专题2.7 几何体与球切、接的问题(测)-2017年高考数学(理)二轮复习讲练测(附解析)$769933

合集下载

高考热点之球与几何体的切、接问题及近年常考题

高考热点之球与几何体的切、接问题及近年常考题

球与几何体的切、接问题及近年常考题王宪良一、理清位置,学会画图1、正方体的内切球2、球与正方体的棱相切3. 正方体的外接球分别作图如下说明:1.正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。

设正方体的棱长为a ,球半径为R 。

如图,截面图为正方形EFGH 的内切圆,得2aR =; 2.与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。

3.正方体的外接球:正方体的八个顶点都在球面上,如图,以对角面1AC 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。

二、解决球心位置和半径大小的常用方法1. 出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2222c b a R ++=【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。

解:因为有三条棱两两垂直,所以可补成球内接长方体。

因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为AE 的长,即:22224AD AC AB R ++=1663142222=++=R 所以2=R所以球的表面积为ππ1642==R S2. 出现两个垂直关系,利用直角三角形结论。

【原理】:直角三角形斜边中线等于斜边一半。

球心为直角三角形斜边中点。

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。

解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,因为22210517=+ 所以知222PC PA AC +=,所以 PC PA ⊥ 所以可得图形为:在ABC Rt ∆中斜边为AC ; 在PAC Rt ∆中斜边为AC 取斜边的中点O ,在ABC Rt ∆中OC OB OA == 在PAC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心, 521==AC R 所以该外接球的体积为3500343ππ==R V3. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解AC【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒∠该棱锥的外接球半径。

高中数学立体几何专题·球的切接问题

高中数学立体几何专题·球的切接问题

二.温故知新
同学们,请看下面球与正方体的三种组合体,你能从中得到什 么结论呢? D D
1 A1
A
B O
C
C1
B1 球外切正方体(切面) 球外切正方体(切棱)
球内接正方体
结论:
1.正方体的外接球的球心是体对角线的交点,半径是体对角线的一半 2.正方体的内切球的球心是体对角线的交点,半径是棱长的一半 3.与正方体的棱都相切的球的球心是体对角线的交点,半径是面对角线长的一半
球的“接”与“切”:
• 两个几何体相(内)切:一个几何体的各个面与另一 个几何体的各面相切 • 两个几何体相接:一个几何体的所有顶点都在另一个 几何体的表面上 • 解决“接切”问题的关键是画出正确的截面,把空 间“接切”转化为平面“接切”问题
球与正方体的“切”“接”问题
探究一: 若正方体的棱长为a,则 ⑴正方体的内切球直径= ⑵正方体的外接球直径= ⑶与正方体所有棱相切的球直径=
练习 1、求棱长为a的正四面体的外接球、 棱切球、内切球的体积之比。
2、正三棱锥的高为1,底面边长为2 6 ,
内有一个球与它的四个面都相切.求:
(1)外接球的表面积和体积; (2)内切球的表面积与体积.
解:(1)如图所示,底面正三角形的中心F到一边的距离为
1 3 FD= 2 6= 2, 2 2 则正三棱锥侧面的斜高PD= 1
球与正方体的“接切”问题
1.一个正方体的顶点都在球面上,它的 棱长是4cm,求这个球的体积. 2.长方体的共顶点的三个侧面面积分别 为 3,5, 乙球内切于该正方体的各条棱, 丙球外接于该正方体,则三球表 面面积之比为( ) A. 1:2:3 B.1: 2: 3 C. 1: 4: 9
1 3 2 径分别为: 2 a、2 a、2 a.

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。

专题2.7几何体与球切、接的问题(讲)2017年高考数学(理)二轮复习讲练测(附解析)

专题2.7几何体与球切、接的问题(讲)2017年高考数学(理)二轮复习讲练测(附解析)

专题2.7 几何体与球切、接的问题(讲)-2017年高考数学(理)二轮复习讲练测纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R ==;三是球为正方体的外接球,截面图为长方形11ACAC 和其外接圆,则1AO R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;=.数据关系:设正方体的棱长为a,球的半径为r,这时有2r a(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r=.(3)正方体的棱切球,如图3. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A B .1 C .1+ D 【答案】D.1.2 球与长方体例 2 自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.【答案】24R .【解析】以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径. ∴222MC MB MA ++=224)2(R R =.例 3【2016届重庆市巴蜀中学高三上学期一诊】A B C D ,,,四点在半径为225的球面上,且 5AC BD ==,AD BC ==,AB CD =,则三棱锥D ABC -的体积是____________. 【答案】20.【解析】根据题意构造长方体,其面上的对角线构成三棱锥D ABC -,如图所示,设长方体的长、宽、高2 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1正四面体与球的切接问题(1) 正四面体的内切球,如图4. 位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R,这时有4R h ==;(可以利用体积桥证明)(2) 正四面体的外接球,如图5. 位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有43R h ==;(可用正四面体高h 减去内切球的半径得到)(3) 正四面体的棱切球,如图6. 位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有4,.R h ===例 4 设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比. 【答案】127依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积.点评:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.2.2其它棱锥与球的切接问题 球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.例5【湖南省长沙市长郡中学2017届高三摸底】已知边长为ABCD 中,60BAD ∠=,沿对角线BD 折成二面角A BD C --为120的四面体ABCD ,则四面体的外接球的表面积为( )A .25πB .26πC .27πD .28π【答案】D图2图1G O EAC ED C BA例6【江西省新余市第一中学2017届高三上学期调研考试(一)】某几何体的正视图和侧视图如图(1)所示, 它的府视图的直观图是'''A B C ,如图(2)所示,其中0''''2,''A O B O C ===则该几何体的外接球的表面积为 .【答案】1123π O 1EFDC B A O例7【2016届湖南长沙长郡中学高三下学期第六次月考】已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,C S为球O 的直径,且2SC =,则此棱锥的体积为( )A B C D【答案】6.3 球与球相切问题对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.例8 已知有半径分别为2、3的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球的半径为.【答案】6 11例9 把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离. 【答案】3622+. 【解析】四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h . 而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四 个球的最高点与桌面的距离为3622+。

专题2.7几何体与球切、接的问题(测)2017年高考二轮复习数学(文)(附解析)

专题2.7几何体与球切、接的问题(测)2017年高考二轮复习数学(文)(附解析)

专题2.7 几何体与球切、接的问题(测)总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______(一) 选择题(12*5=60分)1.【广西梧州市2017届高三上学期摸底联考】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图1所示,则此几何体的表面积是( )A .(4π+B .6π+C .6πD .(8π+ 【答案】C 【解析】圆柱的侧面积为ππ42121=⨯⨯=S ,半球的表面积为ππ21222=⨯=S ,圆锥的侧面积为ππ2213=⨯⨯=S ,所以几何体的表面积为ππ26321+=++=S S S S ,故选C. 2.【河北省沧州市第一中学2017届高三10月月考】已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,PA PD ==棱锥P ABCD -外接球的表面积为( )A .10πB .4π C. 16π D .8π 【答案】Dππ8242=⨯=S ,应选D.3.【2016届甘肃省天水市一中高三上学期期末考试】利用一个球体毛坯切削后得到一个四棱锥P —ABCD ,其中底面四边形ABCD 是边长为1的正方形,1PA =,且D A BC P A ⊥平面,则球体毛坯体积的最小值应为( )A B C .43πD 【答案】D4.【2016届河北省邯郸市一中高三下学期研六考试】在菱形ABCD 中,60,A AB =︒=将ABD 折起到PBD 的位置,若二面角P BD C --的大小为23π,则三棱锥P BCD -的外接球的体积为( )A .43π B C D 【答案】C 【解析】取BD 中点E ,连接AE CE ,,则2332AEC AE CE π∠===,,设BCD V 的外接圆的圆心与球心的距离为h ,三棱锥P BCD -的外接球的半径为R ,则22222154()()R h h R =+-+=,∴R h ==∴三棱锥P BCD -的外接球体积为3(6432π⋅=.故选:C . 5.【2016届湖南师大附中高三上学期月考四】若长方体1111D C B A ABCD -中,AB=1,C B 1,D C 1分别与底面ABCD 所成的角为︒45,︒60,则长方体1111D C B A ABCD -的外接球的体积为 ( ) A .677π B .37π C .374π D .67π 【答案】A6.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D .54【答案】D 【解析】左视图由三视图知:几何体为正三棱柱,∵俯视图是边长为6的正三角形,∴几何体的内切球的半径R=6×33123=⨯, ∴三棱柱的侧棱长为32.∴几何体的表面积35432632366212=⨯⨯+⨯⨯⨯⨯=S ,故选:D . 7.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π 【答案】B8.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) A.2a π B. 237a π C. 2311a π D. 25a π 【答案】B 【解析】根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为222127)60sin 2()2(a a a R =+=,球的表面积为22371274a a S ππ=⋅=,故选B . 9.【广东省惠州市2017届高三第一次调研】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A B .1 C D 【答案】A【解析】因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S ∴在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C的距离相等.SH = ,1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC = ,1SM ∴=,30OSM ∠=︒,SO OH ∴==O 到平面ABC 的距离,故选A .10.【2016届河北省正定中学高三上学期期末考试】球O 半径为13=R ,球面上有三点A 、B 、C ,312=AB ,12==BC AC ,则四面体OABC 的体积是A .360B .350C .660D .650 【答案】A11.【2016届贵州省贵阳市一中高三第五次月考】如图,已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【答案】C 【解析】设正ABC △的中心为1O ,连接1O A ,11O O O C ,,∵1O 是正ABC △的中心,A B C ,,三点都在球面上,∴1O O ABC ⊥平面,结合1O C ABC ⊂平面,可得11O O O C ⊥,∵球的半径2R =,球心O 到平面ABC 的距离为1,得11O O =,∴在1Rt O OC △中,1OC 又∵E 为AB 的中点,ABC △是等边三角形,13cos302AE AO =︒=∴,∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小,此时截面圆的半径32r =,可得截面面积为29ππ4S r ==,故选C .12.【江西省新余市2016届高三第二次模拟】已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A .π10 B .π24 C .π36 D .π48 【答案】D(二) 填空题(4*5=20分)13.【2016届河北省邯郸一中高三下学期研七】球O 面上四点P 、A 、B 、C 满足:PA 、PB 、PC 两两垂直,3,4,PA PB PC ===O 的表面积等于______.【答案】100π 【解析】空间四个点P A B C 、、、在同一球面上,PA PB PC 、、两两垂直,且3,4,PA PB PC ===PA PB PC 、、可看作是长方体的一个顶点发出的三条棱,所以过空间四个点P A B C 、、、的球面即为棱长分别为3,4,PA PB PC ===体的外接球,如下图:10=,所以这个球面的面积21024100S ππ⎛⎫=⎪⎝⎭=.14.【河南省新乡市2017届高三上学期第一次调研】已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在球面上),若球的半径5R =,圆锥的高是底面半径的2倍,则圆锥的体积为__________. 【答案】1283π15.【湖北省襄阳市第四中学2017届高三七月第二周周考】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________. 【答案】169π 【解析】由下图可知,球心在O 的位置,球的半径为22252514416962444R ⎛⎫=+=+=⎪⎝⎭,故表面积为24169R ππ=.16.【吉林省长春市普通高中2017届高三质量监测(一)】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .(三) 解答题(共6道小题,共70分)17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.R 【解析】由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积.【答案】92π.【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.. 【解析】如图,因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,不难求得三.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.【答案】9π.C D C E22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.【答案】【解析】设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆。

人教版高考数学(理)二轮复习微专题:总领复习 第2讲 解题有道——四大思想

人教版高考数学(理)二轮复习微专题:总领复习 第2讲 解题有道——四大思想

第2讲 解题有道——四大数学思想思想概述 高考数学以能力立意,一是考查数学的基础知识、基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度.数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识、数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.类型一 函数与方程思想(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.【例1】 设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y =kx(k >0)与AB 相交于点D,与椭圆相交于E,F 两点. (1)若ED →=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB,EF 的方程分别为x +2y =2,y =kx(k>0).如图,设D(x 0,kx 0),E(x 1,kx 1),F(x 2,kx 2),其中x 1<x 2. 由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1消y 得(1+4k 2)x 2=4, 故x 2=-x 1=21+4k2.①由ED →=6DF →知x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2,得x 0=21+2k. 所以21+2k =1071+4k 2,化简得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E,F 到AB 的距离分别为h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又AB =22+12=5, 所以四边形AEBF 的面积为 S =12·AB·(h 1+h 2) =12×5×4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k2=21+41k+4k ≤22, 当且仅当1k =4k(k >0),即k =12时,上式取等号.所以S 的最大值为22,即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.【训练1】 函数f(x)的定义域为R,f(-1)=2,对任意x∈R ,f′(x)>2,则f(x)>2x +4的解集为________. 解析 f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R 上是增函数. 又F(-1)=f(-1)-2×(-1)=4,f(x)>2x +4, 即F(x)>4=F(-1),所以x >-1. 答案 (-1,+∞)【例2】 已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值. 解 (1)设{a n }的公差为d,由已知条件,得⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5.(2)S n =na 1+n (n -1)2d =-n 2+4n =-(n -2)2+4.所以n =2时,S n 取到最大值4.探究提高 运用方程思想解决问题,要善于使用已知方程,还要根据题意列方程、解方程. 【训练2】 直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m =________. 解析 圆的方程为(x -1)2+y 2=3,由题意知圆心(1,0)到直线的距离等于半径,即|3+m|3+1=3,∴|3+m|=23∴m=3或m =-3 3. 答案 -33或 3 类型二 数形结合思想数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.【例3】 (1)已知函数f(x)满足下面关系:①f(x+1)=f(x -1);②当x∈[-1,1]时,f(x)=x 2,则方程f(x)=lg x 解的个数是________.(2)若不等式|x -2a|≥12x +a -1对x∈R 恒成立,则a 的取值范围是________.解析 (1)由题意可知,f(x)是以2为周期,值域为[0,1]的函数.令y 1=f(x),y 2=lg x,画出两函数图象, 则交点个数即为解的个数.由图象可知共9个交点,故方程f(x)=lg x 解的个数是9.(2)作出y =|x -2a|和y =12x +a -1的简图,依题意知应有2a≤2-2a,故a≤12.答案 (1)9 (2)⎝⎛⎦⎥⎤-∞,12 探究提高 (1)用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(或需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数.(2)求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化为数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.【训练3】 (1)若函数f(x)=|2x-2|-b 有两个零点,则实数b 的取值范围是________. (2)若不等式9-x 2≤k(x+2)-2的解集为区间[a,b],且b -a =2,则k =________. 解析 (1)由f(x)=|2x -2|-b 有两个零点, 可得|2x-2|=b 有两个不等的实根,从而可得函数y =|2x-2|的图象与函数y =b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2,故填(0,2).(2)如图,分别作出直线y =k(x +2)-2与半圆y =9-x 2.由题意,知直线在半圆的上方时,x 的取值范围为[a,b],由b -a =2,可知b =3,a =1,所以直线y =k(x +2)-2过点(1,22),则k = 2. 答案 (1)(0,2) (2) 2 类型三 分类讨论思考分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论. 常见的分类讨论问题有:(1)集合:注意集合中空集∅的讨论.(2)函数:对数函数或指数函数中的底数a,一般应分a >1和0<a <1的讨论;函数y =ax 2+bx +c 有时候分a =0和a≠0的讨论,对称轴位置的讨论,判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q≠1的讨论. (4)三角函数:角所在的象限及函数值范围的讨论.(5)不等式:解含参数不等式时的讨论,基本不等式取等号时条件是否满足的讨论. (6)立体几何:点、线、面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线方程中斜率k 分存在和不存在,直线在坐标轴上的截距相等时分截距b =0和b≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)去绝对值时的讨论及分段函数的讨论等. 【例4】 已知函数f(x)=ln x +a(1-x). (1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.若a >0,则当x∈⎝ ⎛⎭⎪⎫0,1a 时,f′(x)>0; 当x∈⎝ ⎛⎭⎪⎫1a ,+∞时,f′(x)<0,所以f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 综上,知当a≤0时,f(x)在(0,+∞)上单调递增;当a >0时,f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a >0时,f(x)在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于-ln a +a -1>2a -2,即ln a +a -1<0.令g(a)=ln a +a -1,则g(a)在(0,+∞)上单调递增, g(1)=0.于是,当0<a <1时,g(a)<0;当a >1时,g(a)>0. 因此,a 的取值范围是(0,1).探究提高 由参数的变化引起的分类整合法经常用于某些含有参数的问题,如含参数的方程、不等式,参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.【训练4】 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x≥1.若f(1-a)=f(1+a),则a 的值为________.解析 当a>0时,1-a<1,1+a>1, 这时f(1-a)=2(1-a)+a =2-a, f(1+a)=-(1+a)-2a =-1-3a. 由f(1-a)=f(1+a)得2-a =-1-3a, 解得a =-32,不合题意,舍去;当a<0时,1-a>1,1+a<1,这时f(1-a)=-(1-a)-2a =-1-a, f(1+a)=2(1+a)+a =2+3a.由f(1-a)=f(1+a)得-1-a =2+3a,解得a =-34.综上可知,a 的值为-34.答案 -34类型四 转化与化归思想转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题. (6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. (8)类比法:运用类比推理,猜测问题的结论,易于确定. (9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U 及补集∁U A 获得原问题的解决,体现了正难则反的原则.【例5】 (1)已知f(x)=33x +3,则f(-2 019)+f(-2 018)+f(-2 017)+f(-2 016)+f(-2 015)+f(-2 014)+…+f(0)+f(1)+…+f(2 016)+f(2 017)+f(2 018)+ f(2 019)+f(2 020)=________.解析 ∵f(x)+f(1-x)=33x +3+331-x +3=33x +3+3x3+3x=3x+33x +3=1, ∴f(0)+f(1)=1,f(-2 015)+f(2 016)=1,…,f(-2 019)+f(2 020)=1,∴f(-2 019)+f(-2 018)+…+f(0)+f(1)+…+f(2 020)=[f(-2 019)+f(2 020)]+[f(-2 018)+f(2 019)]+…+[f(0)+f(1)]=2 020. 答案 2 020探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.(2)若对于任意t∈[1,2],函数g(x)=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.解析 g′(x)=3x 2+(m +4)x -2,若g(x)在区间(t,3)上总为单调函数,则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x∈(t ,3)上恒成立,∴m+4≥2t-3t 恒成立,又t∈[1,2],则m +4≥-1,即m≥-5;由②得m +4≤2x -3x 在x∈(t ,3)上恒成立,则m +4≤23-9,即m≤-373.∴函数g(x)在区间(t,3)上总不为单调函数的m 的取值范围为⎝ ⎛⎭⎪⎫-373,-5.答案 ⎝ ⎛⎭⎪⎫-373,-5探究提高 1.一般地,题目若出现多种成立的情形,且不成立的情形相对很少,则从反面考虑较简单,因此,补集法多用于含有“至多”、“至少”及否定性命题情形的问题中. 2.转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.【训练5】 对任意的|m|≤2,函数f(x)=mx 2-2x +1-m 恒为负,则x 的取值范围为________.解析 对任意的|m|≤2,有mx 2-2x +1-m <0恒成立,即|m|≤2时,(x 2-1)m -2x +1<0恒成立.设g(m)=(x 2-1)m -2x +1,则原问题转化为g(m)<0恒成立(m∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0. 解得7-12<x <3+12, 即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12.答案 ⎝⎛⎭⎪⎫7-12,3+121.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.由性质、定理、公式的限制引起的分类整合法往往是因为有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.3.换元法是一种变量代换,也是一种特殊的转化与化归方法,是用一种变数形式去取代另一种变数形式,是将生疏(或复杂)的式子(或数),用熟悉(或简单)的式子(或字母)进行替换;化生疏为熟悉、复杂为简单、抽象为具体,使运算或推理可以顺利进行.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形、以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.。

几何体与球切,接的问题(解析版)

几何体与球切,接的问题(解析版)

2018高考数学二轮复习(文科)几何体与球切、接问题一、选择题(12*5=60分)1.【广西梧州市2017届高三上学期摸底联考】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图1所示,则此几何体的表面积是( )A .(4π+B .6π+C .6πD .(8π 【答案】C 【解析】圆柱的侧面积为ππ42121=⨯⨯=S ,半球的表面积为ππ21222=⨯=S ,圆锥的侧面积为ππ2213=⨯⨯=S ,所以几何体的表面积为ππ26321+=++=S S S S ,故选C.2.【河北省沧州市第一中学2017届高三10月月考】已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,PA PD ==锥P ABCD -外接球的表面积为( )A .10πB .4π C. 16π D .8π 【答案】Dππ8242=⨯=S ,应选D.3.【2016届甘肃省天水市一中高三上学期期末考试】利用一个球体毛坯切削后得到一个四棱锥P —ABCD ,其中底面四边形ABCD 是边长为1的正方形,1PA =,且D A BC P A ⊥平面,则球体毛坯体积的最小值应为( )A .3 B C .43πD .2【答案】D4.【2016届河北省邯郸市一中高三下学期研六考试】在菱形ABCD 中,60,A AB =︒=将ABD 折起到PBD 的位置,若二面角P BD C --的大小为23π,则三棱锥P BCD -的外接球的体积为( )A .43π B D 【答案】C 【解析】取BD 中点E ,连接AE CE ,,则2332AEC AE CE π∠===,,设BCD V 的外接圆的圆心与球心的距离为h ,三棱锥P BCD -的外接球的半径为R ,则22222154()()R h h R =+-+=,∴22R h ==∴三棱锥P BCD -的外接球体积为3(6432π⋅=.故选:C . 5.【2016届湖南师大附中高三上学期月考四】若长方体1111D C B A ABCD -中,AB=1,C B 1,D C 1分别与底面ABCD 所成的角为︒45,︒60,则长方体1111D C B A ABCD -的外接球的体积为( ) A .677π B .37π C .374π D .67π【答案】A6.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( ) A . 18B .36C . 45D . 54【答案】D 【解析】由三视图知:几何体为正三棱柱,∵俯视图是边长为6的正三角形,∴几何体的内切球的半径R=6×33123=⨯, ∴三棱柱的侧棱长为32. ∴几何体的表面积35432632366212=⨯⨯+⨯⨯⨯⨯=S ,故选:D .7.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π 【答案】B8.设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为左视图( )A.2a πB. 237a π C. 2311a π D. 25a π 【答案】B 【解析】根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为2202127)60sin 2()2(a a a R =+=, 球的表面积为22371274a a S ππ=⋅=,故选B . 9.【广东省惠州市2017届高三第一次调研】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A .1 C【答案】A【解析】因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S∴ 在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C 的距离相等.S∴ SH 1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC = ,1SM ∴=,30OSM ∠=︒,SO OH ∴==,即为O 到平面ABC 的距离,故选A .10.【2016届河北省正定中学高三上学期期末考试】球O 半径为13=R ,球面上有三点A 、B 、C ,312=AB ,12==BC AC ,则四面体OABC 的体积是A .360B .350C .660D .650 【答案】A11.【2016届贵州省贵阳市一中高三第五次月考】如图,已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【答案】C 【解析】设正ABC △的中心为1O ,连接1O A ,11O O O C ,,∵1O 是正ABC △的中心,A B C ,,三点都在球面上,∴1O O ABC ⊥平面,结合1O C ABC ⊂平面,可得11O O O C ⊥,∵球的半径2R =,球心O 到平面ABC 的距离为1,得11O O =,∴在1Rt O OC △中,1OC =又∵E 为AB 的中点,ABC △是等边三角形,13cos302AE AO =︒=∴,∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小,此时截面圆的半径32r =,可得截面面积为29ππ4S r ==,故选C .12.【江西省新余市2016届高三第二次模拟】已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A .π10 B .π24 C .π36 D .π48 【答案】 D二、填空题(4*5=20分)13.【2016届河北省邯郸一中高三下学期研七】球O 面上四点P 、A 、B 、C 满足:PA 、PB 、PC 两两垂直,3,4,PA PB PC ===O 的表面积等于______.【答案】100π 【解析】空间四个点P A B C 、、、在同一球面上,PA PB PC 、、两两垂直,且3,4,PA PB PC ===则PA PB PC 、、可看作是长方体的一个顶点发出的三条棱,所以过空间四个点P A B C 、、、的球面即为棱长分别为3,4,PA PB PC ===10=,所以这个球面的面积21024100S ππ⎛⎫=⎪⎝⎭=.14.【河南省新乡市2017届高三上学期第一次调研】已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在球面上),若球的半径5R =,圆锥的高是底面半径的2倍,则圆锥的体积为__________. 【答案】1283π15.【湖北省襄阳市第四中学2017届高三七月第二周周考】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________. 【答案】169π 【解析】由下图可知,球心在O 的位置,球的半径为22252514416962444R ⎛⎫=+=+=⎪⎝⎭,故表面积为24169R ππ=.16.【吉林省长春市普通高中2017届高三质量监测(一)】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q到平面ABC 的距离的最大值为 .三、解答题(共6道小题,共70分)17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.【答案】3R 【解析】由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=.18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积.【答案】92π. 【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE的外接球的体积.. 【解析】如图,因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,不难求得三棱.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.【答案】9π.CDCE22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.【答案】【解析】设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r . 如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆。

新高考数学二轮复习球的切接问题

新高考数学二轮复习球的切接问题

考点二 空间几何体的内切球
例2 (1)在三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,且AB=CD=4, BC=3,则该三棱锥内切球的体积为
√A.91π6

16π
B. 4
C. 9
4π D. 3
由AB⊥平面BCD,CD⊂平面BCD,得AB⊥CD. 又BC⊥CD,且AB,BC⊂平面ABC,AB∩BC=B, 所以CD⊥平面ABC, 又AC⊂平面ABC,所以CD⊥AC. 由AB=CD=4,BC=3,得AC=BD=5, 所以三棱锥A-BCD的表面积 S=2×12×3×4+2×12×4×5=32, 三棱锥 A-BCD 的体积 V=13×12×3×4×4=8.
4.(2023·湖北多校联考)已知在△ABC中,AB=4,BC=3,AC=5,以AC
为轴旋转一周得到一个旋转体,则该旋转体的内切球的表面积为
49π A. 36
√576π
B. 49
576π C. 25
344π D. 25
1 2 3 4 5 6 7 8 9 10
旋转体的轴截面如图所示,其中O为内切球的球心, 过O作AB,BC的垂线,垂足分别为E,F, 则OE=OF=r(r为内切球的半径), 故 AO=sin∠rBAC=53r,CO=sin∠rBCA=54r, 故 5=AO+OC=53r+54r,解得 r=172, 故该旋转体的内切球的表面积为 4π×1722=57469π.
面的中心,元素S位于正方体中心,若正方体的棱长为a,记以六个F为
a3
πa2
顶点的正八面体为T,则T的体积为___6__,T的内切球表面积为___3___.
正八面体T可视为两个全等的正四棱锥拼接而成,
且该正四棱锥的底面边长为 2a2+a22= 22a,高为 a2,所以正八面体的体积 V=2×13× 22a2×a2=a63,

高考数学复习第8章立体几何专题研究球与几何体的切接问题理市赛课公开课一等奖省优质课获奖课件

高考数学复习第8章立体几何专题研究球与几何体的切接问题理市赛课公开课一等奖省优质课获奖课件

16R3 A. 81
64R3 C. 81
32R3 B. 81 D.R3
10/38
【解析】 如图,记 O 为正四棱锥 P- ABCD 外接球的球心,O1 为底面 ABCD 的中 心,则 P,O,O1 三点共线,连接 PO1,OA, O1A.
设 OO1=x,则 O1A= R2-x2,AB= 2· R2-x2,PO1=R+x,所以正四棱锥 P -ABCD 的体积 V=13AB2×PO1=13×2(R2-x2)(R+x)=23(-x3- Rx2+R2x+R3),求导:V′=23(-3x2-2Rx+R2)=-23(x+R)(3x -R),当 x=R3时,体积 V 有最大值6841R3,故选 C.
A.4π
9π B. 2
C.6π
32π D. 3
31/38
【解析】 由题意可得若V最大,则球与直三棱柱的部分面
相切,若与三个侧面都相切,可求得球的半径为2,球的直径为
4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底
面相切,此时球的半径R=
3 2
,此时的体积最大,Vmax=
4 3
πR3=
4π3 ×287=9π2 .
【答案】 A
38/38
【答案】 C
11/38
★状元笔记★ 锥体的外接球问题关键是确定球心位置: (1)将锥体还原或补形为正方体或长方体,进而确定球心; (2)锥体的外接球球心一定在过底面的外心与底面垂直的直 线上; (3)球心到各顶点的距离都相等; (4)球心一定在外接球的直径上!
12/38
思考题 1 (1)(2018·江西宜春模拟)一个几何体的三视图 如图所示,则该几何体的外接球的表面积为( )
V=-
2a3+2a2 在(0,232)上是增函数,在(232,

高考数学专题19 几何体中与球有关的切、接问题(原卷版)

高考数学专题19 几何体中与球有关的切、接问题(原卷版)

专题19 几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①假设球为正方体的外接球,那么2R =3a ;②假设球为正方体的内切球,那么2R =a ;③假设球与正方体的各棱相切,那么2R =2a .(2)假设长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,那么2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,那么球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2021年高考全国Ⅰ卷理数】,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,假设⊙1O 的面积为4π,1AB BC AC OO ===,那么球O 的外表积为A .64πB .48πC .36πD .32π例2、【2021年高考天津】假设棱长为A .12πB .24πC .36πD .144π 例3、〔2021届山东省潍坊市高三上学期统考〕边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,那么过A ,B ,C ,D 四点的球的外表积为〔 〕 A .3π B .4π C .5π D .6π例4、〔2021届山东省日照市高三上期末联考〕四棱锥P ABCD -的体积是,底面ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,那么四棱锥P ABCD -外接球体积为〔 〕A .B C D .例5、〔2021届山东省德州市高三上期末〕中国古代数学经典?九章算术?系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =,假设鳖臑P ADE -的外接球的体积为,那么阳马P ABCD -的外接球的外表积等于______.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2021年高考全国Ⅲ卷理数】圆锥的底面半径为1,母线长为3,那么该圆锥内半径最大的球的体积为_________.例7、〔2021届山东省潍坊市高三上期中〕如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如下图粽子形状的六面体,那么该六面体的外表积为__________;假设该六面体内有一小球,那么小球的最大体积为___________.二、达标训练1、〔2021届山东省泰安市高三上期末〕正三棱锥S ABC -的侧棱长为6,那么该正三棱锥外接球的外表积是〔 〕A .16πB .20πC .32πD .64π2、【2021年高考全国II 卷理数】△ABC 的等边三角形,且其顶点都在球O 的球面上.假设球O 的外表积为16π,那么O 到平面ABC 的距离为A B .32 C .1 D .23、【2021年高考全国Ⅰ卷理数】三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,那么球O 的体积为A .B .C . D4、【2021年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .5、【2021年新高考全国Ⅰ卷】直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.6、〔2021届山东省滨州市三校高三上学期联考〕三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.假设三棱锥S ABC -的四个顶点都在同一球面上,那么该球的外表积为________.7、〔2021届山东省枣庄、滕州市高三上期末〕如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC ,那么PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的外表积是________.8、〔2021届山东省烟台市高三上期末〕三棱锥P ABC -的四个顶点都在球O 的外表上,PA ⊥平面ABC ,6PA =,AB =2AC =,4BC =,那么:〔1〕球O 的外表积为__________;〔2〕假设D 是BC 的中点,过点D 作球O 的截面,那么截面面积的最小值是__________.9、〔2021届山东省滨州市高三上期末〕在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC=________,该四面体外接球的外表积为________.10、〔2021届山东省济宁市高三上期末〕下列图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形-的外接球的体积为ABCD,现将四边形ABCD沿BD折成直二面角A BD C--,那么三棱锥A BCDcm.__________3。

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(练)含解析

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(练)含解析

2018年高考数学(理)二轮复习讲练测热点七 几何体与球切、接的问题1.练高考1.【2017课标3,文理】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【答案】B 【解析】2. 【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 3.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R ++=== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4.【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .【答案】325.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π【解析】取SC 的中点O ,连接,OA OB因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=6.【2017天津,文理】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= , 外接球直径为344279233,πππ3382R a V R ====⨯=. 2.练模拟1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为( ) A .24316π B .8116π C .814π D .274π【答案】A 【解析】2.【2018届河南省南阳市第一中学校高三第七次】已知三棱锥P ABC -的两个顶点均在某球面上, PC 为该球的直径, ABC ∆是边长为4的等边三角形,三棱锥P ABC -的体积为163,则该三棱锥的外接球的表面积为( ) A.163π B. 403π C. 643π D. 803π【答案】D【解析】设D 为ABC ∆外接圆圆心,则三棱锥的外接球球心O 满足OD 垂直平面ABC ,所以222216132438024,43343333OD OD R S R ππ⎛⎫⎛⎫=⨯⨯∴==+== ⎪ ⎪ ⎪⎝⎭⎝⎭,选D.3.【河南省师范大学附属中学2015届高三12月月考】已知四面体P ABC -中,4PA =,AC =23PB BC ==PA ⊥平面PBC ,则四面体P ABC -的外接球体积为( )A .1256π B .1623 C .6423 D .25623 【答案】C4.【2018届河北省张家口市高三上学期期末】体积为8的正方体1111ABCD A B C D -内有一个体积为V 的球,则V 的最大值为( ) A. 8π B. 4π82π43π【答案】D【解析】要使球的体积V 最大,则球为正方体的内切球, 正方体的体积为8, ∴正方体的棱长为2, ∴内切球的半径为1,体积为344133ππ⨯=,故选D. 5.面积为332的正六边形的六个顶点都在球O 的球面上,球心O 到正六边形所在平面的距离为 2,记球O 的体积为V ,球O 的表面积为S ,则VS的值是( ) A .2 B .1 C 3 D 2【答案】B . 【解析】设正六边形的边长为a ,则23336142a a ⋅=⇒=,∴球O 的半径21(22)3r =+=, ∴3243143r V r S r ππ===,故选B . 6.【2018届江西省赣州市高三上学期期末】中国古代数学经典《九章算术》中,将四个面都为直角三角形的三棱锥为鳖臑,若三棱锥P ABC -为鳖臑,且PA ⊥平面ABC , 3PA AC ==,又该鳖臑的外接球的表面积为34π,则该鳖臑的体积为__________. 【答案】6【解析】因为外接球的表面积为34π,所以22344434R R ππ=∴= ,将鳖臑补成长方体,长宽高为3,3,h ,则鳖臑的外接球直径为长方体对角线,即222221143316,4,433632R h h h V =++∴===⨯⨯⨯⨯= 3.练原创1. 某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π25【答案】A2的正四面体,可以看做是一个棱长为1的正方体截去四个角后余下的几何体,其外接球与正方体的外接球相同,故其直径为2R 3S =4πR 2=(2R )2π=3π.选A2.已知四面体P ABC -中, 4=PA ,72=AC ,32==BC PB ,PA ⊥平面PBC,则四面体P ABC -的内切俯视图正视图侧视图球半径与外接球半径的比( )B.328C.32162【答案】C【解析】如图1,由已知及勾股定理得,27,23,AB PC ==PBC △为等边三角形,ABC △为等腰三角形.所以,111323234433322P ABC PBC V S PA -=⋅=⋅⨯⎡⎢⎣⎦⨯=△ 表面积(211123422323522232S =⨯⨯+⨯⨯+⎡⎡⎤⎢⎢⎥⎣⎦⨯⎦⎣163=,设内切球半径为r ,13V S r =⋅表面积,所以,1333r =⨯,34r =; 如图2,PBC △所在的小圆的直径0234,sin 60PD ==因此大圆直径2224442,22,R R +==故内切球半32C .3.如图,正方体1111ABCD A B C D -3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面积相交所得到的两段弧之和等于( )A .56π B .23π C .π D .76π 【答案】A所以30EAF ∠=所以圆弧EF 长等于30223603ππ⨯⨯⨯= 所以两段圆弧之和为5236πππ+=故答案选A4.三棱锥S ABC -的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB BC ⊥,又1S A A B B C ===,则球O 的表面积为 . 【答案】3π 【解析】由题意得:三棱锥S ABC -为棱长为1的正方体内一个三棱锥,所以球O 为正方体的外接球,直径为正方体对角O 的表面积为224=(2)3.R R πππ=5.已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的表面积为 . 【答案】π8.。

专题17 几何体与球切、接的问题 (练)2021年高考数学二轮复习讲练测(教师版含解析)(新高考版)

专题17 几何体与球切、接的问题 (练)2021年高考数学二轮复习讲练测(教师版含解析)(新高考版)

专题十七 几何体与球切、接的问题一、讲高考1.【2020年高考全国Ⅰ卷文数12理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A .64π B .48π C .36π D .32π【答案】A【思路导引】由已知可得等边ABC ∆的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π∴=,由正弦定理可得2sin60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R =π=π,故选A .【专家解读】本题的特点是多面体与球的位置关系,本题考查了三棱锥的外接球,考查球的表面积公式,考查数学运算、数学直观等学科素养.解题关键是正确应用球的截面性质.2.【2020年高考全国Ⅱ卷文数11理数10】已知ABC ∆是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为16π,则球O 到平面ABC 的距离为( ) A .3B .23C .1D .23 【答案】C 【思路导引】根据球O 的表面积和ABC ∆的面积可求得球O 的半径R 和ABC ∆外接圆半径r ,由球的性质可知所求距离d【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC ∆外接圆半径为r ,边长为a ,ABC ∆的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d ==,故选C . 【专家解读】本题的特点是多面体与球的位置关系,本题考查了球的相关问题的求解,考查球的表面积公式,考查数学运算、数学直观等学科素养.解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3.【2020年高考天津卷5】若棱长为( ) A .12πB .24πC .36πD .144π【答案】C【思路导引】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以这个球的表面积为2244336S R πππ==⨯=,故选C .【专家解读】本题的特点是多面体与球的位置关系,本题考查了正方体的外接球,考查球的表面积公式,考查数学运算、数学直观等学科素养.解题关键是正确作出截面,找到正方体外接球直径与正方体体对角线的关系.【方法总结】求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.4.【2020年高考全国Ⅲ卷文数16理数15】已知圆维的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .【思路导引】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【解析】解法一:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r ,其体积:343V r π==. 解法二:分析知圆锥内半径最大的球的应为该圆锥的内切球,如图,由题可知该圆锥的母线长为3BS =,底面半径为=1BC ,高为SC =BS 切于D 点,令OD OC r ==,则由SOD SBC ∆∆,可得OD BCOS BS =13=,得r =,此时343V r =π. 【专家解读】本题的特点是圆锥与球的位置关系,本题考查了圆锥内切球,考查球的体积公式,考查数学运算、数学直观、数学建模等学科素养.解题关键是认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,正确作出截面,构造直角三角形,应用勾股定理解题.5.【2020年高考山东卷16】已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=,以1D 为半径的球面与侧面11BCC B 的交线长为 .【思路导引】根据已知条件易得1D E =1D E ⊥侧面11BC CB ,可得侧面11BC CB 与球面的交线上的点到E11BC CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果.【解析】解法一:如图,取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BBB C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,则1DE EP ⊥,1D E =,所以||EP ==所以侧面11BC CB 与球面的交线上的点到E 因为||||EF EG ==所以侧面11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==. 解法二:在直四棱柱1111ABCD A B C D -中,取11BC 中点为O ,1BB 中点为F ,1CC 中点为E ,由题意易知111D O B C ⊥,又11BB D O ⊥,则1D O ⊥面11BB C C ,在面11BB C C 内取一点P ,使1//OP BB ,且OP =,∴1D P ==,又1D E =,1D F =∴以1D 为半径的球面与侧面11BCC B的交线是以O 为半径的圆弧FPE ,由题意易得2FOE π∠=,故该交线长为2π=.解法三:【专家解读】本题的特点是注重空间中基本计算,本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,考查数学运算、直观想象等学科素养.解题关键是作出合理的截面解决问题.6.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,2212122x x x ∴+=∴==,,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴=,R ∴=,34433V R ∴=π==,故选D 【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、练模拟1.(2021·广西梧州模拟)已知,,在球的球面上,,,,直线与A B C O 120BAC ∠=︒2AC =1AB =OA截面所成的角为,则球的表面积为( )A .B .C .D . 【答案】D【分析】设的外心为,由余弦定理可得,再由正弦定理可得外接圆直径,进而可得球的半径和表面积. 【解析】设的外心为,, ,则. 设球的半径为,由题意可知平面,又直线与截面所成的角为,所以,在中,所以,所以球的表面积为,故选D . 【点睛】关键点点睛:本题考查球的表面积,求出球的半径是关键.本题中利用正余弦定理求出三角形的外接圆半径,再利用线面角,构造直角三角形,求出球半径.考查了学生的运算求解能力和逻辑推理能力,属于中档题目.2.(2021·安徽安庆市·高三一模(文))四面体中,,,,且面,则四面体的外接球表面积为( )A .B .C .D . 【答案】D【分析】由面,构造一个直三棱柱,设,分别为上下两个底面的外接圆圆心,易得球心为的中点,然后分别在中求得外接圆的半径,进而中求得球的半径即可.【解析】根据题意,构造一个直三棱柱,如图,ABC 60︒O 43π163π563π1123πABC 1O BC12sin120BC O A ==︒ABC 1O 2222cos BC AB AC AB AC BAC =+-⋅∠2212212cos1207=+-⨯⨯︒=BC=12sin120BC O A ==︒R 1OO ⊥ABC OA ABC 60︒160OAO ∠=︒1RtAOO 12R OA O A ===O 2281124433S R πππ==⨯=A BCD -2AB CD ==1BC =23BCD π∠=AB ⊥BCD A BCD -36π9π1243π403πAB ⊥BCD 1O 2O O 12O O BCD △2BOO,分别为上下两个底面的外接圆圆心,根据球的性质,球心必为的中点,所以球的半径为,设为,的外接圆半径设为,在中,,,,由余弦定理得, 由正弦定理可得,在中,, 所以球的表面积,故选D . 【点睛】关键点睛:解决本题的关键在于利用正弦定理求出的外接圆的半径,结合勾股定理得出三棱锥的外接球的半径.3.(2021·江西上饶模拟)设为等腰三角形,,,为边上的高,将沿翻折成,若四面体,则线段的长度为( )A .B .1 CD【答案】C【分析】由题意画出图形,结合已知求出三角形的外接圆的半径,再由正弦定理求解得答案.【解析】如图,1O 2O O 12O O OB R BCD △r BCD △2AB CD ==1BC =23BCD π∠=214122172BD ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭2sin BD r BCD ===∠2BOO 221013R r =+=24043S R ππ==BCD △ABC 2AB AC ==3A π∠=AD BC ADC AD ADC 'ABC D 'BC '2BDC '设等腰三角形的外心为,四面体的外接球的球心为,连接,则平面, 由已知求得, ,即等腰三角形又由已知可得,由正弦定理可得,得可得,则,故选C .【点睛】方法点睛:求几何体的外接球的半径常用的方法有:(1)直接法;(2)模型法;(3)解三角形法.要根据已知条件灵活选择方法求解.4.(多选题)( 2021福清西山学校高三期中)已知的等边三角形,且其顶点都在球的球面上.若球的表面积为,则( )A .B .与平面所成的角为C .到平面的距离为1D .二面角的大小为 【答案】ABC【分析】过作平面于点,则点是等边的中心,也是外心、重心,、即可判断选项A ;因为平面于点,所以即为与平面所成的角,在直角三角形中,求即可判断选项B ;求的长即可判断选项C ;取的中点连接,可得即为二面角的平面角,求出即可判断选项D ,进而可得正确选项.【解析】如图,因为的顶点都在球的球面上,且是等边三角形,过作平面于点,则点是等边的中心,也是外心,重心 因为, BDC 'G ABC D 'O GO OG ⊥BDC 'AD =ABC D 'DG ∴=BDC '1BD DC ==1sin DBC =∠sin DBC ∠=45DBC DCB ∠=∠=︒BC 'ABC O O 16πOA BC ⊥OA ABC 30O ABC O AB C --60︒O OH ⊥ABC H H ABC OH BC ⊥AD BC ⊥OH ⊥ABC H OAH ∠OA ABC AHO OAH ∠OA AB M ,OM HM OMH ∠O AB C --OMH ∠ABC O ABC O OH ⊥ABC H H ABCABC 2AB =3AB =延长交于点,则点是的中点,因为,所以,又因为平面,平面,所以,因为,所以平面,又因为平面,所以,故选项A 正确;因为球的表面积为,即,所以,即,因为等边中,,所以,在直角三角形中,,所以到平面的距离为1,故选项C 正确;因为平面于点,所以即为与平面所成的角,在直角三角形中,,,所以,所以,故选项B 正确; 取的中点连接,因为,所以,因为平面,平面,所以,因为,所以平面,所以,结合,可得即为二面角的平面角,由,,所以,,所以,所以,故选项D 不正确,故选ABC .【点睛】方法点睛:求空间中直线与平面所成角的常见方法为(1)定义法:直接作平面的垂线,找到线面成角;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离,距离与斜线长的比值即线面成角的正弦值;(3)向量法:利用平面法向量与斜线方向向量所成的余弦值的绝对值,即是线面成角的正弦值. AH BC D D BC AB AC =AD BC ⊥OH ⊥ABC BC ⊂ABC OH BC ⊥AD OH H ⋂=BC ⊥AOH AO ⊂AOH OA BC ⊥O 16π2416R ππ=2R =2OA=ABC 3AB =33cos30AD AB ==23AH AD ==AHO 1OH=O ABC OH ⊥ABC H OAH ∠OA ABC AHO 1OH =2OA =1sin 2OHOAH OA ∠==30OAH ∠=AB M ,OM HM OA OB =OM AB ⊥OH ⊥ABC AB ABC OH AB ⊥OM OH O ⋂=AB ⊥OHM HM AB ⊥OM AB ⊥OMH ∠O AB C --2OA =32AM =OM ==1OH =sin OH OMH OM ∠==≠60OMH ∠≠5.(多选题)( 2021双峰县第一中学高三月考)已知正方体的棱长为2,,分别是,的中点,过,的平面与该正方体的每条棱所成的角均相等,以平面截该正方体得到的截面为底面,以为顶点的棱锥记为棱锥,则( )A .正方体的外接球的体积为B .正方体的内切球的表面积为C .棱锥的体积为3D .棱锥的体积为【答案】AC【分析】根据正方体外接球的直径为正方体体对角线可知其直径为再根据正方体内切球球心为正方体中心,半径为棱长一半,可求得其内切球表面积;根据题干做出该正方体图形,可知棱锥的正六边形,可求得该锥体体积.【解析】因为正方体的棱长为2,所以正方体,内切球的半径为1,所以正方体的外接球的体积为,内切球的表面积为,故A 正确,B 错误.如图,分别是棱的中点.因为在同一个平面内,并且该平面与正方体的各条棱所成的角均相等,所以平面被此正方体所截得的截面图形为正六边形. 因为正六边形的面积,到平面所以棱锥的体积为.故正确,D 错误,故选AC . 1111ABCD A BC D -E F 1AA1CC E F αα1B Ω1111ABCD A BC D -1111ABCD A BC D -43πΩΩ32Ω1111ABCD A BC D -1111ABCD A BC D -=1111ABCD A BC D -343π⨯=2414ππ⨯=,,,M N S T 1111,,,AB BC C D A D EMNFST αEMNFST EMNFST 1623S π=⨯=1B α=Ω13⨯3=C【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.6.(2021·黑龙江哈尔滨市·哈尔滨三中高三月考(文))沿正三角形的中线翻折,使点与点间的距离,则四面体外接球表面积为_______.【答案】【分析】由题意分析:四面体可补形为长方体,只需要找长方体的外接球即可.【解析】如图示,∵为正三角形的中线,∴,又,∴,∵∴,∴,∴四面体可扩充为长方体.则四面体外接球即为长方体的外接球.设四面体外接球的半径为R,则,∴∴四面体外接球表面积.【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.(2021·新疆高三模拟(理))三棱锥的底面是边长为的等边三角形,二面角为,则三棱锥的外接球的表面积为___________.【答案】ABC AD B CABCD5πABCDAD ABC,AD BD AD CD⊥⊥=BD CD D AD BCD⊥1BC BD CD==,222=BC BD CD+BD CD⊥ABCDABCDABCD()22222R BD CD AD=++2R=ABCD245S Rππ==S ABC-12SB SC==S BC A--60S ABC-208π【分析】设为中点,为正外心,可得是二面角的平面角为,作底面,垂足为,在上,设外接球球心,则,作于,设,利用,由已知线段长及二面角的大小求出图形中各线段长,然后利用勾股定理求得(以图中位置计算出值,如果,说明在平面上方,如果,则在平面正方).然后可得外接球半径,从而得球面积.【解析】如图,设为中点,为正外心,依题意有,,∴,∴,则易证为二面角的平面角,,设在底面的射影为,则可证在上,则,,,,,设为三棱锥的外接球球心,可证,过点在面内作,为垂足,则,,设求半径为,,则,,解得,.则球心在底面的下方,事实上当在底面的下方时 解得,.三棱锥的外接球的表面积为.【点睛】本题考查求三棱锥外接球的表面积,解题关键是找到球心位置,求出球的半径.三棱锥的外接球球心一定在过各面外心与此面垂直的直线上.8.(2021·湖北高三月考)已知球的半径为点均在球面上,若为等边三角形,且其面积则三棱锥的最大体积是___________. D BC G ABC SDA ∠S BC A --60︒SE ⊥ABC E E AD O //OG SE OF SE ⊥F OG d =OS OA R ==d d 0d >O ABC 0d <O ABC D BC G ABC 6BD DC ==SB SC ==SD BC ⊥6SD =SDA ∠S BC A --60SDA ∠=S ABC E E AD 3ED =SE =GD =AG =3GE =O //OG SE O SAD OF SE ⊥F 3OF GE ==AG =R OG d =222R OA OS ==22223))d d +=+2d =-252R =O ABC O ABC 22223))d d +=+2d =252R =S ABC -208πO 4,3,,,A B C D ABC D ABC -【分析】根据三角形面积求出边长,即可求出三角形外接圆半径,继而可求出高的最大值,求出体积.【解析】设外接圆的圆心为由解得,则 当三棱棱锥体积最大时,球心在上,因此有 所以的最大值为,三棱锥的最大体积为故.三、练原创1.已知圆锥的高为3积等于( )A .B .C .D . 【答案】B 【解析】如图:设球心到底面圆心的距离为,则球的半径为,由勾股定理得解得,故半径, 故选. ABC 1,O ABC 21sin603,2AB ⋅⋅=2AB =1122sin60AB O B =⨯=D ABC -O 1DO 12,3OO ==1DO 42233+=D ABC -111233ABC V S DO =⋅⋅==83π323π16π32πx 3x -()2233x x +=-1x =2r =343233V r ππ==球B2.(2021·江西九校联考)已知三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,三角形ABC 是边长为3的正三角形,三角形BCD 是直角三角形,且∠BCD =90°,CD =2,则此三棱锥外接球的体积等于( )A .B .C .16πD .32π【答案】A【分析】把三棱锥放入长方体中,根据长方体的结构特征求出三棱锥外接球的半径,再计算三棱锥外接球的体积.【解析】三棱锥中,侧面底面,把该三棱锥放入长方体中,如图所示;设三棱锥外接球的球心为,取BC 的中点M ,BD 的中点N ,三角形ABC 的重心G ,连接OG ,则,,, 所以三棱锥外接球的半径为,所以三棱锥外接球的体积为,故选A . 3.(多选题)(2021湖南长沙市·长郡中学高三月考)已知球是正三棱锥(底面为正三角形,点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆的面积可能是( )A .B .C .D .【答案】BCD【分析】依题意首先求出外接球的半径,即可求出截面圆的面积最大值,设过且垂直的截面圆的半径为323π643πA BCD -ABC ⊥BCD O AM ==2233AG AM ===112OG CD ==2R OA ==3344232333R V πππ⨯===O A BCD -3BC =AB =E BD 6BD BE =E O π2π3π4πE OE,即可求出截面圆的面积最小值,从而得解;【解析】如下图所示,其中是球心,是等边三角形的中心,可得,,设球的半径为,在三角形中,由,即,解得,故最大的截面面积为,在三角形中,,,由余弦定理得, 在三角形中,,设过且垂直的截面圆的半径为,,故最小的截面面积为,所以过点作球的截面,所以截面圆面积的取值范围是,故选.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 4.(2021·江苏南通一模)已知在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线的平面截圆柱得到四边形,其面积为8.若P 为圆柱底面圆弧的中点,则平面与球O 的交线长为___________.r O O 'BCD O B O D BC ''===3AO '=R ODO '222OO DO OD ''+=()2223R R -+=2R =24=R ππBEO '1162BE BD ==6EBO π'∠=2O E '==OO E 'OE ==E OE r 222115444r R OE =-=-=254r ππ=E O 5,44ππ⎡⎤⎢⎥⎣⎦BCD 12O O 12O O ABCD CD PAB【分析】先根据球与圆柱的上、下底面及母线均相切,可得四边形为正方形,由,求出球的半径r ;由题意分析出平面与球O 的交线为一个圆,利用垂径定理,计算出圆的半径,求出周长即可.【解析】设球的半径为r ,则,而,∴作于H ,∵⊥底面,∴⊥AB .∵P 为圆柱底面圆弧的中点,∴AP =BP ,又为AB 中点,∴⊥AB ,又,∴,∴,又且,∴,∵,, ∴,∴∴平面与球O 的交线为一个圆,其半径,圆周长为. 【点睛】(1)多面体的外接球(内切球)问题解题关键是找球心和半径,求半径的方法有:①公式法;②多面体几何性质法;③补形法;④寻求轴截面圆半径法;⑤确定球心位置法;(2)一个平面与球相交,所得的截面为一个圆.5.(2021·盐城市伍佑中学高三期末)已知三个顶点都在球的表面上,且,,ABCD 8ABCD S =PAB 2r =2AB BC r ==248ABCD S AB BC r ===r =2OH O P ⊥12O O 12O O CD 2O 2O P 1222OO PO O =12AB O O P ⊥AB OH ⊥2OH O P ⊥22AB PO O =OH ABP ⊥122OO r ==1O P =121OO O P ⊥2O P 1122si n O P O O P O P ∠===12255sin O O O O H O P =⨯∠==PAB 2r ===222l r ππ===ABC O 1AC BC ==AB =是球面上异于、、的一点,且平面,若球的表面积为,则球心到平面的距离为____________.【答案】 【分析】根据题中的垂直关系,确定球心,再根据球的表面积公式计算,再求点到平面的距离.【解析】由,,并且平面,平面,,且 平面,,是直角三角形和的公共斜边,取的中点,根据直角三角形的性质可知,所以点是三棱锥外接球的球心,设,则则三棱锥外接球的表面积,,解得:,点到平面的距离.【点睛】方法点睛:本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,那么外接球的直径(2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立的方程.(3)而本题类型,是两个直角三角形的公共斜边的中点是外接球的球心. S A B C SA ⊥ABC O 16πO ABC 2O SA O ABC 222AC BC AB +=AC BC ∴⊥SA ⊥ABC BC ⊂ABC SA BC ∴⊥AC SA A ⋂=BC ∴⊥SAC BC SC ∴⊥SB ∴SBC SAB SB O OA OB OC OS ===O S ABC -SA x =12r SB ==S ABC -2416S r ππ==()21264x +=x =O ABC 122d SA ==,,a b c 2R R。

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(测)含解析

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(测)含解析

2018年高考数学(理)二轮复习讲练测热点七 几何体与球切、接的问题总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.【2018届福建省福州市高三上学期期末】已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( ) A. 4π B. 163π C. 323π D. 16π 【答案】D【解析】设球半径为,R 该圆柱的两个底面的圆周都在同一个球面上, ∴可得()222134R =+=,球的表面积为2416R ππ=,故选D.2.【2018届安徽省皖西高中教学联盟三上学期期末】已知球面上有A 、B 、C 三点,且AB=AC=2,BC=2,球心到平面ABC 的距离为3,则球的体积为 ( )A.43π B. 323π C. 3223π D. 643π【答案】B3.【2018届福建省福州市高三上学期期末】已知圆锥的高为3,它的底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A. 83πB. 323π C. 16π D. 32π 【答案】B【解析】如图:设球心到底面圆心的距离为x ,则球的半径为3x -,由勾股定理得()2233x x +=- 解得1x =,故半径2r =, 343233V r ππ==球 故选B .4.【2018届安徽省皖西高中教学联盟三上学期期末】正三棱柱的顶点都在同一个球面上,若球的半径为4,则该三棱柱侧面面积最大值为 ( ) A. 483 B. 643 C. 172831 D. 5767【答案】A5.【2018届福建省三明市A 片区高中联盟校高三上学期期末】几何体的三视图如图所示,则该几何体外接球的表面积为( )A.163πB. 4πC. 3D. 以上都不对 【答案】A【解析】由题可知该几何体为轴截面为正三角形的圆锥,底面圆的直径为2,高为3∴外接球半径123cos303r ==︒∴外接球表面积416433ππ⨯⨯= 故选A6.已知球面上的三个点A B C 、、,且2,2,6AB BC AC ===,球的半径为2,则球心到平面ABC 的距离等于( )A. 3B. 2C. 1D. 32【答案】B【解析】由题意,得球心O 在面ABC 的射影为ABC ∆的外心,因为2,2,6AB BC AC ===,所以22246AB B AC +=<=,即ABC ∆是以B 为钝角的等腰三角形,则外心在高BM 的延长线上,设,MH x OH d ==,则222222226,22OB d x OA d x ⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得22x =,即()22222d =-=.故选B.7.【2018届四川省乐山四校第三学期半期联考】如图,在等腰梯形ABCD 中, 22,60AB DC DAB ==∠=, E 为AB 中点.将ADE ∆与BEC ∆分别沿ED 、EC 折起,使A 、B 重合于点P ,则三棱锥P DCE -的外接球的体积为( )A.4327πB. 62πC. 68πD. 624π【答案】C8.已知直角三角形ABC 的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面的距离为( ) A. 5 B. 6 C. 10 D. 12 【答案】D【解析】由题意可知,直角三角形的斜边为直角三角形所在小圆的直径,其直径为: 226810+=,在大圆内应用勾股定理可得:球心到平面的距离为221013122⎛⎫-= ⎪⎝⎭.本题选择D 选项.9.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( ) A .33B .1C .3D .332【答案】A10.【2018届”超级全能生”高考全国卷26省9月联考】若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,则球O 的半径与正四棱锥P ABCD -内切球的半径之比为( ) A. 31+ B. 2 C. 3 D. 31- 【答案】A【解析】设外接球半径为R,由题意可知,OA=OB=OC=OD=OP=R,设四棱锥P-ABCD 的内切球半径为r,由等体积法()()2221131r 242,313323V S R R r R R R r ⎛⎫==+⨯==+ ⎪ ⎪⎝⎭表,所以选A.11.【2018届云南民族大学附属中学高三上学期期末】已知一个球的表面上有A 、B 、C 三点,且23AB AC BC ===,若球心到平面ABC 的距离为1,则该球的表面积为()A. 20πB. 15πC. 10πD. 2π 【答案】A【解析】由题意可得平面ABC 截球面所得的截面圆恰为正三角形ABC 的外接圆O′, 设截面圆O′的半径为r ,由正弦定理可得2r=4,解得r=2, 设球O 的半径为R ,∵球心到平面ABC 的距离为1, ∴由勾股定理可得r 2+12=R 2,解得R 2=5, ∴球O 的表面积S=4πR 2=20π。

新高考数学二轮复习学案板块1命题区间精讲精讲11球与几何体的切接问题

新高考数学二轮复习学案板块1命题区间精讲精讲11球与几何体的切接问题

球与几何体的切接问题命题点1外接球求解外接球问题的方法解决多面体外接球问题的关键是确定球心的位置,方法是先选择多面体中的一面,确定此面多边形外接圆的圆心,再过此圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点的情况确定球心的准确位置.对于特殊的多面体还可通过补成正方体或长方体的方法找到球心位置.[高考题型全通关]1.直三棱柱ABC-A′B′C′的所有棱长均为23,则此三棱柱的外接球的表面积为()A.12πB.16πC.28πD.36πC[由直三棱柱的底面是边长为23的正三角形,得底面所在平面截外接球所成的圆O的半径r=2,又由直三棱柱的侧棱长为23,得外接球球心到圆O的距离d=3,则外接球半径R满足R2=r2+d2=7,∴外接球的表面积S=4πR2=28π.故选C.]2.(2020·石家庄模拟)已知正三棱锥S-ABC的所有顶点都在球O的球面上,棱锥的底面是边长为23的正三角形,侧棱长为25,则球O的表面积为() A.25πB.20π C.16πD.30πA[如图,延长SO交球O于点D,设△ABC的外心为E,连接AE,AD,由正弦定理得2AE=23=4,∴AE=2,sin 60°易知SE⊥平面ABC,由勾股定理可知,三棱锥S-ABC的高SE=SA2-AE2=(25)2-22=4,由于点A是以SD为直径的球O上一点,∴∠SAD=90°,由射影定理可知,球O 的直径2R =SD =SA 2SE =5, 因此,球O 的表面积为4πR 2=π×(2R )2=25π.] 3.(2020·武汉部分学校质量检测)已知三棱锥P -ABC 的四个顶点均在球O 的球面上,P A =PB =PC =2,且P A ,PB ,PC 两两互相垂直,则球O 的体积为 ( )A .163πB .83πC .43πD .23πC [因为P A ,PB ,PC 两两互相垂直,且P A =PB =PC =2,所以以P A ,PB ,PC 为交于一点的三条棱构造正方体,则球O 即此正方体的外接球,该正方体的体对角线长为球的直径,即球的直径为P A 2+PB 2+PC 2=22+22+22=23,所以球的半径R =3,所以球O 的体积V =43πR 3=43π(3)3=43π,选C .] 4.如图,半径为R 的球的两个内接圆锥有公共的底面.若两个圆锥的体积之和为球的体积的38,则这两个圆锥的高之差的绝对值为( )A .R 2B .2R 3C .4R 3D .RD [设球的球心为O ,半径为R ,体积为V ,上面圆锥的高为h (h <R ),体积为V 1,下面圆锥的高为H (H >R ),体积为V 2,两个圆锥共用的底面的圆心为O 1,半径为r .由球和圆锥的对称性可知h +H =2R ,|OO 1|=H -R .∵V 1+V 2=38V ,∴13πr 2h+13πr 2H =38×43πR 3,∴r 2(h +H )=32R 3.∵h +H =2R ,∴r =32R .∵OO 1垂直于圆锥的底面,∴OO 1垂直于底面的半径,由勾股定理可知R 2=r 2+|OO 1|2,∴R 2=r 2+(H -R )2,∴H =32R ,∴h =12R ,则这两个圆锥的高之差的绝对值为R ,故选D .]命题点2 内切球求解内切球问题的关键点求解多面体的内切球问题的关键是求内切球的半径.求内切球半径的一般方1.已知一圆锥的底面直径与母线长相等,一球体与该圆锥的所有母线和底面都相切,则球的表面积与圆锥的表面积的比值为 ( )A .23B .49C .269D .827B [设圆锥的底面半径为R ,球的半径为r ,由题意知,圆锥的轴截面是边长为2R 的等边三角形,球的大圆是该等边三角形的内切圆,所以r =33R ,S 球=4πr 2=4π·⎝ ⎛⎭⎪⎫33R 2=4π3R 2,S 圆锥=πR ·2R +πR 2=3πR 2,所以球的表面积与圆锥的表面积的比值为4π3R 23πR 2=49,故选B .]2.在封闭的正三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB =6,AA 1=4,则V 的最大值是 ( )A .16πB .32π3C .12πD .43πD [由正三角形ABC 的边长为6,得其内切圆的半径为r =3<2,所以在封闭的正三棱柱ABC -A 1B 1C 1内的球的半径的最大值为3,所以V max =43πr 3=43π,故选D .]3.如图,在三棱锥P -ABC 中,P A =4,AC =27,PB =BC =23,P A ⊥平面PBC ,则三棱锥P -ABC 的内切球的表面积为( )A .32πB .94πC .43πD .163πB [由P A ⊥平面PBC ,且P A =4,PB =23,AC =27,得AB =27,PC =23,所以△PBC 为等边三角形,△ABC 为等腰三角形,V 三棱锥P -ABC =V 三棱锥A -PBC=13S △PBC ×P A =13×34×(23)2×4=43,三棱锥P -ABC 的表面积为S =12×23×4×2+34×(23)2+12×23×5=16 3.设内切球半径为r ,则V 三棱锥P -ABC =13×S ×r ,即43=13×163×r ,所以r =34,所以三棱锥P -ABC 的内切球的表面积为4π×⎝ ⎛⎭⎪⎫342=9π4.] 4.如图,圆柱O 1O 2的底面直径与高都等于球O 的直径,记圆柱O 1O 2的表面积为S 1,球O 的表面积为S 2,则S 1S 2=________. 32 [设球的半径为R ,则圆柱的底面半径为R ,高为2R .所以球的表面积S 2=4πR 2,圆柱的表面积S 1=2πR ×2R +πR 2+πR 2=6πR 2,则S 1S 2=6πR 24πR 2=32.] 命题点3 与球有关的最值问题多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题;二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[高考题型全通关]1.(2020·成都模拟)若矩形ABCD 的对角线交点为O ′,周长为410,四个顶点都在球O 的表面上,且OO ′=3,则球O 的表面积的最小值为( )A .322π3B .642π3C .32πD .48πC [由题意,知矩形ABCD 所在的圆面为球O 的一个截面.因为O ′为矩形ABCD 的对角线的交点,所以OO ′所在直线垂直于矩形ABCD 所在的圆面.因为矩形ABCD 的周长为410,所以BC +CD =210.设BC =x ,则CD =210-x ,所以BD 2=BC 2+CD 2=x 2+(210-x )2,即BD 2=2(x -10)2+20.设球O 的半径为R ,则R 2=⎝ ⎛⎭⎪⎫BD 22+O ′O 2=12(x -10)2+8,所以当x =10时,R 2取得最小值8,所以球O 的表面积的最小值S min =4π(R 2)min =32π,故选C .]2.(2020·洛阳尖子生第一次联考)已知三棱锥P -ABC 的四个顶点均在同一个球面上,底面△ABC 满足BA =BC =6,∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为( )A .8πB .16πC .163πD .323πD [如图,∵△ABC 是等腰直角三角形,∴AC 为截面圆的直径,外接球的球心O 在截面ABC 上的射影为AC 的中点D ,∴当P ,O ,D 共线且P ,O 位于截面ABC 同一侧时三棱锥的体积最大,高最大,此时三棱锥的高为PD ,由13×12×6×6×PD =3,解得PD =3,设外接球的半径为R ,则OD =3-R ,OC =R ,在△ODC中,CD =12AC =3,由勾股定理得(3-R )2+(3)2=R 2,解得R =2.∴三棱锥P -ABC的外接球的体积V =43π×23=323π.故选D .]3.(2020·惠州第一次调研)在三棱锥A -BCD 中,底面BCD 是直角三角形且BC ⊥CD ,斜边BD 上的高为1,三棱锥A -BCD 的外接球的直径是AB ,若该外接球的表面积为16π,则三棱锥A -BCD 体积的最大值为________.43 [如图,过点C 作CH ⊥BD 于H .由外接球的表面积为16π,可得外接球的半径为2,则AB =4.因为AB 为外接球的直径,所以∠BDA =90°,∠BCA =90°,即BD ⊥AD ,BC ⊥CA ,又BC ⊥CD ,CA ∩CD =C ,所以BC ⊥平面ACD ,所以BC ⊥AD ,又BC ∩BD =B ,所以AD ⊥平面BCD ,所以平面ABD ⊥平面BCD ,又平面ABD ∩平面BCD =BD ,所以CH ⊥平面AB D .设AD =x (0<x <4),则BD =16-x 2.在△BCD 中,BD 边上的高CH =1,所以V 三棱锥A -BCD =V 三棱锥C -ABD =13×12×x ×16-x 2×1=16-x 4+16x 2,当x 2=8时,V 三棱锥-BCD 有最大值,故三棱锥A-BCD体积的最大值为4 3.]4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.22[由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+B C.由基本不等式可得AB×BC=AB+BC≥2AB×BC,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为2 2.]。

微专题6 与球有关的切、接、截面问题 --2025年高考数学复习讲义及练习解析

微专题6 与球有关的切、接、截面问题 --2025年高考数学复习讲义及练习解析

球的切、接、截面问题是历年高考的热点内容,常以选择题、填空题的形式出现,一般围绕球与其他几何体的内切、外接问题命题,考查球的体积、表面积等.类型一外接球解决与外接球相关问题的关键是确定球心,然后通过球心和接点作截面,进而将球的外接问题转化为平面几何问题,利用平面几何知识来分析、处理.例1(1)(2024·江苏启东中学阶段考试)已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB =5,BC=7,AC=2,则此三棱锥的外接球的体积为()A.8π3B.82π3C.16π3D.32π3答案B解析由题意知,可将三棱锥放入长方体中考虑,则长方体的外接球即为三棱锥的外接球,故球的半径为长方体体对角线的一半,设PA=x,则PB2+PC2=BC2=7,即5-x2+4-x2=7,解得x=1,故PA=1,PB=2,PC=3,所以R=12+22+(3)22=2,所以此三棱锥的外接球的体积为43πR3=82π3.(2)(2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π答案A解析设正三棱台上、下底面所在圆面的半径分别为r1,r2,所以2r1=33sin60°,2r2=43sin60°,则r1=3,r2=4.设球心到上、下底面的距离分别为d1,d2,球的半径为R(R≥4),所以d1=R2-9,d2=R2-16,故|d1-d2|=1或d1+d2=1,即|R2-9-R2-16|=1或R2-9+R2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.故选A.(3)(2023·全国乙卷)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=________.答案2解析如图,将三棱锥S-ABC转化为直三棱柱SMN-ABC,设△ABC的外接圆的圆心为O1,半径为r,则2r=ABsin∠ACB=332=23,可得r= 3.设三棱锥S-ABC的外接球的球心为O,连接OA ,OO 1,则OA =2,OO 1=12SA ,因为OA 2=O 1A 2+OO 21,即4=3+14SA 2,所以SA =2.(4)(2022·新高考Ⅰ卷改编)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是________.答案274,643解析如图,设该球的半径为R ,球心为O ,正四棱锥的底边长为a ,高为h ,正四棱锥的侧棱与高所成的角为θ,则正四棱锥的底边长a =2l sin θ,高h =l cos θ.依题意,得36π=43πR 3,解得R =3.在△OPC 中,作OE ⊥PC ,垂足为E ,则可得cos θ=l 2R =l6∈12,32,所以l =6cos θ,所以正四棱锥的体积V =13a 2h =13(2l sin θ)2·l cos θ=23(6cos θ)3sin 2θcos θ=144(sin θcos 2θ)2.设sin θ=t ,易得t ∈12,32.令y =sin θcos 2θ=t (1-t 2)=t -t 3,则y ′=1-3t 2,令y ′=0,得t =33,所以当12<t <33时,y ′>0;当33<t <32时,y ′<0,所以函数y =t -t 3,.又当t =33时,y =239;当t =12时,y =38;当t =32时,y =38.所以38≤y ≤239,所以274≤V ≤643.所以该正四棱锥的体积的取值范围是274,643.1.求解几何体外接球半径的思路一是根据球的截面的性质,利用球的半径R 、截面圆的半径r 及球心到截面圆的距离d 三者的关系R 2=r 2+d 2求解,其中,确定球心的位置是关键;二是将几何体补成长方体,利用该几何体与长方体共有外接球的特征,由外接球的直径等于长方体的体对角线长求解.2.确定球心常用的方法(1)长方体或正方体的外接球的球心是其体对角线的中点.(2)正棱柱的外接球的球心是上、下底面中心连线的中点.(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点.(4)正棱锥的外接球的球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到.1.(2024·福建宁德一中高三模拟)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,BC =1,AB =3,AA 1=23,则该直三棱柱的外接球的体积为()A .8π3B .16π3C .32π3D .64π3答案C解析如图所示,将直三棱柱ABC -A 1B 1C 1补成长方体,则长方体的外接球即为直三棱柱的外接球.长方体的体对角线长为(23)2+(3)2+1=4,设长方体的外接球的半径为R ,则2R =4,解得R =2,所以该直三棱柱的外接球的体积V =43πR 3=32π3.故选C.2.(2024·鞍山一中高三模拟)在三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,则三棱锥P -ABC 外接球的表面积为()A .26πB .12πC .8πD .24π答案A解析三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,如图,构造长方体,使得面上的对角线长分别为4,5,11,则长方体的体对角线长等于三棱锥P -ABC 外接球的直径,设长方体的棱长分别为x ,y ,z ,则x 2+y 2=16,y 2+z 2=25,x 2+z 2=11,则x 2+y 2+z 2=26,因此三棱锥P -ABC 外接球的直径为26,所以三棱锥P -ABC 外接球的表面积为=26π.故选A.3.(2024·四川遂宁高三期末)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为________.答案16π解析球心O 在平面ABC 的投影为△ABC 的中心,设为O 1,连接OD ,OO 1,OA ,设H 是AD 的中点,连接OH ,如图所示,则AO 1=32sin60°=3,OA =OD =R ,则OH ⊥AD ,四边形AO 1OH 为矩形,OO 1=AH =1,R 2=AO 21+OO 21=3+1=4,故R =2,S=4πR 2=16π.4.(2022·全国乙卷改编)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为________.答案33解析设该四棱锥的底面为四边形ABCD ,四边形ABCD 所在小圆的半径为r ,四边形ABCD对角线的夹角为α,则S 四边形ABCD =12AC ·BD sin α≤12AC ·BD ≤12·2r ·2r =2r 2(当且仅当四边形ABCD为正方形时,等号成立),即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 的面积的最大值为2r 2,设该四棱锥的高为h ,则r 2+h 2=1,所以V O -ABCD =13·2r 2·h =23r 2·r 2·2h 2≤23=4327,当且仅当r 2=2h 2,即h =33时,等号成立.类型二内切球解决与内切球相关的问题,其通法也是作截面,将空间几何问题转化为平面几何问题来解决.例2(1)(2024·广东广州模拟)已知一个圆台的母线长为5,且它的内切球的表面积为16π,则该圆台的体积为()A .25πB .84π3C .28πD .36π答案C解析由圆台的内切球的表面积为16π,可得球的半径为2.设圆台上、下底面圆的半径分别为x ,y ,作出圆台的轴截面如图所示.+y =5,2+(y -x )2=52,=1,=4.又圆台的高为4,所以该圆台的体积为13×(π+16π+π×16π)×4=28π.故选C.(2)已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________.答案2-1解析如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE =2.所以S 三棱锥表=3×12×23×2+33=36+33.因为PD =1,所以三棱锥的体积V =13×33×1=3.设内切球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3,得r =3336+33=2-1.(3)(2023·全国甲卷)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CD ,A 1B 1的中点,则以EF 为直径的球面与正方体每条棱的交点总数为________.答案12解析如图,不妨设正方体的棱长为2,EF 的中点为O ,取AB ,BB 1的中点G ,M ,侧面BB 1C 1C 的中心为N ,连接FG ,EG ,OM ,ON ,MN ,由题意可知,O 为球心,在正方体中,EF =FG 2+EG 2=22+22=22,即R =2,则球心O 到BB 1的距离为OM =ON 2+MN 2=12+12=2,所以球O 与棱BB 1相切,球面与棱BB 1只有1个交点,同理,根据正方体的对称性知,球面与其余各棱也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.“切”的问题常用的处理方法(1)找准切点,通过作过球心的截面来解决.(2)通过体积分割法来求内切球的半径.5.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2π3解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π×=2π3.6.(2024·山东烟台模拟)某学校开展手工艺品展示活动,某同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为________,三棱柱的顶点到球的表面的最短距离为________.答案12π15-3解析过侧棱的中点作正三棱柱的截面,如图所示,则球心为△MNG 的中心.因为MN=6,所以△MNG内切圆的半径r=OH=13MH=13MN2-HN2=3,即内切球的半径R=3,所以内切球的表面积S=4πR2=12π.又正三棱柱的高AA1=2R=23,OM=23 MH=23,所以AO=OM2+AM2=(23)2+(3)2=15,所以点A到球的表面的最短距离为AO-R=15- 3.类型三球的截面、截线问题解决球的截面、截线问题的关键是利用球的截面的性质.例3(1)(2024·云南昆明模拟)已知OA为球O的半径,M为线段OA上的点,且AM=2MO,过点M且垂直于OA的平面截球面得到圆M,若圆M的面积为8π,则OA=()A.22B.3C.23D.4答案B解析如图所示,由题意,得π×BM2=8π,则BM=2 2.设球的半径为R,则MO=13R,OB=R,所以R2=19R2+(22)2,所以OA=R=3.故选B.(2)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π答案A解析设⊙O1的半径为r,球的半径为R,依题意,得πr2=4π,∴r=2.由正弦定理可得AB sin60°=2r,∴AB=2r sin60°=23,∴OO1=AB=23.根据球的截面性质,得OO1⊥平面ABC,∴OO1⊥O1A,R=OA=OO21+O1A2=OO21+r2=4,∴球O的表面积S=4πR2=64π.故选A.(3)(2020·新高考Ⅰ卷)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析如图所示,取B 1C 1的中点为E ,BB 1的中点为F ,CC 1的中点为G ,连接D 1E ,EF ,EG ,D 1B 1,因为∠BAD =60°,直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,所以△D 1B 1C 1为等边三角形,所以D 1E =3,D 1E ⊥B 1C 1.又四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥D 1E .因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB .设P 为侧面B 1C 1CB 与球面的交线上的点,连接D 1P ,EP ,则D 1E ⊥EP .因为球的半径为5,D 1E =3,所以EP =D 1P 2-D 1E 2=5-3=2,所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为2.因为EF =EG =2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ︵.因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2,所以根据弧长公式可得交线长l =π2×2=2π2.(1)球的截面一定是一个圆面.(2)球心和小圆圆心连线垂直于小圆圆面.(3)过球内一点作球的截面,最大截面为过球心的圆面,最小截面为过该点且垂直于球心和该点连线的截面.7.(2024·江苏苏州校考阶段练习)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图是一个圆柱容球,O 1,O 2为圆柱两个底面的圆心,O 为球心,EF 为底面圆O 1的一条直径,若球的半径R =2,则(1)平面DEF 截得球的截面面积的最小值为________;(2)若P 为球面和圆柱侧面的交线上一点,则PE +PF 的取值范围为______________.答案(1)16π5(2)[25+2,43]解析(1)过点O 在平面ABCD 内作OG ⊥DO 1,垂足为G ,如图所示,易知O 1O 2⊥CD ,O 1O 2=4,O 2D =2,由勾股定理,可得O 1D =O 1O 22+O 2D 2=25,则由题意,可得OG =12×O 1O 2×O 2D O 1D =12×4×225=255,设点O 到平面DEF 的距离为d 1,平面DEF 截得球的截面圆的半径为r 1,因为O 1D ⊂平面DEF ,当OG ⊥平面DEF 时,d 1取得最大值OG ,即d 1≤OG =255,所以r 1=4-d 21≥4-45=455,所以平面DEF 截得球的截面面积的最小值为=16π5.(2)由题意可知,点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ′,则PP ′=2,PE =22+P ′E 2=4+P ′E 2,PF =22+P ′F 2=4+P ′F 2,由勾股定理,可得P ′E 2+P ′F 2=16,令P ′F 2=8-t ,则P ′E 2=8+t ,其中-8≤t ≤8,所以PE +PF =12+t +12-t ,所以(PE +PF )2=(12+t +12-t )2=24+2144-t 2∈[24+85,48],因此PE +PF ∈[25+2,43].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题2.7 几何体与球切、接的问题(测)总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______(一) 选择题(12*5=60分)1.【广西梧州市2017届高三上学期摸底联考】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图1所示,则此几何体的表面积是( )A .(4πB .6π+C .6π+D .(8π+ 【答案】C 【解析】圆柱的侧面积为ππ42121=⨯⨯=S ,半球的表面积为ππ21222=⨯=S ,圆锥的侧面积为ππ2213=⨯⨯=S ,所以几何体的表面积为ππ26321+=++=S S S S ,故选C. 2.【河北省沧州市第一中学2017届高三10月月考】已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,PA PD ==棱锥P ABCD -外接球的表面积为( )A .10πB .4π C. 16π D .8π 【答案】Dππ8242=⨯=S ,应选D.3.【2016届甘肃省天水市一中高三上学期期末考试】利用一个球体毛坯切削后得到一个四棱锥P —ABCD ,其中底面四边形ABCD 是边长为1的正方形,1PA =,且D A BC P A ⊥平面,则球体毛坯体积的最小值应为( )A .3 B C .43πD .2【答案】D4.【2016届河北省邯郸市一中高三下学期研六考试】在菱形ABCD 中,60,A AB =︒=,将ABD 折起到PBD 的位置,若二面角P BD C --的大小为23π,则三棱锥P BCD -的外接球的体积为( )A .43πB C D【答案】C 【解析】取BD 中点E ,连接AE CE ,,则2332AEC AE CE π∠===,,设BCD V 的外接圆的圆心与球心的距离为h ,三棱锥P BCD -的外接球的半径为R ,则22222154()()R h h R =+-+=,∴R h ==∴三棱锥P BCD -的外接球体积为343π⋅=.故选:C . 5.【2016届湖南师大附中高三上学期月考四】若长方体1111D C B A ABCD -中,AB=1,C B 1,D C 1分别与底面ABCD 所成的角为︒45,︒60,则长方体1111D C B A ABCD -的外接球的体积为 ( ) A .677π B .37π C .374π D .67π 【答案】A6.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D .54【答案】D 【解析】左视图由三视图知:几何体为正三棱柱,∵俯视图是边长为6的正三角形,∴几何体的内切球的半径R=6×33123=⨯, ∴三棱柱的侧棱长为32.∴几何体的表面积35432632366212=⨯⨯+⨯⨯⨯⨯=S ,故选:D . 7.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π 【答案】B8.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) A.2a π B. 237a π C. 2311a π D. 25a π 【答案】B 【解析】根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为222127)60sin 2()2(a a a R =+=,球的表面积为22371274a a S ππ=⋅=,故选B . 9.【广东省惠州市2017届高三第一次调研】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A B .1 C D 【答案】A【解析】因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S ∴在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C的距离相等.3SH =,1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC =,1SM ∴=,30OSM ∠=︒,SO OH ∴==O 到平面ABC 的距离,故选A .10.【2016届河北省正定中学高三上学期期末考试】球O 半径为13=R ,球面上有三点A 、B 、C ,312=AB ,12==BC AC ,则四面体OABC 的体积是A .360B .350C .660D .650 【答案】A11.【2016届贵州省贵阳市一中高三第五次月考】如图,已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【答案】C 【解析】设正ABC △的中心为1O ,连接1O A ,11O O O C ,,∵1O 是正ABC △的中心,A B C ,,三点都在球面上,∴1O O ABC ⊥平面,结合1O C ABC ⊂平面,可得11O O O C ⊥,∵球的半径2R =,球心O 到平面ABC 的距离为1,得11O O =,∴在1Rt O OC △中,1O C 又∵E 为AB 的中点,ABC △是等边三角形,13cos302AE AO =︒=∴,∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小,此时截面圆的半径32r =,可得截面面积为29ππ4S r ==,故选C . 12.【江西省新余市2016届高三第二次模拟】已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A .π10 B .π24 C .π36 D .π48 【答案】D(二) 填空题(4*5=20分)13.【2016届河北省邯郸一中高三下学期研七】球O 面上四点P 、A 、B 、C 满足:PA 、PB 、PC 两两垂直,3,4,PA PB PC ===,则球O 的表面积等于______.【答案】100π 【解析】空间四个点P A B C 、、、在同一球面上,PA PB PC 、、两两垂直,且3,4,PA PB PC ===,则PA PB PC 、、可看作是长方体的一个顶点发出的三条棱,所以过空间四个点P A B C 、、、的球面即为棱长分别为3,4,PA PB PC ===体的外接球,如下图:10=,所以这个球面的面积21024100S ππ⎛⎫=⎪⎝⎭=.14.【河南省新乡市2017届高三上学期第一次调研】已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在球面上),若球的半径5R =,圆锥的高是底面半径的2倍,则圆锥的体积为__________. 【答案】1283π 【解析】设圆锥底面半径为r ,高为2r .2R r =,解得4r =,所以圆锥的体积为211284833ππ⋅⋅=. 15.【湖北省襄阳市第四中学2017届高三七月第二周周考】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________. 【答案】169π16.【吉林省长春市普通高中2017届高三质量监测(一)】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .【答案】3(三) 解答题(共6道小题,共70分)17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.【答案】3R 【解析】由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积.【答案】92π.【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积..21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.【答案】9π.【解析】设外接球半径为R ,在△OO 1A 中有()2221+R R -=解得32R =.∴=9S π球.C BA22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.【答案】【解析】设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .。

相关文档
最新文档