大学物理稳恒磁场解读
大学物理稳恒磁场解读
2018/9/27
24
r the displacement from
I dl
I
Idl toward P.
dB
the contribution of Idl to the magnetic induction at point P.
r
P
B
the magnetic field of I at point P.
I
S
2018/9/27 5
I
Magnetic field lines surrounding a long and straight wires
2018/9/27
6
I
Magnetic field lines for a tightly wound solenoid of finite length carrying a steady current.
Gauss’ theorem
B dS 0
Ampere’s circulation theorem (Ampere’s Law) L B d l 0 Ii
i
11
2018/9/27
Affect of magnetic field force on currents
right hand rule
26
Superposition Principle of Magnetic Induction
B d B
L
B Bi
u Idl r B d B= 4 r
L
0
L
3
2018/9/27
27
DISCUSSION
大学物理 稳恒磁场的基本性质
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
四 安培环路定理的应用举例
例1 求长直密绕螺线管内磁场
解 1 ) 对称性分析螺旋管内为均匀场 , 方向沿
轴向, 外部磁感强度趋于零 ,即 B 0 .
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
2 ) 选回路 L .
磁场 B 的方向与
电流 I 成右螺旋.
s
B dS B dS
S
S
-Br 2
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例 如图载流长直导线的电流为 I ,
形面积的磁通量.
解 先求
试求通过矩 B ,对变磁场
B
给B出dΦ后0I 积分求BΦ// S
I
l
2π x dΦ BdS
0I
ldx
M
NB
++++++++++++
P
LO
B dl B dl B dl BPM
B MN 0nMNI B 0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场 为零.
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例3 无限长载流圆柱体的磁场
I
解 1)对称性分析 2)选取回路
RR
rR
Bdl l
0I
L
2π rB 0I
B 0I
2π r
r B
0 r R
l
B
d
l
0
π π
大学物理 稳恒磁场
第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。
即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。
若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。
磁感强度B 的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。
一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。
1.大学物理-稳恒磁场概念
思路: 思路: 实验
理论
应用
磁现象
1)磁体间有相互作用力 1)磁体间有相互作用力 同性相斥, 同性相斥,异性相吸 磁极不能单独存在 2)奥斯特: 奥斯特: 奥斯特 电流 3)安培: 磁体 3)安培: 安培 磁体 4) 洛仑兹: 洛仑兹: 5) 载流导线 磁体 电流 运动电荷 载流导线 –
S S N S N
磁感应强度
一. 磁感应强度概念
r r Fe r →B= 参照:电场强度: 参照:电场强度: E = q0
磁感应强度: 磁感应强度: 运动点电荷: 运动点电荷: 电流元: 电流元:
1. 定义: 定义:
r r Fe = q0 E
r r Fm r Fm r r , B= q0v0 I 0dl0
?
r r r dFm = ( I 0 dl 0 ) × B
3. 画 B x曲线 r 0 IR 2 r B= 3 i 2 2 2( R + x ) 2 练习: 练习:
B
o
x
Bo = ?
I
R
o
R o
I
B0 =
0 I
8R
30 I 0 I B0 = + 8R 4πR
亥姆霍兹圈: 例4.亥姆霍兹圈:实验室用近似均匀磁场 亥姆霍兹圈 两个完全相同的N匝共轴密绕短线圈 匝共轴密绕短线圈, 两个完全相同的 匝共轴密绕短线圈,其中心间距 与线圈半径R相等 相等, 与线圈半径 相等,通同向平行等大电流 I. . 求轴线上 o1 .
磁场 如何作用—通过磁场 1.磁场概念: 磁力如何作用 通过磁场: 1.磁场概念: 磁力如何作用 通过磁场: 磁场概念 电流或运动电荷周围,除了电场, 电流或运动电荷周围,除了电场,还有磁场
稳恒电流的磁场解读
稳恒电流的磁场解读第五章稳恒电流的磁场一稳恒电流的磁场教学内容1.磁的基本现象(1)磁铁的性质(2)磁电联系(3)磁场(4)磁性起源2.磁感应强度(1)磁感应强度矢量(2)磁感应线3•毕奥一萨伐尔定律(1)毕奥一萨伐尔定律(2)磁感应强度叠加原理(3)毕奥一萨伐尔定律的应用4.磁场的高斯定理(1)磁通量(2)磁场的高斯定理5•安培环路定理(1)安培环路定理(2)安培环路定理应用6.磁场对运动电荷的作用(1)洛仑兹力(2)带电粒子在磁场中的运动(3)回旋加速器(4)汤姆逊实验质谱仪(5)霍尔效应7.磁场对载流导线的作用(1)安培力公式(2)均匀磁场对平面载流线圈的作用(3)平行无限长直导线间的相互作用说明与要求:1.本章主要研究电流激发磁场和磁场对电流及运动电荷的作用两部分内容。
2.本章重点是2、3、5节,难点是磁感应强度的概念及安培环路定理的物理意义及应用。
3.本章研究问题的方法与第一章类似,故在教学中应加强它们的比较。
、稳恒电流的磁场教学目标1.基本磁现象1.磁铁的性质知识:2.磁电联系3.磁场4.磁性起源1.磁铁的性质2.磁现象与电现象的联系理解:节次内容目标层次1 •磁场2 •物质磁性的起源2 •磁感应强度磁感应线1.B的定义2.B线3 •毕奥一萨伐尔定律1 .毕一萨定律2. B的叠加原理3 •毕一萨定律的应用知识:1 • B线的定义2.B线的特点3.B的单位理解:1 . B的定义及意义2. B的定义与E的定义的区别及原因知识:1 •电流元2.矢量矢积的表示及方向确疋3.0的数值及单位理解:1.毕一萨定律的数学表示式 2•毕一萨定律 得到的方法 3•毕一萨定律 中各量的意义 4 . B 的叠加原 理的含义 综合应用: 根据毕一萨定 律和磁场叠加 原理,通过求积 或求和的方法, 计算电流产生 的磁场1 .磁通量 知识:2 •磁场的高斯1. B的单位定理 2. B是代数量理解: 1 . B 的定义及 意义2. 磁场的高斯 定理的内容及4.磁通量磁场 的高斯定理意义3 •磁场高斯定理与电场高斯定理的区别5.安培环路定1.安培环路定简单应用:根据B的定义和B 线的性质,证明磁场高斯定理综合应用:根据B的定义和B 的叠加原理,计算 B 知识:理理 1 .培环路定理2.稳恒磁场的中I正负号的性质确定3 •应用安培环2.安培环路定路定理求B 理求B的条件理解:1.安培环路定理的内容及意义2.安培环路定理中B和1的意义3.I与B的对称性分布分析4 .稳恒磁场与静电场的区别简单应用:根据毕萨定律和磁场叠加原理,证明安培环路定理综合应用:根据安培环路定理计算B6.磁场对运动1.洛仑兹力电荷的作用2.带电粒子在磁场中的运动3.回旋加速器4 •汤姆逊实验5.质谱仪知识:1 •汤姆逊实验内容2.质谱仪原理3.回旋加速器的作用4.霍尔效应的内6.霍尔效应容理解: 1 •洛仑兹力公式数学式2.回旋加速器的原理3.霍尔电压的正负与载流子正负的关系4.霍尔效应的主要应用5.洛仑兹力不做功简单应用:1•根据洛仑兹力公式判定运动电荷在磁场中所受洛仑兹力的方向,并计算其大小2•根据洛仑兹力解释霍尔效 应知识: 1. 磁矩的概念 2. 电流同向和 反向时,两电流 间作用力的特 占八\、理解:1. 安培力公式 的数学式及意 义2 •安培力与洛仑兹力的关系3. 电流强度的 单位一一安培 的定义 简单应用: 1.由洛仑兹力 推导安培力 2•由安培力公 式确定磁力方 向 综合应用: 1 •根据安培力 公式和磁力叠 加原理,计算B 对I 的作用7.磁场对载流 导线的作用1 •安培力 2.磁力叠加原 理3 •均匀磁场对 平面载流线圈的作用4.平行无限长载流直导线间的相互作用2.根据磁力公式和力矩的定义计算载流线圈所受到的磁力矩三稳恒电流的磁场重难点分析重点:磁感应强度的概念,以及毕奥一萨伐尔定律和安培环路定理的应用。
大学物理稳恒磁场理论及习题解读
250 0 方向垂直A面
B
BC
0 N C I C
2 RC
0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .
大学物理第四章稳恒磁场
3
2
方向沿X轴正向 有一定限度
2 N IR 讨论: (1)如计有N匝线圈,则 0 Bp 2( R 2 x 2 )3 / 2
(2)x=0时(在圆心处), 若为半圆,则如何? (3)x>>R 例:
B
0 I
2R
B
0 IR 2
2x
3
2
R
BO B1 B2 B3
0 Idl r dB 4 r 2
I
dl 如图,直导线中带电粒子数密度为 n,每个粒子带电为 q,以 速度V沿电流方向运动,导线的截面积为 S,那么,单位时间 内流过截面的电量为qnVS,即
0 qnVS dl r 0 qnSdl V r 0 qdN V r dB 2 2 2 4 r 4 r 4 r
L
Idy sin r2
(1)
统一积分变量
a a r sin sin
B L
0 dB 4
L
Idy sin r2 x
dB
y actg actg
ad dy sin 2
P
将以上各式代入(1)式,得:
I B 0 4 讨论:
1
a
O
I
r
dy
2
y
y
2
1
I sind 0 I cos 1 cos 2 a 4a
(1)方向:垂直纸面向外(由右手螺旋法则来定) (2)L>>a时,
0 I 1 0 , 2 时B 2a 0 I (3)半无限长 1 , 2 0时B 2 4a
大学物理第六章稳恒磁场重点内容
第六章稳恒磁场
1、主要的概念:电流强度,磁感应强度,电流元,磁感应线,磁通量,磁化和磁介质。
2、主要的了解定律:磁场叠加原理,毕奥—萨伐尔定律(推导一些特殊载流导线和运动电荷的B),磁场中的高斯定律,安培环路定律。
(了解定理的导出以及其重要的物理意义)
3、主要计算:利用毕奥—萨伐尔定律、安培环路定理计算一些特殊载流导线产生的磁感应强度;安培力和洛伦兹力的计算;磁介质中的磁化,以及应用介质中的安培环路定理计算磁场强度矢量(H)和磁感应强度(B)。
4、重点内容:毕奥—萨伐尔定律、安培环路定理、磁场力、力矩;磁介质的磁化、介质中的安培环路定理。
2.磁场方程: 磁场高斯定理:
(表明磁场是无源场)
(表明磁场是有旋场)
掌握推导过程
*通过霍尔电压可以求得磁场和电流大小。
6. 均匀磁化的B 、H 、M 关系及表面磁化电流密度与磁化强度的关系
)
(M H B 0 +=μ H M m χ= m r 1χμ+=
B 代表 H 代表 M 代表
—
——m r 0χμμ 4.载流线圈的磁矩 3.电磁相互作用 B
l Id f d ⨯=2)磁场对载流导线的安培力
⎰⨯=l
B
l Id f 3)磁场对载流线圈的作用力矩 B
m M
⨯=4)5.霍耳电压
1)安培定律。
大学物理稳恒磁场
要点二
详细描述
当电流通过导体时,导体中的自由电子在磁场中受到洛伦 兹力的作用,产生电子漂移现象,使导体受到与电流和磁 场方向垂直的作用力。电荷产生洛伦兹力,影响电荷的运动轨迹。
详细描述
当带电粒子在磁场中运动时,受到洛伦兹力的作用,使 粒子的运动轨迹发生偏转,偏转方向与粒子的带电性质 和运动方向有关。
磁场的散度和旋度
总结词
磁场的散度和旋度是描述磁场分布的重要物理量,散 度表示磁场线穿入的净通量,而旋度表示磁场线的环 绕程度。
详细描述
磁场的散度描述了磁场线穿入的净通量,如果一个点 的磁场散度为正,表示该点附近的磁场线有穿入的趋 势,即磁场线从外部指向该点;如果散度为负,则表 示磁场线有穿出的趋势,即磁场线从该点指向外部。 而磁场的旋度则描述了磁场线的环绕程度,它与磁感 应强度的方向和变化率有关。了解磁场的散度和旋度 对于理解磁场的基本性质和解决相关问题非常重要。
磁感应强度和磁通量
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉(T)。
磁通量
表示磁场中穿过某一面积的磁力线数 量,单位是韦伯(Wb)。
磁场中的介质
磁介质
能够影响磁场分布的物质,根据磁化性质可分为顺磁质、抗磁质和铁磁质。
磁化强度
描述介质被磁化程度的物理量,与介质内部微观粒子磁矩有关。
02
CATALOGUE
互感和变压器原理
总结词
互感现象是两个线圈之间磁场耦合的现 象,变压器则是利用互感现象实现电压 变换的电气设备。
VS
详细描述
当两个线圈靠得很近时,一个线圈中的电 流会在另一个线圈中产生感应电动势,这 种现象称为互感现象。变压器是利用互感 现象实现电压变换的电气设备,它由一个 初级线圈和一个次级线圈组成,当初级线 圈中有交流电通过时,次级线圈中会产生 感应电动势,从而实现电压的升高或降低 。
稳恒磁场解读
I nevS
dF IdlB sin
dF Idl B
磁场对电流元Idl作用的力,在数值上等于 电流元的大小、电流元所在处的磁感强度大 小以及电流元Idl和磁感强度B之间的夹角的 正弦之乘积,方向满足右手螺旋法则。
dF Idl B
——安培定律
对有限长的载流导线
2、无限长载流圆柱体的磁场 (1)圆柱体外 过P点选如图积 分回路,则
I
R
r
P
B
B dl Bdl B dl B2r I
l
B
l
l
0
0
I
(r >R )
2 r
B
(2)
圆柱体内
r
P R
选积分回路如图,则
B dl B2r
l
0
二、定理应用
1、螺线管内的磁场
长直螺线管
a
d
b
c
B
选积分回路 abcda,则
l ab bc
B dl B dl B dl B dl B dl
cd da
Bab
根据安培环路定理,可得
l B dl Bab 0 nabI B 0 nI
定律说明: (1) B 是总的磁感强度,虽然 B 在S面上的通量 为零,但在S面上 B 不一定为零。
(2)该定律表明了磁场是一种无源场。
B dS 0
s
9-5 安培环路定理
一、安培环路定理
1、定理叙述
在稳恒磁场中,磁感强度沿 任一 闭合路径的线积分等于此闭合路径所包 围的各电流的代数和与真空磁导率的乘 积。
第19章稳恒磁场解读
(四)毕奥-萨伐尔定律
1、毕—萨定律
dB
θ
P
Idl Idl
Idl sin Idl r 0 dB dB 2 3 4 4 r r 0 4 10 N / A 其中 7 2
0
r
I
矢量式
真空中的磁导率
dB的方向: dB垂直于电流元 Idl
指向由右手螺旋确定。
与
有限载流导体:
可看出B大小与P点距铜片距离无关,方向沿x轴负向
By dBy 0
思考题: 1 I
o
求: BO=?
0 I 0 I 0 I 1 B0 0 ( 1) 2 R 2 4 R 4 R
I段电流是Ⅱ,Ⅲ的两倍(因为 Ⅱ,Ⅲ 是I的电阻的两倍) 0 1 3I B0 0 (cos cos ) 2 4 R 0 2 3 I 0 (cos cos ) 4 R 0
2、磁感应强度
线度小 试验元件: 运动的电荷 带正电q0 ,电量小 速度大小为
试验电荷
q0在磁场中运动
Fmax q0 v Fmax q0 v
磁场中同一点: 磁场中不同点:
大小相同
大小不相同
定义:磁场中某点的磁感应强度为一个矢量,其 大小等于试验电荷在该点所受的最大磁场力 Fmax 与试验电荷 q0 和速率 的乘积之比值,即
j ji ni evi e ni vi
平均速度
n为单位体积中总电子数
v v ni vi / ni ni vi / n
ji ne v
无外场时,电子作无规则热运动 v
0 ,所以无电流
3)对于一个有限的面积S,通过它的电流应为通过各面 元的电流的代数和。
大学物理D-06稳恒磁场
大学物理
单位时间内通过横截面S的电量即为电流强度I:
I qnvS
j
电流元在P点产生的磁感应强度
S
0 qnvS d l sin dB 2 4 r
设电流元内共有dN个以速度v运动的带电粒子:
dl
d N nS d l
每个带电量为q的粒子以速度v通过电流元所在 位置时,在P点产生的磁感应强度大小为:
I
I
21
大学物理
在高技术领域,磁技术在扮演着重要的角色。磁悬浮 列车就是利用磁相互作用而悬浮的。其产生磁场的磁 体一般是永磁体或超导磁体或它们组合的复合磁体。
动画1:磁悬浮现象
动画2:磁悬浮现象
动画3:超导磁悬浮
22
大学物理 在生物磁学方面应用最成功的是核磁共振层析成像又称 核磁共振CT(CT是计算机化层析术的英文缩写)。这是利 用核磁共振的方法和计算机的处理技术等来得到人体、 生物体和物体内部一定剖面的一种原子核素,也即这种 核素的化学元素的浓度分布图像。左图为核磁共振成像 机 ,右图是脑瘤病人头部的CT成像和X射线成像
磁感应线——磁场的定性表示
规定:曲线上每一点的切线方向就是该点的磁感 强度 B 的方向,曲线的疏密程度表示该点的磁感强度 B 的大小.
磁感应线(Magnetic induction line)是法 拉第提出的,用于形象的表示磁场。
27
大学物理
28
大学物理
几种磁场的磁感应强度(T)
种类 脉冲星 超导材料制 成的磁铁 大型电磁铁 磁疗器 核磁共振仪
*
E _ Ri +
*
正极
负极
电源
15
电源的电动势 E和内阻 Ri
大学物理
大学物理下稳恒磁场 07
方向
o
F
P
3r
v
B
o'
5.如图所示,载有电流I1和I2的无限长直导线相互平行,相距3r, 今有载有电流I3的导线MN= r水平放置,其两端M、N分别 与I1、I2距离均为r,三导线共面,求导线MN所受的磁场力 的大小与方向。
I1
M
I3
N
I2
解: B B1 B2
dF Idl B 方向如图 I 0 I 2 F I3 0 1 dl 2l 2 (3r l ) r 0 I 3 ( I1 I 2 ) F ln 2 2
R
0
0 nI
4
ln 2
方向:
3.半径为 R的圆盘,带有正电荷,其电荷面密度 σ=kr , k是 常数,r为圆盘上一点到圆心的距离,圆盘放在一均匀磁场 B中,其法线方向与 B 垂直,当圆盘以角速度 ω 绕过圆心 O 点,且垂直于圆盘平面的轴作逆时针旋转时,求:圆盘所受 磁力矩的大小和方向。
2r
0 I 0 I B 2l 2 (3r l )
B1
B2
dF
o
l l
dl
讨论力的方向!!
6.一无限大平面导体薄板,自上而下均匀通以电流,电流面 密度为i (即单位宽度上的电流强度),(1)求板外空间任一 点的磁感应强度的大小和方向;(2)如有一粒子(m,q>0) 以初速v沿平板法线方向向外运动,则至少带电粒子最初 距板多远时才不会与板相撞。
安培定理: B dl 0 I i
L
s
说明稳恒磁场是无源有旋场(即:非保守力场)。
0 Idl r 2. 毕 萨定律:dB 4 r 3 0 qv r 运动电荷的磁场: B 4 r 3
第七八章稳恒磁场解读
0
b
2y
分析:
Bp
0Iarctabn
b
2y
(1) yb
arctanb b 2y 2y
BP
0Ib0I
2yb 2y
无限长载流直导线
(2) yb
arctanb 2y 2
无限大板
BP
0I0I
2b 2b
1 2
0
i
i
i
B1B30 B20i
磁屏蔽
(1)
(2)
(3)
2. 载流圆线圈的磁场
求轴线上一点 P 的磁感应强度
L
• 推广到一般情况
I1 ~ Ik —— 在环路 L 中
In
Ik1 ~In —— 在环路 L 外
P
则磁场环流为
环路上各点的
磁场为所有电
B d l
L
L
B id l
流的贡献
I2 Ii
Ik
I1
L
I k 1
k
k
LBidl 0 Ii 0 0 Ii(L内)
i1
i1
L B d l μ0 Ii内—— 安培环路定律
BB 1B 2B 3
(3) x R
B2(R20IRx22)3/2
B
0IR2
2x3
0 IS
2x3
pm n
定义
p mIn S 磁矩
B20 pxm 3
S I
例 求绕轴旋转的带电圆盘轴线上的磁场和圆盘的磁矩
解 q/R2
dq2 rdr
I
dq dt
22rdrrdr
rq
x
O
P dB
R
dB2(r 20 r2 xd 2 I)3/22(r0 2 x r 3 2d )3 r/2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章稳恒磁场
磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比。
§11-1 基本磁现象
磁性,磁力,磁现象;
磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应
1819年,丹麦科学家奥斯特发现电流的磁效应;
1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质
磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度
一、磁场
磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度
磁感强度B的定义:
(1)规定小磁针在磁场中N极的指向为该点磁感强度B的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B垂直的方向运动时,其所受最大磁力F max与电荷电量q和运动速度大小v的乘积的比值,规定为磁场中某点磁感强度的大小。
即:
磁感强度B是描写磁场性质的基本物理量。
若空间各点B的大小和方向均相等,则该磁场为均匀磁场;若空间各点B的大小和方向均不随时间改变,称该磁场为稳恒磁场。
磁感强度B的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律
一、毕-萨定律
电流元:
电流在空间的磁场可看成是组成电流的所有电流元在空间产生
元磁感强度的矢量和。
式中μ0:真空磁导率,μ0=4π×10-7 NA 2
dB的大小:
d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。
一段有限长电流的磁场:
二、应用
1。
一段载流直导线的磁场
说明:
(1)导线“无限长”:
(2)半“无限长”:
2。
圆电流轴线上的磁场磁偶极矩
讨论:
(1)圆心处的磁场:x = 0 ;
(2)半圆圆心处的磁场:
(3)远场:x>>R,引进新概念磁偶极矩
则:
3。
载流螺线管轴线上的磁场
讨论:
(1)“无限长”螺线管:
(2)半“无限长”螺线管:
例:求圆心处的B。
§11-4 磁通量磁场的高斯定理
一、磁感线
作法类似电场线。
磁感线的特点:
(1)B线都是一些无头无尾的闭合曲线;
(2)B线总是与电流相套合。
二、磁场的高斯定理
1。
磁通量
定义:
磁通量的直观意义:穿过给定曲面的磁感线的根数。
磁通量是标量。
2。
磁场的高斯定理
表述:通过任意闭合曲面的磁通量必为零。
磁场的高斯定理否定了“磁荷”的存在,是电磁场基本方程之一。
§11-5 安培环路定理
一、安培环路定理
表述:真空中稳恒磁场内,磁感强度的环流等于穿过积分回路的所有传导电流代数和的μ0倍。
说明:
(1)等号右边的电流有正负。
(2)表达式中B应包括所有电流的贡献,∑I指穿过回路的电流。
(3)若电流与积分回路有N次链套,则
(4)“穿过回路的电流”指穿过一闭合回路为边界的任意曲面上的电流。
安培环路定理表明:稳恒磁场不是保守场。
二、定理的应用
1。
“无限长”均匀载流圆柱导体的磁场。
2。
环形螺线管内的磁场
对细螺线管:
小结:
(1)严格把握定理成立条件和解题条件的区别;
(2)解题步骤:①根据电流对称性分析磁场分布对称性;②选取适当安培回路,使B能以标量形式从积分号内脱出。
(3)安环与毕萨的区别:
毕-萨普适。
原则上可求任意电流的磁场:电流元的、一段电流的、整个电流的。
缺点是叉积、投影、积分都比较困难;
安环容易。
但是不能求一段或部分电流的磁场。
§11-6 洛仑兹力
洛仑兹力:运动电荷受到的磁场力。
一、洛仑兹力
说明:
(1)若q<0,则F方向为;
(2)洛仑兹公式
若空间既存在磁场,又存在电场,则运动电荷将同时受到洛仑兹力和库仑力作用。
洛仑兹力特点:
(1)静止电荷不受洛仑兹力作用;
(2)洛仑兹力对运动电荷不作功。
二、带电粒子在均匀磁场中的运动
1。
与平行:
结论:粒子保持原来匀速直线运动状态。
2。
与垂直:
结论:粒子作匀速率圆周运动。
①轨道半径;
②回旋周期;
③回旋频率
3。
与斜交(夹角为θ):
轨道半径
回旋周期
螺距
三、应用
1。
质谱仪
研究、分析同位素组成的仪器。
2。
滤速器
质谱仪的重要配件。
3。
霍尔效应
RH:霍尔系数
说明:
(1)应用广泛。
高斯计,大电流计,磁流体发电,自动控制等。
(2)根据霍尔电压极性可判断是电子型还是空穴型半导体材料。
(3)以上解释是从经典理论出发的,存在一定缺陷。
§11-7 载流导线在磁场中所受的力-安培力
一、安培力
安培力的实质就是金属导体中自由电子受到洛仑兹力的作用。
安培定律:磁场对电流元的作用力数值上等于电流元的大
小、电流元所在处磁感强度的大小及电流元与之间夹角的正弦的乘积,其方向由矢积决定。
一段有限长电流受安培力
说明:
(1)定律无法用实验直接验证;
(2)矢量积分。
只有各电流元受力方向一致时才可退化为标量积分;
(3)若非匀磁场,则B不可从积分号内提出;
(4)特例:匀强磁场,一段长为l的直电流,与B的夹角为θ
方向右手螺旋
又:θ=0或180°,则安培力为零;若θ=90°,则F=Fmax=IlB
例1:求匀强磁场中闭合电流回路受安培力。
结论:
(1)匀强磁场作用在闭合回路上的合力为零;
(2)均匀磁场作用在任意形状导线上的磁力等于连接导线始端与终端的一段直导线上受的安培力。
例2:两根无限长平行载流直导线间的相互作用力。
两根电流同向,相互吸引;反向,相互排斥。
二、匀强磁场对载流线圈的磁力矩
说明:
(1)式子适用任意形状的平面线圈;
(2)磁力矩总是力图使磁矩方向与外磁场方向一致;(3)适用条件:匀强磁场,平面线圈。
例:求圆形线圈受的磁力矩。
可见:磁力矩公式简化了磁力矩计算。