4)(-3
1) 2
0.
解(:1) 2 1 (-4)=-(2.54)=-10 . 2
(2)(- 7 )(- 5 )= 7 5 1 . 10 21 10 21 6
积的符号
- + + -
积的绝对值 28 54 18 100
结果
-28 54 18
-100
随堂训练
2.(河北中考) 计算3×(-2) 的结果是( D )
(A)5
(B)-5
(C)6
(D)-6
3.(淄博中考)如果
的实数是( D )
(A) 3
2
(B) 2
3
【解析】 3 ( 2)=1
23
( 2) 1 ,则“ ”内应填
知识讲解
2.倒数
计算并观察结果有何特点?
(1) 1 ×2; 2
(2)-
1 2
×(-2)
有理数中,乘积是1的两个数互为倒数.
思考:数a(a≠0)的倒数是什么?
(a≠0时,a的倒数是 1 ) a
知识讲解
说出下列各数的倒数:
1,-1,
1 3
,- 1 ,6,-6,0.25,3
21 3
1 ,-1,
3,
-3,
思考
0 ×5 = 0
我们已经熟悉正数及0的乘法运算,引入负数以后,如何进行有理数的乘法运
算呢?
3 ×(-2) = ? (-3 )×(-2) = ?
知识讲解
1.有理数的乘法运算

七年级上册数学第1课时 有理数的乘法

七年级上册数学第1课时 有理数的乘法

1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X 2)√(3)X 4)X 5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275. 【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.。

有理数的乘法

有理数的乘法

根据乘积反推符号
若ab>0,则必有( ) A. a>0, b>0 B. a<0, b<0 C. a>0, b<0 D. a>0,b>0或 a<0,b<0
根据乘积反推符号
若ab=0, 则一定有( )
A. a=b=0 C. a=0
B. a,b至少有一个为0 D. a,b最多有一个为0
根据乘积反推符号
(2)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后的位置?
(-2) (+3) = -6 3分钟后
情形3
规定方向:向右为正,向左为负. 时间:现在后为正,现在前为负.
(3)如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前的位置? (+2) (-3) = -6 3分钟前
情形4
规定方向:向右为正,向左为负. 时间:现在后为正,现在前为负.
异号两数相乘,积为负数,积的绝对值等于各乘数绝对值的积.
问题4
(1)利用上面归纳的结论计算下面的算式,你能发现什么规律?
(-3)×3= -9 , (-3)×2= -6 , (-3)×1= -3 , (-3)×0= 0 . (2)按照上述规律,则有: (−3)×(-1) = 3, (−3)×(-2) = 6, (−3)×(-3) = 9, (−3)×(-4) = 12.
任何数与0相乘,都得0. 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0.
运用有理数乘法法则
例如 (-5)(-3)
· · · · · · · · · · · · · · · 同号相乘
(-5)(-3)=+( ) (5)(3)=15 所以 (-5) (-3)=+15

人教版数学七年级上册第一章有理数《有理数的乘方(一)》学习任务单(公开课学案)及课后练习作业设计

人教版数学七年级上册第一章有理数《有理数的乘方(一)》学习任务单(公开课学案)及课后练习作业设计

人教版数学七年级上册第一章有理数《有理数的乘方(一)》学习任务单及课后练习【学习目标】1.理解乘方的意义,辨识乘方中的底数、指数、幂.2.应用乘方的意义进行乘方运算.【课前学习任务】熟悉有理数的乘法法则【课上学习任务】学习任务一:做一做学习任务二:问题 1.边长是 3 的正方形面积是多少?问题 2.棱长为 5 的正方体的体积是多少呢?问题 3.(-2)×(-2)×(-2)×(-2)该如何简记,又该如何读呢?问题 4.该如何简记,如何读呢?学习任务三:乘方定义:乘方定义理解时需要关注:1.2.3.乘方书写时需要关注:1.2.学习任务四:例 1.填空:例 2.计算学习任务五:归纳小结,反思提高1.知识方面:2.数学思想方法方面:学习任务六:课后思考珠穆朗玛峰是世界的最高峰,今年 5 月 27 日珠峰高程测量登山队登顶成功,重测它的海拔高度。

这是我们作为中国人的骄傲,有人说把一张足够大的厚度为 0.1 毫米的纸,连续对折27 次的厚度就能超过珠穆朗玛峰。

这是真的吗?有理数的乘方(一)课后练习1.按要求填空:2.完成数学书第 42 页:练习 1 题,2 题.3.珠穆朗玛峰是世界的最高峰,今年5月27日珠峰高程测量登山队登顶成功,重测它的海拔高度。

这是我们作为中国人的骄傲,有人说把一张足够大的厚度为 0.1 毫米的纸,连续对折 27 次的厚度就能超过珠穆朗玛峰。

这是真的吗?(提示:尝试使用计算器计算,也可以上网查找相关数据)课后练习答案:1.按要求填空:。

1.4.2 有理数的乘法——乘法运算律

1.4.2    有理数的乘法——乘法运算律

个有理数中( C )
A.全部为0
B.只有一个因数为0
C.至少有一个为0 D.有两个数互为相反数
知识点 2 有理数的乘法运算律
知2-导
问题1: 计算下列各题,并比较它们的结果, 你有什么发现?请再举几个例子验证你的发现.
5× (-6) = -30
(-6) ×5 = -30
两个数相乘,交换因数的位置,积不变
导引:(1)负因数的个数为偶数,结果为正数.(2)负 因数的个数为奇数,结果为负数.(3)几个数 相乘,如果其中有因数为0,那么积等于0.
解:(1)(-5)×(-4)×(-2)×(-2) =5×4×2×2=80.
22 311 511 25
=2635=6. 352
解 : 135 69 51 4
多个不是0的数
=3591=9; 654 8
相乘,先做哪一步,
2564514
再做哪一步?
=56 4 1 =6. 54
知1-讲
例2 计算:(1)(-5)×(-4)×(-2)×(-2); (2) 231151125; (3) 2231120.7320.


,运算中没有运用的运算律
是( C )
A.乘法交换律 B.乘法结合律
C.分配律
D.乘法交换律和乘法结合律
知2-练
3 下列变形不正确的是( C )
A . 5×(-6)=(-6)×5
B.

1 4

1 2


×(-12)=(-12)×
1 4

1 2

C.


1 6
+
乘法分配律:a(b+c)=ab+ac

有理数的乘法教案11篇

有理数的乘法教案11篇

有理数的乘法教案11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!有理数的乘法教案11篇下面是本店铺收集的有理数的乘法教案11篇,供大家赏析。

1.4.1_有理数的乘法1

1.4.1_有理数的乘法1

用正负数表示气温的变化量,上升为正, 例4 用正负数表示气温的变化量,上升为正,下降为 登山队攀登一座山峰,每登高1千米 千米, 负。登山队攀登一座山峰,每登高 千米,气温的变 化量为-6℃ 攀登3千米后 气温有什么变化? 千米后, 化量为 ℃,攀登 千米后,气温有什么变化? 解:(-6)×3=-18 :( ) 答:气温下降18℃。 气温下降 ℃
o
3分钟前蜗牛应在 点的右边 分钟前蜗牛应在o点的右边 分钟前蜗牛应在 点的右边6cm处。 处 可以表示为:(-2 可以表示为:(-2)×(-3) =+6 (-3 =+6
观察这四个式子: 观察这四个式子: (+2 (+2)×(+3)=+6 (+3)=+6 (-2 (-2)×(+3)=-6 (+3)=-6 (-2 (-2)×(-3)=+6 (-3)=+6 (+2 (+2)×(-3)=-6 (-3)=-6
o
3分钟前蜗牛应在 点的左边 分钟前蜗牛应在o点的左边 分钟前蜗牛应在 点的左边6cm处。 处 可以表示为:(+2 可以表示为:(+2)×(-3) =-6 (-3 =-6
问题4 如果蜗牛一直以每分钟2 的速度向左爬行 的速度向左爬行, 问题4:如果蜗牛一直以每分钟2cm的速度向左爬行, 那么3分钟前蜗牛在什么位置? 那么3分钟前蜗牛在什么位置? 规定:向右为正,现在之后为正。 规定:向右为正,现在之后为正。
计算: 例3 计算:
1 1 (1) 2 ×2 ; ) (2) (- ) × ( -2 ) 。 ) 2 1 :(1) 解:( ) ×2 = 1 2
1 )((2)( )×(-2)=1 )( ) 2 观察上面两题有何特点? 观察上面两题有何特点
总结:有理数中仍然有 乘积是 的两个数互为倒数. 总结 有理数中仍然有:乘积是 的两个数互为倒数 有理数中仍然有 乘积是1的两个数互为倒数

有理数的乘法

有理数的乘法

有理数的乘法主讲:黄冈中学教师余燕一、有理数的乘法法则(1)同号得正;(2)异号得负;(3)n个数相乘,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正;(4)任何数同0相乘,都得0;(5)互为倒数的两个数乘积为1.二、有理数乘法的运算律(1)乘法交换律:ab=ba;(2)乘法结合律:(ab)c=a(bc);(3)乘法分配律:a(b+c)=ab+ac.三、例题讲解例1、计算:(-3)×5=________;(-2)×(-3)=________;(-3.125)×0=________.答案:-15;6;0例2、的倒数与的相反数的积是________.答案:例3、(1)下列说法正确的是()A.若ab>0,则a>0,b>0B.若ab=0,则a=0,b=0C.若ab>0,且a+b>0,则a>0,b>0D.a为任一有理数,则a·(-a)<0答案:C(2)若a·b<|a·b|,则一定有()A.a<0,b<0 B.a>0,b<0C.a<0,b>0 D.a·b<0答案:D(3)比较a与3a的大小,正确的是()A.3a>a B.3a<aC.3a=a D.上述情况都有可能答案:D(4)若a、b满足a+b>0,ab<0,则下列结论正确的是()A.|a|>|b|B.a>0,b<0时,|a|>|b|C.a<0,b>0时,|a|>|b|D.|a|<|b|答案:B(5)x、y、z是三个有理数,若x<y,x+y=0,且xyz>0.①判断x、y、z的正负性;②试判断(x+z)(x-y)的符号.解:①∵x<y,x+y=0,∴x<0,y>0.又xyz>0,∴z<0.②(视频中应写上②)∴x+z<0,x-y<0,∴(x+z)(x-y)>0.例4、已知|a|=2,|b|=4,a>b,ab<0.求-2ab-2a+2b的值.答案:4(1-2)×(2-3)×…×(2007-2008)×(2008-2009)=__________.例5、答案:1例6、计算:答案:(1)-7;(2)15;(3)0例7、用简便方法计算:(1)(-8)×(-5)×(-0.125);;;.答案:(1)-5;(2)-2;(3)-176(视频中后应加“×”);(4)有理数的乘法主讲:黄冈中学教师余燕1、计算:(-2)×5=___________,(-2)×(-5)=___________,(-2)×(-7)×0=___________.2、=___________.3、计算:(-2)×(-3)×=__________,(-8)×2.43×(-0.125)=___________,=___________.4、计算:=___________.5、计算:×(-51)=_____________,×(-51)=_____________.[答案]6、三个数的积是负数,则其中负因数有()个A.0 B.1C.3 D.1或37、若|x-2|+|y-1|+|z+3|=0,则(x+1)(y+2)(z+3)的值为()A.0 B.-lC.1 D.38、计算:(1)6×(-3)(2)(3)(-1.25)×4.8(4)2-(-2.5)×(-4)(5)100×(-1)×(-2)×(-0.25)(6)[答案]9、计算:[答案]10、观察以下算式:,…(1)根据你所观察到的规律写出第5个等式;(2)用含n的等式表示这个规律;(3)运用以上规律计算:.[答案]。

有理数乘法

有理数乘法

如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘
(-5)X(-3)=15.
一断 二定 三算
16
(+2)×(+3)=+6 (-2)×(-3)=+6
(-2)×(+3)=-6 (+2)×(-3)=-6
2×0=0
a、b同号 a、b异号
1、若ab>0,则必有( )
A、a>0 ,b>0 B、a<0, b<0
C、 a>0 ,b<0 D、 a>0 ,b>0或a<0, b<0 2、若ab=0,则一定有( )
A、a=b=0;
B、a=0;
C、a、b至少有一个为0;
D、 a、b至多有一个为0.
3 、若a+b>0,ab<0,则( )

2.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置 ?
3.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置
? 为了区分方向与时间,
4 . 如 果 蜗规牛定一:直向以左每为分负钟,2 c向m 的右速为度正向.左 爬 行 , 3 分 钟 前 它 在 什 么 位 置

现在以前为负,现在以后为正.
思考题
(1)当a >0时,a与 2a哪个大? (2)当a < 0时,a与2a那个大?
巩固练习
1.计算
(1) 6 0.25
(2) 0.5 8
(3)
(
9) 4
2 3
(4)
1 ( 2)
4
3
2说出下列各数的倒数. 1, –1, 1 ,– 1 , 5,

3有理数的乘法

3有理数的乘法

§2.3 有理数的乘法重点难点提示1.会实行有理数的乘法运算;2.能使用乘法运算性质简化乘法运算。

3.有理数的乘法(1)有理数的乘法法则是:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘,都得零。

可见,做有理数乘法是可分成两步:第一步是确定积的符号;第二步是求出积的绝对值。

所以,有理数乘法实质上是通过符号法则,归结为算术的乘法来完成的。

(2)多个有理数乘积的确定:根据乘法的运算法则能够推得:几个不等于零的有理数相乘,积的符号由负因数的个数确定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

符号确定后,再分别把绝对值相乘。

(3)乘法的运算律:①乘法交换律,即ab=ba;②乘法结合律,即(ab)c=a(bc);③乘法分配律,即a(b+c)=ab+ac。

在做乘法时,要灵活使用上述运算律,以达到简化运算的目的。

乘法和加法的运算律,都能够推广到多个数的情况。

如a+b+c+d=(a+c+d)+b;abcd=b(ac)d;a(b+c+d)=ab+ac+ad。

4.有理数的乘法是中考的重要内容之一。

有理数的乘法法则与加法法则一样,同样能够概括为两个方面的运算:一方面是符号的运算,另一方面是绝对值的运算。

其中符号的确定方法能够推广到多个的情形:主要看负因数的个数。

若负因数有奇数个,则积的符号为负号;若负因数有偶数个,则积的符号为正号;只要有一个因数为0,则积为0。

倒数的概念:乘积为1的两个有理数互为倒数。

因为任何一个有理数与0的积为0,不可能是1,所以0没有倒数。

乘法的交换律:ab=ba;乘法的结合律:(ab)c=a(bc);乘法对加法的分配律:a(b+c)=ab+ac。

学习本节内容时要注意利用对比,弄清“乘法求积的符号法则”与“加法求和的符号法则”的差别。

例题分析例1 计算下列各式:(1)⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⨯+⨯+81681)8()136(; (2)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯-715131)105(; (3)54.4)53()54.3()53(⨯-+-⨯-。

新北师大版数学七年级上册《有理数的乘法》精品教学课件

新北师大版数学七年级上册《有理数的乘法》精品教学课件

奇数
当负因数有____个时,积为负;
偶数
当负因数有____个时,积为正.
0
几个数相乘,如果其中有因数0,那么积等于____.
2
探索新知
计算
高分P34第3题
(1)(−4)
3
×(−9)×(−25)(2)(− )
5
解:原式= −(4 × 9 × 25)
= −900
(3)
5
8
1
(− ) × ×0×
24
15




所以-2 x- y+4xy=-2 ×(-2)- ×3+4×(-2)×3




=-24.
4
课堂小结






两数相乘,同号得正,异号得负,乘积的
绝对值等于各乘数绝对值的积.
两个有理数乘积为1,则称其中一个是另
一个的倒数,也称这两个有理数互为倒数.
负因数有奇数个,积为负;负因数有偶数
个,积为正.因数有0,积为0


2
探索新知
求下列各数的倒数:
1
7
1
− , ,0.25,−1 ,
5 10
7
−1,1.2
2
探索新知
例2 计算
(1)(−4) ×5 ×(−0.25)
解:原式=[−(4 ×5)]×(−0.25)
=(−20)×(−0.25)
=+(20×0.25)
=5
3
(2)(− )
5
5
×(− )
6
×(− 2)
3 5
解:原式= [+( × )]×(−2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档