2016-2017学年七年级数学上册 2 有理数 2.2 数轴 2 在数轴上比较数的大小导学案(无答
北师大版七年级数学上册第二章有理数2.2数轴
广州 16.6°C
济南 -C
解:16.6°C>2.3°C>-3.2°C>-5.6°C>-16.8°C
6.观察数轴,找出符合下列要求的数。 (1)最大的负整数; (2)最小的正整数;
解: (1)最大的负整数是-1 (2)最小的正整数1
7.下列说法正确的是 (3) (5) (6)(填序号) (1)数轴上的点只能表示整数; (2)数轴上的点只能表示分数; (3)数轴是一条直线; (4)数轴上找不到即不表示正数,也不表示负数的数; (5)所以有理数都可以用数轴上的点来表示; (6)数轴上的一个点只能表示一个数。
课本:29页,第2,3,5题
1、认识数轴,会画完整的数轴,会用数轴 上的点表示有理数。 2、会利用数轴比较有理数的大小。
1. 具有相反意义 2. 大,小; 3. 正数,负数 4. 分数
1. 我们通常用正数和负数表示 具有相反意义的量; 2. 正数都比零 大 ,负数都比零 小 ; 3. 零既不是 正数 ,也不是 负数 ; 4. 整数和 分数 统称为有理数.
1.用“<”“>”或“=”填空. 0 > -2 ; -3 < 1; -0.1 < 0.1; 0.03 > -100; -9 < -5.
2.在数轴 上与原点距离2个单位长度的点表示的数有 个,为 2,-2.
3.在数轴上,原点及原点右边的点表示的数是( D ) A.正数; B.负数; C.正整数; D.非负数.
4.如果点A表示-3,将A向右移动7个单位长度,那
么终点表示的数是 4
;
如果点A表示3,将A向左移动7个单位长度,再向右
移动5个单位长度,那么终点表示的数是 1
;
5.下表是某年1月份我国几个城市的平均气温,请将 各城市按平均气温从高到底顺序排列.
2.2.2 在数轴上比较数的大小
12.如图,若 A 是有理数 a 在数轴上对应的点,则关于 a, -1,1 的大小关系表示正确的是( B )
A.a<1<-1 B.a<-1<1 C.1<-1<a D.-1<a<1
13.下列是我国几个城市某年一月份的平均气温,其中气温最低的城
市是( D )
城市
北京 武汉 广州 哈尔滨
平均பைடு நூலகம்温
(单位: ℃) -4.6 3.8
18.(8 分)画一条数轴,在数轴上分别表示下列各数,并用“>”连 接起来.
+4,+3,-2,-1.5,+312,0,1.5.
解:略
19.(10分)小红在做作业时,不小心把墨水洒在一个数轴上,如图, 根据图中标出的数值,判断墨迹盖住的整数共有多少个?
解:12个
20.(10分)(1)借助数轴,回答下列问题. ①从-1到1有3个整数,分别是_____-__1_,__0_,__1__; ②从-2到2有5个整数,分别是_____-__2_,__-__1_,__0__,_1_,__2__; ③从-3到3有____个7 整数,分别是_____-__3_,__-__2_,__-__1_,__0_,__1_,__2_,__3_; ④从-200到200有___4_0个1 整数; (2)根据以上规律,直接写出:从-2.9到2.9有____个5 整数,从-10.1到10.1 有____个21整数; (3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,求 线段AB盖住的整数点的个数. 解:(3)1000个或1001个
13.1
-19.4
A.北京
B.武汉 C.广州 D.哈尔滨
14.小于 2 的非负整数有__2__个,它们是_0_,__1. 15.在有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的 非正数是__0__,最大的非负数是_不__存__在___. 16.大于-3 而不大于+3 的整数__6__个. 17.用“<”“>”或“=”填空: -34__>__-34,π_>___3.14,-65_>___-67.
七年级数学上册第2章有理数2.2数轴2.2.2在数轴上比较数的大小
内容 总结 (nèiróng)
No 第2章 有理数。【点悟】 数轴上右边(yòu bian)的数总比左边的数大。B Image
12/10/2021
第二十三页,共二十三页。
第八页,共二十三页。
当堂测评
1.[2017·丽水]在数1、0、-1、-2中,最大的数是( D )
A.-2
B.-1
C.0
D.1
2.[2016·孝感]下列各数中,最小的数是(B )
A.5
B.-3
C.0
D.2
第九页,共二十三页。
3.[2017·河南]下列各数中比 1 大的数是( A )
A.2
B.0
C.-1
D.-3
4.比较大小:
(1)-2_<___+5;
(2)0_>___-1;
(3)-23_<___-54.
第十页,共二十三页。
5.[2017 秋·门头沟区期末]在数轴上画出表示下列各数的点,并把它们用 “<”连接起来.
112, -2, 0, -0.5.
解:如答图所示,-2<-0.5<0<121.
第 5 题答图
第三页,共二十三页。
知识管理
两个有理数的大小比较 方 法:在数轴上表示的两个数,右边的数总比左边的数大. 法 则:正数都大于零,负数都小于零,正数大于负数. 拓 展:因为正数都大于零,所以大于0的数都是正数,因此可用a>0表 示a是正数,反之,知道a是正数,也可以表示为a>0;同理,用a<0表示a是负 数,a是负数可以表示为a<0.
第2章 有理数
2.2 数轴(shùzhóu) 2.在数轴上比较(bǐjiào)数的大小
学习指南 知识管理 归类探究 当堂测评 分层作业
初中数学青岛版七年级上册第2章 有理数2.2数轴-章节测试习题(12)
章节测试题1.【答题】在数轴上表示-2的点离开原点的距离等于()A. 2B. -2C. ±2D. 4【答案】A【分析】本题考查了数轴上两点间距离的问题,直接运用概念就可以求解.【解答】根据数轴上两点间距离,得-2的点离开原点的距离等于2.选A.2.【答题】在数轴上和原点距离为4个单位长度的点对应的有理数是()A. 4B. -4C. 4或-4D. 无数个【答案】C【分析】本题考查的是数轴上各点到原点距离的定义,解答此题的关键是熟知数轴上到原点距离相等的点有两个,这两个数互为相反数.【解答】根据数轴上各点到原点距离的定义可知:在数轴上和原点距离为4个单位长度的点对应的有理数是±4.选C.3.【答题】在数轴上,一个点从-3开始向左移动1个单位长度,再向右移动5个单位长度后表示的数是()A. +3B. +1C. -9D. -2【答案】B【分析】本题考查了数轴,主要利用了向左平移减,向右平移加.【解答】-3-1+5=-4+5=1.选B.4.【答题】点A为数轴上的表示-2的动点,当点A沿数轴移动4个单位长度到点B 时,点B所表示的有理数为()A. 2B. -6C. 2或-6D. 不同于以上答案【答案】C【分析】注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.【解答】∵点A为数轴上的表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-2-4=-6;②当点A沿数轴向右移动4个单位长度时,点B 所表示的有理数为-2+4=2.选C.5.【答题】有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A. a<bB. a>bC. a=bD. 无法确定【答案】B【分析】本题考查的是数轴的特点及有理数的大小比较,比较简单.【解答】∵b在原点的左边,∴b<0,∵a在原点的右边,∴a>0,∴a>b.选B.6.【答题】数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A. 2002或2003B. 2003或2004C. 2004或2005D. 2005或2006【答案】C【分析】本题考查了数轴的实际应用.【解答】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数可能正好是2005个,也可能不是整数,而是有两个半数那就是2004个.由题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.选C.7.【答题】如图所示,点A表示______,点B表示______,点C表示______,点D表示______.【答案】1 -1 2.5 -1.5【分析】本题考查有理数在数轴上的表示.【解答】由图可知:点A表示1,点B表示-1,点C表示2.5,点D表示-1.5.8.【答题】如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是______.【答案】3【分析】本题考查数轴上的动点问题.【解答】向右移动几个单位,则表示加上几,则-1+3=2.9.【答题】在数轴上表示-4的点位于原点的______边,与原点的距离是______个单位长度.【答案】左 4【分析】本题考查了数轴的知识. 根据数轴的特点及距离的定义解答即可.【解答】在数轴上表示-4的点位于原点的左边,与原点的距离是4个单位长度.10.【答题】在数轴上,点A、B分别表示-5和2,则点A与点B的距离是______个单位长度.【答案】7【分析】本题考查了数轴,熟记数轴上两点间的距离等于两个数的差的绝对值是解题的关键.【解答】|2-(-5)|=|2+5|=7.故答案为:7.11.【答题】数轴上与原点距离是5的点有______个,表示的数是______.【答案】2,5或-5【分析】本题考查数轴上两点间的距离.【解答】数轴上与原点距离是5的点有2个,表示的数是±5.12.【答题】在数轴上与表示数-1的点的距离为3个单位长度的点所表示的数是______.【答案】2或-4【分析】本题考查数轴上两点间的距离.【解答】数轴上与−1的距离等于3个单位长度的点所表示的数为−4或2.故答案为:−4或2.13.【题文】小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?【答案】墨水盖住的整数是-12,-11,-10,-9,-8,11,12,13,14,15,16,17.【分析】本题考查有理数在数轴上的表示.判断-12.6,-7.4,10.6,17.8在数轴上的位置,数整数的个数.【解答】∵-13<-12.6<-12,-8<-7.4<-7,∴此段整数有-12,-11,-10,-9,-8共5个;同理:10<10.6<11,17<17.8<18,∴此段整数有11,12,13,14,15,16,17共7个,∴被墨迹盖住的整数共有5+7=12个.14.【题文】一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?【答案】(1)见解答;(2)6.【分析】本题考查了数轴的知识,在解题时通过画数轴来解题这样非常直观可以知道数与数轴的关系,进一步体现了数形结合的思想.(1)根据数轴上原点左边的数都小于0,右边的数都大于0解答即可;(2)把蚂蚁两次移动的单位长度相加即可.【解答】(1)∵从-3出发向左运动2个单位长度到点A处,∴A点表示的数为-3-2=-5;∴再向右运动4个单位长度到点C处,C点表示的数为:-5+4=-1;如下图:(2)∵蚂蚁第一次移动了两个单位长度,第二次移动了4个单位长度,∴这只电子蚂蚁一共运动了2+4=6个单位长度.15.【题文】已知在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.【答案】(1)3或-3;(2)5或-5;(3)A、B两点间的距离为8或2.【分析】本题考查了数轴的知识,在解题时通过画数轴来解题这样非常直观可以知道数与数轴的关系,进一步体现了数形结合的思想,熟练掌握数轴的特点是解题的关键.【解答】A表示3或-3,B表示5或-5,A、B两点间的距离为8或2,如下图:16.【题文】如图,A、B、C三点在数轴上,A表示的数为-10,B表示的数为14,点C在点A与点B之间,且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数.【答案】(1)24;(2)2;(3)-2.【分析】本题考查了数轴,主要利用了数轴上两点间的距离的求法和相遇问题的数量关系.(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x,然后列出方程求解即可;(3)设相遇的时间是t秒,根据相遇问题列出方程,求解得到x的值,然后根据点A 表示的数列式计算即可得解.【解答】(1)A、B两点之间的距离为:14-(-10)=14+10=24;(2)设点C对应的点是x,则x-(-10)=14-x,解得x=2;(3)设相遇时间为t秒,则t+2t=24,解得t=8.17.【答题】在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数是()A. 3B. ﹣1C. ﹣5D. 4【答案】B【分析】本题考查数轴上的动点问题.【解答】由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3−8+4=−1;选B.18.【答题】下列所画的数轴中正确的是()A. B.C. D.【答案】D【分析】本题考查的是数轴的三要素,解答本题的关键是熟练掌握数轴的三要素:原点、正方向、单位长度.根据数轴的三要素依次分析各项即可.【解答】A.缺少原点,B.缺少正方向,C.单位长度不对,故错误;D.符合数轴三要素,故本选项正确.19.【答题】大于﹣2.6而又不大于3的整数有()A. 7个B. 6个C. 5个D. 4个【答案】B【分析】本题考查了有理数的比较,借助数轴进行比较直观易懂,解题的关键是先把大于﹣2.6并且不大于3的数在数轴上表示出来,据此进行判断.【解答】如图所示,大于﹣2.6而又不大于3的整数是﹣2,﹣1,0,1,2,3.共有6个数,选B.20.【答题】数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D在点B、C之间,则下列式子中,可能成立的是()A. a<b<c<dB. b<c<d<aC. c<d<a<bD. c<d<b<a【答案】C【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.【解答】∵A在点B的左侧,∴a<b,∵点C在点B的左侧,∴c<b,∵点D在点B、C之间,∴c<d<b,∴可能成立的是:c<d<a<b.选C.。
2.2.2 在数轴上比较数的大小-七年级数学上册同步教学辅导讲义(华师大版)
2.2.1数轴同步讲义基础知识1、在数轴上表示的两个数,右边的数总比左边的数大;2、正数都大于零,负数都小于零,正数都大于负数。
例题例、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.2-,1,0,54-,3,2.5【答案】见解析,5201 2.534-<-<<<<【分析】首先在数轴上表示出各数,然后根据在数轴上,右边的数总比左边的数大即可得到答案.【详解】解:如图所示:由数轴可知,这些数从小到大的顺序为:5201 2.534-<-<<<<.【点睛】本题考查有理数的比较大小、数轴,解题的关键是掌握在数轴上,右边的数总比左边的数大.练习1.在5-、1-、0、3这四个有理数中,最小的有理数是()A.5-B.1-C.0 D.32.如图,a与b的大小关系是()A.a<b B.a>b C.a=b D.a=2b3.大于-4.2且小于3.8的整数有()A.5个B.6个C.7个D.8个4.在数轴上表示数1-和2020的两点分别为点A和点B,则A、B两点之间的距离为()A.2018 B.2019 C.2020 D.20215.实数,a b在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0a >B .2b >C .a b <D .a b =6.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列关系正确的是( )A .a >b >cB .b >a >cC .c >b >aD .b >c >a7.实数a 在数轴上对应点的位置如图所示,若实数b 满足﹣a <b <a ,则b 的值可以是___(任填一个即可).8.四个数在数轴上的对应点分别为A ,B ,C ,D ,这四个数中最小的数的对应点是______.9.有理数a 、b 在数轴上的位置如图所示,则a 、b 大小是:a ______b .10.大于2-而小于3的负整数是_______.11.利用数轴比较132-,2,0,1-,12,4-的大小,并用“<”把它们连结起来.12.在数轴上表示下列各数:0,2,﹣1.5,13-,并按从小到大的顺序用“<”号把这些数连接起来.13.将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.练习参考答案1.A【分析】由5-<1-<0<3,从而可得答案.【详解】-解:由5-<1-<0<3,可得:最小的有理数是 5.故选:.A【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较的方法是解题的关键.2.B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:由数轴可知,b<0<a,即a>b,故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.3.D【分析】在数轴上表示出-4.2与3.8的点,进而可得出结论.【详解】解:如图所示,,由图可知,大于-4.2且小于3.8的整数有-4,-3,-2,-1,0,1,2,3共8个.故选:D.【点睛】本题考查的是数轴,根据题意画出数轴,利用数形结合求解是解答此题的关键.4.D【分析】由数轴上两点间距离可得AB=|-1-2020|=2021.【详解】解:AB=|-1-2020|=2021,故选:D.【点睛】本题考查数轴上两点间距离;会求数轴上两点间的距离是解题的关键.5.C【分析】根据点在数轴上的位置分别判断即可.【详解】解:由图可得:-1<a<0,1<b<2,,∴a<0,b<2,a b故选项A、B、D错误,故选C.【点睛】本题考查了实数与数轴,利用数轴比较数的大小是解决问题的关键.6.A【分析】根据数轴左边的点所表示的数小于右边的点所表示的数解答即可.【详解】由数轴得:a>b>c,故选:A.【点睛】本题考查了数轴和有理数的大小比较,熟练掌握数轴上的点所表示的数的大小关系是解答的关键.7.0(答案不唯一)【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【详解】解:由数轴可知,1<a<2,﹣2<﹣a<﹣1,∵﹣a<b<a,∴b可以在﹣1和1之间任意取值,如﹣1,0,1等,故答案为:0(答案不唯一).【点睛】此题主要考查数轴的性质,解题的关键是熟知有理数的大小关系.8.A【分析】根据数轴的定义即可得.【详解】由数轴的定义得:数轴上的点表示的数,左边的总小于右边的,则这四个数中最小的数的对应点是A,故答案为:A.【点睛】本题考查了数轴,掌握理解数轴的定义是解题关键.9.<【分析】数轴上原点右边的数都大于0,原点左边的数都小于0,数轴右边的数始终大于数轴左边的数.【详解】a b、都在数轴原点的左边∴<<a b0,0观察数轴得,a在b左边,a b∴<<故答案为:<.【点睛】本题考查数轴、利用数轴比较有理数的大小等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.-1【分析】在数轴上找出-2与3之间的数,进而可得出结论.【详解】由图可知,大于-2而小于3的负整数是-1,故答案为:-1.【点睛】本题考查的是有理数分类与大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.11.数轴见解析,114310222-<-<-<<<【分析】根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.【详解】解:如图所示:114310222-<-<-<<<.【点睛】本题考查了有理数大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.数轴见解析,11.5023-<-<<【分析】先将各数表示在数轴上,再依据数轴上右边的数大于左边的数进行判断即可.【详解】解:在数轴上表示下列各数如下:故11.5023-<-<<.【点睛】本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的方法是解题的关键.13.见解析,11 54200.424-<-<-<<【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】解:如图所示:故1154200.424-<-<-<<.【点睛】本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.。
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)
-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
七年级数学上册 2.2 数轴 借助数轴学习有理数素材 (新版)青岛版
借助数轴学习有理数数轴是一种数学工具呦,它使数和数轴上的点建立了对应关系,揭示了数与形之间的内在联系,也为我们研究问题提供了新的方法.数轴有助于我们深化对有理数的认识啊!一、数轴帮我们认识有理数1.从数轴上可以看出,数的范围在扩大因为所有的有理数都可以用数轴上的点表示,而且所有的正数都在原点的右边,所有的负数都在原点的左边,0正好在正、负数的“分界”点上,这就十分形象地告诉我们:小学里学过的仅仅是有理数中的一部分:0和正有理数,它们在数轴上的位置是原点及原点的右边;位居原点左边的负有理数是我们刚认识的“新朋友”,“朋友”多了,哈哈!说明我们接触的数的范围在扩大.2.在数轴上,重新认识0的地位小学里,0是最小的数,并且表示“没有”,那是我们就我们所学的数的范围而言的.现在从数轴上再来看0,对它的地位、意义就要“刮目相看”了,你能说0°C是“最低温度”吗?是“没有”温度吗?在数轴上,“0”的左边是数不尽的“负”兄弟,它的右边又有数不尽的“正”朋友.数的范围扩大后,0成了正数和负数的分界点,它既不是正数,也不是负数,它是整数.二、数轴可以帮助我们解决与有理数有关的问题1.利用数轴理解有理数的分类在数轴上,原点表示0,而原点右侧表示正数,左侧表示负数.例1 小红做题时,不小心把墨水洒在了数轴上,如图1,请根据图中的数值,写出墨迹盖住的所有整数.解:-12,-11,-10,-9,-8,-7及0,1,2,3,4,5,6,7,8,9,10.点评:本题主要考查有理数的分类,有理数的分类有两种:一是可分为正有理数、0、负有理数;二是可分为整数、分数.此题只要找出-12.1~-6.5及-0.5~10.5之间的整数即可.2.运用数轴直观表示点的移动正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.例2 把-0.5在数轴上的对应点沿数轴向左或向右移动4个单位长度后,所得的点对应的数是什么?解:如图2,用数轴表示为:由图2可知,表示-0.5的点向右移动4个单位长度,所得的点对应的数为3.5;向左移动4个单位长度,所得的点对应的数为-4.5.点评:用数轴表示点的运动非常直观,充分体现了数与形的转化.2。
北师大版-数学-七年级上册-2.2《数轴》教学设计
2.1《有理数》教学设计教学目标:1.掌握数轴的三要素,会画数轴,能够找到数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来,并利用数轴比较有理数的大小.2.培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,并初步培养学生数形结合的数学思想方法。
3.通过数轴与生活实物对应对比,激发学生兴趣。
教学重点:找到数轴上的点表示的有理数,并把有理数在数轴上表示出来,借助于数轴比较有理数的大小。
教学难点:把有理数在数轴上表示出来及借助于数轴比较大小教学过程:一、导入新课请读出下面温度计所表示的温度温度计上的刻度数有什么特点?你为什么能准确的说出每一个度数?你能借鉴温度计,用一条直线上的点表示有理数吗?活动过程:,从生活中的情景引入:展示三个不同温度的温度计,尝试着让学生读出示数,引入本节课要研究的内容。
活动成果:从温度计的示数,先从“形”上让学生感知数轴的原形,为下一步学习数轴的画法以及用数表示数轴上的点埋下辅笔。
【设计意图】:借助于温度计的“形”。
为后继学习数轴做铺垫。
同时也进一步感受到数形结合的优点,有利于培养学生的数形结合的思想意识。
二、探究新知活动一:你能画一条数轴吗?规定了原点、正方向和单位长度的直线叫做数轴。
数轴三要素:原点、正方向、单位长度活动过程:借助于生活中对温度计的认识,尝试着画出数轴,并研究数轴的三要素。
活动成果:通过类比、观察温度计,完成画数轴的过程,并归纳数轴的三要素。
【设计意图】:归纳总结,概括总结出数轴的概念,并体会数轴的三要素。
为下面继续研究数轴做铺垫。
活动二:巩固练习:活动过程:分析并指出每一个问题的正确答案,并指出错误的理由。
活动成果:通过巩固练习,加深对数轴的理解,为下面的学习做铺垫。
【设计意图】:概念习题化,习题体组化,通过巩固练习,进一步强化对数轴的认识。
活动三:请你思考: +3,-4,0分别在数轴的什么位置? ,-1.5呢?活动过程:画出数轴,并把上面个数表示在数轴上。
华师版数学七年级上册2 在数轴上比较数的大小课件牛老师牛老师
利用数轴比较有理数的大小
新课讲解
问题 下图中的温度计横过来放,就像一条数轴.从这个事 实中,你能得到怎样的启发?
新课讲解
与温度计类似,在数轴上表示的两个数,右边的数总比左 边的数大.利用数轴可以比较数的大小.
-3 -2 -1 0 1 2 3 越来越大
由正负数在数轴上的位置,容易得到如下大小比较法则: 正数都大于零,负数都小于零,正数都大于负数.
11 2
●
●
●
●
●
●
新课引入
3.填空 数轴上表示负数的点在原点的______边,表示正数的点在原 点的______边,原点表示的数是_______;
4.比较下列数的大小 (1)2______1; (2)2.7_____2.71.
思考:在小学里,我们已经学会比较两个正数的大小, 那么,引进负数以后,怎样比较两个有理数的大小呢? 例如,1与-2哪个大?-1与0哪个大?-3与-4哪个大?
随堂即练
2.在数轴上把下列各数表示出来,并比较
它们的大小: 4 ,7,-3.5,0,4 .
5
3
4 5
0
4 3
-3 -2 -1 0 1 2 3 4 5 6 7 8
-3.5 < 4 < 0 5
<
4 <7 3
课堂小结
在数轴上表示的两个数,右边的数总比左边的数大.
正数都大于零, 负数都小于零,正数都大于负数.
新课讲解
例1 将下列各数按从小到大的顺序排列,并用“<”号
连
接起来:
3,0,1 5, 4. 6
解:容易知道 1 5 <3, 6
再由大小比较法则,得 4<0<1 5 <3. 6
新课讲解
七年级数学上册第2章有理数2.2数轴
第四页,共三十页。
【思考】1.用数轴上的点表示(biǎoshì)有理数时,正有理数在原点的哪一侧,
负有理数呢? 提示:正有理数在原点的右侧,负有理数在原点的左侧.
2.有理数都能用数轴上的点表示吗? 提示:能.所有的有理数都能用数轴上的点表示.
第五页,共三十页。
【总结】1.数轴与有理数的关系
(2)①将各组数分别在数轴上表示出来,如图所示.
②它们的共同特点是数轴上表示的各组数的点到原点的距离都相等.
第十一页,共三十页。
【总结提升】用数轴上的点表示有理数的三个步骤
1.画:画数轴,注意根据数据特点决定单位长度的大小. 2.看:一看数字(shùzì)的符号,正的在原点右边,负的在原点左边;二看 该点离原点几个单位长度. 3.标:在数轴上标记表示该有理数的点.
边的数大. (2)用法则比较:___正数都大于零,___数负都小于零,___数都正大
于_负__数.
第七页,共三十页。
(打“√”或“×”)
(1)画数轴时可以选择向右为正方向,也可以选择向左为正方
向,只要把正方向用箭头表示出来即可.( )
×
(2)所有(suǒyǒu)的小数都可以用数轴上的点来表示.( )
是( ) A.2 B.0 C.-2 D.-1 【解析】选A.根据比较有理数大小的法则“正数都大于零,负数都小于零,
正数都大于负数”,易知2最大.
第二十一页,共三十页。
2.如图,数轴上A,B,C,D四点表示的数分别为a,b,c,d,则它们的大小
(dàxiǎo)关系是( )
A.a>b>c>d
B.c>a>d>b
根据数轴上右边的数总比左边的数大,各数的大小关系按从小
到大的顺序用“<”连接为:-3.5<-2数轴可知A与B,D与E,F与G到原点的距离都分别相等.
北师大版数学七年级上册2.2 数轴2教案与反思
2.2 数轴知人者智,自知者明。
《老子》棋辰学校 陈慧兰教学目标:1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
3、 理解相反数的意义及求法。
4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。
重点 难点:1. 正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。
2. 有理数和数轴上的的点的对应关系。
教学方法:合作 探究 交流学法指导:观察 归纳 概括教学过程:一、情景引入:(1) 你会读温度计吗?完成课本43页最上面的读温度计的问题。
(2) 我们能否用类似温度计的图形表示有理数呢?二、讲授新课:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点O (叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。
于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边41点表示41,在数轴上位于原点左边1.5的点表示5.1 , 任何有理数都可以用数轴上的一个点来表示。
三、例题讲解、巩固提高例1.如图,指出数轴上A 、B 、C 、D 各点表示什么数?A D CB –2 –1 0 1 2 3解:点A 表示-2;点B 表示2;点C 表示0;点D 表示-1练习:画出数轴并用数轴上的点表示下列个数:23 ,-5 ,0 ,5 ,-4 ,-23 . 四、继续探究2 与 -2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与 -5, 23 与 -23 呢? 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习 : 1、5的相反数是▁▁;▁▁的相反数是-3.5。
议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
北师大版七年级数学上册《2.2在数轴上比较数的大小》课件
谢谢观赏
You made my day!
我们,还在路上……
新课程多媒体系列课件 七年级上册《数学》
第 二 章 有理数
2.2 数轴
---- 在数轴上比较数的大小
我们学过:
1,规定 做 数轴
、 、的叫
2,数轴的三要素是 , , 。
3,请大家一起来画一条数轴,再把-2.5和3/2
表示出来。
在小学我们已经学会了比较两个正数的 大小,如5>2,那你又知不知道:-7与2、
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比 左 边的数大;
2)正数都 大于 0,负数都 小于 0; 正数 大于 一”,错的打“×”.
1)在数轴上表示的两个数, 左边的数总比右边的数小;
2)0都小于正数, 0都大于负数; 负数小于一切正数;
-1.5 , 0.6 , -3 , -2
解:将这些数分别在数轴上表示出来:
-3 -2 -1.5 0.6
-3 –2 –1 0 1 2 3 4
可以得到: -3 < -2 < -1.5 < 0.6
练习: 课本第25页的 1 , 2 题
作业: 课本第26页习题的 5 , 6, 7, 8 题
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二下午3时2分52秒15:02:5222.4.12
华师大版-数学-七年级上册-2.2.2 在数轴上比较数的大小 教案
2.2.2在数轴上比较数的大小教学目标通过对温度计的观察和用数轴上的点来表示有理数,探索有理数大小的比较法则,进一步感受数形结合的思想方法.理解利用数轴上的点的位置关系比较有理数大小的法则.教学过程在小学里,我们已经学会了比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有利数的大小呢?例如,1与-2那个大?-1与0哪个大?-3-4哪个大?探索(1)任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?(2)1℃和-2℃那个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?把温度计横过来放,就像一条数轴,能否从中发现在数轴上怎样比较两个有理数的大小? 概括我们发现,在数轴上表示的两个数,右边的数总比左边的数大.根据有理数在数轴上表示的相对位置,在应用中我们也常说:正数都大于零,负数都小于零,正数大于负数.例1将有理数3,0,651,-4按从小到大顺序排列,用“<”号连接起来. 解: 正数516<3,由正、负数大小比较法则,得-4<0<651<3 . 例2 比较下列各数的大小:-1.3,0.3,-3,-5 .解: 将这些数分别在数轴上表示出来(如图):所以 -5<-3<-1.3<0.3练习1.判断下列各式是否正确:⑴ 2.9>-3.1; ⑵ 0<-14;⑶ -10>-9; ⑷ -5.4<-4.5【答案】(1)正确(2)错误(3)错误(4)正确2.用“<”号或“>”号填空:⑴ 3.6 2.5; ⑵ -3 0;⑶ -16 -1.6; ⑷ +1 -10;⑸ -2.1 +2.1; ⑹ -9 -7【答案】(1)>(2)<(3)<(4)>(5)<(6)<小结1.在数轴上表示的两个数,右边的数总比左边的数大.2.正数都大于零,负数都小于零,正数大于负数.作业1. 比较下列每对数的大小:(1)-8,-6; (2)-5, 0.1;(314-,0; (4)-4.2;-5.1; (5) 32,23 ; (6) 51+,0 ;【答案】(1)小于(2)小于(3)小于(4)大于(5)小于(6)大于2. 画出数轴,把下列各组数分别在数轴上表示出来,并按从小到大的顺序排列,用“<”连接起来:,2,0.5,0,﹣3.解:各数在数轴上表示为:根据数轴上左边的数总比右边的大可知:﹣3<﹣<0<0.5<2.。
北师大版七年级上册数学第二章有理数第二节数轴2
1.2.2数轴1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点) 4.感受在特定的条件下数与形是可以相互转化的.一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A. B.C. D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D 中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出如图中所表示的数轴上的A、B、C、D、E、F各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A点表示:-4.5;B点表示:4;C 点表示:-2;D点表示:5.5;E点表示:0.5;F点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A、D这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】数轴上两点间的距离问题数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是( )A.5 B.±5C.7 D.7或-3解析:与点A相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.三、板书设计1.数轴三要素:(1)原点(2)正方向(3)单位长度2.数轴上的点与有理数间的关系(1)原点表示零(2)原点右边的点表示正数(3)原点左边的点表示负数数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.【课堂作业】示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?3.(1)所有的有理数可以用数轴上的来表示。
初中数学青岛版七年级上册第2章 有理数2.2数轴-章节测试习题(14)
章节测试题1.【题文】(1)将有理数-2,1,0,,在数轴上表示出来;(2)写出数轴上点A,B,C表示的数.【答案】(1)见解答;(2)点A表示-3,点B表示-1,点C表示4.【分析】熟知“在数轴上表示有理数的方法”是解答本题的关键.根据在数轴上表示有理数的方法进行分析解答即可.【解答】(1)有理数-2,1,0,,在数轴上表示出来如下图所示:(2)点A表示-3,点B表示-1,点C表示4.2.【题文】点A,B,C,D分别表示-3,,0,4.请解答下列问题:(1)在数轴上描出A,B,C,D四个点;(2)现在把数轴的原点取在点B处,其余均不变,那么点A,B,C,D分别表示什么数?【答案】(1)见解答;(2)点A表示,点B表示0,点C表示,点D表示.【分析】知道“在数轴移动原点的含义:将数轴上原点的位置向左(或右)移动m个单位长度,则数轴上原来各点所表示的数增大m(或减小m)”是解答本题的关键.(1)按照“在数轴上表示有理数的方法”进行解答即可;(2)由题意可知,把原点移动到点B处,相当于原点不动,而把A、B、C、D四点向右移动了1.5个单位长度,由此即可得到变化后点A、B、C、D各自所表示的数.【解答】(1)如图所示:(2)由题意可知,把原点移动到点B处,相当于原点不动,而把A、B、C、D四点向右移动了1.5个单位长度,∴将原点移动到点B处后,点A表示,点B表示0,点C表示,点D表示.3.【题文】如图,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?【答案】(1)负数;(2)7个;(3)28个.【分析】熟知“用数轴上的点表示有理数的方法”是解答本题的关键.根据数轴上的已知信息解答即可.【解答】(1)∵被小猫遮住的数在原点的左边,∴被小猫遮住的是负数;(2)∵被小狗遮住的数在11.5---18.5之间,∴被小狗遮住的整数有12,13,14,15,16,17,18,共7个;(3)∵点A表示的数是-16.5,点B表示的数是11.5,∴小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个.4.【题文】某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3km,2km,1.5km.如果以学校为原点,向东为正方向,以图上1cm长为单位长度表示实际距离1km,请画出数轴,并将四个站点在数轴上表示出来.【答案】见解答.【分析】本题的解题要点有以下两点:(1)知道数轴的三要素,并能由此规范地画出数轴;(2)读懂题意,知道学校在原点处,公园、书店分别在原点左侧5个单位长度处和2个单位长度处,小区在原点右侧1.5个单位长度处.根据题意,规范地画出数轴,并按题中要求在所画数轴上描出表示:公园、书店、学校、小区四个地点的点即可.【解答】如图所示:5.【题文】育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.【答案】小明在八中的西边,距离八中有700米,用数轴表示见解答.【分析】熟知“数轴的画法,并能结合已知条件画出如图所示的数轴”是解答本题的关键.以新华中学为原点,向东为正方向,200米为单位长度建立数轴,在所画数轴上标出表示八中和九中的点,再根据已知条件分析解答即可.【解答】以新华中学为原点,向东为正方向,200米为单位长度建立数轴,并在数轴上标出表示八中和九中的点如下图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,到达了A点,接着又向东走了500米,到达了B点,由图可知:这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.6.【题文】如图,把一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为______cm.(2)图中点A表示的数是______,点B表示的数是______.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.【答案】(1)5;(2)10,15;(3)70岁.【分析】读懂题意,理解(1)中的解题方法是解答本题的关键.(1)由题意可知,3AB=20-5,由此即可求得AB=5,从而得到木棒的长;(2)由(1)中所得AB=5结合图中的已知条件即可求得A和B所表示的数;(3)根据题意,设数轴上小木棒的A端表示小红的年龄,小木棒的B端表示爷爷的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【解答】(1)由题意结合图形可知3AB=20-5=15(cm),∴AB=5(cm),即此木棒的长5cm.故答案为5.(2)∵木棒AB的长为5cm,∴点A表示的数为:5+5=10,点B表示的数为5+5+5=15,故答案为:10,15;(3)根据题意,设数轴上小木棒的B端表示爷爷的年龄,A端表示小红的年龄,把小红与爷爷的年龄差看作木棒AB的长度,∵小红爷爷像小红现在这么大时,小红还要40年才出生,∴当将B向左移与A重合,A与-40重合,即此时小红的年龄是-40岁;∵小红像她爷爷在这么大时,小红爷爷已经125岁,∴当将A向右移与B重合,B与125重合,即此时爷爷的年龄为125岁,∴小红爷爷比小红大(125+40)÷3=55(岁),∴小红爷爷现在的年龄为125-55=70(岁).7.【答题】下列说法中错误的是()A. 规定了原点、正方向和长度的直线叫数轴B. 数轴上的原点表示数零C. 在数轴上表示的数,右边的数总比左边的数大D. 所有的有理数都可以用数轴上的点表示【答案】A【分析】(1)数轴是一条直线,它可以向两端无限延伸,但直线不一定是数轴.(2)数轴必须具备原点、正方向、单位长度这三个要素,缺一不可.(3)0是正数和负数的分界点;原点是数轴的“基准点”.【解答】A.规定了原点、正方向和单位长度的直线叫数轴,不是长度,故此选项错误;B.数轴上的原点表示数零,故此选项正确;C.在数轴上表示的数,右边的数总比左边的数大,故此选项正确;D.所有的有理数都可以用数轴上的点表示,故此选项正确.选A.8.【答题】下列数轴画得正确的是()A. B.C. D.【答案】C【分析】本题考查数轴的三要素及其画法.【解答】A.没有原点;B.单位长度不一致;D.负数排列顺序不正确;选C.9.【答题】如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. –1 【答案】D【分析】本题考查有理数在数轴上的表示.【解答】数轴上蝴蝶所在点表示的数可能为–1,选D.10.【答题】如图,数轴上点A表示的数是()A. –1B. 0C. 1D. 2 【答案】C【分析】本题考查有理数在数轴上的表示.【解答】数轴上点A所表示的数是1.选C.11.【答题】a、b在数轴上的位置如图,则下列说法正确的是()A. a是正数,b是负数B. a是负数,b是正数C. a、b都是正数D. a、b都是负数【答案】B【分析】本题考查有理数在数轴上的表示.【解答】∵由图可知,a在原点的左侧,b在原点的右侧,∴a为负数,b为正数.选B.12.【答题】如图所示,分别用数轴上的点A,B,C,D表示数,正确的是()A. 点D表示–2.5B. 点C表示–1.25C. 点B表示1.5D. 点A表示1.25【答案】C【分析】本题考查有理数在数轴上的表示.【解答】点D表示–1.5,点C表示–0.75,点B表示1.5,点A表示2.5.选C.13.【题文】小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,你能确定墨迹盖住的整数是哪几个吗?【答案】–6、–5、–4、–3、–2、1、2、3、4.【分析】本题考查有理数在数轴上的表示.【解答】根据图中数值,确定墨迹盖住的整数是–6、–5、–4、–3、–2、1、2、3、4.14.【题文】文具店、书店和玩具店依次坐落在上海南京路东西走向的大街上,文具店位于书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了60米,你知道此时小明的位置在哪儿吗?【答案】玩具店.【分析】本题考查数轴的三要素及其画法,数轴上两点间的距离.【解答】如图所示,故此时小明的位置在玩具店.15.【题文】已知数轴上点A在原点的左侧,到原点的距离为8个单位长度,点B在原点的右侧,从点A走到点B,要经过12个单位长度.写出A、B两点所对应的数;【答案】点A表示–8,点B表示4.【分析】本题考查数轴上两点间的距离以及数轴上的动点问题.【解答】∵数轴上点A在原点左边,到原点的距离为8个单位长度,∴点A表示–8,点B在原点的右边,从点A走到点B,要经过12个单位长度,∴点B表示4.16.【答题】下列说法正确的是()A. 没有最大的正数,却有最大的负数B. 数轴上离原点越远,表示数越大C. 0大于一切非负数D. 在原点左边离原点越远,数就越小【答案】D【分析】本题考查正数和负数,有理数的分类,在数轴上表示有理数.【解答】A.没有最大的正数;没有最大的负数,∵正数和负数都有无数个,它们都没有最大和最小的值,故错误;B.在数轴上,在原点右侧的数,离原点越远表示的数就越大,反之,在原点的左侧的数,离原点越远表示的数就越小,故数轴上离原点越远,表示数越大,没说是原点左边还是右边,∴错误;C.0大于一切负数,而不是非负数,故错误;D.在数轴上,在原点的右侧的数,离原点越远表示的数就越大,反之,在原点的左侧的数,离原点越远的表示的数就越小,故正确.选D.17.【答题】文具店、书店和玩具店依次坐落在一条南北走向的大街上,文具店在书店北边20米处,玩具店位于书店南边100米处.小花从书店沿街向南走了40米,接着又向南走了–60米,此时小花在()A. 文具店B. 玩具店C. 文具店北边40米D. 玩具店南边–60米【答案】A【分析】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.【解答】由题意,得50–70=–20,此时小花的位置在文具店,选A.,18.【答题】A为数轴上表示–1的点,将点A沿数轴向右平移3个单位到点B,则点B 所表示的数为______.【答案】2【分析】本题考查数轴上两点间的距离.【解答】∵A为数轴上表示–1的点,将点A沿数轴向右平移3个单位到点B,结合数轴可得点B所表示的数是2,故答案为2.19.【题文】如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示什么数?它们到原点的距离分别是多少?(2)将点B向左移动3个单位长度后,点B所表示的数是多少?(3)将点A向右移动4个单位长度后,点A所表示的数是多少?(4)要怎样移动A、B、C三点中的两个点,才能使三个点表示的数相同?移动方法唯一吗?若不是,请任意选择一种回答.【答案】(1)点A表示–4,到原点的距离是4;点B表示–2,到原点的距离是2;点C表示3,到原点的距离是3;(2)–5;(3)0;(4)见解答.【分析】本题考查数轴上两点间的距离.【解答】(1)由数轴可知,点A表示–4,到原点的距离是4;点B表示–2,到原点的距离是2;点C表示3,到原点的距离是3;(2)将点B向左平移3个单位长度后,所表示的数是–5;(3)将点A向右平移4个单位长度后,所表示的数是0;(4)移动方法不唯一.例如:将点A向右移动2个单位长度,将点C向左移动5个单位长度,此时A、B、C三点在B点处重合.20.【答题】若数轴上点A、B分别表示数2、–2,则A、B两点之间的距离可表示为()A. 2+(–2)B. 2–(–2)C. (–2)+2D. (–2)–2【答案】B【分析】本题考查数轴上两点间的距离.【解答】A、B两点之间的距离可表示为:2–(–2).选B.。
北师大版七年级上册数学第二章:有理数及运算讲义(二)2.2数轴(无答案)
第二章:有理数(二)2.2数轴1.数轴(1)定义:规定了原点、正方向和单位长度的直线叫做数轴,如图.①数轴有三要素:原点、正方向、单位长度,三者缺一不可;②原点的选定,单位长度大小的确定,都是根据实际需要“规定”的.通常取向右的方向为正方向. (2)数轴的画法画一条数轴的步骤可概括为:一画、二定、三选、四标. ①画直线:就是先画一条直线,一般画成水平的直线;②定原点:通常原点选在你所画直线居中的位置,若问题中负数的个数较多时,原点选得靠右些;正数的个数较多时,原点选得靠左些.③选正方向:通常取原点向右的方向为正方向,并选取适当的长度为单位长度,将表示刻度的点用短竖线表示.④标数:在数轴上依次标出1,2,3,4,0,-1,-2,-3,-4等各点,相应的数0,±1,±2,…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.要是在数轴上用到30,那得标多少单位啊! 适当的长度有两层含义:①可取实际1 cm 作为一个单位长度,也可以取2 cm 或其他实际数据作为一个单位长度; ②一个单位长度可表示1,也可表示10或更多!如图所示就能做到啦!【例1】四位同学画数轴如下图所示,你认为正确的是( ) A .B .C .D .2.有理数与数轴上的点的关系任何一个有理数都可以用数轴上的一个点来表示,即每个有理数都对应数轴上的一个点.(1)表示正数的点都在原点的右侧;(2)表示负数的点都在原点的左侧;(3)表示0的点就是原点. 【思考】数轴上是否只能表示有理数?能不能表示无理数,比如π?【例2】画出数轴并在数轴上标出表示下列有理数的点并用“<”将这些数连起来: 1.5, —2, 2, —2.5, 92, 23, 0;【例3】在数轴上表示下列各点,并写出这些点所对应的数. (1)在原点的左侧,距离原点3个单位长度; (2) 在原点的右侧,距离原点3个单位长度; (3) 在原点的左侧,距离原点0.5个单位长度; (4) 在原点的右侧,距离原点0.5个单位长度.【例4】如图,分别指出数轴上A 、B 、C 、D 、E 各点所表示的数.点技巧 “数形结合”思想(1)根据已知数在数轴上标出对应点,分三步:①画数轴;②确定点,并用实心小圆点描出;③标数,即在实心小圆点的上方标出所表示的数.(2)根据数轴上的点读数,原点表示0,原点向右为正数,原点向左为负数.都体现了“数形结合”的思想.3.利用数轴比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,负数小于0,正数大于负数.(3)多个有理数比较大小:①把各个数在数轴上表示出来;②根据各数在数轴上的顺序,用“<”或“>”连接.析规律 两个有理数比较大小的方法 分情况比较:①若两数同号(都为正数或都为负数),数轴上左边的数<右边的数; ②若两数异号,则正数>0>负数.【例5】比较下列这组数的大小,并用“<”连接起来.-412,12,1,-2, 3, 0,-0.5.【例6】 有理数a ,b 在数轴上的位置如图所示,试用“=”“>”或“<”填空:a __________0,b __________0,a __________b .4.数轴上点的移动(1)相对于原点的移动:从原点向右a (a >0)个单位长度,则表示的数是a ;从原点向左a (a >0)个单位长度,则表示的数是-a .(2)两个相对点的移动:点A 相对于点B 向右移动或向左移动一定的距离,最后表示的数要看点A 移动结束时对应点距离原点的距离和位置.【例7】一探险队要沿着一东西走向的河流进行考察,第一天沿河岸向上游走了5 km ,第二天又向上游走了4.3 km ,第三天开始计划有变,向下游走了4.8 km ,第四天又向下游走了3 km ,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?5.利用数轴求数轴上的点表示的数在数学里,数与形是密切联系的,数轴的引进使有理数与直线上的点联系了起来,利用数轴可以比较容易地写出数轴上某区域中的整数、正整数、负整数等.如,写出大于-5而小于3的所有整数.可以先画出数轴,在数轴上标出-5与3这两个点,再在这两个点之间找出满足题意的整数-4,-3,-2,-1,0,1,2即可.DC BA 【例8】小红做题时,不小心把墨水洒在了数轴上,如图所示,请根据图中的数值,写出墨迹盖住的所有整数.【题组训练】:1.如图所示,正确的数轴是( )2.若a ,b ,c 在数轴上的位置如图所示,则a ,b ,c 所表示的数是( ) A . a ,b ,c 均为正数 B .a ,b ,c 均为负数 C . a ,b 是正数,c 是负数 D .a ,b 是负数,c 是正数3.数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-24.若有理数m >n ,在数轴上点M 表示数m ,点N 表示数n ,则( ) A .点M 在点N 的右边 B .点M 在点N 的左边 C .点M 在原点右边,点N 在原点左边 D .点M 和点N 都在原点右边5.将一刻度尺沿着数轴的正方向正放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的6.3-和x ,则( )A 、109<<xB 、 1110<<xC 、 1211<<xD 、 1312<<x6.A 、B 两点在数轴上,点A 表示的数是2,若线段AB 的长为3,则点B 所表示的数为______7.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画一条长为2013cm 的线段AB ,则线段AB 盖住的整点的个数是 。
北师大版第2章《有理数》七年级数学上册 2.2 数轴课件2 (新版)北师大版
原点、正方向、单位长度一个也不能少。
例1 指出数轴上A,B,C,D各点分别
表示什么数。
A DC
B
-2 -1 0 1 2 3
解: 点A表示-2; 点B表示2; 点C表示0; 点D表示-1;
..
—3 —2 —1 0 1 2 3
议一议:
1、如何用数轴上的点来表示分数或小数?
如:1.5, -
3 2
怎样表示?
45
4
1 2
●
45
数轴上的两个点,右边的点表示的数与 左边的点表示的数的大小关系是什么?
越来越大
-3 -2 -1 0 1 2 3
数轴上两个点表示的数,右边的总比左边的大。 正数大于0, 负数小于0,正数大于负数。
例3 比较下列每组数的大小:
(1)-2和+6; (2)0和-1.8; (3)- 3 和-4;
A
-
C
-
-
所以从温度计我们可以得到一些启发—— 用直线上的点来直观地表示有理数。
画一条水平直线,在直线上取一点表示0,并 把这个点叫原点,选取某一长度作为单位长度, 规定直线上向右的方向为正方向,就得到下面的 数轴。
数轴像什么?——像一个平放的温度计!
议一议:怎样画数轴?
—3 —2 —1 0 1 2 3 ① 画直线,定原点。 ② 从原点向右的方向为正方向,从原点向左为负方 向。 ③ 选取适当长度为单位长度。 ④ 在数轴上标出1、2、3、—1、—2、—3等各点。
多少亿吨?
(3)2000年和2005年上海港货物吞吐量共多少亿吨?
A
B
C
探究一
探究二
探究三
2.004×2+0.342
2.004×2+0.342
七年级数学上册 第二章 有理数及其运算2.2 数轴2.2.1数轴教案 (新版)北师大版-(新版)北师
课 题
数轴
教 学
目 标
1.正确理解数轴的意义;
2.会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.初步理解数形结合的思想方法。
教
材
分析
重 点
初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难 点
正确理解有理数与数轴上点的对应关系。
教 具
电脑、投影仪
教
练一练:1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?
教
学
过
程
2.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,,,};
1.P45第1、2题;2.P46第1、4、5题
明晰:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
布置作业
习题2.2知识技能1、4题;练习册数轴(1)
教学后记
数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
问题:我们能不能用这条直线表示任何有理数?(可列举几个数)
三、应用、拓展
例1指出数轴上A,B,C,D各点分别表示什么数?(P44)
例2画一个数轴,并在数轴上画出表示下列各数的点:
一、从学生原有认知结构提出问题
1.小学数学是如何利用数轴表示正数和零的?
1.2.2 在数轴上比较大小 华师大版数学七年级上册教案
第2章 有理数2.2 数轴2.2.2 在数轴上比较数的大小教学目标1.通过观察数轴上点的位置关系,能够利用数轴比较有理数的大小.2.初步认识图形和数量的对应关系,进一步理解数形结合的思想.教学重难点重点:利用数轴比较有理数的大小.难点:两个负数的大小比较.教学过程复习回顾1.画出一条数轴,并把下列各数表示在数轴上.,,,0,,4 2.比较下列每组数的大小.(1)0和10<1(2)和<探究新知一、预习新知问题:在小学里我们已经学过比较两个正数的大小,那么,引入了负数之后,怎样比较两个有理数的大小呢?例如:与哪个大?与哪个大?和哪个大?二、合作探究(1)任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置关系怎样?然后和同桌交流一下.(2)与哪个温度高?与哪个温度高?这个关系在温度计上表现怎样的情形?(把温度计横过来,就好比一条数轴.从实际中加以引导)(学生作答,老师总结)【总结】与温度计类似,在数轴上表示的两个数,右边的数总比左边的数大.例1比较下列每组数的大小.(1)与;(2)与;(3)与;(4)与.分析:利用有理数大小比较的规律加以分析.解:(1);(2);(3);(4).【总结】利用数轴比较有理数大小的规律:1.在数轴上表示的两个数,右边的数总比左边的数大;2.正数都大于零,负数都小于零,正数大于负数.教学反思教学反思例2比较,,,,的大小.解法1:如图所示:由数轴可知,.解法2:利用有理数大小比较的规律..【总结】利用数轴比较两个有理数大小的步骤:第一步:首先在数轴上把有理数表示出来;第二步:观察数的位置而比较大小.例3请你写出满足所有下列条件的数.(1)小于3的正整数;(注意演变成非负整数)(2)大于-5的负整数;(注意演变成非正整数)(3)大于-2且不大于3的整数.【问题探索】借助数轴把满足条件的数都标注出来,再作答.解:(1)小于3的正整数有,;(2)大于-5的负整数有,,,;(3)大于-2且不大于的整数有,0,,,.课堂练习1.用“>”或“<”填空.(1)0.25 ___ -1(2)-2 ___ 0(3)0 ___ 3.14(4)0 ___ -14(5)-16 ___ 1.6(6)2.1 ___-2.12.有理数a, b, c在数轴上的位置如图所示,则a,b,c由小到大的顺序为()A.a<c<bB.b<a<cC.a<b<cD.b<c<a3.下列四个数中,在-2和-3之间的数是()A.-3.2B.-2C.-1D. -2.14.将有理数 - 2,0,1.3,-5按从小到大的顺序排列,用“<”号连接起来.参考答案1.><<><>2.A3.D4.解:将这些数分别在数轴上表示出来:教学反思所以-5<-2<0<1.3.课堂小结在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.布置作业教材19页习题2.2 第4,5题板书设计第2章 有理数2.2 数 轴2.2.2 在数轴上比较数的大小利用数轴比较有理数大小的规律:1.在数轴上表示的两个数,右边的数总比左边的数大;2.正数都大于零,负数都小于零,正数大于负数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章有理数
一.学习目标
1.正确掌握数轴画法和用数轴的点表示有理数。
2.进一步理解数形结合的理想,能够利用数轴比较有理数的大小。
二.学习重点: 能够利用数轴比较有理数的大小
三.自主预习
1.指出数轴上的点A、B、C、D分别表示什么数.
2.画出数轴,并在数轴上画出表示下列各数的点:再按数轴上从左到右的顺序,将这些数重新排列成一行.
3.指出在数轴上表示下列各数的点分别位于原点的哪边,与原点距离多少个单位长度.
4.在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?
想一想:
1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?
把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?
由此容易得到以下的有理数大小的比较法则:。
四.合作探究
1.填空
__________。
(1)在数轴上离开原点4个长度单位的点表示的数是_
(2)数轴上与原点之间的距离小于5的表示整数的点共有____个 ,它们表示的数是______。
(3)在数轴上,点A 表示-11,点B 表示10,那么离开原点较远的是______点。
(4)在数轴上表示整数的点中,与原点距离最近的点有 个,表示的数是 。
(5)在数轴上点M 表示2
12-,那么与M 点相距4个单位长度的点表示的数是 。
2.利用数轴比较下列每组数的大小,用“〈”连接。
(1)-5,+212
,-2,0,31,-3.5; (2)-19,20,211-,0.3,10
7,-8.
五.巩固反馈(当堂检测)
★【基础知识练习】
1.下列说法中,正确的是( )
A.比-1大6的数是7
B.数轴上表示-3.5的点在原点右边3.5个单位
C.-3<-2<0
D.有些有理数不能在数轴上表示出来
2.比较-1,-0.5,0,0.01的大小,正确的是( )
A .-1<-0.5<0<0.01 B.-0.5<-1<0<0.01 C.-1<0.5<0.01<0 D.0<-0.5<-1<0.01
3.在下列各题中,用“>”或“<”或“=”号填空。
0.0001 0; -0.008 0; -0.125 -1;
4.数轴上点M 表示2,点N 表示-3.5,点A 表示-1,在点M 和点N 中,距离A 较远的点的是 。
5.大于-4而不大于3的整数有 个,它们分别是 。
6.把下列各数在数轴上表示出来,并用“>”号把它们排列起来:
-2, 1, 1.3, 0, 2.5
★【提高拓展练习】
1.如图,有理数a 在数轴上对应的点为A ,比较 a , -a ,3-a 的三数大小。
2.点Q 表示数轴上的-3,数轴上另一点P 到Q 距离为5个单位长度,线段PQ 的中点M 表示怎样的数?
★【中考考点链接】
1.指出比-5大的所有负整数。
2.已知m为整数,且-2〈m〈3,试写出m是那些整数?
3.观察数轴,能否找出符合下列要求的数:
(1)最大的正整数和最小的正整数;
(2)最大的负整数和最小的负整数;
(3)最大的整数和最小的整数;
(4)最小的正分数和最大的负分数。