电感式传感-线性位置传感

合集下载

位移传感器又称为线性传感器

位移传感器又称为线性传感器

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。

电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。

简介电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。

位移传感器主要应用在自动化装备生产线对模拟量的智能控制。

光电式位移传感器利用激光三角反射法进行测量,对被测物体材质没有任何要求,主要影响为环境光强和被测面是否平整。

比如公路测量用到真尚有的激光位移传感器,就对传感器进行了特殊配置,与普通情况不一样。

位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。

小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。

其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。

原理计量光栅是利用光栅的莫尔条纹现象来测量位移的。

“莫尔”原出于法文Moire,意思是水波纹。

几百位移传感器年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。

一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。

计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。

下面以透射光栅为例加以讨论。

透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。

这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。

这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。

(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。

这种分类法可分出很多种类。

(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。

其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。

传感器数字化是今后的发展趋势。

(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。

若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。

(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。

主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。

微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。

主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。

化学类,基于化学反应的原理。

生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。

传感器的分类

传感器的分类

传费器-E物理型祷感器一 化学型倩恿藩 生物型传感器结构型特感器 物性型传感器传感器的分类传感器种类繁多,功能各异。

由于同一被测量可用不同转换原理实现探测, 利用同一种物理法则、化学反应或生物效应可设计制作出检测不同被测量的传感器, 而功能大同小异的同一类传感器可用于不同的技术领域,故传感器有不同的分类方法。

传感器的分类方法很多,了解传感器的分类,旨在加深理解,便于应用。

1 •按外界输入的信号变换为电信号采用的效应分类 按外界输入的信号变换为电信号采用的效应分类, 传感器可分为物理型传感器、化学型传感器和生物型传感器三大类,如图1-2所示。

图1-2传感器的分类其中利用物理效应进行信号变换的传感器称为物理型传感器, 它利用某些敏感元件的物 理性质或某些功能材料的特殊物理性能进行被测非电量的变换。

如利用金属材料在被测量作用下引起的电阻值变化的应变效应的应变式传感器; 利用半导体材料在被测量作用下引起的电阻值变化的压阻效应制成的压阻式传感器;利用电容器在被测量的作用下引起电容值的变化制成的电容式传感器;利用磁阻随被测量变化的简单电感式、 差动变压器式传感器;利用压电材料在被测力作用下产生的压电效应制成的压电式传感器等。

物理型传感器又可以分为结构型传感器和物性型传感器。

结构型传感器是以结构(如形状、尺寸等)为基础,利用某些物理规律来感受(敏感)被测 量,并将其转换为电信号实现测量的。

例如电容式压力传感器, 必须有按规定参数设计制成的电容式敏感元件,当被测压力作用在电容式敏感元件的动极板上时, 导致电容值的引起电容间隙的变化变化,从而实现对压力的测量。

又比如谐振式压力传感器,必须设计制作一个合适的感受被测压力的谐振敏感元件,当被测压力变化时,改变谐振敏感结构的等效刚度,导致谐振敏感元件的固有频率发生变化,从而实现对压力的测量。

物性型传感器就是利用某些功能材料本身所具有的内在特性及效应感受(敏感)被测量,并转换成可用电信号的传感器。

位移传感器的工作原理

位移传感器的工作原理

位移传感器的工作原理一、引言位移传感器是一种用于测量物体位移或者位置的设备,广泛应用于工业自动化、机械创造、航空航天等领域。

本文将详细介绍位移传感器的工作原理。

二、工作原理位移传感器的工作原理基于不同的物理原理,常见的包括电容式、电感式、光电式、压阻式等。

以下将分别介绍这些工作原理。

1. 电容式位移传感器电容式位移传感器利用电容的变化来测量位移。

它由两个电极组成,当物体挨近或者远离电极时,电容值会发生变化。

通过测量电容值的变化,可以确定物体的位移。

2. 电感式位移传感器电感式位移传感器利用电感的变化来测量位移。

它由线圈和铁芯组成,当物体挨近或者远离线圈时,线圈的电感值会发生变化。

通过测量电感值的变化,可以确定物体的位移。

3. 光电式位移传感器光电式位移传感器利用光的变化来测量位移。

它由光源、光电二极管和接收器组成,当物体挨近或者远离光电二极管时,接收器接收到的光信号强度会发生变化。

通过测量光信号强度的变化,可以确定物体的位移。

4. 压阻式位移传感器压阻式位移传感器利用电阻的变化来测量位移。

它由导电材料和弹性体组成,当物体施加压力或者位移时,导电材料的电阻值会发生变化。

通过测量电阻值的变化,可以确定物体的位移。

三、优缺点分析不同类型的位移传感器具有各自的优缺点,下面将对其进行分析。

1. 电容式位移传感器的优缺点优点:测量范围广、精度高、响应速度快、抗干扰能力强。

缺点:对环境温度和湿度敏感,价格较高。

2. 电感式位移传感器的优缺点优点:测量范围广、精度高、抗干扰能力强。

缺点:响应速度较慢,对温度变化敏感。

3. 光电式位移传感器的优缺点优点:测量范围广、精度高、响应速度快。

缺点:对光照强度和环境温度敏感。

4. 压阻式位移传感器的优缺点优点:价格低廉、结构简单、抗震动能力强。

缺点:测量范围较窄、精度较低。

四、应用领域位移传感器广泛应用于各个领域,以下列举几个常见的应用领域。

1. 工业自动化位移传感器在工业自动化中用于测量机械设备的位移、位置和变形,实现对设备运行状态的监测和控制。

电感式传感器原理

电感式传感器原理

电感式传感器原理
电感式传感器是一种利用电感效应进行测量和检测的传感器。

其基本原理是根据电感的特性来实现信号的转换和传输。

电感式传感器的工作原理是通过改变线圈中的电感值来感应外部的物理量。

当外部物理量发生变化时,线圈中的电感值也会相应地发生变化。

通过测量线圈的电感值的变化,可以得知外部物理量的变化情况。

电感是指导线圈中产生的自感应电动势。

当线圈中的电流发生变化时,会产生与电流变化方向相反的电动势。

这种电动势会产生磁场并储存能量。

当外部物理量改变线圈中的磁场时,会影响线圈中的电感值。

测量电感值的常用方法是利用谐振电路。

当外部物理量引起电感值变化时,会影响谐振电路的谐振频率。

通过测量谐振频率的变化,可以得到外部物理量的变化信息。

电感式传感器广泛应用于各种测量和控制领域。

例如,在温度传感中,可以利用电感式传感器测量温度变化引起的电感值变化;在位移传感中,可以利用电感式传感器测量物体位置的改变;在压力传感中,可以利用电感式传感器测量压力变化引起的电感值变化等。

总之,电感式传感器是一种利用电感效应进行测量和检测的传感器,通过测量线圈的电感值的变化来获取外部物理量的变化
信息。

由于其简单、可靠和精度高的特点,电感式传感器被广泛应用于各种工程领域。

电感式传感器及其应用全文

电感式传感器及其应用全文

电感式传感器及其应用3.1自感式传感器3.2差动变压器式电感式传感器 3.3电涡流式电感传感器3.4电感式传感器的应用电感传感器(Inductance sensor)利用电磁感应原理将被测非电量转换成线圈自感量或互感量的变化,进而由测量电路转换为电压或电流的变化量。

电感式传感器种类很多,主要有自感式、互感式和电涡流式三种。

可用来测量位移、压力、流量、振动等非电量信号主要特点有:◆结构简单、工作可靠;◆灵敏度高,能分辨0.01μm的位移变化;◆测量精度高、零点稳定、输出功率较大;◆可实现信息的远距离传输、记录、显示和控制,在工业自动控制系统中被广泛采用;主要缺点有:◆灵敏度、线性度和测量范围相互制约;◆传感器自身频率响应低,不适用于快速动态测量。

3.1自感式传感器3.1.1传感器线圈的电气参数分析3.1.2自感式传感器3.1.3自感式传感器的误差3.1.1一.传感器线圈的电气参数分析如图,其为一种简单的自感式传感器,当衔铁随被测量变化而上、下移动时,其与铁心间的气隙发生变化,磁路磁阻随之变化,从而引起线圈电感量的变化,然后通过测量电路转换成与位移成比例的电量,实现了非量到电量的变换。

可见,这种传感器实质上是一个具有可变气隙的铁心线圈。

1 l0 2类似于上述自感式传感器,变磁阻式传感通常都具有铁心线圈或空心线圈(后者可视作前者特例)。

电路参数及其影响:1.线圈电感L由磁路基本知识可知,匝数为W的线圈电感为式中——磁路总磁阻(31)-m R mR W L /2=当线圈具有闭合磁路时-导磁体总磁阻当线圈磁路具有小气隙时式中——气隙总磁阻(32)-(33)-δR δR W L /2=F R F R W L /2=等效磁导率:即将线圈等效成一封闭铁心线圈,其磁路等效磁导率为μe ,磁通截面积为S,磁路长度为l式中——真空磁导率,=4π×10-7(H/m)2.铜损电阻 取决于导线材料及线圈的几何尺寸3.涡流损耗电阻由频率为f的交变电流激励产生的交变磁场,会在线圈铁心中造成涡流及磁滞损耗。

位置传感器

位置传感器

位置传感器一、引言位置传感器(Position Sensor)是一种用于测量物体位置的装置或传感器技术。

它通过感知和测量目标物体的位置、方向、角度及其他相关参数,将物体的位置转换为相应的电信号输出,广泛应用于各个领域,包括工业自动化、航空航天、汽车制造、机器人技术等。

二、工作原理位置传感器常用的工作原理主要包括电容式、电感式、光电式、超声波式、摩擦式等。

下面将就几种常见的位置传感器进行简要介绍:1. 电容式位置传感器电容式位置传感器利用目标物体与传感器之间的电容变化来检测位置。

它包括两个电极,其中一个电极固定不动,另一个电极与目标物体有相对运动。

当目标物体靠近或远离传感器时,电容值会发生相应的变化,从而测量物体的位置。

2. 电感式位置传感器电感式位置传感器利用目标物体和传感器之间的电感变化来测量位置。

它包括一个线圈和一个金属物体。

当金属物体靠近或远离线圈时,磁场的变化会导致感应电流的变化,从而测量物体的位置。

3. 光电式位置传感器光电式位置传感器通过发射和接收光信号来测量物体的位置。

光电式位置传感器包括一个发光器和一个接收器,发光器发射光束,当光束被目标物体阻挡或反射时,接收器会接收到反射光信号,从而测量物体的位置。

4. 超声波式位置传感器超声波式位置传感器利用声波的速度和时间关系来测量物体的位置。

它通过发射超声波信号,当超声波信号遇到目标物体时,会产生回波,接收器就会接收到回波信号,通过计算回波信号的时间差和传感器与目标物体间的距离关系,从而测量物体的位置。

5. 摩擦式位置传感器摩擦式位置传感器是一种机械式位置传感器,利用旋转或线性运动的物体与传感器之间的摩擦力来检测位置。

它通过测量物体与传感器之间的力或磨损来判断位置。

三、应用领域位置传感器在现代工业中有着广泛的应用。

以下是几个常见的领域:1. 工业自动化位置传感器在工业自动化中扮演着重要的角色。

例如,在机器人领域,位置传感器被用于检测机器人的位置和姿势,以实现精确的运动控制;在生产线上,位置传感器被用于检测零件的位置和定位;在流程控制中,位置传感器被用于监测阀门和执行器的位置。

位移传感器

位移传感器

常见的位移传感器种类及优缺点随着传感器科技不断创新发展,位移传感器也产生了很多种类,而我们最常用到的为五种--磁致式、光电式、电位器式、霍尔式、线绕式。

由于每种产品所采用的材质和性质不一,它们都有各自的优缺点。

磁致式:利用两个不同磁场相交时产生的应变脉冲信号来计算出磁场相交点的准确位置。

测量过程是由传感器的电子仓内产生电流脉冲,该电流脉冲在波导管内传输,并在管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输并很快被电子仓检测到,通过测量时间便可确定距离了。

由于输出信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标。

优点:重复精度高,抗干扰能力强,非接触式不易磨损,使用寿命长。

缺点:必须要有绝对的稳定电压输入,否者输出不正常。

光电式:它根据被测对象阻挡光通量的多少来测量对象的位移或几何尺寸。

特点是属于非接触式测量,并可进行连续测量。

优点:光电式位移传感器常用于连续测量线材直径或在带材边缘位置控制系统中用作边缘位置传感器。

缺点:应用范围不广只是适合某些特点进行提高。

霍耳式:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。

磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。

图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫米。

图中N、S分别表示正、负磁极。

优点:惯性小、频响高、工作可靠、寿命长,因此常用于将各种非电量转换成位移后再进行测量的场合。

线绕式电位器:由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。

电感式传感器

电感式传感器

2
3
......
L0 0 0 0
忽略高次项:
L 1
L 0
0
K
L
L 0
0
衔铁上移 , 0
L 2
L2
L 0
AN 2 0
2
0
0
AN
2
2
0
L0 0
当 1 时, 0
2
3
L2 L0
0
0
0
......
忽略高次项: L2
L0
0
4.1.3 差动式自感传感器
变气隙型差动式自感传感器
衔铁下移:
AN 2
L 0
1 2( )
0
AN 2
L 0
2 2( ) 0
L 1
L 1
0
0
0
2
0
3
......
L 2
L 1
0
0
0
2
0
3
......
L
L 2
L 1
2L
0 0
0
3
0
5
......
L L0
L L
的特性曲线。说明:电桥 25
输出电压的大小与衔铁的 0
位移量Δδ有关,相位与 25
衔铁的移动方向有关。若 50
设衔铁向上移动Δδ为负,
75
则U0为负;衔铁向下移 动Δδ为正,则U0为正,
100
相位差180°。


1
2
4
-Δ lδ Δ lδ 3
1 2 3 4 lδ/mm
2、变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗 I

传感器有哪些类型

传感器有哪些类型

传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。

其种类有很多:一、按工作原理分类电阻式传感器:其基本原理是将被测物理量变化转换成电阻值的变化,再经相应的测量电路而最后显示被测量量的变化。

电容式传感器:是以各种类型的电容器作为传感元件,将被测物理量或机械量转换成为电容量变化的一种转换装置,实际上就是一个具有可变参数的电容器。

电感式传感器:是利用线圈自感或互感的变化来实现测量的一种装置。

压电式传感器:是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

热电式传感器:是将温度变化转换为电量变化的装置。

阻抗式传感器:把位移、力、压力、加速度、扭矩等非电物理量转换为电阻值变化的传感器。

磁电式传感器:是利用电磁感应原理,将输入的运动速度转换成线圈中的感应电势输出。

压电式传感器:是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

光电式传感器:基于光电效应的传感器,在受到可见光照射后即产生光电效应,将光信号转换成电信号输出。

谐振式传感器:利用谐振元件把被测参量转换为频率信号的传感器,又称频率式传感器。

霍尔传感器:是根据霍尔效应制作的一种磁场传感器。

超声波传感器:是将超声波信号转换成其他能量信号(通常是电信号)的传感器。

同位素式传感器:利用放射性同位素来进行测量的传感器,又称放射性同位素传感器。

电化学传感器:通过与被测气体发生反应并产生与气体浓度成正比的电信号来工作。

二、按技术分类超声波传感器:是将超声波信号转换成其他能量信号(通常是电信号)的传感器。

温度传感器:是指能感受温度并转换成可用输出信号的传感器。

气体传感器:是一种将某种气体体积分数转化成对应电信号的转换器。

压力传感器:是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的器件或装置。

加速度传感器加速度传感器是一种能够测量加速度的传感器。

通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。

紫外线传感器:是传感器的一种,可以利用光敏元件通过光伏模式和光导模式将紫外线信号转换为可测量的电信号。

位移传感器工作原理

位移传感器工作原理

位移传感器工作原理
 位移传感器工作原理
 位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。

 电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生
涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量
的变化来完成无接触检测物体的目的。

 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。

位移传感器主要应用在自
动化装备生产线对模拟量的智能控制。

 磁致伸缩线性位移传感器的工作原理。

传感器的种类

传感器的种类

传感器的种类(一)电阻式电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。

主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

(二)变频功率变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。

(三)称重称重传感器是一种能够将重力转变为电信号的力f电转换装置,是电子衡器的一个关键部件。

能够实现力f电转换的传感器有多种,常见的有电阻应变式、电磁力式和电容式等。

电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重传感器。

电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。

因此电阻应变式称重传感器在衡器中得到了广泛地运用。

(四)电阻应变式传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。

电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。

半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍、横向效应小等优点。

(五)压阻式压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。

其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。

当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。

用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

(六)热电阻热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

第3章 电感式传感器

第3章  电感式传感器
参数,如压力、力、压差、加速度、振动、应变、流量、厚度、液位 等都可以用电感式传感器来进行测量。
应用示例
图3.11为测气体压力的传感器原理图。
附图1
图3.12为压差传感器的原理结构示意图。
3 4
附图1为位移传感器的外形图。
2 6 7 p
5
附图2为压力传感器的原理图。
1
附图2
1-弹簧管 2-螺钉 3、7-铁芯 4、6-线圈 5-衔铁
第3 章 电感式传感器
电感式传感器是利用被测量的变化引起线圈自感或互
感系数的变化,从而导致线圈电感量改变这一物理现象来
实现测量的。因此根据转换原理,电感式传感器可以分为 自感式和互感式两大类。
电感式传感器
自感型
闭磁路型 开磁路型 差动变压器
互感型
涡流式
本章内容:
3.1 自感式传感 器互感式传感器 3.2
IW Rm
I----线圈中流过的电流;
φ----穿过线圈的磁通,其值为:

(3.2)
其中磁路磁阻Rm按下式计算:
li 2l0 Rm 0 S0 i 1 i S i
n
(3.3)
式中:
l i、S i 、 µ i ----分别为铁芯和衔铁磁路上第 i 段的长度、截面积
及磁导率;
l 0、S 0 、 µ 0 ----分别为磁路上空气隙的长度、等效截面积及空气
2 4 3
骨架;4是匝数为W1 的初级绕组;5是
匝数为W2a的次级绕组;6是匝数为W2b 的次级绕组。
6
图 3.13 螺线管式互感传感器结构图
工作原理:
互感传感器中两个次级线圈反向串接,其等效电路如图所示。 当初级绕组加以激励电压时,在 两个次级绕组中便会产生感应电动势 E2a和E2b。当活动衔铁处于中心位置 时,两互感系数M1=M2。因两个次级

第3章 电感式传感器-11.26

第3章 电感式传感器-11.26

传 感 器 技 术 • 及 应 用 • 第 3 章 电 感 式 传 感 器
当传感器的衔铁处于中间位置,即 Z1=Z2=Z时,有U0=0,电桥平衡。 当传感器衔铁上移时,即Z1=Z+Δ Z, Z2=Z−Δ Z,此时
Z U L U Uo Z 2 L 2
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
感 器
传 感 器 技 术 及 应 用
• 在实际使用中,常采用两个相同的传感器线圈
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
(b) (c) 图3-4 差动式电感传感器 (a)变气隙型;(b)变面积型;(c)螺管型 1—线圈;2—铁芯;3—衔铁;4—导杆 (a)
传 感 器 技 术 及 应 用 • 第 3 章
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
图3-7 滚柱直径自动分选装置图 1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管 6—电感测微器 7—钨钢测头 8—限位挡板 9—电磁翻板 10—容器(料斗)
传 感 电感式滚柱直径分选装置(外形) 器 技 (参考中原量仪股份有限公司资料) 术 及 滑道 应 用 第 3 章 电 感 式 传 感 器
线圈中电感量为:
W L I I

• 式中:ψ ——线圈总磁链;I ——通过线圈 的电流;W——线圈的匝数; ——穿过线圈 电 的磁通。 感
式 传 感 器
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
IW Rm
l1 l2 2 Rm 1S1 2 S2 0 S0
分选仓位
轴承滚子外形
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。

这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。

这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。

(3)按敏感材料不同分为半导体传感器、瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。

这种分类法可分出很多种类。

(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。

其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。

传感器数字化是今后的发展趋势。

(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。

若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。

(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。

主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。

微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。

主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。

化学类,基于化学反应的原理。

生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。

一文读懂电感式传感器

一文读懂电感式传感器

一文读懂电感式传感器电感式传感器被大量应用在各行各业。

特别是机床行业,以及汽车制造等行业更是应用广泛。

电感式传感器利用电磁感应原理将被测非电量转换成线圈自感系数或互感系数的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。

电感式传感器是利用线圈自感或互感的改变来实现测量的一种装置。

通常由振荡器、开关电路及放大输出电路三大部分组成。

其结构简单,无活动电触点,工作寿命长。

而且灵敏度和分辨力高,输出信号强。

线性度和重复性都比较好,能实现信息的远距离传输、记录、显示和控制。

可以测量位移、振动、压力、流量、比重等参数。

电感式传感器的核心部分是可变的自感或互感,在将被测量转换成线圈自感或互感的变化时,一般要利用磁场作为媒介或利用铁磁体的某些现象。

这类传感器的主要特征是具有电感绕组。

电感式传感器的特点(1)结构简单:没有活动的电触点,寿命长。

(2)灵敏度高:输出信号强,电压灵敏度每毫米能达到上百毫伏。

(3)分辨率大:能感受微小的机械位移与微小的角度变化。

(4)重复性与线性度好:在一定位移范围内,输出特性的线性度好,输出稳定。

(5)电感式传感器的缺点是存在交流零位信号,不适宜进行高频动态测量。

电感式传感器的类型电感式传感器可分为自感式传感器、差动变压式传感器和电涡流传感器三种类型。

自感式传感器1、自感式传感器的结构自感式传感器由线圈、铁芯和衔铁三部分组成。

铁芯与衔铁由硅钢片或坡莫合金等导磁材料制成。

自感式传感器结构图2、自感式传感器的工作原理自感式传感器是把被测量变化转换成自感L的变化,通过一定的转换电路转换成电压或电流输出。

传感器在使用时,其运动部分与动铁心(衔铁)相连,当动铁芯移动时,铁芯与衔铁间的气隙厚度δ发生改变,引起磁路磁阻变化,导致线圈电感值发生改变,只要测量电感量的变化,就能确定动铁芯的位移量的大小和方向。

自感式传感器的工作原理示意图当线圈匝数N为常数时,电感L仅仅是磁路中磁阻的函数,只要改变δ或S均可导致电感变化。

位置传感器的工作原理及类型

位置传感器的工作原理及类型

位置传感器的工作原理及类型目录1.什么是位置传感器? (1)2.位置传感器按其原理主要分为几种? (2)3.位置传感器工作原理 (2)3.1.感应式位置传感器 (2)3.1.1.概述 (2)3.1.2.线性可变差动变压器,也就是1VDT (6)3.1.3.电感式接近传感器 (7)3.2.电容式位置传感器 (7)3.3.电位位置传感器 (8)3.4.基于涡流的位置传感器 (9)3.5.磁致伸缩位置传感器 (9)3.6.基于霍尔效应的磁性位置传感器 (10)3.7.光纤位置传感器 (10)3.8.光学位置传感器(激光位置传感器/激光雷达) (11)3.9.超声波位置传感器 (11)3.10.分离式光电位置传感器 (11)3.11.磁电感位置传感器 (12)今天给大家讲一下关于位置传感器相关的知识,主要是位置传感器工作原理、位置传感器有哪几种类型进行简单的讲解。

1什么是位置传感器?顾名思义,位置传感器检测物体的位置,也就是意味着位置传感器被引用到某个固定点或者说从某个固定的点或者位置引用,然后位置传感器提供位置的反馈。

确定位置的一种方法是使用“距离”,如两点之间的距离,例如从某个固定点行进或移动的距离,或者使用“旋转”(角运动)。

例如,机器人轮子的旋转以确定其沿地面行进的距离。

无论哪种方式,位置传感器都可以使用线性传感器检测物体的直线运动,或者使用旋转传感器检测物体的角运动。

位置传感器可以以不同的方式运行:提供根据物体位置变化的信号,然后通过信号变化来转换位移。

随着每一个动作,位置传感器都会发出一种冲动。

位置传感器通过对发射的脉冲进行计数来确定位移和位置。

当位置传感器与运动物体之间没有机械连接时,通过一个场提供信号。

北京优利威告诉您可以是涡流传感器的电磁场,电容传感器的静电场和磁阻、磁阻变化或霍尔效应传感器的磁感应场。

2.位置传感器按其原理主要分为几种?电位位置传感器(基于电阻)感应式位置传感器基于涡流的位置传感器电容式位置传感器磁致伸缩位置传感器基于霍尔效应的磁性位置传感器光纤位置传感器光学位置传感器超声波位置传感器3.位置传感器工作原理3.1.感应式位置传感器3.1.1.概述利用变压器等电磁感应元件,将变化的磁场转换为电信号,从而实现对物体位置的测量。

电感式传感器特点和变磁阻式传感器工作原理

电感式传感器特点和变磁阻式传感器工作原理

电感式传感器特点和变磁阻式传感器工作原理 电感式传感器是建立在电磁感应基础上、利用线圈电感或互感的改变来实现非电量电测的。

根据工作原理的不同,可分为变阻磁式,变压器式和涡流式等种类。

它可以把稳入的物理量如位移、振动、压力、流量、比重等参数,转换为线圈的自感系数L和互感系数M的变化.而L和M的变化在电路中又转换为电压或电流的变化,即将非电量转换成电信号输出。

因此它能实现信息的远距离转输、记录、显示和控制等方面的要求。

电感式传感器有以下特点: (11工作可靠,寿命长; (2)灵敏度高,分辨力高(位移变化,o.01um,角度变化0.1);  (3)精度高.线性好(非线性误差可达o.05%一o.1%); (4)性能稳定,重复性好。

电感式传感器的缺点是存在交流零位信号、不适于高频动态信号测量  变磁阻式传感器 工作原理 变磁因式传感器的结构原理如图61(a)所示。

它由线圈、铁芯和衔铁三部分组成,在锈芯与衔铁之间有厚度为气隙。

传感器的运动部分与衔铁相连。

当传感器测量物理量时,衔铁运动部分产生位移,导致气隙厚度变化,从而使线圈的电感值变化。

线圈的电感值L可按下式计算 式中:w线圈的匝数; RM一磁路的总磁9。

如果空气隙厚度8较小,而且不考虑磁路的铁报时,总磁阻为磁路中铁芯、气眩和衔铁的磁咀之和。

L1各段铁芯的长度(包括衔铁); 各段铁芯的相对磁导率(包括衔 铁); si备段铁芯的面积(包括衔铁); 空气隙的厚度; 由式(64)和(63)看出.变磁阻式传乐器的L量与、S和Ui之参数有关、如果固定其中任意两个,而改变另一个,则可以制造一种传感器。

根据这个道理.可以制造三种不同形式的可变磁阻式电感传感器。

变气隙厚度a的电感式传感器如果61(a)所示。

这种传感器灵敏度很高,是员常用的电感式传感器,它的缺点是输出特性(L一8关系曲线)为非线性如图61(b)所 示。

受气隙面积5的电感式传感男(见因62(a)),这种传感器为线性特性,但灵敏度低。

传感器的基本知识

传感器的基本知识

压力传感器的基本知识2019-03-18 13:48 一、传感器的定义国家标准GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

二、传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。

3、按传感器输出信号的性质分类,可分为:输出为幵关量(“1”和"0”或“幵”和“关”)的幵关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

关于传感器的分类:1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;3.按照传感器转换能量的方式分:( 1)能量转换型:如:压电式、热电偶、光电式传感器等;(2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;4.按照传感器工作机理分:( 1)结构型:如:电感式、电容式传感器等;( 2)物性型:如:压电式、光电式、各种半导体式传感器等;5.按照传感器输出信号的形式分:( 1)模拟式:传感器输出为模拟电压量;(2)数字式:传感器输出为数字量,如:编码器式传感器。

三、传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电感式传感:线性位置传感
在上篇博客文章《电感式传感:线性位置传感(第 1 部分)》中,我介绍了如何使用三角目标和螺旋线圈实施线性位置传感器。

尽管使用这种方法可实现良好的分辨率,但需要测量一个比移动距离长的目标。

在适合这种方法的目标尺寸被禁止的情况下,您可使用不规则线圈和较小目标代替。

对于目标必须是小尺寸的情况,我设计了一个右侧线圈环路间距大于左侧线圈环路间距的矩形线圈(如图 1 所示)。

该线圈能产生不均匀磁场,其可通过获奖的LDC1000 等电感至数字转换器(LDC),用于实现线性位置传感。

图1:可产生不均匀磁场的PCB线圈—来自PCB 布局工具的图片可清楚显示
线圈是 2 层PCB,迹线宽度和间距为 5 密尔(0.127 毫米)。

它每层有23 匝,尺寸为100x12.5 毫米。

在左侧,每个环路的间距是 5 密尔(0.127 毫米)。

在右侧,我添加了一个环路,步进为 4 毫米。

结果怎样?传感器线圈产生的磁场在中心环路附近最强,并沿线圈右侧方向衰减。

我的目标是24 毫米宽的铝片。

尽管与较窄的目标相比,较宽的目标占用更多空间并会限制总体可用移动范围,但它们可产生较大的电感变化,并提供出色的分辨率。

对于评估,我将目标放在从线圈到PCB 线圈4 毫米远的位置。

使目标靠近线圈,能从线圈中心到右侧边缘产生较大的电感变化。

与三角形目标实验类似,我将目标从位置0(线圈左侧)以0.5 毫米的步进移动到位置100(线圈右侧)。

图 2 是测量数据。

图2:线性滑块位置与所测量的电感
该数据显示,不应将前5 毫米用于绝对位置传感应用,因为它们代表线圈中心左侧的区域,在该区域磁场线密度低于中心部位。

在移动范围的最后10 毫米处,磁场强度非常低,因此传感精度降低。

我沿移动范围剩余85 毫米收集的数据样本是单调的,可用来准确确定金属目标的位置。

在该移动范围内,电感从73.1μH 增加到84.9μH。

有两种线性化输出的方法。

一种方法是以非线性方式将线圈环路与线圈中心右侧分开,这样它们可在所需目标距离位置,采用所选目标产生线性输出。

然而,在软件中对数据输出进行线性化通常是比较便捷的方法。

电感式传感是一项实现精确非接触式线性位置传感的强大技术。

在这两篇博客中,我分别介绍了使用成形目标和不对称线圈设计此类系统的方法。

相关文档
最新文档