大学物理A课件稳恒磁场
合集下载
大学物理课件第11章稳恒磁场
p
已知:I、c
解:
0
B AO
0I 4a
(cos 1
cos 2 )
B
I cP
•
Ia
0 I [cos 0 cos( )]
A
4a
2
0I 4c sin
(1 cos )
2
所以 B p BAO BOB
2
方向
同理
BOB
0I 4c sin
(1 cos )
2
0I 2c sin
(1 cos )
r0
OR
dB dB
p•
dBx
X
方向
Idl r0
分析对称性、写出分量式
B
dB 0
Bx
dBx
0 4
Idl sin
r2
统一积分变量
Y
sin R r
Bx
dBx
0 4
Idl sin
r2
I Idl
O
0 IR 4r 3
dl
0 IR 4r 3
2R
r0
R x
2(
0 IR 2
R2 x2
)3
R
•
a LI
a
I
A a
•P
0 0I 5 105T S•
•T
4a R点
方向
BR BLA BLA
0 I (cos 0 cos 3 ) 0 I (cos 1 cos )
4a
4 4a 4
1.71 105T
方向 •
S点
BLA
0I 4a
(cos 0
cos
3
4
)
BLA
0I 4a
(cos
《大学物理课件》稳恒磁场
B 0I 2 r
0rR
B dl L
0
r2 R2
I
2 rB
0r 2
R2
I
B
0 Ir 2 R2
I
RR
r B
I . dB
dI B
B 的方向与 I 成右螺旋
0 r R,
r R,
B
0 Ir 2 R2
B 0I 2 r
I
R
0I B
2 R
oR r
第三节 磁场对电流和运动电荷的作用
一、安培力(载流导线在磁场中所受的宏观力)
2R
三.运动电荷的磁场。
电流激发的磁场可以视为所有运动电荷所激发的磁 场叠加,取载流导线上电流元 Idl ,其截面积为S ,
单度位为体v积,每内个作电定荷向带运电动为的q电。荷数为 n ,定向运动速
Idl
I
r
p
S
q
v
I
I dl
代入
dB 0 4
Idl r r3
0 4
nqsvdl r r3
在个运电动流电元荷中(有q, 电荷v)数在为rd处N的磁n感dV应,强则度一
r
r0
sin
r0 csc
r0
x 1
dB p y
所以
B 0
4
Ir0 csc2 d sin r02 csc2
0I 2 sin d
4 r0 1
Idz
z 2
dB
0 I 4 r0
(cos1
cos2 )
oz x 1
p
y
1, 2 分别是直电流
始点与终点处电流流向与
r
的夹角
讨论(1)若直导线视为“无限长”,
大学物理稳恒磁场 ppt课件
2
NI R
B2
0 NI R2
2(R2 x2 )32
R
O1
O2
x
(1) 电流方向相同:
B B1 B2
0 NI
2R
[1
(R2
R3
x2
3
)2
]
8.51105 T
(2) 电流方向相反:
B B1 B2
0 NI
2R
[1 pp(t课R件2
R3
x
2
)
3 2
]
4.06 105 T
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B
0nI
2
cos2
ppt课件
cos1
27
讨论
B
0nI
2
cos2
cos1
I
在弧长为 dl 的线元内 流过的电流元为:
dI
dI I dl
真空的磁导率ppt课件
13
O
r P
Idl
dB
dB
Idl
P r
dB
I
电流元的磁感应线在垂直于电流元的平面内 是圆心在电流元轴线上的一系列同心圆。
磁感应线绕向与电流流向成右手螺旋关系
磁场叠加原理: B dB
oIdl rˆ
ppt课L件
L 4r 2
dB
μ0 4π
NI R
B2
0 NI R2
2(R2 x2 )32
R
O1
O2
x
(1) 电流方向相同:
B B1 B2
0 NI
2R
[1
(R2
R3
x2
3
)2
]
8.51105 T
(2) 电流方向相反:
B B1 B2
0 NI
2R
[1 pp(t课R件2
R3
x
2
)
3 2
]
4.06 105 T
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B
0nI
2
cos2
ppt课件
cos1
27
讨论
B
0nI
2
cos2
cos1
I
在弧长为 dl 的线元内 流过的电流元为:
dI
dI I dl
真空的磁导率ppt课件
13
O
r P
Idl
dB
dB
Idl
P r
dB
I
电流元的磁感应线在垂直于电流元的平面内 是圆心在电流元轴线上的一系列同心圆。
磁感应线绕向与电流流向成右手螺旋关系
磁场叠加原理: B dB
oIdl rˆ
ppt课L件
L 4r 2
dB
μ0 4π
大学物理稳恒磁场课件
流,也可引起空间电 荷从S面流入和流出时,则S面内
荷分布的变化
的电荷相应发生变化。
由电荷守恒定律,单位时间内由S 流出的净电量应等 于S 内电量的减少
电流连续性方程 恒定(稳恒)电流条件
SdS
dq内 dt
d q内 0 dt
SdS0
大学物理
5.欧姆定律的微分形式
dU—小柱体两端的电压 dI —小柱体中的电流强度
dq dt
方向:正电荷运动的方向 单位:安培(A)
大学物理
几种典型的电流分布
粗细均匀的 金属导体
粗细不均匀的 金属导线
半球形接地电极 附近的电流
电阻法勘探矿藏 时的电流
同轴电缆中的 漏电流
大学物理
电流强度对电流的描述比较粗糙: 如对横截面不等的导体,I 不能反映不同截面处 及同一截面不同位置处电流流动的情况。
静电场的电力线发自正电荷止于负电荷,
有头有尾,不闭合。
磁场的高斯定理 SBdS0
在恒定电流的磁场中,磁感应强
度 B 矢量沿任一闭合路径 L的线积
分(即环路积分),等于什么?
Bdl ?
L
大学物理
1. 长直电流的磁场
1.1 环路包围电流
B
在垂直于导线的平面内任作的环 路上取一点P,到电流的距离为r,
B0nI
若在长螺线管的端口处
B 0nI
2
本次课作业:
大学物理
1. 预习§14.5, §14.6 2. 思考题14.5-14.7 3. 习题14.5,14.7,14.8,14.9,14.10,14.11 作业提交日期: 10月12日
§3 安培环路定理
大学物理
静电场:
高斯定理: sD dSq
物理课件6.1-6.3稳恒磁场
添加标题
添加标题
添加标题
添加标题
安培分子电流假说:解释电流磁 效应的微观机制
洛伦兹力:描述带电粒子在稳恒 磁场中所受力的规律
磁单极子
定义:磁单极子是仅具有N极或S极单一磁极的磁性物质
性质:磁单极子产生的磁场比普通磁体更强大,且相互吸引时会产生巨大的能量
存在证据:目前尚未直接观测到磁单极子,但通过一些物理现象可以间接证明其存在
稳恒磁场与物质的相互作用
磁化现象
定义:磁化是 指物质在磁场 中获得磁性的
过程
磁化现象的分 类:自发磁化、 诱发磁化、铁 磁性物质磁化
磁化现象的原 理:磁场与物 质的相互作用, 导致物质内部 微观结构发生 变化,从而产
生磁性
磁化现象的应 用:磁性材料 的应用,如磁 铁、电磁铁等
Hale Waihona Puke 畴结构磁畴定义:磁畴是 物质内部自发形成 的磁性区域,具有 相同磁矩的区域
磁场的未来应用与挑战
磁场的未来应用: 随着科技的发展, 磁场在医疗、能 源、交通等领域 的应用越来越广 泛,如磁疗、磁
悬浮列车等。
磁场的挑战:虽 然磁场的应用前 景广阔,但也面 临着一些挑战, 如磁场对人体健 康的影响、磁场 与物质的相互作
用等。
磁场的研究方向: 为了更好地应用 磁场,需要进一 步研究磁场与物 质的相互作用、 磁场的产生与控
稳恒磁场中的物理现象
磁屏蔽与磁悬浮
磁屏蔽原理:利 用高导磁材料将 磁场导向特定区 域,实现磁场屏 蔽或减弱
磁屏蔽应用:保 护精密仪器、电 子设备等免受外 界磁场干扰
磁悬浮原理:利 用磁场力使物体 悬浮于空中,实 现无接触运输或 支撑
磁悬浮应用:磁 悬浮列车、磁悬 浮轴承、磁悬浮 电梯等
稳恒磁场课件
第十一章 稳恒磁场
物理教研室
本章主要内容
第11-1讲 毕奥-沙伐尔定律
第11-2讲 磁场的高斯定理
第11-3讲 磁场安培环路定理
带电粒子在磁场中的运动 洛仑兹力
第11-4讲 安培力
第11-1讲 毕奥-沙伐尔定律
本次课内容
§11-1 §11-2 磁场、磁感强度 毕奥-沙伐尔定律
§11-1 磁场、磁感强度
4)x R
B
0 IR
2x
3
2
, B
0 IS
2π x
3
( 1) I (2 )
R B x 0 I 0 o B0 2R
I
( 4)
0 I BA 4π d
d *A
R1
R2
R
o ( 3) I R
B0
0 I
4R
( 5) I
*o
B0
o
0 I
8R
B0
0 I
4 R2
Fmax qv
时,受力 Fmax 将 Fmax v 方 大小与 q, v 无关
向定义为该点的 B 的方向.
Fmax qv
磁感强度 B 的定义:当
正电荷垂直于 特定直线运动
F Fmax F
磁感强度 B 的定义:当
正电荷垂直于特定直线运动
时,受力 Fmax 将 Fmax v 方
1
P y
+
无限长载流长直导线的磁场
B
0 I
2π r
I B
I
X
B
电流与磁感强度成右螺旋关系
半无限长载流长直导线的磁场
π 1 2 2 π
BP
物理教研室
本章主要内容
第11-1讲 毕奥-沙伐尔定律
第11-2讲 磁场的高斯定理
第11-3讲 磁场安培环路定理
带电粒子在磁场中的运动 洛仑兹力
第11-4讲 安培力
第11-1讲 毕奥-沙伐尔定律
本次课内容
§11-1 §11-2 磁场、磁感强度 毕奥-沙伐尔定律
§11-1 磁场、磁感强度
4)x R
B
0 IR
2x
3
2
, B
0 IS
2π x
3
( 1) I (2 )
R B x 0 I 0 o B0 2R
I
( 4)
0 I BA 4π d
d *A
R1
R2
R
o ( 3) I R
B0
0 I
4R
( 5) I
*o
B0
o
0 I
8R
B0
0 I
4 R2
Fmax qv
时,受力 Fmax 将 Fmax v 方 大小与 q, v 无关
向定义为该点的 B 的方向.
Fmax qv
磁感强度 B 的定义:当
正电荷垂直于 特定直线运动
F Fmax F
磁感强度 B 的定义:当
正电荷垂直于特定直线运动
时,受力 Fmax 将 Fmax v 方
1
P y
+
无限长载流长直导线的磁场
B
0 I
2π r
I B
I
X
B
电流与磁感强度成右螺旋关系
半无限长载流长直导线的磁场
π 1 2 2 π
BP
大学物理课件第6章 稳恒磁场 6-4 安培环路定理
步骤:
v 由电流 I 的对称性,分析磁场B 的对称性
v 选择适当的闭合路径,使B 可以提出积分号外
选择闭合路径的取向,并根据右手螺旋法则确定回路 内I 的正负
v 求解 B
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
例 求长直密绕螺线管内磁场
M
NB
++++++++++++
P
LO
v vv vv vv vv v
Ñ B d l B d l B d l B d l B d l
L
M N N O O P P M
BMN0nMN I B0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场为零.
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
稳恒磁场
一 安培环路定理
在真空的稳恒磁场中,磁感应强度 B沿任一闭合路径的 积分的值,等于 0 乘以该闭合路径所包围的各电流的代数和.
Ñ LB vdlv0 Ii
I
oR
规定:
L
电流 I 正负的规定 : I 与 L 成右手螺旋法则时,I 取正; 反之 I 取负.
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
稳恒磁场
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
稳恒磁场
Copyright © by LiuHui All rights reserved.
v 由电流 I 的对称性,分析磁场B 的对称性
v 选择适当的闭合路径,使B 可以提出积分号外
选择闭合路径的取向,并根据右手螺旋法则确定回路 内I 的正负
v 求解 B
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
例 求长直密绕螺线管内磁场
M
NB
++++++++++++
P
LO
v vv vv vv vv v
Ñ B d l B d l B d l B d l B d l
L
M N N O O P P M
BMN0nMN I B0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场为零.
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
稳恒磁场
一 安培环路定理
在真空的稳恒磁场中,磁感应强度 B沿任一闭合路径的 积分的值,等于 0 乘以该闭合路径所包围的各电流的代数和.
Ñ LB vdlv0 Ii
I
oR
规定:
L
电流 I 正负的规定 : I 与 L 成右手螺旋法则时,I 取正; 反之 I 取负.
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
稳恒磁场
Copyright © by LiuHui All rights reserved.
6-4 安培环路定理
稳恒磁场
Copyright © by LiuHui All rights reserved.
《稳恒磁场》PPT课件
d B 0nd lSv q r
4 π r3
B
q+
r
v
又 dNndls
故运动电荷的磁场
B d dN B 4 π 0q v r 3r
B
q
r
v
7-4 安培环路定律
预习要点 1. 安培环路定律的内容及数学表达式是怎样的?注意
其中电流正、负号的规定. 2. 注意安培环路定律所描述的稳恒磁场的性质. 3. 领会用安培环路定律计算磁感应强度的方法.
23一磁场叠加原理一磁场叠加原理几个电流共同激发磁场任意电流是无数小电流首尾相接组成其上任一电流元在某场点产生的磁感应强度为任意载流导线在点p处的磁感强度电流元在空间一点p产生的磁感应强度
《稳恒磁场》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
一、安培环路定律
合路在径真的空积的分稳的恒值磁(场即中B ,的磁环感流应)强,度等于B沿0任乘一以闭该
闭合路径所包围的各电流的代数和.
n
安培环路定理 Bdl 0 Ii
i1
电流I正负的规定: I与L成右螺旋时, I为正;反
之为负.
在场的理论中,把环流不等于零的场称为涡旋 场,所以,稳恒磁场是涡旋场.
大小与 q,v无关
磁感应强度大小定义为:B Fmax qv
二、洛由伦实兹验电力荷量为q的电荷以速度v
在磁场中运动时受到的磁场力:
Fm
F m q v B
运动电荷在磁场中所受的力
q+
B
大学物理课件 第9章 稳恒磁场
向里
0 I 0 I B2 (sin 2 sin 1 ) (sin 1) 4b 4a cos 向外
则: B p
0 I
4a cos
(sin 1 cos )
向外
2)圆形电流轴线上的磁场
电流元产生的磁感应强度大小:
0 Idl sin 0 Idl dB 2 4 4 r 2 r
6
3a b
2
q 2
a 2 IS
例7:求旋转的带电圆盘的圆心处及轴线上的B。设圆盘的电荷 面密度为σ,半径为R,旋转的角速度为ω。 等效电流: 圆心:
max
磁感应强度的大小:
M max B Pm
Bb Ba a Bc
三、磁通量
1)磁力线(Magnetic force line) 为了形象的描述磁场,引入磁力线。
大小:通过垂直于磁力线单位面积的磁 力线数等于这一点磁感应强度的大小; 方向:曲线上任一点的切线方向。
b
c
B
磁力线特性: (1)磁力线是环绕电流的无头无尾的闭合曲线,每条磁力线与 电流相互套合,磁场是涡旋场、无源场; (2)任何两条磁力线在空间不相交; (3)磁力线的环绕方向与电流方向之间遵守右螺旋法则。
则电流:
由毕-萨定律:
I qnvS
0 qnvSdlsin(v , r ) dB 4 r2
dN nSdl
则一个粒子产生的磁场大小为:
0 qv r dB 0 qv sin(v , r ) B B 2 dN 4 4 r 3 r
由于同方向运动的正负电荷产生的电流方 向相反,故产生的磁感应强度相反。
(2)线元磁矩:
第十一章 稳恒磁场-PPT精品
向上附加一个运动,即漂移运动。 形成电流的带电粒子称为载流子。 根据载流子的不同,把导体分为以下几类: 第一类导体,金属导体:自由电子的定向运动 第二类导体,电解质溶液:离子的定向运动 气体导电:离子和电子的定向运动(主要是电子) 带电体的机械运动(大学物理不讨论)
3
由离子或自由电子(带电粒子)的定向运动而引起的 电流称为传导电流。
解:圆中心处的磁场可视为许多半径不等的圆电流磁场的
叠加。设半径为r的圆形电流,圆形电流为dI,则在中
心的
dB 0dI
2r
方向:垂直盘面向外
R
o
r
dI dq 2rdrrdr
dr
2 2
R
Bd
B R0d I0 Rd r0R
0
02r 2 0
若螺线管为无限长,则有β1=π,β2 =0 方向沿OX轴正向
B 0n I
若点P位于半无限长载流螺线管一端β1=π/2,β2=0
或β1=π/2,β2=π
B
1 2
0nI
长直螺线管内轴线上磁感应强度 分布:中部的磁场可看成均匀
29
§11-5 磁通量、磁场的高斯定理
一、磁感线 1.定义:用来描述磁场分布的一系列曲线。
是位置的函数。磁场力的方向永远垂直 于上述特殊方向与速度组成的平面。
13
磁感应强度的定义
大小
B F max qv
其方向磁场力为零时电荷的运动方向,且磁场力与 速度和磁场强度满足右手螺旋定则。所以,磁场
力又可写为 F qvB
单位:特斯拉 T 1T=1N·A1·m-1
高斯 G 1G=10-4T
r2R2x2R2cs2c
3
由离子或自由电子(带电粒子)的定向运动而引起的 电流称为传导电流。
解:圆中心处的磁场可视为许多半径不等的圆电流磁场的
叠加。设半径为r的圆形电流,圆形电流为dI,则在中
心的
dB 0dI
2r
方向:垂直盘面向外
R
o
r
dI dq 2rdrrdr
dr
2 2
R
Bd
B R0d I0 Rd r0R
0
02r 2 0
若螺线管为无限长,则有β1=π,β2 =0 方向沿OX轴正向
B 0n I
若点P位于半无限长载流螺线管一端β1=π/2,β2=0
或β1=π/2,β2=π
B
1 2
0nI
长直螺线管内轴线上磁感应强度 分布:中部的磁场可看成均匀
29
§11-5 磁通量、磁场的高斯定理
一、磁感线 1.定义:用来描述磁场分布的一系列曲线。
是位置的函数。磁场力的方向永远垂直 于上述特殊方向与速度组成的平面。
13
磁感应强度的定义
大小
B F max qv
其方向磁场力为零时电荷的运动方向,且磁场力与 速度和磁场强度满足右手螺旋定则。所以,磁场
力又可写为 F qvB
单位:特斯拉 T 1T=1N·A1·m-1
高斯 G 1G=10-4T
r2R2x2R2cs2c
大学物理 第九章 稳衡磁场 老师课件
Φm = BS cosθ = BS⊥
Φm = B ⋅ S
dΦm = B ⋅ d S Φm = ∫ B ⋅ d S
S
s⊥
θ
s
v B
θ v B
v dS
v en
v B
v θ B
单位:韦伯 单位 韦伯 1WB=1Tm2
s
3.磁场的高斯定理 磁场的高斯定理
v B
S
v dS1 v θ1 B 1
dΦm1 = B1 ⋅ d S1 > 0
y
v v
o
v F =0
+
v v
x
实验发现带电粒子在 磁场中沿某一特定直线方 向运动时不受力, 向运动时不受力,此直线 方向与电荷无关. 方向与电荷无关.
z
当带电粒子在磁场中垂直于此特定直线运动时 受力最大. 受力最大 带电粒子在磁场中沿其他方向运动时 F垂直 与特定直线所组成的平面. 于v 与特定直线所组成的平面
l
多电流情况
I1
I2
I3
B = B + B2 + B3 1
l
∫ B ⋅ d l = µ (I
0 l
2
− I3 )
以上结果对任意形状的闭合电流( 以上结果对任意形状的闭合电流(伸向无限远 的电流)均成立. 的电流)均成立.
安培环路定理
B ⋅ dl = µ0 ∑Ii ∫
l i =1
N
真空的稳恒磁场中, 真空的稳恒磁场中,磁感应强度 B 沿任一闭合 路径的积分的值,等于µ0乘以该闭合路径所包围 路径的积分的值, 的各电流的代数和. 的各电流的代数和 注意:电流I正负 正负的规定 注意:电流 正负的规定 :I与l成右螺旋时,I 与 成 螺旋时, 之为负 为正;反之为负.
稳恒电流与稳恒磁场课件
x
dBx x
r dB
·16 ·
Ch a p t e r 10. 稳恒电流与稳恒磁场 §10. 2 磁场的描述 毕奥-萨伐尔定律 运动电荷的磁场
B 0 I sin
4 r2
dl 0 IR sin
2 r2
L
B
Bx
0
2
(R2
IR2 x2 )3/ 2
B
方向: 沿 +x 方向。
Id l r dB dB
ne 2
m
E eˆ i
ne2
m
E
v2
令:
c
ne2
m
称作电导率(conductivity),Ω-1·m-1
j c E ( 欧姆定律的微分形式 )
·6 ·
Ch a p t e r 10. 稳恒电流与稳恒磁场
§10. 1 稳恒电流
如图让稳恒电流垂直通过某段导体截面 S。
j
cE
c
V l
I
j dS
jSc
S l
V
S
E
V I
令:R
1
c
l S
l S
( 即电阻 )
l
I j
S
I
V R
或 V IR ( 欧姆定律 )
j
eˆ n S
·7 ·
说明
Ch a p t e r 10. 稳恒电流与稳恒磁场
§10. 1 稳恒电流
☻V = IR 仅适用于 R 为常量的情形。对于非线性:
微分电阻:
R
dV dI
☻电阻随温度 t 变化较明显:
☻载流圆线圈内磁感 线
ox
dBx x
的绕向与线圈中的电
流构成右手关系。
大学物理第8章稳恒磁场课件讲义
三、磁场中的高斯定理(磁通连续定理)
m
B
ds
s
sB ds 0
穿过任意闭合曲面的磁通量为零。
-------------------------------------------------------------------------------
三、磁通量
1.磁感线:(磁力线或 线) 磁感线的切线方向为该点磁场方向
B
S
B大小规定为:通过磁场中某点 处垂直于磁场方向的单位面积的
B N
磁感线条数。(磁场较强处的磁
S
感线较密)
-------------------------------------------------------------------------------
1965年的测量:地磁的S极在地理北极附近(北 纬75.5o,东经259.5o),地磁的N极在地理南
极附近(南纬66.6o,东经139.9o)。地理轴与 地磁轴的夹角约为11o。
-------------------------------------------------------------------------------
§8.2 磁场 磁感应强度
一、 基本磁现象
1.自然磁现象 天然磁石
磁性、磁体、磁极
S N
SN
同极相斥,异极相吸
2.电流的磁效应 1819-1820年丹麦物 理学家奥斯特首先发
现电流的磁效应。
-------------------------------------------------------------------------------
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球磁力线,磁极与南北极偏离 一个角度。
实验上可以用铁粉显示。
3-2 毕奥-萨伐尔-拉普拉斯定律
如何计算电流产生的磁场?19世纪20年代,法国 的毕奥三人由大量的实验资料总结分析出了稳恒电流
产生磁场的规律(电磁学基本实验定律之一)。
一、毕-萨-拉定律
r r sin dB
v dB
0 4
v Idl
本章将从基本磁现象出发,研究磁场性质及其描述、 磁场的有关计算以及磁场对电流的作用。
3-1 基本磁现象 磁场及其描述
一、基本磁现象 1、磁铁 天然磁现象 磁铁即 Fe3O4 ,早在春秋战国就有磁现象的记载。
古代写作“慈石”,意即“石铁之母也,以有慈石, 故能引其子”(《吕氏春秋》)。东汉发明“司南 勺”,北宋沈括创制指南针并发现地磁偏角,对世界 文明做出了贡献。
定义:在磁场中一点存在一矢量
称为磁感应强度
r B
M
r F
SN
r
BN
P q vr
大小:
B F Fmax
qv sin qv
0, F 0 MN —零力线
方向:零力线方向(小磁针N方向)
2
,
F
Fmax
Fr 、vr、Br 满足右手螺旋关系(Fr
qvr
r B)
r B
单位:1T 104G,
1T 1 N
rrˆ
r2
0 4
v Idl
rr
r3
r rr
Idl
r dB
0 4 107TmA1 (SI )
r rr
Idl
v dB
0 4
v Idl
rrˆ
r2
0 4
v Idl
rr
r3
r
大小:
v dB
0 4
Idl sin
r2
方向:
dB
r sin
r
r rr dB
Idl
r dB
(rr
,
r dl
)平面(右手法则)
磁性—能吸引铁钴镍等物质的性质。 人们发现磁铁有以下性质:
(1)两端有两个强磁区,称为磁极
SN
(2)自由悬挂的磁铁转向地的南北方向
(3)两磁铁之间有相互作用,同极相斥,异极相吸
(4)N,S共存
2、电流与磁铁之间的相互作用
奥斯特实验
奥斯特
• 19世纪20年代前,磁 和电是独立发展的
• 奥斯特,丹麦物理学家 Hans Christian Oersted深受康德哲学 关于“自然力”统一观 点的影响,试图找出电、 磁之间的关系
0 4
nqvS dl sin
r2
0 4
qv sin
r2
nSdl
dl
dN nSdl
dB 0 4
qv sin
r2 dN
BdN
则电流元中每个点电荷产生的磁场为
B
0 4
q sin
r2
v BΒιβλιοθήκη 0 4qv rrr2
v B
0 4
qv rr
r2
v E
q
4 0 r 2
3、电流与电流之间的相互作用
电流流向相同, 吸引;电流流向 相反,排斥
二、磁性的起源 上述实验现象,启发人们去探索磁现象的本质。
人们总结认为,磁现象起源于运动电荷或电流。
磁铁的磁性:来源于“分子电流”(安培提出)
“分子电流”——分子内电荷运动的总效果相当
于环形电流(小磁针)。
“分子电流”排列杂乱,无磁性
第三章 稳恒磁场
学习思路: 基本磁现象、磁场及其描述 磁相互作用与电相互作用有何异同? 计算磁感应强度的基本方法 反映磁场性质的基本数学定理 磁场对电流作用的规律 带电粒子在磁场中的运动规律 磁场与介质相互作用
人类对磁现象的认识始于磁铁之间的作用。人们 曾认为,磁铁两极有磁荷(类似于电荷产生电场,磁 荷也产生磁场)。1819年,奥斯特发现电流有磁效应, 从而揭示了电与磁之间的联系。后来,法拉第发现磁 能生电,经麦克斯韦总结,形成了经典电磁学理论。
四、磁场的描述 磁感应强度矢量
如何描述磁场?可以用试探的运动电荷检验。
实验结果:
r
S
N
F
q以 vr 通过 P 点,受磁力作用。
Pq
M
r F
(vr ,
MN
r )平面,F为横侧向力,
它不改变vr大小。
0, F 0 MN —零力线
vr
N
F q sin
F 恒量
q sin
F 恒量
q sin
SN
“分子电流”排列整齐,显磁性
三、磁场 磁相互作用归结于运动电荷或电流之间的相互作
用,这种相互作用是通过什么物质传递的呢?
理论上证明:磁相互作用是通过磁场来传递的 (类似于电场传递电相互作用)
运动电荷
磁场
运动电荷
磁场是一种特殊物质,它存在于运动电荷周围且 只给运动电荷以作用力。
实际上,磁场与电场在本质上有联系,磁场是电 场的相对论效应。磁场和电场是统一的,统称为电 磁场,电磁场的基本粒子是光子。
r r sin dB
r rr
Idl
r dB
r rr
Idl
v dB
0
v Idl
rrˆ
4 r2
dB 0 Idl sin 4 r2
注:
(1)在 r sin 为半径的圆环
上, dB 相等,方向沿切向,
r Idl
延线上
dB
( 0
0)。
时,dB最大。
2
r dB =0
r Idl
rr
r dB
r dB 最大
vv
B Bi
多个电流的磁场是各个电流产 生的磁场叠加。
r r sin dB
vr r r B B1 B2 B3
r rr
Idl
r dB
r rr
Idl
二、运动电荷的磁场
类似电流元磁场:
v dB
0 4
v Idl
rrˆ
r2
v Idl
qv
v dl , dt
I q dt
r B
vr rr
q
v B
(2)比较
同:
1
v dE
dq
40r 2
rrˆ
r
r2
dE
异:
dq rr
v dB
0 4
v Idl
rrˆ
r2
r dB
r rr
Idl
v dE
v dE
//
rr
,
与rr方向无关,
v dB
rr
v dB
与rr方向有关(
)
vv
B dB
0 4
v Idl
rr
r2
稳恒电流磁场是各电 流元产生的磁场叠加。
r F
Sr N
BN
cm / s
空间矢量点函数
rv B=B(
x,
y,
z)
M
P q vr
r
五、磁力线(磁感应线)
用一组曲线可以形象地描述
r B
分布。
Bvr
(与电力线描述电场一样)
r 绘制 B // 切向
方法
r B
N
(磁力线密度)
S
dS
dN
常见磁力线举例:
I
I
I
I
性质:(1)闭合或伸向无穷远 (2)不相交 (3)与电流右手法则套合 (4)疏密反映磁感应强度大小
0 4
qv rr
r2
B 0 q sin
v B
4 (v,
rr
r2 )平面
证:
I jS nqvS , dN nSdl (dN个运动电荷)
r dN个电荷 即 Idl 产生的磁场(毕-萨-拉定律)
dB
0 4
Idl sin
r2
I nqvS
dB
0 4
nqvS dl sin
r2
I
dl
dB