有关排队问题的排列组合题解法举例
排列组合难题二十一种方法(含答案详解)
排列组合难题二十一种方法解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,. 先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法443解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
排列组合问题经典题型与通用方法
排列组合问题经典题型与通用方法解析版1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种解析:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A 种,答案:D.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C 种, 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A 、4441284C C C 种B 、44412843C C C 种C 、4431283C C A 种 D 、444128433C C C A 种答案:A.6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C种方法,再把三组学生分配到三所学校有33A种,故共有23 4336C A 种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种答案:B.7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种. 8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? 解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案? 解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合问题常用方法(二十种)
解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
排列组合问题常用的解题方法含答案
高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组( 看作一个元素 ) 参加摆列.例 1: 五人并排站成一排,假如甲、乙一定相邻且乙在甲的右侧,那么不一样的排法种数有种。
二、相离问题插空法元素相离 ( 即不相邻 ) 问题,可先把无地点要求的几个元素全摆列,再把规定相离的几个元素插入上述几个元素间的空位和两头.例 2:七个人并排站成一行,假如甲乙两个一定不相邻,那么不一样排法的种数是。
三、定序问题缩倍法在摆列问题中限制某几个元素一定保持必定次序,可用减小倍数的方法.例 3: A、 B、 C、 D、 E 五个人并排站成一排,假如 B 一定站 A 的右侧 (A、 B 可不相邻 ) ,那么不一样的排法种数有。
四、标号排位问题分步法把元素排到指定号码的地点上,可先把某个元素按规定排入,第二步再排另一个元素,这样持续下去,挨次即可达成.例 4:将数字 1、2、3、4 填入标号为 1、 2、 3、 4 的四个方格里,每格填一个数,则每个方格的标号与所填数字均不同样的填法有。
五、有序分派问题逐分法有序分派问题是指把元素按要求分红若干组,可用逐渐下量分组法。
例 5:有甲、乙、丙三项任务,甲需 2 人肩负,乙丙各需 1 人肩负,从 10 人中选出 4 人肩负这三项任务,不一样的选法总数有。
六、多元问题分类法元素多,拿出的状况也有多种,可按结果要求,分红不相容的几类状况分别计算,最后总计。
例 6:由数字 0 ,1,2,3,4,5 构成且没有重复数字的六位数,此中个位数字小于十位数字的共有个。
例 7:从 1,2,3, 100 这 100 个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法 ( 不计次序 ) 共有多少种?例 8:从 1,2, 100 这 100 个数中,任取两个数,使其和能被 4 整除的取法( 不计次序 ) 有多少种?七、交错问题会合法某些摆列组合问题几部分之间有交集,可用会合中求元素个数公式n( A B) n( A) n(B) n( A B) 。
例谈解答排列组合问题的三种方法
考点透视常见的排列组合问题有分组问题、排队问题、分配问题、计数问题等.解答排列组合问题,需重点讨论完成一件事情所需要的步数、方法数,通常需灵活运用分类计数原理和分步计数原理来求解.那么对于不同的事情,如何计算步数、方法数呢?下面介绍三种方法.一、优先法若题目中的元素有特殊要求,则需采用优先法求解.首先分析题目中有特殊要求的元素的排列方式,再分析题目中其他没有特殊要求的元素的排列方式,最后利用分步计数原理进行求解.例1.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,每个盒子只装1个小球.若A 小球必须放进4号盒子里,有多少种不同的放法?剖析:本题中的特殊元素为A 小球,则需采用优先法,优先考虑A 小球的位置,再考虑剩下的6个小球以及盒子的放置顺序.解:先将A 小球放进4号盒子里,有1种放法;再将剩下的6个小球任意放进6个盒子里,有A 66=720种放法;所以一共有A 66A 11=720种不同的放法.二、捆绑法有些题目中要求几个元素必须相邻排列,此时可以运用捆绑法求解.先将必须相邻排列的元素捆绑起来看成“一个整体”,当做1个元素,与其他元素一起排列;然后考虑这个“整体”内部元素的排列顺序;最后根据分步计数原理求解.例2.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,每个盒子只装1个小球.若放A 、B 、C 小球的3个盒子的标号相邻,则一共有多少种不同的放法?剖析:根据题意可知,要使放A 、B 、C 小球的3个盒子的标号相邻,需将放有A 、B 、C 3个球的盒子捆绑起来,视为一个“整体”,采用捆绑法求解.解:将放有A 、B 、C 3个球的盒子捆绑起来,视为一个“整体”,与其他4个盒子一起排列,有A 55=120种放法;将A 、B 、C 3个小球放进标号相邻的盒子,有A 33=6种放法;因此一共有A 55A 33=720种不同的放法.三、插空法有些题目要求某些元素不能相邻排列,对于这类问题,需运用插空法求解.先将没有要求的元素排列;再将要求不能相邻排列的元素插入已排列好的元素间的空隙中;最后利用分步计数原理求解即可.例3.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,并按照盒子的顺序摆成一排,每个盒子只装1个小球.要求放A 、B 、C 3个小球的盒子的标号不相邻,且也不放在第一个位置,则一共有多少种不同的放法?剖析:由题意可知,要使放A 、B 、C 3个小球的盒子的标号不相邻,则需采用插空法,先将放D 、E 、F 、G 4个小球的盒子排列好,再将放A 、B 、C 3个小球的盒子放在其他盒子间的缝隙中.解:先将放D 、E 、F 、G 4个小球的盒子的顺序排列,有A 44=24种方法;这4个盒子之间有3个空隙,加上最后的位置,有4个位置,再将装有A 、B 、C 3个小球的盒子任意放置在这4个位置中,有C 34=4种放法;所以一共有A 44C 34=96种不同的放法.优先法、捆绑法、插空法都是解答排列组合问题的常用方法,但每种方法的适用情形不同,优先法适用于求解有特殊要求的元素问题;捆绑法适用于求解元素相邻问题;插空法适用于求解元素不相邻问题.同学们在解题时,要仔细审题,先明确题目对元素的要求,确定是否有特殊元素,元素是否相邻,然后再选择与之相应的方法进行求解.(作者单位:湖北省十堰市竹山县第一中学)李家森42Copyright ©博看网. All Rights Reserved.。
排列组合问题常用的解题方法含答案
高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组<当作一个元素>参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。
二、相离问题插空法元素相离<即不相邻>问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边<A、B可不相邻>.那么不同的排法种数有。
四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。
例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。
六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。
例6:由数字 0.1.2.3.4.5组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。
例7:从1.2.3.…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法<不计顺序>共有多少种?例8:从1.2.…100这100个数中.任取两个数.使其和能被4整除的取法<不计顺序>有多少种?七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式⋃=+-⋂。
n A B n A n B n A B()()()()例9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法?八、定位问题优先法某个<或几个>元素要排在指定位置.可先排这个<几个>元素.再排其他元素。
解排列组合应用问题的十种思考方法
“解排列、组合应用问题”的思维方法一、优先考虑:对有特殊元素(即被限制的元素)或特殊位置(被限制的位置)的排列,通常是先排特殊元素或特殊位置,再考虑其它的元素或其它的位置。
例1.(1)由0、1、2、3、4、可以组成 个无重复数字的三位数。
(2) 由1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有个。
(3) 5个人排成一排,其中甲不排在两端也不和乙相邻排列的排列共有种。
二、“捆”在一起:有要求元素相邻(即连排)的排列问题,可以先将相邻的元素看作一个“整体”与其它元素排列,然后“整体”内部再进行排列。
例2.(1) 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有 种。
(2) 有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共有 种。
三、插空档:有要求元素不相邻(即间隔排)的排列问题,可以制造空档插空。
例3.(1)五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。
(2)6名男生6名女生排成一排,要求男女相间的排法有 种。
四、减去特殊情况(即逆向思考):先算暂时不考虑限制条件的排列或组合种数,然后再从中减去所有不符合条件的排列或组合数。
例4.(1)以正方体的顶点为顶点的四面体共有 个。
(2) 由0、1、2、3、4、可以组成 个无重复数字的三位数。
(3)集合A 有8个元素,集合B 有7个元素,B A 有4个元素,集合C 有3个元素且满足下列条件:Φ≠Φ≠⊂B C A C B A C ,,的集合C 有几个。
(4)从6名短跑运动员中选4人参加4⨯100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有多少种参赛方案?五、先组后排:排列、组合综合题,通常都是先考虑组合后考虑排列。
例5(1)用1、2、3、 9这九个数字,能组成由3个奇数数字、2个偶数数字的不重复的五位数有个。
(2)有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
排列组合十大策略
排列组合十大策略一、优先排列C C A例1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 113344例2、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,A A问有多少不同的种法?2545二、集团排列(捆绑法)A A A例1.、7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 522522例2、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5这两个奇数之间,这样的五位数有多少个?例3、计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同A A A一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A例4、5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有多少种?255255三、不相邻排列(插空法)例1、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场A A顺序有多少种?5456例2、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为(30 )。
例3、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为(20 )例4、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的C2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?35例5、某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少A种?45四、定序问题A例1、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法47例2、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排C法?510例3、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子2C 内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法?25五、重排问题例1、把6名实习生分配到7个车间实习,共有多少种不同的分法?67例2、某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法?87六、多排问题例3、8人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法?215445A A A七、选排问题例1、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法?2454C A例2、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有多少种?134244C C A八、元素相同至少一个问题(挡板法)例1、有10个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?69C例2、10个相同的球装5个盒中,每盒至少一个,有多少装法?49C例3、有13瓶水,三个人带,没人至少带两瓶,共有多少分法?29C九、化归策略例1、人排成5×5方队,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?2211155321C C C C C例2、某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?37C十、平均分组例1、6本不同的书平均分成3个人,每人2本,共有多少分法?222642C C C例2、6本不同的书平均分成3堆,每堆2本,共有多少分法?22264233C C CA例3、6本不同的书分成4本,1本,1本,共3堆,共有多少分法?416222 C C A例4、6本不同的书分成4本,1本,1本,并且分给3个人,共有多少分法?41362322C C AA。
排列组合问题常用的解题方法含答案
高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 例1:五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么不同的排法种数有种。
二、相离问题插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.例3: A B CD E五个人并排站成一排,如果B必须站A的右边(A、B可不相邻),那么不同的排法种数有_____________________ 。
四、标号排位问题分步法把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有____________________ 。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。
例5:有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4人承担这三项任务,不同的选法总数有_______________________ 。
六、多元问题分类法元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计。
例6:由数字0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数字小于十位数字的共有______________________ 个。
例7:从1,2,3,…100这100个数中,任取两个数,使它们的乘积能被7 整除,这两个数的取法(不计顺序)共有多少种?例8:从1, 2,…100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)有多少种?七、交叉问题集合法某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(A- B)= n( A) n( B)- n( A °E)例9 :从6名运动员中选出4个参加4X100m接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同参赛方法?八、定位问题优先法某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素。
排列组合
排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( )A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种. 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B.(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A = 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A = 共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 解析:将{}1,2,3,100I = 分成四个不相交的子集,能被4整除的数集{}4,8,12,100A = ;能被4除余1的数集{}1,5,9,97B = ,能被4除余2的数集{}2,6,,98C = ,能被4除余3的数集{}3,7,11,99D = ,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂ 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全
排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。
例2: 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。
排列组合主要题型及解答方法
一、相邻问题捆绑法例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )种A。
720 B。
360 C. 240 D。
120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大"元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法.由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种.评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号.现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是________(用数字作答).解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种).评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )种A. 6种 B。
9种 C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
所以先将1填入2至4号的3个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填法;第三步将余下的两个数字填入余下的两格中,只有1种填法.故共有3×3×1=9种填法,而选B.评注:把元素排在指定号码的位置上称为标号排位问题.求解这类问题可先把某个元素按规定排放,第二步再排另一个元素,如此继续下去,依次即可完成。
1717解排列组合问题常用方法(二十种)
17 解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
排列组合问题常用的解题方法含答案
高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。
二、相离问题插空法元素相离(即不相邻)问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边(A、B可不相邻).那么不同的排法种数有。
四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。
例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。
六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。
例6:由数字 .组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。
例7:从…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法(不计顺序)共有多少种例8:从.…100这100个数中.任取两个数.使其和能被4整除的取法(不计顺序)有多少种七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式⋃=+-⋂。
n A B n A n B n A B()()()()例 9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法八、定位问题优先法某个(或几个)元素要排在指定位置.可先排这个(几个)元素.再排其他元素。
20种排列组合常见模型 专题03 排队问题(解析版)
专题3 排队问题例1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种【解析】可分3步.第一步,排两端,从5名志愿者中选2名有2520A =种排法,第二步,2位老人相邻,把2个老人看成整体,与剩下的3名志愿者全排列,有4424A =种排法第三步,2名老人之间的排列,有222A =种排法最后,三步方法数相乘,共有20242960⨯⨯=种排法 故选:B .例2.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( ) A .2283C AB .2686C AC .2286C AD .2285C A【解析】从后排8人中选2人共28C 种选法, 这2人插入前排4人中且保证前排人的顺序不变, 则先从4人中的5个空挡插入一人,有5种插法; 余下的一人则要插入前排5人的空挡, 有6种插法,∴为26A 故选:C .例3.10名同学进行队列训练,站成前排3人后排7人,现体育教师要从后排7人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数为( )A .2575C AB .2275C A C .2273C A D .2274C A 【解析】由题意知本题是一个分步计数问题, 首先从后排的7人中选出2人,有27C 种结果, 再把两个人在5个位置中选2个位置进行排列有25A ,∴不同的调整方法有2275C A , 故选:B .例4.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .24D .18【解析】在数字1,2,3与符号“+”,“ -”五个元素的所有全排列中, 先排列1,2,3,有336A =种排法,再将“+”,“ -”两个符号插入,有222A =种方法,共有12种方法, 故选:B .例5.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数有( )A .4545A AB .343245A A A C .145345C A A D .245245A A A 【解析】先把每种品种的画看成一个整体, 而水彩画只能放在中间,则油画与国画放在两端有22A 种放法,再考虑4幅油画本身排放有44A 种方法,5幅国画本身排放有55A 种方法,故不同的陈列法有245245A A A 种, 故选:D .例6.3位男生和3位女生共6位同学站成一排,若女生甲不站两端,3位男生中有且只有两位男生相邻,则不同排法的种数是( ) A .360B .288C .216D .96【解析】先考虑3位男生中有且只有两位相邻的排列共有22233243432C A A A =种,在3男生中有且仅有两位相邻且女生甲在两端的排列有222232322144C A A A ⨯=种,∴不同的排列方法共有432144288-=种故选:B .例7.公因数只有1的两个数,叫做互质数.例如:2与7互质,1与4互质.在1,2,3,4,5,6,7的任一排列1234567ααααααα中,使相邻两数都互质的不同排列方式共有( )种. A .576B .720C .864D .1152【解析】根据题意,先排1、5、7,有336A =种情况,排好后有4个空位,对于2、4、6和3这四个数,分两种情况讨论:①3不在2、4中间,可先将2、4、6排在4个空位中,有3424A =种情况,3不能放在6的两边,有5种排法,则此时有245120⨯=种不同的排法,②3在2、4之间,将这三个数看成整体,有2种情况,与6一起排在4个空位中,有2412A =种情况,则此时有21224⨯=种不同的排法,则2、4、6和3这四个数共有12024144+=种排法; 则使相邻两数都互质的不同排列方式共有6144864⨯=种; 故选:C .例8.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( ) A .168B .20160C .840D .560【解析】从后排8人中选2人共28C 种选法, 这2人插入前排4人中且保证前排人的顺序不变, 则先从4人中的5个空挡插入一人,有5种插法; 余下的一人则要插入前排5人的空挡, 有6种插法,65∴⨯则不同调整方法的种数是2286840C A =. 故选:C .例9.2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对8列电煤货运列车进行编组调度,决定将这8列列车编成两组,每组4列,且甲、乙两列列车不在同一小组,甲列车第一个开出,乙列车最后一个开出.如果甲所在小组4列列车先开出,那么这8列列车先后不同的发车顺序共有( ) A .36种B .108种C .216种D .720种【解析】由于甲、乙两列列车不在同一小组,因此,先将剩下的6人平均分组有3363C C ,再将两组分别按要求排序,各有33A 种,因此,这8列列车先后不同的发车顺序共有33336333720C C A A =种.故选:D .例10.有四名男生,三名女生排队照相,七个人排成一排,则下列说法正确的有( ) A .如果四名男生必须连排在一起,那么有720种不同排法 B .如果三名女生必须连排在一起,那么有576种不同排法 C .如果女生不能站在两端,那么有1440种不同排法D .如果三个女生中任何两个均不能排在一起,那么有1440种不同排法【解析】A 中4444576A A =, B 中3535720A A =, C 中43222234333223(3)1440A A C C A A A ++=,D 中43451440A A =. 综上可得:CD 正确. 故选:CD .例11.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 576 个.(用数字作答)【解析】首先把1和2相邻,3与4相邻,5与6相邻当做三个元素进行排列有33A 种结果,这三个元素形成四个空,把7和8 在这四个位置排列有24A 种结果,三对相邻的元素内部各还有一个排列22A ,根据分步计数原理得到这种数字的总数有3222234222576A A A A A =, 故答案为:576.例12.5男4女站成一排,分别指出满足下列条件的排法种数(1)甲站正中间的排法有 8! 种,甲不站在正中间的排法有 种. (2)甲、乙相邻的排法有 种,甲乙丙三人在一起的排法有 种.(3)甲站在乙前的排法有 种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有 种,丙在甲乙之间(不要求一定相邻)的排法有 种.(4)甲乙不站两头的排法有 种,甲不站排头,乙不站排尾的排法种有 种. (5)5名男生站在一起,4名女生站在一起的排法有 种. (6)女生互不相邻的排法有 种,男女相间的排法有 种. (7)甲与乙、丙都不相邻的排法有 种. (8)甲乙之间有且只有4人的排法有 种.【解析】(1)甲站正中间的排法有8!,甲不站在正中间的排法有88⨯!; (2)甲、乙相邻的排法有28⨯!,甲乙丙三人在一起的排法有67⨯!;(3)甲站在乙前的排法有192!,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有196!,丙在甲乙之间(不要求一定相邻)的排法有193!;(4)甲乙不站两头的排法有2777A A ;甲不站排头,乙不站排尾的排法有9!28-⨯!7+!;(5)5名男生站在一起,4名女生站在一起的排法有25⨯!4⨯!; (6)女生互不相邻的排法有5!46A ⨯;男女相间的排法有5!4⨯!; (7)甲与乙、丙都不相邻的排法有9!28-⨯!227⨯+⨯!;(8)甲乙之间有且只有4人的排法,捆绑法.4724A ⨯⨯!.故答案为:(1)8!,88⨯!(2)28⨯!,67⨯!(3)192!,196!,193!;(4)2777A A ;9!28-⨯!7+!;(5)25⨯!4⨯!;(6)5!46A ⨯,5!4⨯!2⨯(7)9!28-⨯!227⨯+⨯!;(8)4724A ⨯⨯!.例13.古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 10 种(结果用数值表示).【解析】由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5211110⨯⨯⨯⨯=故答案为10例14.从集合{P,Q,R,}S与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复)、每排中字母Q和数字0至多只能出现一个的不同排法种数是5832.(用数字作答)、【解析】各任取2个元素排成一排(字母和数字均不能重复),共有2244104C C A;每排中字母Q和数字0都出现有114394C C A符合题意不同排法种数是224114 41043945832C C A C C A-=.故答案为:5832例15.从集合{O,P,Q,R,}S与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只能出现一个的不同排法种数是8424.(用数字作答).【解析】由题意知每排中字母O,Q和数字0至多只能出现一个,本题可以分类来解(1)这三个元素只选O,有1239433624C C A=⨯⨯(2)这三个元素只选Q同理有33624⨯⨯(3)这三个元素只选0 有2143943924C C A=⨯⨯(4)这三个元素O Q0都不选有22439433624C C A=⨯⨯根据分类计数原理将(1)(2)(3)(4)加起来33624336243924336248424⨯⨯+⨯⨯+⨯⨯+⨯⨯=故答案为:8424例16.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是135(结果用分数表示).【解析】由题意知本题是一个古典概型,总事件数是8本书全排列有88A种方法,而符合条件的事件数要分为二步完成:首先两套中任取一套,作全排列,有1424C A 种方法; 剩下的一套全排列,有44A 种方法;∴概率为:14424488135C A A A =, 故答案为:135. 例17.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? (5)甲必须在乙的右边,可有多少种不同的排法?【解析】(1)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合在一起共有六个元素,排成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 种不同的排法,因此共有63634A A = 320种不同的排法. (2)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空位,这样共有四个空位,加上两端两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同的排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有535614A A = 400种不同的排法.(3)因为两端不能排女生,所以两端只能挑选五个男生中的两个,有25A 种排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有25A 6614A = 400种不同的排法. (4)三个女生和五个男生排成一排有88A 种排法,从中扣去两端都是女生的排法2636A A 种,就能得到两端不都是女生的排法种数,因此共有82683636A A A -= 000种不同的排法. (5)甲必须在乙的右边即为所有排列的221A ,因此共有8822120A A = 160种不同的排法.例18.三个女生和五个男生排成一排.(1)如果女生须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果男生按固定顺序,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?【解析】(1)女须全排在一起,把3个女生捆绑在一起看做一个复合元素,再和5个男生全排,故有36364320A A=种;(2)女生必须全分开,先排男生形成了6个空中,插入3名女生,故有535614400A A=种;(3)两端都不能排女生,从男生中选2人排在两端,其余的全排,故有265614400A A=种;(4)男生按固定顺序,从8个位置中,任意排3个女生,其余的5个位置男生按照固定顺序排列,故有38336A=种,(5)三个女生站在前排,五个男生站在后排,3535720A A=种例19.三个女生和四个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果最高的站中间,两边均按从高到低排列,有多少种不同的排法?(6)如果四个男同学按从高到低排列,有多少种不同的排法?【解析】(1)根据题意,用捆绑法,3名女生看为一个整体,考虑其顺序有33A种情况,再将其与4名男生进行全排列,有55A种情况,则共有5353720A A⨯=种排法;(2)用插空法,先将4名男生全排列,有44A种情况,排好后,有5个空位,在其中任选3个,安排3名女生,有35A种情况,则共有43451440A A =种排法;(3)在4名男生中任取2人,安排在两端,有242C 种情况,再将剩余的5人安排在中间的5个位置,有55A 种情况,则共有254521440C A ⨯=种排法;(4)用排除法,7人进行全排列,有77A 种排法,两端都站女生,即先在3名女生中任取2人,再将剩余的5人安排在其他5个位置,有2535A A 种站法,则共有7257354320A A A -=种排法; (5)只需将最高的人放在中间,在剩余的6人中任取3人放在左边,其他的3人放在右边, 由于顺序固定,则左右两边只有一种排法,则有3620C =种排法; (6)先在7个位置中安排3名女生,有37A 种排法,剩余4个位置安排4名男生,有2种情况,则有372420A =种排法. 例20.现有8个人(5男3女)站成一排.(1)女生必须排在一起,共有多少种不同的排法? (2)其中甲必须站在排头有多少种不同排法?(3)其中甲、乙两人不能排在两端有多少种不同的排法? (4)其中甲、乙两人不相邻有多少种不同的排法? (5)其中甲在乙的左边有多少种不同的排法? (6)其中甲乙丙不能彼此相邻,有多少种不同排法? (7)男生在一起,女生也在一起,有多少种不同排法? (8)第3和第6个排男生,有多少种不同排法? (9)甲乙不能排在前3位,有多少种不同排法? (10)女生两旁必须有男生,有多少种不同排法?【解析】(1)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况,将这个整体与5名男生全排列,有66A 种情况,则女生必须排在一起的排法有3636A A 种;(2)根据题意,甲必须站在排头,有2种情况,将剩下的7人全排列,有77A 种情况,则甲必须站在排头有772A 种排法;(3)根据题意,将甲乙两人安排在中间6个位置,有26A 种情况,将剩下的6人全排列,有66A 种情况,则甲、乙两人不能排在两端有2666A A 种排法;(4)根据题意,先将出甲乙之外的6人全排列,有66A 种情况,排好后有7个空位,则7个空位中,任选2个,安排甲乙二人,有27A 种情况,则甲、乙两人不相邻有2676A A 种排法;(5)根据题意,将8人全排列,有88A 种情况,其中甲在乙的左边与甲在乙的右边的情况数目相同, 则甲在乙的左边有8812A 种不同的排法;(6)根据题意,先将出甲乙丙之外的5人全排列,有55A 种情况,排好后有6个空位,则6个空位中,任选3个,安排甲乙丙三人,有36A 种情况,其中甲乙丙不能彼此相邻有5356A A 种不同排法; (7)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况,再将5名男生看成一个整体,考虑5人之间的顺序,有55A 种情况,将男生、女生整体全排列,有22A 种情况,则男生在一起,女生也在一起,有235235A A A 种不同排法;(8)根据题意,在5个男生中任选2个,安排在第3和第6个位置,有222525C A A =种情况,将剩下的6人全排列,有66A 种情况,则第3和第6个排男生,有2656A A 种不同排法;(9)根据题意,将甲乙两人安排在后面的5个位置,有25A 种情况,将剩下的6人全排列,有66A 种情况,甲乙不能排在前3位,有2656A A 种不同排法?(10)根据题意,将5名男生全排列,有55A 种情况,排好后除去2端有4个空位可选,在4个空位中任选3个,安排3名女生,有34A 种情况,则女生两旁必须有男生,有5354A A 种不同排法. 例21.已知有7名同学排队照相:(1)若排成两排照,前排4人,后排3人,有多少种不同的排法?(2)若排成两排照,前排4人,后排3人,甲必须在前排,乙丙必须在同一排,有多少种不同的排法? (3)若排成一排照,甲、乙必须相邻,且不站两端,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,男女相间,有多少种不同的排法?(5)若排成一排照,7人中有4名男生,3名女生,如果两端不能都排男生,有多少种不同的排法? (6)若排成一圈,有多少种不同的排法?【解析】有7名同学排队照相:(1)若徘成两排照,前徘4人,后排3人,有43735040A A =种方法. (2)若徘成两排照,前排4人,后排3人,甲必须在前排,乙丙必须在同一排, 若乙、丙在前排,则从除了甲、乙、丙外的4人中再选一人放到前排,其余的在后排,方法有143443576A A A =种, 若乙、丙在后排,从除了甲、乙、丙外的4人中再选一人放到后排,其余的人在前排,方法有134434576A A A =种, 故共有5765761152+=种方法.(3)若排成一排照,甲、乙必须相邻,且不站两端,则采用插空法,将其余的5人排好,5人中间有4个空,把甲乙当做一个整体插入,方法有251254960A A A=种.(4)若徘成一排照,7人中有4名男生,3名女生,男女相间,先排4名男生,4名男生中间有3个空,插入3名女生,有4343144A A=种的排法.(5)若排成一排照,7人中有4名男生,3名女生,如果两端不能都排男生,若两端都是男生,方法有25451440A A=种,而所有的方法有775040A=种,故两端不能都排男生的排法有504014403600-=种.(6)若排成一圈,即弯曲排成一排,有777207A=种不同的排法.例22.甲、乙、丙、丁、戊5人排成一排拍照.(1)甲必须排在中间,有多少种不同的排法?(2)丁不能排在中间,有多少种不同的排法?(3)丙、丁必须排在两端,有多少种不同的排法?(4)甲、乙两人都不能排在首末两个位置,有多少种不同的排法?(5)甲不能站排头,乙不能站排尾,有多少种不同的排法?【解析】(1)甲排中间,其他任意排列,有4424A=种;(2)丁不能排在中间,先排丁有144C=种排法,然后其他任意排有4424A=种,所以丁不能排在中间共有42496⨯=种;(3)丙、丁必须排在两端:先排丙丁有222A=,其他任意排列有336A=种,所以丙、丁必须排在两端共有2612⨯=种;(4)甲、乙两人都不能排在首末两个位置有,先排甲乙有236A=种,其他任意排列有336A=种,所以甲、乙两人都不能排在首末两个位置共有6636⨯=种;(5)甲不能站排头,乙不能站排尾,分为两类,①甲在排尾,其他任意排列有4424A=种,②甲不在排尾,甲有133C=种,然后乙有133C=种,其他任意排列有336A=种,所以甲不能站排头,乙不能站排尾共有2433678+⨯⨯=种.例23.7位同学站一排.(1)站成两排(前3后4),共有多少种不同的排法?(2)其中甲站正中间的位置,共有多少种不同的排法?(3)甲、乙只能站在两端的排法共有多少种?(4)甲不排头,乙不排尾的排法共有多少种?(5)甲、乙两同学必须相邻的排法共有多少种?(6)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(7)甲、乙两同学不能相邻的排法共有多少种?(8)甲、乙、丙三个同学都不能相邻的排法共有少种?(9)甲、乙、丙三个同学不都相邻的排法共有多少种?(10)甲、乙相邻且与丙不相邻的排法共有多少种?(11)甲必须站在乙的左边的不同排法共有多少种?【解析】7位同学站一排,(1)站成两排(前3后4),共有多少种不同的排法,此没有限制条件是全排列问题,故排法种数是77A种;(2)其中甲站正中间的位置,共有多少种不同的排法,此问题是甲定位置的排法,相当于六个元素全排,故排法种数是66A种;(3)甲、乙只能站在两端的排法共有多少种,此问题分两步解决,先排甲乙两人,再排其余五人,故排法种数是2525A A种;(4)甲不排头,乙不排尾的排法共有多少种,可由乙在排头与不在排头两种情况解答,乙在排头时有66A种,乙不排头,先排乙,有5种排法,再排第一位,有5种排法,其他五人全排列,故总的排法种数是5555A ⨯⨯;(5)甲、乙两同学必须相邻的排法,可先将甲乙两人绑定,共22A 种,将其看作一个元素与另五个元素全排列,有66A 种,故共有2626A A 种;(6)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法计数,可先将甲乙两人绑定,共22A 种,将其看作一个元素与除丙外四个元素全排列,再将丙插入它们隔开的空档中,共有251254A A A 种;(7)甲、乙两同学不能相邻的排法可先将甲乙两人之外的五人全排列,再将两人插入隔开的六个空中,共有5256A A ⨯种; (8)甲、乙、丙三个同学都不能相邻的排法计数,可先将甲乙丙外的四个人进行全排列,再将三人分别插入隔开的五个空档中,故共有4345A A 种;(9)甲、乙、丙三个同学不都相邻的排法共有多少种,可通过排除法计数,从七人的全排列数中减去三人相邻的排法种数,共有735735A A A -种; (10)甲、乙相邻且与丙不相邻的排法共有多少种的计数,可先将甲乙绑定,然后看作一个元素将之与丙分别插入另外四个元素隔开的空档中,故共有242245A A A 种? (11)甲必须站在乙的左边的不同排法共有多少种的计数,可这样考虑,甲在乙左与甲在乙右种数是一样的,所以共有7712A 种排法.例24.6位同学站在一排照相,按下列要求,各有多少种不同排法? ①甲、乙必须站在排头或排尾 ②甲、乙.丙三人相邻 ③甲、乙、丙三人互不相邻 ④甲不在排头,乙不在排尾⑤若其中甲不站在左端,也不与乙相邻.【解析】①甲、乙必须站在排头或排尾,则有424248A A =种不同排法; ②甲、乙、丙三人相邻,则有4343144A A =种不同排法; ③甲、乙、丙三人互不相邻,则有3334144A A =种不同排法;④甲不在排头,乙不在排尾,则有6546542264A A A -+=种不同排法;⑤6个人站成一排,有66A 种,甲在左端的有55A 种,甲和乙相邻的有5252A A 种,甲既在左端也和乙相邻的有44A , 所以甲不在左端也不和乙相邻,则不同的排法共有6552465524384A A A A A --+=种.例25.(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法? (2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法? 【解析】(1)先将3人(用⨯表示)与4张空椅子(用□表示) 排列如图(⨯□□⨯□□)⨯,这时共占据了7张椅子, 还有2张空椅子,第一种情况是分别插入两个空位, 如图中箭头所示(↓⨯□↓□⨯□↓□)⨯↓,即从4个空当中选2个插入,有24C 种插法;二是2张插入同一个空位,有14C 种插法,再考虑3人可交换有33A 种方法,所以,共有321344()60A C C +=(种). (2)可先让4人坐在4个位置上,有44A 种排法,再让2个“元素”(一个是“两个相邻空位”,另一个“单独的空位” )插入4个人形成的5个“空当”之间,有25A 种插法,所以所求的坐法数为4245480A A =. 例26.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种?(2)4个空位只有3个相邻的坐法有多少种? (3)4个空位至多有2个相邻的坐法有多少种?【解析】6个人排有66A 种,6人排好后包括两端共有7个“间隔”可以插入空位.(1)空位不相邻相当于将4个空位安插在上述个“间隔”中,有4735C =种插法, 故空位不相邻的坐法有646725200A C =种. (2)将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插有27A 种插法,故4个空位中只有3个相邻的坐法有626730240A A =种.(3)4个空位至多有2个相邻的情况有三类: ①4个空位各不相邻有47C 种坐法;②4个空位2个相邻,另有2个不相邻有1276C C 种坐法;③4个空位分两组,每组都有2个相邻,有27C 种坐法.综合上述,应有6412267767()115920A C C C C ++=种坐法.。
MPAcc数学辅导:排列组合---排队问题
MPAcc数学辅导:排列组合---排队问题(1)某甲不站在排头也不能在排尾的不同排法有多少种? (3600)---------------------------------------------【解析】这个题目我们分2步完成第一步:先给甲排应该排在中间的5个位置中的一个即C5取1=5第二步:剩下的6个人即满足P原则P66=720所以总数是720×5=3600(2)某乙只能在排头或排尾的不同排法有多少种? (1440)-------------------------------------------------【解析】第一步:确定乙在哪个位置排头排尾选其一C2取1=2第二步:剩下的6个人满足P原则P66=720则总数是720×2=1440(3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种? (3120)---------------------------------------------------【解析】特殊情况先安排特殊第一种情况:甲不在排头排尾并且不在中间的情况去除3个位置剩下4个位置供甲选择C4取1=4,剩下6个位置先安中间位置即除了甲乙2人,其他5人都可以即以5开始,剩下的5个位置满足P原则即5×P55=5×120=600 总数是4×600=2400第2种情况:甲不在排头排尾,甲排在中间位置则剩下的6个位置满足P66=720因为是分类讨论。
所以最后的结果是两种情况之和即2400+720=3120(4)甲、乙必须相邻的排法有多少种? (1440)-----------------------------------------------【解析】相邻用捆绑原则2人变一人,7个位置变成6个位置,即分步讨论第1:选位置C6取1=6第2:选出来的2个位置对甲乙在排即P22=2则安排甲乙符合情况的种数是2×6=12第3:剩下的5个人即满足P55的规律=120则最后结果是120×12=1440(5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)-------------------------------------------------------【解析】这个题目非常好,无论怎么安排甲出现在乙的左边和出现在乙的右边的概率是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关排队问题的排列组合题解法举例
例1:三个女生和五个男生排成一排
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?
(4)如果两端不能都排女生,可有多少种不同的排法?
解:(1)(捆绑法)
因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有种不同排法.对于其中的每一种排法,三个女生之间又都有对种不同的排法,因此共有种不同的排法.
(2)(插空法)
要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有种方法,因此共有种不同的排法.(3)解法1:(位置分析法)
因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有种排法,所以共有种不同的排法.
解法2:(间接法)
3个女生和5个男生排成一排共有种不同的排法,从中扣除女生排在首位的种排法和女生排在末位的种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有种不同的排法,所以共有种不同的排法.
解法3:(元素分析法)
从中间6个位置中挑选出3个来让3个女生排入,有种不同的排法,对于其中的任意一种排活,其余5个位置又都有种不同的排法,所以共有种不同的排法,
(4)解法1:
因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制
了,这样可有种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有种不同排法.因此共有种不同的排法.
解法2:
3个女生和5个男生排成一排有种排法,从中扣去两端都是女生排法种,就能得到两端不都是女生的排法种数.
因此共有种不同的排法.
说明:解决排列、组合应用问题最常用也是最基本的方法是位置分析法和元素分析法.
若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.
若以元素为主,需先满足特殊元素要求再处理其它的元素.
间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.
例2 名同学排队照相.
7(1)若分成两排照,前排人,后排人,有多少种不同的排法?
34(2)若排成两排照,前排人,后排人,但其中甲必须在前排,乙必须在后排,有多34少种不同的排法?
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?
(4)若排成一排照,人中有名男生,名女生,女生不能相邻,有多少种不面的排743法?
分析:(1)可分两步完成:第一步,从人中选出人排在前排,有种排法;第二7337A 步,剩下的人排在后排,有种排法,故一共有种排法.事实上排两排与444A 774437A A A =⋅排成一排一样,只不过把第个位子看成第二排而已,排法总数都是,相当于个7~477A 7人的全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.
解:(1) 种.
50407
74437==⋅A A A (2)第一步安排甲,有种排法;第二步安排乙,有种排法;第三步余下的人排13A 14A 5在剩下的个位置上,有种排法,由分步计数原理得,符合要求的排法共有555A
种.
1440551413=⋅⋅A A A (3)第一步,将甲、乙、丙视为一个元素,有其余个元素排成一排,即看成个元素45的全排列问题,有种排法;第二步,甲、乙、丙三人内部全排列,有种排法.由分55A 33A 步计数原理得,共有种排法.
7203
355=⋅A A (4)第一步,名男生全排列,有种排法;第二步,女生插空,即将名女生插入444A 34名男生之间的个空位,这样可保证女生不相邻,易知有种插入方法.由分步计数原理535A 得,符合条件的排法共有:种.
14403544=⋅A A 说明:
(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.
(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.
例3 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?
解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:
(种).6408551424551224=⋅⋅+⋅⋅A A A A A A 解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八人坐法数”看成“总方法数”,这个数目是.在这种前提下,不合题意的方法是7714A A ⋅“甲坐第一排,且乙、丙坐两排的八人坐法.”这个数目是.其中第一5514131214A A A C A ⋅⋅⋅⋅个因数表示甲坐在第一排的方法数,表示从乙、丙中任选出一人的办法数,表示14A 12C 1
3A 把选出的这个人安排在第一排的方法数,下一个则表示乙、丙中沿未安排的那个人坐在14A 第二排的方法数,就是其他五人的坐法数,于是总的方法数为
55A (种).640855141312147714=⋅⋅⋅⋅-⋅A A A C A A A
例4 一条长椅上有个座位,人坐,要求个空位中,有个空位相邻,另一个空7432位与个相邻空位不相邻,共有几种坐法?
2分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为.先选定两个空位,可以在号位,也可以在号位…共有六种7654321、、、、、、21、32、可能,再安排另一空位,此时需看到,如果空位在号,则另一空位可以在21、7654、、、号位,有种可能,相邻空位在号位,亦如此.如果相邻空位在号位,另一空位
476、32、可以在号位,只有种可能,相邻空位在号,号,号亦如此,所以765、、
343、54、65、必须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的个座位之间,用插空法处理它们的不相邻.
4解答一:就两相邻空位的位置分类:
若两相邻空位在或,共有(种)坐法.
21、76、192424
4=⨯⨯A 若两相邻空位在,,或,共有(种)不同坐法,所32、43、54、65、2883444=⨯⨯A 以所有坐法总数为(种).
480288192=+解答二:先排好个人,然后把两空位与另一空位插入坐好的人之间,共有44(种)不同坐法.4802544=⋅A A 解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉个空位全不相邻或全部3相邻的情况,个人任意坐到个座位上,共有种坐法,三个空位全相邻可以用合并4747A 法,直接将三个空位看成一个元素与其它座位一起排列,共有种不同方法.三个空位全55A 不相邻仍用插空法,但三个空位不须排列,直接插入个人的个间隔中,有种不451044⨯A 同方法,所以,所有满足条件的不同坐法种数为(种).48010445547=--A A A。