2014年各地高考理科试题函数

合集下载

2014年全国高考理科数学试题分类汇编(word解析版可编辑)(四)三角函数与解三角形(逐题详解)

2014年全国高考理科数学试题分类汇编(word解析版可编辑)(四)三角函数与解三角形(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word 解析版) 四、三角函数与解三角形(逐题详解)第I 部分1.【2014年江西卷(理04)】在ABC ∆中,内角A,B,C 所对的边分别是,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积是A.3B.239C.233 D.33【答案】C【解析】()2222222222cos 2611333cos 2222c a b b a b c ab ba b c ab C abab b abab S ab C b =-+∴+-=-+-==∴-=∴=∴===Q Q g g2.【2014年陕西卷(理02)】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω3.【2014年浙江卷(理04)】为了得到函数sin 3cos3y x x =+的图象,可以将函数2sin3y x =的图象A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】C【解析】函数y=sin3x+cos3x=,故只需将函数y=cos3x 的图象向右 平移个单位,得到y==的图象.故选:C .4.【2014年全国新课标Ⅱ(理04)】钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( )A. 5B. 5C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。

为等腰直角三角形,不时,经计算当或=+======•••==5.【2014年全国新课标Ⅰ(理08)】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B6.【2014年四川卷(理03)】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的 点向左平行移动12个单位长度得到7.【2014年全国大纲卷(03)】设0sin 33a =,0cos55b =,0tan 35c =,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >>【答案】C【解析】由诱导公式可得b=cos55°=cos (90°﹣35°)=sin35°,由正弦函数的单调性可知b >a ,而c=tan35°=>sin35°=b ,∴c >b >a 故选:C8.【2014年辽宁卷(理09)】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增【答案】B【解析】把函数y=3sin (2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x ﹣)+].即y=3sin (2x ﹣).由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B9.【2014年湖南卷(理09)】 已知函数)sin()(ϕ-=x x f ,且⎰=3200)(πdx x f ,则函数)(x f 的图象的一条对称轴是 A. 65π=x B. 127π=x C. 3π=x D. 6π=x【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,又由⎰=3200)(πdx x f 得ϕ的一个值为3πϕ=,则56x π=是其中一条对称轴,故选A 10.【2014年重庆卷(理10)】已知A B C ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.()162ac a b +>C.126≤≤abcD.1224abc ≤≤【答案】A【解析】已知变形为1sin 2sin[()]sin[()]2A CB AC B A +-+=--+展开整理得11sin 22cos()sin 2sin [cos cos()]22A C B A A A C B +-=⇒+-= 即112sin [cos()cos()]sin sin sin 28A CBC B A B C -++-=⇒=而22111sin 2sin 2sin sin 2sin sin sin 224S ab C R A R B C R A B C R ==⋅⋅⋅=⋅⋅= 故2122224R R ≤≤⇒≤≤,故338sin sin sin [8,162]abc R A B C R =⋅=∈, 排除,C D ,因为b c a +>,所以()8bc b c abc +>≥,选择A第II 部分11.【2014年天津卷(理12)】在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_____________. 【答案】14- 【解析】 因为2sin 3sin B C =,所以23b c =,解得32cb =,2ac =.所以2221cos 24b c a A bc +-==-.12.【2014年山东卷(理12)】在ABC V 中,已知tan AB AC A ⋅=uu u r uu u r ,当6A π=时,ABCV 的面积为 。

2014年全国高考理科真题及答案详解

2014年全国高考理科真题及答案详解

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,学科网只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}正确答案:D答案详解:由于N={x| 1 ≤ x ≤2},,因此M ∩N={1,2}。

所以选D 。

2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i正解答案:A答案详解:由题意可知:22z i =-+,所以12z z =-5,所以选A 。

3.设向量a,b 满足|a+b |a-b a ⋅b = ( ) A. 1B. 2C. 3D. 5正解答案:A4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5C. 2D. 1正解答案:B5.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45正解答案:A答案详解:设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P A B P B A P A ⋂===,所以选 A.6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13正解答案:C答案详解:可由三视图及几何的体积公式得出7.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7正解答案:D答案详解:由题意可知:当k=1时,M=2,S=5; 当k=2时,M=2,S=7; 当k=3时,输出S=7。

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为_________.(用数字填写答案)14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为_________.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为_________.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:==﹣(1+i)=﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.解答:解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.点评:本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;概率与统计.分析:求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.点评:本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.考点:程序框图.专题:概率与统计.分析:根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.解答:解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=考点:三角函数的化简求值.专题:三角函数的求值.分析:化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.解答:解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A,B后验证C,当时,sin(α﹣β)=sin()=cosα成立.故选:C.点评:本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.解答:解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.点评:本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→﹣∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值>0,解出即可.解答:解:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下:x (﹣∞,0)0f′(x)+0 ﹣0 +f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:0 (0,+∞)x(﹣∞,)f′(x)﹣0 + 0 ﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2).故选:C.点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:画出图形,结合三视图的数据求出棱长,推出结果即可.解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.点评:本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.解答:解:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.考点:进行简单的合情推理.专题:推理和证明.分析:可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.解答:解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量之间的关系,利用圆直径的性质,即可得到结论.解答:解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°点评:本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得b2+c2﹣bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.解答:解:△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得4﹣b2=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得4≥2bc﹣bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,故答案为:.点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.考点:数列递推式;等差关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.解答:(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n+2﹣a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.点评:本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.解答:解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.考点:用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.解答:解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为点评:本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2﹣c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.解答:解:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2﹣c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x ﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.点评:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.考点:与圆有关的比例线段.专题:选作题;几何证明.分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE 为等边三角形.解答:证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.考点:基本不等式;基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.解答:解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.点评:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.参与本试卷答题和审题的老师有:lincy;caoqz;wyz123;刘长柏;sxs123;wfy814;孙佑中;minqi5;清风慕竹;maths;qiss(排名不分先后)菁优网2014年6月23日。

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年全国个省市高考理科数学分类汇编:三角函数

2014年全国个省市高考理科数学分类汇编:三角函数

一、选择题 1、(新课标全国卷Ⅰ)8题 设)2,0(πα∈,)2,0(πβ∈,且ββαcos sin 1tan +=,则( ) A.23πβα=- B. 22πβα=- C. 23πβα=+ D. 22πβα=+2、(新课标全国卷Ⅱ)4题 钝角三角形ABC 的面积是21,2,1==BC AB ,则=AC ( ) A.5 B.5 C.2 D. 12'、(新课标全国卷Ⅱ)12题设函数mx x f πsin 3)(=.若存在)(x f 的极值点0x 满足[]22020)(m x f x <+,则m 的取值范围是( )A.),6()6,(+∞⋃--∞B. ),4()4,(+∞⋃--∞C. ),2()2,(+∞⋃--∞D. ),1()1,(+∞⋃--∞ 3、(大纲卷-广西卷)3题设︒=33sin a ,︒=55cos b ,︒=55tan c ,则( ) A.c b a >> B.a c b >> C.a b c >> D. b a c >> 4、(安徽卷)6题设函数))((R x x f ∈满足x x f x f s i n )()(+=+π.当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D. 21- 5、(湖南卷)9题已知函数)sin()(ϕ-=x x f ,且0)(320=⎰dx x f π,则函数)(x f 的图像的一条对称轴是( )A.65π=x B. 127π=x C. 3π=x D. 6π=x 6、(四川卷)3题为了得到函数x y x y 2sin )12sin(=+=的图像,只需把函数的图像上所有的点( )A.向左平行移动21个单位长度 B. 向右平行移动21个单位长度 C.向左平行移动1个单位长度 D. 向右平行移动1个单位长度7、(浙江卷)4题 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3cos 2=的图像( )A.向右平移4π个单位B. 向左平移4π个单位 C.向右平移12π个单位 D. 向左平移12π个单位8、(陕西卷)2题 函数)62cos()(π-=x x f 的最小正周期是( )A.2πB.πC. π2D. π4 9、(辽宁卷)9题将函数)32sin(π+=x y 的图像向右平移2π个单位长度,所得图像对应的函数( )A.在区间]127,12[ππ上单调递减B. 在区间]127,12[ππ上单调递增 C. 在区间]3,6[ππ-上单调递减 D. 在区间]3,6[ππ-上单调递增二、填空题1、(新课标全国卷Ⅰ)16题已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,2=a ,且C b c B A b s i n )()s i n )(s i n 2(-=-+,则△ABC 面积的最大值为 .2、(新课标全国卷Ⅱ)14题函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为 . 3、(大纲卷-广西卷)16题若函数x a x x f sin 2cos )(+=在区间)2,6(ππ是减函数,则a 的取值范围是 .4、(安徽卷)11题 若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . 5、(广东卷)12题在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知,2cos cos b B c C b =+则=ba. 6、(四川卷)13题如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 m.C(用四舍五入法将结果精确到个位,参考数据: 7、(陕西卷)13题 设20πθ<<,向量)1,(cos ),cos ,2(sin θθθ==,若//,则=θtan .8(山东卷)12题在 △ABC 中,已知A tan =⋅,当6π=A 时,△ABC 的面积为 .9、(福建卷)12题在 △ABC 中,60=A ,32,4==BC AC ,则△ABC 的面积为 . 10、(天津卷)12题△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知C B a c b sin 3sin 2,41==-,则A cos 的值为 . 11、(江苏卷)5题已知函数x y cos =与)2sin(ϕ+=x y (πϕ<≤0),它们的图像有一个横坐标为3π的交点,则ϕ的值是 . 12、(江苏卷)14题若△ABC 的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是 . 三、解答题 1、(新课标全国卷Ⅰ)未考 2、(新课标全国卷Ⅱ)未考 3、(大纲卷-广西卷)17题共10分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知31tan ,cos 2cos 3==A A c C a ,求B . 4、(安徽卷)16题12分设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且3=b ,1=c ,B A 2=. (Ⅰ)求a 的值; (Ⅱ)求)4sin(π+A 的值.5、(广东卷)16题12分已知函数,),4sin()(R x x A x f ∈+=π且23)125(=πf . (1) 求A 的值; (2) 若),2,0(,23)()(πϑθθ∈=-+f f 求)43(ϑπ-f . 6、(广东卷)18题12分如图,在平面四边形ABCD 中,7,2,1===AC CD AD .(Ⅰ)求CAD ∠cos 的值; (Ⅱ)若621sin ,147cos =∠-=∠CBA BAD ,求BC 的长. BD7、(四川卷)16题12分 已知函数)43sin()(π+=x x f .(Ⅰ)求)(x f 的单调递增区间; (Ⅱ)若α是第二象限角,,2cos )4cos(54)3(απαα+=f 求ααsin cos -的值. 8、(浙江卷)18题14分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知b a ≠,3=c ,B B A A B A cos sin 3cos sin 3cos cos 22-=-.(Ⅰ)求角C 的大小; (Ⅱ)若54sin =A ,求△ABC 的面积. 9、(湖北卷)17题11分某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系: )24,0[,12sin12cos310)(∈--=t t t t f ππ.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在那段时间实验室需要降温? 10、(陕西卷)16题12分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .(Ⅰ)若a 、b 、c 成等差数列,证明:)sin(2sin sin C A C A +=+; (Ⅱ)若a 、b 、c 成等比数列,求B cos 的最小值. 11、(江西卷)16题12分已知函数)2cos()sin()(θϑ+++=x a x x f ,其中R a ∈,)2,2(ππϑ-∈.(Ⅰ)当4,2πθ==a 时,求)(x f 在区间],0[π上的最大值与最小值;(Ⅱ)若)2(πf =0,1)(=πf ,求a ,θ的值.12、(重庆卷)17题共13分,(Ⅰ)小问5分,(Ⅱ)8分 已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π. (Ⅰ)求ϖ和ϕ的值; (Ⅱ)若43)2(=αf (326παπ<<),求)23cos(πα+的值. 13、(山东卷)16题12分已知向量),,2(sin ),2cos ,(n x x m ==函数x f ⋅=)(,且)(x f y =的图像过点(3,12π)和点(2,32-π). (Ⅰ)求n m ,的值(Ⅱ)将)(x f y =的图像向左平移ϕ(0<ϕ<π)个单位后得到函数)(x g y =的图像,若)(x g y =的图像上各最高点到点(0,3)的距离的最小值为1,求)(x g y =的单调递增区间.14、(福建卷)16题13分已知函数21)cos (sin cos )(-+=x x x x f . (Ⅰ)若20πα<<,且22sin =α,求)(αf ; (Ⅱ)求函数)(x f 的最小正周期及单调递增区间. 15、(北京卷)15题13分 如图,在△ABC 中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD . (Ⅰ)求BAD ∠sin ; (Ⅱ)求BD ,AC 的长.F16、(天津卷)15题13分 已知函数R x x x x x f ∈+-+⋅=,43cos 3)3sin(cos )(2π. (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在闭区间]4,4[ππ-上的最大值和最小值. 17、(辽宁卷)17题12分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a >c .已知.3,31c o s ,2===⋅b B 求:(Ⅰ)a 和c 的值; (Ⅱ))cos(C B -的值. 18、(江苏卷)15题14分 已知),2(ππα∈,55sin =α. (1) 求)4sin(απ+的值;(2) 求)265cos(απ-的值.。

2014年江西高考理科数学试卷(带详解)

2014年江西高考理科数学试卷(带详解)

2014·卷(理科数学)1.[2014·卷] z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z =( ) A.1+i B.-1-i C.-1+i D.1-i 【测量目标】复数的基本运算【考查方式】给出共轭复数和复数的运算,求出z 【参考答案】D 【难易程度】容易【试题解析】 设z =a +b i(a ,b ∈R ),则z =a -b i ,所以2a =2,-2b =2,得a =1,b =-1,故z =1-i. 2.[2014·卷] 函数f (x )=ln(2x -x )的定义域为( )A.(0,1]B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞) 【测量目标】定义域【考查方式】根据对数函数的性质,求其定义域 【参考答案】C 【难易程度】容易【试题解析】由2x -x >0,得x >1或x <0.3.[2014·卷] 已知函数f (x )=||5x ,g (x )=2ax -x (a ∈R ).若f [g (1)]=1,则a =( ) A.1 B.2 C.3 D.-1 【测量目标】复合函数【考查方式】给出两个函数,求其复合函数 【参考答案】A 【难易程度】容易【试题解析】由g (1)=a -1,由()1f g ⎡⎤⎣⎦=1,得|1|5a -=1,所以|a -1|=0,故a =1.4.[2014·卷] 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若22()c a b =-+6,C =π3,则△ABC 的面积是( )A.3B.2 C.2D. 【测量目标】余弦定理,面积【考查方式】先利用余弦定理求角,求面积 【参考答案】C 【难易程度】容易【试题解析】由余弦定理得, 222cos =2a b c C ab +-=262ab ab -=12,所以ab =6,所以ABC S V =1sin 2ab C =2. 5.[2014·卷] 一几何体的直观图如图所示,下列给出的四个俯视图中正确的是( )第5题图LLJ73-77A B C D 【测量目标】三视图【考查方式】给出实物图,判断俯视图 【参考答案】B 【难易程度】容易【试题解析】易知该几何体的俯视图为选项B 中的图形.6.[2014·卷] 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )成绩 性别 不及格 及格 总计 男 6 14 20 女 10 22 32 总计 16 3652视力 性别 好 差 总计 男 4 16 20 女 12 20 32 总计 16 3652 表3 智商 性别 偏高 正常 总计 男 8 12 20 女 8 24 32 总计 16 3652阅读量 性别丰富 不丰 富 总计 男 14 6 20 女 2 30 32 总计163652A.成绩B.视力C.智商D.阅读量 【测量目标】卡方分布的应用【考查方式】直接给出表格,观察最大变量与性别的关系 【参考答案】D 【难易程度】中等()222526221410528⨯⨯-⨯⨯()()2222521651612521671636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯,()()222352248812521281636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯,()()222452143026526861636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯.分析判断24χ最大,所以选择D. 7.[2014·卷] 阅读如程序框图,运行相应的程序,则程序运行后输出的结果为( )第7题图 LLJ78A.7B.9C.10D.11【测量目标】循环结构的程序框图【考查方式】给定带有循环结构的算法程序框图,分析每一次执行的结果并判断是否满足条件,最后得出答案. 【参考答案】B 【难易程度】中等【试题解析】当1i =时,10lglg33S =+=->-1,123i =+=,3lg3lg lg55S =-+=->-1, 325i =+=,5lg 5lg lg 77S =-+=->-1,527i =+=,7lg 7lg lg 99S =-+=->-1 729i =+=,9lg9lg lg1111S =-+=-<-1所以输出9i =.8.[2014·卷] 若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.13-C.13D.1 【测量目标】定积分【考查方式】给出函数的表达式,求积分 【参考答案】B 【难易程度】容易【试题解析】1 ()0f x dx ⎰=()211200x f x dx ⎡⎤+⎢⎥⎣⎦⎰⎰=130112()03x f x dx x ⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎣⎦⎰=112()03f x dx +⎰,得1()0f x dx ⎰=13-. 9.[2014·卷] 在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4A.4π 5 B.3π4 C.(625)π- D.5π4【测量目标】直线与圆的位置关系,面积和最值 【考查方式】已知直线与圆的位置关系,求圆的面积 【参考答案】A 【难易程度】中等【试题解析】由题意知,圆C 必过点O (0,0),故要使圆C 的面积最小,则点O 到直线l 的距离为圆C 的直径,即2=5r ,所以=5r ,所以4=π5S10.[2014·卷] 如图所示,在长方体ABCD 1111A B C D 中,AB =11,AD =7,1AA =12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为(234)i L i =,,,1L =AE ,将线段1234L L L L ,,,竖直放置在同一水平线上,则大致的图形是( )第10题图LLJ79A B C D 第10题图 LLJ80-83【测量目标】投影,直线与面的关系【考查方式】利用光的反射原理求其长度并判断图形 【参考答案】C 【难易程度】中等【试题解析】由题意,1L =AE =13.易知点E 在底面ABCD 上的投影为F (4,3,0),根据光的反射原理知,直线AE 和从点E 射向点1E 的直线1E E 关于EF 对称,因此1E (8,6,0),且21L L ==13.此时,直线1EE 和从点1E 射出所得的直线12E E 关于过点1E (8,6,0)和底面ABCD 垂直的直线对称,得2E ' (12,9,12).因为12>11,9>7,所以这次射出的点应在面11CDD C 上,设为2E ,求得31213==3L E E ,321L L L <=最后一次,从点2E 射出,落在平面1111A B C D 上,求得4326>3L L =,故选C.【测量目标】不等式【考查方式】利用不等式的性质,求最值 【参考答案】C 【难易程度】容易【试题解析】易知|x -1|+|x |≥1,当且仅当0≤x ≤1时等号成立;|y -1|+|y +1|≥2, 当且仅当-1≤y ≤1时等号成立.故|x -1|+|x |+|y -1|+|y +1|≥3.[2014·卷] (2)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.1cos sin ρθθ=+,π02θ剟 B.1cos sin ρθθ=+,π04θ剟 C.ρ=cos sin θθ+,π02θ剟 D.ρ=cos sin θθ+,π04θ剟 【测量目标】极坐标方程【考查方式】直接把直线方程转化成极坐标方程 【参考答案】A 【难易程度】容易【试题解析】依题意,方程y =1-x 的极坐标方程为()cos sin ρθθ+=1,整理得1cos sin ρθθ=+.因为0≤x≤1,所以 01y剟,结合图形可知π02θ剟. 12.[2014·卷] 10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________. 【测量目标】超几何分布【考查方式】根据超几何分布的表达式就可以求出概率 【参考答案】12【难易程度】容易【试题解析】由超几何分布的概率公式可得P (恰好取到一件次品)=1337410C 12C C = 13.[2014·卷] 若曲线y =ex-上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.【测量目标】直线与曲线的位置关系【考查方式】根据直线与曲线的位置关系,求其点的坐标 【参考答案】(-ln 2,2) 【难易程度】容易【试题解析】设点P 的坐标为00()x y ,,exy '-=-又切线平行于直线2x +y +1=0,所以0ex --=-2,可得0ln 2x =-,此时y =2,所以点P 的坐标为(-ln 2,2).14.[2014·卷] 已知单位向量1e 与2e 的夹角为α,且1cos =α,向量a =3122e e -与b =123e e -的夹角为【测量目标】平面向量的夹角【考查方式】根据平面向量求其夹角的余弦值【参考答案】3【难易程度】容易【试题解析】cos = ||||ab a b β2215.[2014·卷] 过点M (1,1)作斜率为-12的直线与椭圆22:22=1(>>0)x y C a b a b +相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.【测量目标】直线与椭圆的位置关系,离心率【考查方式】利用交点,联立方程找出关系,求其离心率 【参考答案】=2e 【难易程度】中等【试题解析】设点A (11x y ,),点B (22x y ,),点M 是线段AB 的中点,所以12x x +=2,12y y +=2,且2211222222221,1x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式作差可得22122x x a -=22122()y y b --,即12122()()x x x x a +-=12122()()y y y y b +--,所以1212y y x x --=y 1-y 2x 1-x 2=22b a -,即AB k =22b a -.由题意可知,直线AB 的斜率为12-,所以22b a -=12-,即a b .又222a b c =+,所以c =b ,2e =. 16. [2014·卷] 已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,ππ,22θ⎛⎫∈- ⎪⎝⎭. (1)当a ,π4θ=时,求f (x )在区间[0,π]上的最大值与最小值; (2)若π2f ⎛⎫⎪⎝⎭=0,(π)f =1,求a ,θ的值.【测量目标】三角函数最值,参数【考查方式】先转化函数解析式,在利用给定的定义域求其最值,在求参数的值 【试题解析】(1)f (x )=sin π4x ⎛⎫+⎪⎝⎭+2cos π2x ⎛⎫+ ⎪⎝⎭=2(sin x +cos x )sin x=2cos x-2sin x =sin π4x ⎛⎫-⎪⎝⎭.因为x ∈[0,π],所以π4-x ∈3ππ,44⎡⎤-⎢⎥⎣⎦,故f (x )在区间[0,π]上的最大值为2,最小值为- 1.(2)由()π02π1ff ⎧⎛⎫=⎪ ⎪⎝⎭⎨⎪=⎩得2cos (12sin )02sin sin 1.a a a θθθθ-=⎧⎨--=⎩又ππ,22θ⎛⎫∈- ⎪⎝⎭,知cos 0θ≠,所以12sin 0(2sin 1)sin 1.a a a θθθ-=⎧⎨--=⎩ 解得1π6a θ=-⎧⎪⎨=-⎪⎩.17.[2014·卷] 已知首项都是1的两个数列{}n a ,{}n b (*0n b n ≠∈N ,)满足1112n n n n n n a b a b b b +++-+=0.(1)令nn na cb =,求数列{}n c 的通项公式; (2)若13n n b -=,求数列{}n a 的前n 项和.n S【难易程度】容易【测量目标】等差数列,错位相减【考查方式】先求出等差数列,再利用错位相减求和【试题解析】(1)因为1112n n n n n n a b a b b b +++-+=0,*0)n b n ≠∈N ,(,所以11n n a b ++-nna b =2,即1n n c c +-=2,所以数列{}n c 是以1c =1为首项,d =2为公差的等差数列,故21.n c n =-(2)由13n n b -=,知1(21)3n n a n -=-,于是数列{}n a 的前n 项和n S =0121133353(21)3n n ⨯⨯⨯⋯⨯-++++-,3n S =1211333(23)3(21)3n n n n ⨯⨯⨯⨯L -+++-+-,将两式相减得-2n S =1+1212(333)(2n n ⨯L -+++--1)32(22)3n n n ⨯⨯=---,所以(1)31.n n S n =-+18. [2014·卷] 已知函数f (x )=()2x bx b ++∈R . (1)当b =4时,求f (x )的极值;(2)若f (x )在区间10,3⎛⎫ ⎪⎝⎭上单调递增,求b 的取值围.【测量目标】极值,单调性、函数的导数【考查方式】先利用求导求极值,再利用单调性求参数的取值围 【试题解析】(1)当b =4时,f ′(x )=12x-,由f ′(x )=0,得x =-2或x =0.所以当x ∈ (-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈ (-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈10,2⎛⎫ ⎪⎝⎭时,()0f x '<,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2) f ′(x )=12x -,易知当x ∈10,3⎛⎫ ⎪⎝⎭时,<012x -,依题意当x ∈10,3⎛⎫⎪⎝⎭时,有5x +(3b -2)… 0,从而53+(3b -2)… 0,得1.9b …所以b 的取值围为1,9⎛⎤-∞ ⎥⎝⎦.19.[2014·卷]如图,四棱锥P ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .(1)求证:AB ⊥PD .(2)若∠BPC =90︒,PB =2,PC =2,问AB 为何值时,四棱锥P ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.第19题图LLJ84【难易程度】中等【测量目标】线面、面面、线线位置关系,夹角的余弦值,法向量的应用【考查方式】先由线面位置关系来证线线位置关系,在建立直角坐标系利用向量求夹角的余弦值【试题解析】(1)证明:因为ABCD 为矩形,所以AB ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =23,GC 26,BG =6.设AB =m ,则OP =22PG OG -=243m -,故四棱锥P -ABCD 的体积为2214=686333mV m m m -=-.因为2248686m m m m -=-2228633m ⎛⎫--+ ⎪⎝⎭m =63AB =63P -ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B 66⎫⎪⎪⎝⎭, C 626⎫⎪⎪⎝⎭,D ⎝ ⎛⎭⎪⎫0,263,0,P 6⎛ ⎝⎭,故BP u u u r =6266⎝⎭,BC uuu r =(0,6,0), 6CD ⎛⎫=u u u r .设平面BPC 的法向量(,,1),n x y =u u r 则由n PC ⊥u u r u u u r ,n BC ⊥u u r u u u r 得62660y ⎧+-=⎪,解得1,0,x y ==1(1,0,1),n =u u r 同理可求出平面DPC 的法向量21(0,,1),2n =u ur ,从而平面BPC 与平面DPC 夹角θ的余弦值为1212110cos .5||||1214n n n n θ⋅===⋅⋅+u u r u u r u u r u u r第19题图LLJ84b20. [2014·卷] 如图,已知双曲线()22:210x C y a a-=>的右焦点F ,点,A B 分别在C 的两条渐近线上,AF OB ⊥,BF OA P (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点()()000,0P x y y ≠的直线0:021x y l y y a -=与直线AF 相交于点M ,与直线23=x 相交于点N ,证明点P 在C 上移动时,NFMF恒为定值,并求此定值第20题图 LLJ85【难易程度】较难【测量目标】双曲线方程和离心率、焦点,直线与曲线的位置关系【考查方式】先求出双曲线方程,再利用直线与曲线的位置关系求第二问【试题解析】(1)设(,0)F c ,因为1b =,所以21c a =+直线OB 方程为1y x a =-,直线BF 的方程为1()y x c a =-,解得(,)22c c B a -,又直线OA 的方程为1y x a =,则3(,),.AB c A c k a a =又因为AB ⊥OB ,所以31()1a a-=-,解得23a =,故双曲线C 的方程为22 1.3x y -=(2)由(1)知3a =则直线l 的方程为0001(0)3x x y y y -=≠,即0033x x y y -=,因为直线AF 的方程为2x =,所以直线l 与AF 的交点0023(2,)3x M y -,直线l 与直线32x =的交点为003332(,)23x N y -,则220222004(23)9[(2)]x MF NF y x -=+-,因为是C 上一点,则2200 1.3x y -=,代入上式得2220022224(23)4(23)4x x MF --===,所求定值为23MF =21.[2014·卷] 随机将()1,2,,2,2n n n *⋅⋅⋅∈N …这2n 个连续正整数分成A ,B 两组,每组n 个数,A 组最小数为1a ,最大数为2a ;B 组最小数为1b ,最大数为2b ,记2112,a a b b ξη=-=-(1)当3n =时,求ξ的分布列和数学期望;(2)令C 表示事件ξ与η的取值恰好相等,求事件C 发生的概率()P C ;(3)对(2)中的事件CC 的对立事件,判断()P C 和. 【难易程度】难【测量目标】分布列和数学期望,概率,数学归纳法【考查方式】先求出分布列和数学期望,在求出其概率,最后在利用数学归纳法【试题解析】(1)当3n =时,ξ所有可能值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有3620C =种,所以ξ的分布列为:133172345.5101052E ξ=⨯+⨯+⨯+⨯=(2)ξ和η恰好相等的所有可能值为1,,1,,2 2.n n n n -+-L 又ξ和η恰好相等且等于1n -时,不同的分组方法有2种;ξ和η恰好相等且等于n 时,不同的分组方法有2种;ξ和η恰好相42()63P C ==;当3n …时,()(),P C P C <理由如下:时,①式左边124(2C )16,=+=①式右.那么,当1n m =+时,(2)!4(22)!(1)(2)(22)!(41)!!(1)!(1)!(1)!(1)!m m m m m m m m m m m m ⨯-+--=+=--++.即当1n m =+时①式也成立,综合1o 2o 得,对于3n …的所有正整数,都有()()P C P C <成立.。

2014年高考数学理科分类汇编专题02 函数

2014年高考数学理科分类汇编专题02 函数

1. 【2014高考安徽卷理第6题】设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D.21-2. 【2014高考北京版理第2题】下列函数中,在区间(0,)+∞为增函数的是( )A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+3. 【2014高考福建卷第4题】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )4. 【2014高考福建卷第7题】已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,15. 【2014高考湖北卷理第10题】已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )A.]61,61[- B.]66,66[-C. ]31,31[- D. ]33,33[-6. 【2014高考湖北卷理第14题】设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)故可以选择)0()(>=x x x f .7. 【2014高考湖南卷第3题】已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. 3-B. 1-C. 1D. 38. 【2014高考湖南卷第8题】某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.2p q +B.(1)(1)12p q ++-19. 【2014高考湖南卷第10题】已知函数())0(212<-+=x e x x f x与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是( ) A. )1,(e -∞ B. ),(e -∞ C. ),1(e e - D. )1,(ee -10. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .11. 【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .【考点】函数的零点,周期函数的性质,函数图象的交点问题.12. 【2014江西高考理第2题】函数)ln()(2x x x f -=的定义域为( ) A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞13. 【2014江西高考理第3题】已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A.1 B. 2 C. 3 D. -114. 【2014辽宁高考理第3题】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>15. 【2014辽宁高考理第12题】已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .1816. 【2014全国1高考理第3题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A .)()(x g x f 是偶函数B .)(|)(|x g x f 是奇函数 C..|)(|)(x g x f 是奇函数 D .|)()(|x g x f 是奇函数17. 【2014全国2高考理第15题】已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.18. 【2014山东高考理第3题】函数1)(log 1)(22-=x x f 的定义域为( )A. )21,0(B. ),2(+∞C. ),2()21,0(+∞D. ),2[]21,0(+∞19. 【2014山东高考理第8题】 已知函数()21,().f x x g x kx =-+=若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( ) A.1(0,)2 B.1(,1)2C.(1,2)D.(2,)+∞ 【答案】B【解析】由已知,函数()|2|1,()f x x g x kx =-+=的图象有两个公共点,画图可知当直线介于121:,:2l y x l y x ==之间时,符合题意,故选B .考点:函数与方程,函数的图象.20.【2014四川高考理第9题】已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-.现有下列命题: ①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥.其中的所有正确命题的序号是( ) A .①②③ B .②③ C .①③ D .①②【考点定位】1、函数的奇偶性;2、对数运算;3、函数与不等式.21. 【2014四川高考理第12题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .22. 【2014浙江高考理第6题】已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c23. 【2014浙江高考理第7题】在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )答案:D 解析:函数()0ay xx =≥,与()l o g 0ay x x =>,答案A没有幂函数图像,答案B()0ay x x =≥中1a >,()log 0a y x x =>中01a <<,不符合,答案C()0a y x x =≥中01a <<,()log 0a y x x =>中1a >,不符合,答案D()0ay xx =≥中01a <<,()log 0a y x x =>中01a <<,符合,故选D考点:函数图像.24. 【2014浙江高考理第15题】设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 25. 【2014重庆高考理第12题】函数2()log )f x x =的最小值为_________.26. 【2014陕西高考理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭ (D )()3x f x =27. 【2014陕西高考理第11题】已知,lg ,24a x a ==则x =________.28. 【2014天津高考理第4题】函数()()212log 4f x x =-的单调递增区间是 ( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥ (D )(),2-?29. 【2014天津高考理第14题】已知函数()23f x x x =+,x R Î.若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.【答案】()()0,19,+∞.30. 【2014大纲高考理第12题】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--。

2014年四川高考数学试卷(理科)(含答案解析)

2014年四川高考数学试卷(理科)(含答案解析)

2014年四川高考数学试卷(理科)(含答案解析)2014年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•四川)已知集合A={x|x 2﹣x ﹣2≤0},集合B 为整数集,则A ∩B=( ) A . {﹣1,0,1,2} B . {﹣2,﹣1,0,1}C . {0,1}D . {﹣1,0}2.(5分)(2014•四川)在x (1+x )6的展开式中,含x 3项的系数为( ) A . 30 B . 20C . 15D . 103.(5分)(2014•四川)为了得到函数y=sin (2x+1)的图象,只需把y=sin2x 的图象上所有的点( ) A . 向左平行移动个单位长度 B . 向右平行移动个单位长度 C . 向左平行移动1个单位长度 D . 向右平行一定1个单位长度4.(5分)(2014•四川)若a >b >0,c <d <0,则一定有( ) A . > B . < C . > D . <5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1D.28.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=_________.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=_________.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于_________m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是_________.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有_________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.2014年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•四川)已知集合A={x|x 2﹣x ﹣2≤0},集合B 为整数集,则A ∩B=( ) A . {﹣1,0,1,2} B . {﹣2,﹣1,0,1}C . {0,1}D . {﹣1,0}考点:交集及其运算.专题: 计算题.分析: 计算集合A 中x 的取值范围,再由交集的概念,计算可得.解答: 解:A={x|﹣1≤x ≤2},B=Z , ∴A ∩B={﹣1,0,1,2}.故选:A . 点评:本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.2.(5分)(2014•四川)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.10考点:二项式系数的性质.专题:二项式定理.分析:利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.解答:解:(1+x)6展开式中通项T r+1=C6r x r,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.点评:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.3.(5分)(2014•四川)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长D.向右平行一定1个单位长度度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据y=sin(2x+1)=sin2(x+),利用函数y=Asin (ωx+φ)的图象变换规律,得出结论.解答:解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A .点评:本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.4.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等式比较大小;不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.故选:D.点评:本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,求出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)(2014•四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种考点:排列、组合及简单计数问题.专题:应用题;排列组合.分分类讨论,最左端排甲;最左端只排乙,最右端不能排析:甲,根据加法原理可得结论.解答:解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.点评:本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1D.2考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.解答:解:∵向量=(1,2),=(4,2),∴=m +=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D点评:本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B .[,1]C .[,]D.[,1]考点:直线与平面所成的角.专题:空间角.分析:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.解答:解:由题意可得:直线OP 于平面A 1BD 所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA 1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA 1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.点评:本题考查了正方体的性质和直角三角形的边角关系即可、线面角的求法,考查了推理能力,属于中档题.9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x ∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.解答:解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln()=ln[()2]=2ln()=2[ln (1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g (x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g(0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以丨f (x)丨≥2丨x丨成立,故③正确;故正确的命题有①②③,故选:A点评:本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B .3C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线AB 的方程为:x=ty+m,点A(x1,y1),B (x2,y2),直线AB与x轴的交点为M((0,m),由⇒y 2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y 2=2,从而,∵点A,B位于x轴的两侧,∴y1•y 2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO==.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.点评:求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=﹣2i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数===﹣2i,故答案为:﹣2i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=1.考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于60m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)考点:余弦定理的应用;正弦定理;正弦定理的应用.专题:应用题;解三角形.分析:过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.解答:解:过A点作AD垂直于CB的延长线,垂足为D,则Rt △ACD中,∠C=30°,AD=46m∴CD==46≈79.58m.又∵Rt△ABD中,∠ABD=67°,可得BD==≈19.5m∴BC=CD﹣BD=79.58﹣19.5=60.08≈60m故答案为:60m点评:本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用.分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:(1)对于命题①“f(x)∈A”即函数f(x)值域为R,“∀b∈R,∃a∈D,f(a)=b”表示的是函数可以在R中任意取值,故有:设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”∴命题①是真命题;(2)对于命题②若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值.∴命题②“函数f(x)∈B的充要条件是f(x)有最大值和最小值.”是假命题;(3)对于命题③若函数f(x),g(x)的定义域相同,且f(x)∈A,g (x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.∴f(x)+g(x)∈R.则f(x)+g(x)∉B.∴命题③是真命题.(4)对于命题④∵函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,∴假设a>0,当x→+∞时,→0,ln(x+2)→+∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符;假设a<0,当x→﹣2时,→,ln(x+2)→﹣∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符.∴a=0.即函数f(x)=(x>﹣2)当x>0时,,∴,即;当x=0时,f(x)=0;当x<0时,,∴,即.∴.即f(x)∈B.故命题④是真命题.故答案为①③④.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2k π﹣≤3x+≤2kπ+,k∈z ,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f ()=sin (α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cos α﹣sinα的值.解答:解:(1)∵函数f(x)=sin(3x+),令2k π﹣≤3x+≤2kπ+,k∈z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cos2α﹣sin2α)(sinα+cosα).又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sin α=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,属于中档题.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分(1)设每盘游戏获得的分数为X,求出对应的概率,即析:可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.解答:解:(1)X可能取值有﹣200,10,20,100.则P (X=﹣200)=,P (X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏或得的分数为X的数学期望是E (X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.点评:本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.专题:空间向量及应用.分析:(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值.解答:解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN∥NP,故BD ⊥NP假设P 不是线段BC的中点,则直线NP 与直线AC是平面ABC内相交直线从而BD ⊥平面ABC,这与∠DBC=60°矛盾,所以P 为线段BC的中点(2)以O为坐标原点,OB,OC ,OA分别为x,y ,z 轴建立空间直角坐标系,则A(0,0,),M (,O,),N(,0,),P (,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值点评:本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.考点:数列的求和;数列与函数的综合.专题:函数的性质及应用;等差数列与等比数列.分析:(1)由于点(a8,4b7)在函数f(x)=2x的图象上,可得,又等差数列{a n}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到a n,b n.再利用“错位相减法”即可得出.解答:解:(1)∵点(a8,4b7)在函数f(x)=2x的图象上,∴,又等差数列{a n}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴S n==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2x ln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴a n=a1+(n﹣1)d=1+(n﹣1)×1=n,∴b n=2n.∴.∴T n=+…++,∴2T n=1+++…+,两式相减得T n=1++…+﹣=﹣==.点评:本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a 2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.解解:(1)依题意有解得答:所以椭圆C的标准方程为+=1.(2)设T(﹣3,m),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,由⇒(m2+3)y2﹣4my﹣2=0,所以于是,从而,即,则,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).点评:本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x 或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.解答:解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g (0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x )=e x﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f (x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a ﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,=+<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.参与本试卷答题和审题的老师有:任老师;王老师;孙佑中;刘长柏;qiss;尹伟云;翔宇老师;szjzl;caoqz;清风慕竹;静定禅心;maths(排名不分先后)菁优网2014年6月24日。

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考函数真题汇总

2014年高考函数真题汇总

1.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A .12 B .23C .0D .21-2.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或8 3.下列函数中,在区间(0,)+∞上为增函数的是( ).A y 2.(1)B y x=- .2x C y -= 0.5.l o g (1)D y x =+ 4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图象正确的是( )5已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,1 6.已知函数f (x )是定义在R 上的奇函数,当0x ≥时,2221()(||)|2|3).2f x x a x a a =-+--若,(1)(),x R f x f x ∀∈-≤则实数a 的取值范围为( )A.11[,]66-B.[C. 11[,]33-D.[7设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; 8.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1,f x g x x x -=++(1)(1)f g +则=A .-3B .-1C .1D .3 9.已知函数221()(0)()ln()2xf x x e xg x x x a =+-<=++与的图象上存在关于y 轴对称的点,则a 的取值范围是 A.(-∞ B.(-∞ C.( D.( 10.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 .11.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 .12. 函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞13. 已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( )A. 1B. 2C. 3D. -1 14.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 15.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .1816.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数17函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+, (C) ),2()210(+∞ , (D) )2[]210(∞+,, 18.已知函数()12+-=x x f ,()kx x g =.若方程()()x g x f=有两个不相等的实根,则实数k 的取值范围是(A )),(210(B )),(121(C )),(21(D )),(∞+219已知函数()()y f x x R =∈,对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点()()()(),,,x h x x g x 关于点()(),x f x 对称,若()h x 是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 。

2014年各省份高考理科数学真题解析分类汇编:函数

2014年各省份高考理科数学真题解析分类汇编:函数

2014年全国各省份高考数学分类汇编:函数与导函数主编:贾海琴老师一、选择题:1、【2014年全国高考数学安徽卷】设函数))((R x x f ∈满足x x f x f sin )()(+=+π。

当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B.23 C.0 D.21- 2、【2014年全国高考数学湖南卷】已知函数)0(21)(2<-+=x e x x f x与)ln()(2a x x x g ++=的图像存在关于y 轴对称的点,则a 的取值范围是( ) A.)1,(e -∞ B.),(e -∞ C.),1(e e - D.)1,(ee - 3、【2014年全国高考数学湖北卷】已知函数)(xf 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=。

若)()1(,x f x f R x ≤-∈∀,则实数a 的取值范围为( ) A.]61,61[- B.]66,66[-C.]31,31[-D.]33,33[-4、【2014年全国高考数学北京卷】下列函数中,在区间),0(+∞上为增函数的是( ) A.1+=x y B.2)1(-=x y C.x y -=2 D.)1(log 5.0+=x y0,12>+x x5、【2014年全国高考数学福建卷】已知函数=)(x f 则下列结论正确的是( ) 0,cos ≤x xA.)(x f 是偶函数;B.)(x f 是增函数;C.)(x f 是周期函数;D.)(x f 的值域为),1[+∞- 6、【2014年全国高考数学江西卷】函数)ln()(2x x x f -=的定义域为( )A.]1,0(B.]1,0[C.),1()0,(+∞⋃-∞D.),1[]0,(+∞⋃-∞ 7、【2014年全国高考数学山东卷】函数1)(log 1)(22-=x x f 的定义域为( )A.)21,0( B.),2(+∞ C.),2()21,0(+∞⋃ D.),2[]21,0(+∞⋃ 8、【2014年全国高考数学全国卷】函数)(x f y =的图像与函数)(x g y =的图像关于直线0=+y x 对称,则)(x f y =的反函数是( )A.)(x g y =B.)(x g y -=C.)(x g y -=D.)(x g y --=9、【2014年全国高考数学湖南卷】已知函数)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=-+)1()1(f f ( )A.3-B.1-C.1D.310、【2014年全国高考数学湖南卷】某市生产总值持续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均生产总值的平均增长率为( ) A.2q p + B.21)1)(1(-++q p C.pq D.1)1)(1(-++q p 11、【2014年全国高考数学浙江卷】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC.96≤<cD.9>c12、【2014年全国高考数学陕西卷】如下图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( ) A.x x y 5312513-=B.x x y 5412523-=C.x x y -=31253D.x x y 5112533+-=13、【2014年全国高考数学湖南卷】已知函数)sin()(ϕ-=x x f ,且⎰=0)(320dx x f π,则函数)(x f 的图像的一条对称轴是( ) A.65π=x B,127π=x C.3π=x D.6π=x 14、【2014年全国高考数学山东卷】直线x y 4=与曲线3x y =在第一象限内围成的封闭图形的面积为( )A.22B.24C.2D.415、【2014年全国高考数学山东卷】直线x y 4=与曲线3x y =在第一象限内围成的封闭图形的面积为( )A.]3,5[--B.]89,6[-- C.]2,6[-- D.]3,4[-- 16、【2014年全国高考数学全国卷】曲线1-=x xe y 在点)1,1(处切线的斜率等于( ) A.e 2 B.e C.2 D.117、【2014年全国高考数学新课标Ⅱ卷】设曲线)1ln(+-=x ax y 在点)0,0(处的切线方程为x y 2=,则=a ( )A.0B.1C.2D.318、【2014年全国高考数学四川卷】已知)1,1(),1ln()1ln()(-∈--+=x x x x f ,现有如下命题: ①)()(x f x f -=-;②)(2)12(2x f xxf =+;③||2|)(|x x f ≥。

2014年全国高考理科数学试题分类汇编(纯word解析版)____________十三、函数和导数(逐题详解)[1]

2014年全国高考理科数学试题分类汇编(纯word解析版)____________十三、函数和导数(逐题详解)[1]

2014年全国高考理科数学试题分类汇编(纯word 解析版) 十三、函数和导数(逐题详解)4.【2014年安徽卷(理09)】若函数a x x x f +++=21)(的最小值为3,则实数a 的值为(A )5或8 (B )1-或5 (C )1-或4- (D )4-或8【答案】D【解析】若2≥a ,则当12-≤≤-x a时,由312121)(=-≥-+=+++=a a x a x x x f 可得8=a 符合要求;若2<a ,则当21ax -≤≤-时,由321121)(=-≥--=+++=a x a a x x x f 可得4-=a 符合要求;综上所述,4-=a 或8。

14.【2014年全国大纲卷(07)】曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1【答案】C【解析】函数的导数为f ′(x )=e x ﹣1+xe x ﹣1=(1+x )e x ﹣1,当x=1时,f ′(1)=2,即曲线y=xe x ﹣1在点(1,1)处切线的斜率k=f ′(1)=2,故选:C22.【2014年全国新课标Ⅱ(理08)】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x , 则a =A. 0B. 1C. 2D. 3【答案】 D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=23.【2014年全国新课标Ⅱ(理12)】设函数()3sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞【答案】 C【解析】.2.||,34∴34)]([,2||||,3)]([3πsin3)(2222020020C m m m m x f x m x x f m x x f 故选解得,,即的极值为><++≥+∴≤=±=30.【2014年江西卷(理08)】若12()2(),f x x f x dx =+⎰则1()f x dx =⎰A.1-B.13-C.13D.1【答案】B 【解析】设()1m f x dx =⎰,则2()2f x x m =+,()111123011()2()2233f x dx x f x dx dx x mx m m =+=+=+=⎰⎰⎰,所以13m =-. 故I 2<I 1<I 3,故选:B .第II 部分43.【2014年江苏卷(理11)】在平面直角坐标系xOy 中,若曲线),(y 2为常数b a xbax +=过点)5,2(P -,且该曲线在点P 处的切线与直线0327x =++y 平行,则b a +的值是 .【答案】21 【解析】根据P 点在曲线上,曲线在点P 处的导函数值等于切线斜率,2'2xb ax y -=,27-=k ,将)5,2(-P 带入得⎪⎪⎩⎪⎪⎨⎧-=-+=-2744245b a b a ,解得⎪⎩⎪⎨⎧=-=223b a ,则21=+b a45.【2014年广东卷(理10)】曲线25+=-x e y 在点)3,0(处的切线方程为 。

2014年高考数学(理)试题分项版解析:专题04 三角函数与解三角形(分类汇编)Word版含解析

2014年高考数学(理)试题分项版解析:专题04 三角函数与解三角形(分类汇编)Word版含解析

1. 【2014高考湖南卷第9题】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A.56x π=B.712x π=C.3x π=D.6x π=2. 【2014高考江苏卷第5题】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 .3. 【2014高考江苏卷第14题】 若ABC ∆的内角满足sin 2sin A B C =,则co s C 的最小值是 .【答案】4【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,4. 【2014辽宁高考理第9题】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增5. 【2014全国1高考理第16题】已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则ABC ∆面积的最大值为____________.又22b c 4bc bc +-=≥,故1S bcsinA 2BAC ∆=≤ 【考点定位】1、正弦定理和余弦定理;2、()三角形的面积公式.6. 【2014全国2高考理第4题】钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 17. 【2014全国2高考理第14题】 函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.8. 【2014山东高考理第12题】在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC∆的面积为________.9. 【2014四川高考理第3题】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度10. 【2014高考广东卷理第12题】在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知b B c C b 2cos cos =+,则=ba.11. 【2014全国1高考理第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )【考点定位】1.解直角三角形;2、三角函数的图象. 12.【2014全国1高考理第8题】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-=(B )32παβ+=(C )22παβ-=(D )22παβ+=13. 【2014高考北京版理第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 .14. 【2014高考安徽卷理第11题】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.15. 【2014高考福建卷第12题】在ABC ∆中,60,4,A AC BC =︒==,则ABC ∆的面积等于_________.16. 【2014江西高考理第4题】在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积( )A.3B.239 C.233 D.3317. .【2014四川高考理第13题】如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈,cos670.39≈,sin 370.60≈,cos370.80≈ 1.73≈)18. 【2014浙江高考理第4题】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位19. 【2014浙江高考理第17题】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值 .20.【2014重庆高考理第10题】已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( )A.8)(>+c b bcB.()ac a b +>C.126≤≤abcD.1224abc ≤≤【答案】A 【解析】试题分析:由题设得:()()1sin 2+sin 2sin 22A B C ππ-=-+1sin 2+sin2B+sin 22A C ⇒=21. 【2014陕西高考理第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π22. 【2014天津高考理第12题】在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.23. 【2014大纲高考理第3题】设sin33,cos55,tan35,a b c =︒=︒=︒则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>24. 【2014大纲高考理第16题】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .。

2014年全国高考理科数学试题分类汇编4 函数

2014年全国高考理科数学试题分类汇编4  函数

2014年全国高考理科数学试题分类汇编4 函数1.函数及其表示6.[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( ) A.12 B.32 C .0 D .-126.A [解析] 由已知可得,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝⎛⎭⎫-π6=sin 5π6=12.2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)2.A [解析] 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 2.[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1] B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞) 2.C [解析] 由x 2-x >0,得x >1或x <0.3.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞)3.C [解析] 根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C.2 反函数 12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析] 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)2.A [解析] 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).21.、[2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示). 12.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 12.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1.15.,[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. 21.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ;当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).4 函数的奇偶性与周期性7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).3.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .33.C [解析] 因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1. 3.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数3.C [解析] 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.15.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.15.(-1,3) [解析] 根据偶函数的性质,易知f (x )>0的解集为(-2,2),若f (x -1)>0,则-2<x -1<2,解得-1<x <3.5 二次函数16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].6 指数与指数函数 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.3.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A .1 B .2 C .3 D .-13.A [解析] g (1)=a -1,由f [g (1)]=1,得5|a -1|=1,所以|a -1|=0,故a =1.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a3.C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .2.,[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4) 2.C [解析] 根据已知得,集合A ={x |-1<x <3},B ={y |1≤y ≤4},所以A ∩B ={x |1≤x <3}.故选C.5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.7.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12 B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D. 11.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.11.10 [解析] 由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012=10.7 对数与对数函数 5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.3.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 3.C [解析] 根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C.4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.13.、[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.50 [解析] 本题考查了等比数列以及对数的运算性质.∵{a n }为等比数列,且a 10a 11+a 9a 12=2e 5,∴a 10a 11+a 9a 12=2a 10a 11=2e 5,∴a 10a 11=e 5, ∴ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)= ln(a 10a 11)10=ln(e 5)10=ln e 50=50.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a3.C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .4.[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)4.D [解析] 要使f (x )单调递增,需有⎩⎪⎨⎪⎧x 2-4>0,x <0,解得x <-2.7.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC D图1-2 图1-27.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数,故选D.12.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.12.-14 [解析] f (x )=log 2 x ·log 2(2x )=12log 2 x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14.8 幂函数与函数的图像 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.10.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 10.B [解析] 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ;当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B. 8.[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞) 8.B [解析] 画出函数f (x )的图像,如图所示.若方程f (x )=g (x )有两个不相等的实数,则函数f (x ),g (x )有两个交点,则k >12,且k <1.故选B.7.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC D图1-2图1-27.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数,故选D.9 函数与方程10.、[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e) C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e 10.B [解析] 依题意,设存在P (-m ,n )在f (x )的图像上,则Q (m ,n )在g (x )的图像上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m -12-m (m >0),可得a ∈(-∞,e).14.[2014·天津卷] 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.14.(0,1)∪(9,+∞) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x -1|的图像如图所示.当y =a |x -1|与y =f (x )的图像相切时,由⎩⎪⎨⎪⎧-ax +a =-x 2-3x ,a >0,整理得x 2+(3-a )x +a =0,则Δ=(3-a )2-4a =a 2-10a +9=0,解得a =1或a =9.故当y =a |x -1|与y =f (x )的图像有四个交点时,0<a <1或a >9.6.[2014·浙江卷] 已知函数f (x )=x +ax +bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >96.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒ ⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11,则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3, ∴6<c ≤9,故选C.10 函数模型及其应用8.[2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1 8.D [解析] 设年平均增长率为x ,则有(1+p )(1+q )=(1+x )2,解得x =(1+p )(1+q )-1.10.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 10.A [解析] 设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年各地高考理科试题函数
6.[安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )
A.12
B.32 C .0 D .-12
2.[北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( )
A .y =x +1
B .y =(x -1)2
C .y =2-
x D .y =log 0.5(x +1) 7.[福建卷] 已知函数f (x )=⎩
⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( ) A .f (x )是偶函数 B .f (x )是增函数 C .f (x )是周期函数 D .f (x )的值域为[-1,+∞)
2.[江西卷] 函数f (x )=ln(x 2-x )的定义域为( )
A .(0,1]
B .[0,1]
C .(-∞,0)∪(1,+∞)
D .(-∞,0]∪[1,+∞)
3.[山东卷] 函数f (x )=1(log 2x )2-1
的定义域为( ) A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦
⎤0,12∪[2,+∞) 2.[北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( )
A .y =x +1
B .y =(x -1)2
C .y =2-
x D .y =log 0.5(x +1)
3.[湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )
A .-3
B .-1
C .1
D .3
3.[新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )
A .f (x )g (x )是偶函数
B .|f (x )|g (x )是奇函数
C .f (x )|g (x )|是奇函数
D .|f (x )g (x )|是奇函数
4.[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图11所示,则下列函数图像正确的是( ) 3.[江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )
A .1
B .2
C .3
D .-1 3.[辽宁卷] 已知a =2-13,b =log 213,c =log 1213
,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a
2.[山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )
A .[0,2]
B .(1,3)
C .[1,3)
D .(1,4)
5.[山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) B
A
C D
A. 1x 2
+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 3 7.[陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )
A .f (x )=x 12
B .f (x )=x 3
C .f (x )=⎝⎛⎭⎫12x
D .f (x )=3x 4.[2014·天津卷] 函数f (x )=log 12
(x 2-4)的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(2,+∞) D .(-∞,-2)
7.[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是
( )
图12
10.[湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12
(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )
A.⎣⎡⎦⎤-16,16
B.⎣⎡⎦⎤-66,66
C.⎣⎡⎦⎤-13,13
D.⎣⎡⎦
⎤-33,33 8.[山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )
A. ⎝⎛⎭⎫0,12
B. ⎝⎛⎭
⎫12,1 C. (1,2) D. (2,+∞) 10.、[2014·湖南卷] 已知函数f (x )=x 2+e x -12
(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )
A .(-∞,1e
) B .(-∞,e) C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e 6.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则
( )
A .c ≤3
B .3<c ≤6
C .6<c ≤9
D .c >9
8.[湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )
A.p +q 2
B.(p +1)(q +1)-12
C.pq
D.(p +1)(q +1)-1 10.[2014·陕西卷] 如图12,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )
图12
A .y =1125x 3-35x
B .y =2125x 3-45x
C .y =3125x 3-x
D .y =-3125x 3+15
x
12.[四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩
⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 15.[四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:
①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;
③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;
④若函数f (x )=a ln(x +2)+x x 2+1
(x >-2,a ∈R )有最大值,则f (x )∈B . 其中的真命题有________.(写出所有真命题的序号)
15.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.
16.[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭
⎫π6,π2是减函数,则a 的取值范围是________.
11.[陕西卷] 已知4a =2,lg x =a ,则x =________.
13.[广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.
12.[重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.
14.[2014·天津卷] 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.
19[江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.
(1)证明:f (x )是R 上的偶函数.
(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.
(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与
a e -1的大小,并证明你的结论.(提示:令函数h (x ) = x -(e -1)ln x -1)
21.[四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.
(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;
(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.。

相关文档
最新文档