一次函数复习题 姓名
一次函数练习题难题
一次函数练习题难题一、选择题1. 下列函数中,是一次函数的是()A. y = 2x^2 + 1B. y = 3x + 4C. y = √x + 2D. y = 5/x2. 一次函数y = 3x 2的图象经过()A. 第一、二、三象限B. 第一、三象限C. 第一、二、四象限D. 第二、四象限3. 当k > 0时,一次函数y = kx + b的图象一定经过()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的图象是一条______。
2. 一次函数y = 2x + 3的斜率为______,y轴截距为______。
3. 一次函数y = x + 5与y轴的交点坐标为______。
三、解答题1. 已知一次函数y = kx + b的图象经过点A(2, 3)和B(1, 4),求该一次函数的解析式。
2. 一次函数y = 2x + 5与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 3x 1与y = x + 4相交于点P,求点P的坐标。
4. 在同一坐标系中,一次函数y = 2x + 3与y = x + 5的图象相交于点Q,求点Q的坐标。
5. 已知一次函数y = kx + 1的图象经过点(2, 5),且与y = x + 3平行,求k的值。
四、应用题1. 某商品的原价为1000元,商场进行打折促销,折后价格为800元。
设折后价格与原价的比例为k,求k的值。
2. 某公司生产一种产品,每件产品的成本为200元,售价为300元。
设公司每月生产x件产品,求公司每月的利润y(元)与生产数量x的函数关系式。
3. 甲、乙两地相距120公里,小明从甲地骑自行车前往乙地,速度为15公里/小时。
设小明骑行时间为t小时,求小明与甲地的距离s (公里)与时间t的函数关系式。
五、判断题1. 一次函数的图象是一条直线,所以它一定经过原点。
()2. 两个一次函数的斜率相同,则它们的图象一定平行。
中考数学复习《一次函数》专项提升训练题-附带答案
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
一次函数经典复习题
函数复习题(一)1. 已知一次函数的图象经过点(1,-1)和点(-1,2)。
求这个函数的解析式。
2 一条直线过点A(0,3),B(2,0),求直线的解析式3 已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。
求这个函数的解析式。
且求当x=3时,y的值。
4 一次函数的图象经过点(2,1)和(1,5),求出它的解析式5 已知直线y=kx+b经过(9,0)和点(24,20),求这个函数的解析式6 已知直线y=kx+b经过点A(2,5)、(-3,0)。
求这个函数的解析式7 已知一次函数y=kx+b,当x=0时,y=1;当x=1时,y=-1。
求这个函数的解析式8 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式9 某个一次函数的图象分别过点(3,5)和(-4,-9),求这个一次函数的解析式10 已知一次函数y=kx+b ,图像经过点A(2,4),B(0,2)两点,且与x 轴交于点C 。
(1).求这个函数的解析式。
(2).求三角形AOC 的面积11 已知直线L 的图象,能否求出它的解析式?12 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?13 如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.14 已知一次函数的图象如图所示,求出它的函数关系15 若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,求m的值16 若点A(6,-1)、B(1,4)、C(2,m)在一条直线上,则m的值为17 已知点(3,5)、(m,9)、(-4,-9)在同一直线上,(1)求经过以上三点的直线解析式(2)求m的值18 已知一次函数 y=kx+2,当x=5时,y的值为4,求k的值。
19 一次函数y=k x+b的图象过点(1,-1),且与直线y=—2x+5平行,则此一次函数的解析式20 一个一次函数平行于y=2x,且过点(1,5),求其解析式。
一次函数基础训练题
一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。
选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。
选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。
选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。
选项D,y=√(x)+1,自变量x在根号下,不是一次函数。
所以答案是C。
2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。
解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。
要使函数为一次函数,则m 1≠0,解得m≠1。
二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。
在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。
2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。
解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。
对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。
三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。
一次函数复习与练习题(专题练习)
一次函数专题复习一、一次函数解析式问题1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
2.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .3.若一次函数y=kx+b 的自变量x 的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9, 求此函数的解析式。
4.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数的关系式.5.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.6.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图象. ①根据图象,写出该图象的函数关系式;②某人乘坐2.5km ,应付多少钱?③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?二、次函数平移问题1. 直线y=2x+1向上平移4个单位得到直线 ;直线y=-3x+5向下平移6个单位得到直线 .1l 33y x =-+1l x D 2l AB ,1l 2lCD 2l ADC △2l C P ADP △ADC △P2. 直线y=5x-3向左平移2个单位得到直线 ; 直线y=-x-2向右平移3个单位得到直线 .3.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得函数是____________; 规律总结:“上加下减在末梢,左加右减在括号”.4. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.5.已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。
综合题:一次函数二次函数反比例函数中考综合题复习
第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。
一次函数复习题
一、一次函数的知识点:1、函数的自变量x 的取值范围2、复习正比例函数和一次函数的知识点3、下列各图给出了变量x 与y 之间的函数是: ( )4、已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为__ __.5、已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是6、已知一次函数kxk y )1(-=+3,则k = .7、已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 8、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.9、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。
10、函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
11、数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A )34m <(B )314m -<< (C )1m <- (D )1m >-12、次函数y=(2m+1)x+m -3中,y 随x 的增大而增大,则m ,若此函数为正比例函数,则m= 。
13、次函数y =kx +b 的图象经过点A 和点B .(1)写出点A 和点B 的坐标并求出k 、b 的值; (2)求出当x =32时的函数值.14、次函数)3()12(+--=n x m y ,求:(1)当m 为何值时,y 的值随x 的增加而增加;(2)当n 为何值时,此一次函数也是正比例函数;(3)若,2,1==n m求函数图像与x 轴和y 轴的交点坐标;(4)若2,1==n m ,写出函数关系式,画出图像,根据图像求x 取什么值时,0>y .ABD15、y=2x-4的图像,并根据图像回答下列问题.(1)当-2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?16、移动公司为鼓励消费者,采用分段计费的方法来计算电话费,通话时间x(分)与相应的话费y(元)之间的函数图象如图所示。
一次函数数学试卷
一次函数数学试卷一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = x^2+1B. y=(1/x)C. y = 2x - 1D. y=√(x)2. 一次函数y = kx + b(k≠0)中,当x = 0时,y = b,b叫做()A. 自变量B. 函数值C. 常数D. 截距。
3. 一次函数y = 3x + 2的斜率k=()A. 2B. 3C. - 3D. -2.4. 若一次函数y=kx + 5的图象经过点( - 2,1),则k=()A. 2B. -2C. 3D. -3.5. 一次函数y=-2x+3的图象与y轴的交点坐标是()A. (0,3)B. (3,0)C. (0,-3)D. (-3,0)6. 一次函数y = kx + b的图象平行于y = 2x,且过点(0,3),则k=(),b=()A. k = 2,b=3B. k=-2,b = 3C. k = 2,b = - 3D. k=-2,b=-37. 对于一次函数y = 2x - 1,当y>0时,x的取值范围是()A. x>(1/2)B. x<(1/2)C. x > - (1/2)D. x<-(1/2)8. 一次函数y=(m - 1)x+3,若y随x的增大而减小,则m的取值范围是()A. m>1B. m<1C. m = 1D. m≤slant19. 下列一次函数中,图象经过原点的是()A. y = x - 1B. y = 2x + 3C. y=-3xD. y = 4x - 210. 一次函数y = kx + b的图象经过点(1,1)和( - 1, - 3),则k=(),b=()A. k = 2,b=-1B. k = - 2,b = - 1C. k = 2,b = 1D. k=-2,b = 1二、填空题(每题3分,共15分)1. 一次函数y = 3x - 2中,当x = 1时,y=______。
一次函数知识点及分类练习题(绝对经典全面)
一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。
初三年级一次函数练习题
初三年级一次函数练习题一、选择题1. 一次函数的图象是一条()。
A. 折线B. 曲线C. 直线D. 折线或曲线2. 下列函数中,是一次函数的是()。
A. y = 2x^2 + 1B. y = 3x 5C. y = x / (x + 1)D. y = √x3. 一次函数y = kx + b的图象与y轴交于点(0,3),则常数b 的值为()。
A. 0B. 3C. 3D. 无法确定4. 当k > 0时,一次函数y = kx + b的图象经过()。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的一般形式是_________,其中k为_________,b为_________。
2. 一次函数y = 3x 2的斜率为_________,y轴截距为_________。
3. 若一次函数y = kx + 1的图象经过点(2,5),则k的值为_________。
4. 一次函数y = x + 4与y轴的交点坐标为_________。
1. 已知一次函数y = 2x + 3,求该函数图象与x轴、y轴的交点坐标。
2. 一次函数y = kx 1的图象经过点(1,2),求k的值。
3. 两条直线y = 2x + 1和y = x + 3相交于点P,求点P的坐标。
4. 一次函数y = kx + b的图象与x轴交于点(3,0),与y轴交于点(0,4),求该一次函数的解析式。
5. 已知一次函数y = 2x + 5的图象经过第一、二、四象限,求函数图象与坐标轴围成的三角形面积。
6. 一次函数y = kx + 1与y = x 1的图象相交于点A,求点A的坐标。
7. 已知一次函数y = kx + 3的图象平行于直线y = 2x 1,求k的值。
8. 一次函数y = x + 4的图象沿x轴向右平移3个单位,求平移后直线的解析式。
9. 两条直线y = 3x + 2和y = x 3垂直,求它们的交点坐标。
一次函数习题(有答案)
第六章《一次函数》班级:姓名:学号:成绩:一、填空题(共40分,每空2分)。
(1)点A在y 轴右侧,距y轴6个单位长度,距x 轴8个单位长度,则A点的坐标是,A点离开原点的距离是。
(2)点(-3,2),(a , a+1)在函数y=kx-1 的图像上,则k= a=(3)正比例函数的图像经过点(-3,5),则函数的关系式是。
(4)函数y=-5x+2 与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是。
( 5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式。
(6)写出下列函数关系式①速度60千米的匀速运动中,路程S与时间t的关系②等腰三角形顶角y与底角x之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系④矩形周长30,则面积y与一条边长x之间的关系在上述各式中,是一次函数,是正比例函数(只填序号)(7)正比例函数的图像一定经过点。
(8)若点(3,a )在一次函数y=3x+1 的图像上,则。
(9)一次函数y=kx-1的图像经过点(-3,0),则k= 。
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式。
(11)函数y=-x+m^2 与y=4x-1的图像交于轴,则m= 。
二、选择:(每题3分,共9分)(1)下面哪个点不在函数y=-2x+3 的图像上()A.(-5,13)B.(0.5,2)C(3,0)D(1,1)(2)下列函数关系中表示一次函数的有()①②③④⑤A.1个B.2个C.3个D.4个(3)下列函数中,y随x的增大而减小的有()①②③④A.1个B.2个C.3个D.4个三、(12分)在同一坐标系中作出y=2x+1, ,的图像;在上述三个函数的图像中,哪一个函数的值先达到30 ?四、(13分)某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
一次函数综合练习题
一次函数综合练习题一、选择题1. 一次函数的图象是一条()。
A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。
A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = 2x 3的图象与x轴的交点坐标是()。
A. (1.5, 0)B. (1.5, 0)C. (3, 0)D. (3, 0)5. 一次函数y = x + 5的图象与y轴的交点坐标是()。
A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)二、填空题1. 一次函数的一般形式是_________。
2. 一次函数的图象是一条_________。
3. 一次函数y = 3x 2的斜率是_________,y轴截距是_________。
4. 当一次函数的斜率k > 0时,函数图象_________;当斜率k < 0时,函数图象_________。
5. 一次函数y = 2x + 4的图象与x轴的交点坐标是_________。
三、解答题1. 已知一次函数y = kx + b的图象过点(1, 3)和(3, 7),求该一次函数的解析式。
2. 一次函数y = x + 6的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 2x 5的图象在x轴下方,求x的取值范围。
4. 画出一次函数y = x 2的图象,并标出其与x轴、y轴的交点坐标。
5. 已知一次函数y = kx + 1的图象过点(2, 5),求斜率k的值。
四、应用题1. 某商品的单价为x元,销售量为y件。
根据市场调查,销售量与单价之间存在一次函数关系,已知当单价为50元时,销售量为100件;当单价为80元时,销售量为50件。
(完整版)一次函数期末复习练习题初中数学
一次函数一、填空题(每小题3分,共18分)1.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1____________y 2.(填“>”“<”或“=”)2.当x =____________时,函数y =2x -1与y =3x +2有相同的函数值.3.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是____________. 4.表格描述的是y 与x 之间的函数关系:x … -2 0 2 4 … y =kx +b…3-1mn…则m 与n 的大小关系是____________.5.直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则k= ,b=6.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.汽车到达乙地时油箱中还余油____________升.二、选择题(每小题3分,共30分) 7.下列函数是一次函数的是( )A .-32x 2+y =0B .y =4x 2-1C .y =2xD .y=3x8.下列函数中,自变量x 的取值范围是x ≥3的是( )A .y =1x -3B .y =1x -3 C .y =x -3 D .y =x -39.若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2) 10.(阜新中考)对于一次函数y =kx +k -1(k ≠0),下列叙述正确的是( )A .当0<k <1时,函数图象经过第一、二、三象限B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)11.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( )A .x =2B .x =0C .x =-1D .x =-3 12汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )13.要使直线y =(2m -3)x +(3n +1)的图象经过第一、二、四象限,则m 与n 的取值范围分别为( )A .m >32,n >-13B .m >3,n >-3C .m <32,n <-13D .m <32,n >-1314.(阜新中考)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15 cm ,9只饭碗摞起来的高度为20 cm ,那么11只饭碗摞起来的高度更接近( ) A .21 cm B .22 cm C .23 cm D .24 cm16.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时,点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)三、解答题(共52分)17.(8分)已知:y 与x +2成正比例,且当x =1时,y =-6. (1)求y 与x 之间的函数解析式;(2)若点M(m ,4)在这个函数的图象上,求m 的值.18.(10分)直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(2,2),求△BOC 的面积.19.(10分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积20.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图1所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图2所示.(1)直接写出y与x之间的函数解析式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?r21.(12分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____________km/h,H点坐标为____________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?。
一次函数复习[上学期]浙教版
增大
二、四
减小
5、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而_________。 ⑵当k<0时,y随x的增大而_________。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图 中k、b的符号:
增大
减小
k___0,b___0 k___0,b___0 k___0,b___0 k___0,b___0
y
o
x
y
o
A
B
C
D
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( ) (A) (B) (C) (D)
A
A
3.直线y1=kx与直线y2=kx-k在同一坐标系内的大致图象是( )
一次函数复习
CLICK TO ADD TITLE
单/击/此/处/添/加/副/标/题
汇报人姓名
一、知识要点:
1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。当b_____时,函数y=____(k____)叫做正比例函数。
kx +b
≠0
= 0
≠0
kx
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是___次,⑵、比例系数_____。
1
K≠0
2、正比例函数y=kx(k≠0)的图象是过点(_____),(______)的_________。 3、一次函数y=kx+b(k≠0)的图象是过点(0,_ __),(____,0)的__________。
0,0
1,k
一条直线
b
一条直线
一次函数专项练习(经典题型收集)
一次函数专项练习(经典题型收集)1.自变量x的取值范围为x≠-1.2.自变量x的取值范围为x≠0.3.代入点P(-2,m),得m=2*(-2)+1=-3.4.交点坐标分别为(0,-1)和(1,1)。
5.由于函数经过原点,代入得m=2.6.答案为B,即(-2,1)。
7.底为y,面积为1/2*y*x=8,解得y=16/x。
8.图象为y=x^2,不是一次函数。
9.长度剩余y与时间x成反比例关系,即y=20-5x。
10.代入交点(1,6),解得k=1,b=-3.一次函数练(二)1.n=2.2.解析式为y=(2m-1)/(m^2-3)。
3.m<1/2.4.解得m=4或m=-2.5.y=-6.6.答案为(-2,-4)。
7.根据比例关系,y-2=kx,代入x=-2和y=4,解得k=-3/2,再代入x=6,解得y=7.1.一次函数是指函数的自变量的最高次数为1的函数。
因此,③y=x和④y=-x-1是一次函数。
2.首先将函数展开,得到y=mx^5+10x- m^2+3.由于一次函数的解析式为y=kx+b,因此要求m使得y=mx^5+10x-m^2+3满足一次函数的形式。
因为一次函数的自变量的最高次数为1,因此只有当m=4或m=-4时,y才能写成一次函数的形式。
此时解析式分别为y=4x+3和y=-4x+3.3.当m=1时,y=(m+2)x+m-1变为y=3x,为一次函数;当m=-2时,y=(m+2)x+m-1变为y=-4x-5,为正比例函数。
4.向下平移1个单位后,直线y=-2x的解析式变为y=-2x-1.5.直线y=2x-4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,-4),三角形的底为2,高为4,因此面积为4.6.当a=-2时,直线经过原点,此时解析式为y=-2x;当a=1时,直线与y轴交于点(0,-2),此时解析式为y=3x-1.7.将点A的坐标代入函数y=2x-1中,得到1-a=2(a+2)-1,解得a=1.8.因为直线与y轴平行,所以斜率为2.又因为过点(-2,1),所以解析式为y=2x+5.9.由于两个函数的图象平行,因此它们的斜率相等。
一次函数专项训练题
一次函数专项训练题一、选择题1. 下列函数中,是一次函数的是()A. y = 2/xB. y = 3x²C. y = x + 1D. y = √x解析:一次函数的一般形式为y = kx + b(k、b 为常数,k≠0)。
A 选项是反比例函数;B 选项是二次函数;C 选项符合一次函数形式;D 选项不是一次函数。
答案是C。
2. 若函数y = (m - 1)x + m² - 1 是一次函数,则m 的值为()A. m = 1B. m = -1C. m ≠ 1D. m = ±1解析:因为是一次函数,所以x 的系数不能为0,即m - 1≠0,解得m≠1。
答案是C。
二、填空题1. 已知一次函数y = 2x - 3,则当x = 2 时,y = _____。
解析:把x = 2 代入函数y = 2x - 3,可得y = 2×2 - 3 = 1。
2. 若一次函数y = kx + 3 的图象经过点(1,5),则k = _____。
解析:把点(1,5)代入函数y = kx + 3,可得 5 = k×1 + 3,解得k = 2。
三、解答题1. 已知一次函数y = 3x + b 的图象经过点(-2,5),求这个一次函数的解析式。
解析:把点(-2,5)代入函数y = 3x + b,可得 5 = 3×(-2) + b,解得 b = 11。
所以这个一次函数的解析式为y = 3x + 11。
2. 若一次函数y = (2m - 1)x + 3 - 2m 的图象经过第一、二、四象限,求m 的取值范围。
解析:因为图象经过第一、二、四象限,所以斜率小于0,在y 轴上的截距大于0。
即2m - 1<0 且 3 - 2m>0。
解2m - 1<0 得m<1/2;解 3 - 2m>0 得m<3/2。
综合起来,m 的取值范围是m<1/2。
3. 已知一次函数y = kx + b 的图象与直线y = -2x + 1 平行,且经过点(2,-1),求这个一次函数的解析式。
一次函数复习题大全
一次函数复习题大全一次函数复习题大全一次函数是数学中最基础的函数之一,也是学习数学的重要基础。
通过复习一次函数的相关知识和解题技巧,可以提高数学能力,并为更高级的数学学习打下坚实的基础。
本文将为大家提供一些一次函数的复习题,帮助大家巩固和加深对一次函数的理解。
一、基础题1. 已知一次函数y = 2x + 3,求当x = 4时,y的值是多少?2. 若一次函数y = kx + 5在点(3, 8)上的函数值为8,求k的值。
3. 若一次函数y = 3x - 2在点(2, y)上的函数值为7,求y的值。
4. 若一次函数y = -4x + b在点(5, -7)上的函数值为-7,求b的值。
5. 若一次函数y = 2x + c在点(1, -3)上的函数值为-3,求c的值。
二、图像题1. 根据一次函数y = 3x - 2的函数表达式,画出其图像,并标出与x轴和y轴的交点。
2. 根据一次函数y = -2x + 4的函数表达式,画出其图像,并标出与x轴和y轴的交点。
3. 根据一次函数y = 0.5x + 1的函数表达式,画出其图像,并标出与x轴和y轴的交点。
4. 根据一次函数y = -x - 3的函数表达式,画出其图像,并标出与x轴和y轴的交点。
5. 根据一次函数y = 4x的函数表达式,画出其图像,并标出与x轴和y轴的交点。
三、应用题1. 一家公司的销售额与广告投入成正比,已知广告投入1000元时,销售额为5000元,求当广告投入为3000元时,销售额是多少?2. 一辆汽车以每小时60公里的速度行驶,已知行驶时间与行驶距离成正比,求行驶5小时的距离是多少公里?3. 一间房子的面积与房价成正比,已知房子面积为120平方米时,房价为300万元,求房子面积为200平方米时,房价是多少万元?4. 一个水果摊的销售量与价格成反比,已知价格为每斤10元时,销售量为20斤,求当价格为每斤5元时,销售量是多少斤?5. 一辆火车以每小时80公里的速度行驶,已知行驶时间与行驶距离成正比,求行驶4小时的距离是多少公里?通过以上的复习题,我们可以巩固和加深对一次函数的理解。
一次函数基础知识练习
一次函数基础知识练习一、一次函数的定义1、下列函数(1)y=πx(2)y=2x-1 (3)y = 1x (4)y =21-3x (5)y =x 2-1中,是一次函数有( ) 2、已知一次函数k x k y )1(-=+3,则k =. 如果函数3)2(1+-=-k xk y 是一次函数,则=k 3、已知函数32)2(3--+=m x m y 是一次函数,则m =;此图象经过第象限。
4、28(3)1my m x m -=-++是一次函数,则m =二、单调性应用 1、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1与y 2大小关系是( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能比较2、已知点A (-1,a )与B (2,b )都在直线332+=x y 上,试用两种以上的方法比较a 与b 的大小; 3、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,• 则k____0,b______0.4、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是5、点P 1(x 1,y 1)点p 2(x 2,y 2)是一次函数=-4x+3图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是6、点A (5-,1y )和B (2-,2y )都在直线112y x =-+上,则1y 与2y 的关系是 三、图像的基本识别1、已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( )(A)k >0,b >0 (B)k >0,b <0 (C)k <0,b >0 (D)k <0,b2、已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<23、直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0,b>0C . k<0, b<0;D . k<0, b>04、一次函数y=-(m 2+1)x -(m 2+2)的图象(m 为常数)不经过第象限5、已知一次函数4)2(-+-=m x m y 不经过第二象限,则m 的取值范围是6、若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限四、与不等式的关系1、如图,直线b kx y +=与x 轴的交点为(-3,0)则y >0时x 的取值范围是( )A.x >-3B.x >0C.x <-3D.x <02、对于一次函数32--=x y ,当x _______时,图象在x 轴下方.3、一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是4、根据一次函数y=-3x-6的图像,当函数值大于零时,x 的范围是______________.5、根据函数33y x =-+的图象,回答下列问题:(1)y 的值随x 的增大而.(2)图象与x 轴的交点坐标是,与y 轴的交点坐标是.(3)当x 时,y >0;当x 时,y <0;当x 时,y =0.五、直线的平移(一)上下平移1、把直线32+-=x y 向下平移2个单位长度所得直线的解析式为2、将直线14+=x y 的图象向下平移3个单位长度,得到直线____________.3、已知一次函数b kx y +=的图象与43-=x y 的图象平行,而且经过点(1,1),则该一次函数的解析式为_________________5、若在同一坐标系中作出下列直线:①112y x =--;②21y x =-;③112y x =-+;④1y x =-.那么互相平行的直线是 7、已知直线y =(5-3m )x +32m -4与直线y =21x +6平行,求此直线的解析式. 8、直线(1)y k x b =-+与32y x =-平行,且过点(1,-2),请问直线y bx k =-不经过 象限9、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是(二)、左右平移1、把一次函数12-=x y 沿着x 轴向左平移1个单位,得到的直线的解析式为__________.2、直线21y x =+向右平移2个单位后的解析式是;3、已知直线:y=3x -12,将直线向右平移5个单位长度得到直线,则直线的解析式. 4、已知直线:y=3x -12,将直线向左平移5个单位长度得到直线,则直线的解析式.5、直线y=-5x -12向左平移2个单位长度后得到的直线解析式是___;直线y=向右平移3个单位长度后得到的直线解析式是___.(三)、综合应用1、直线y=8x +13既可以看作直线y=8x -3向___平移(填“上”或“下”)___单位长度得到;也可以看作直线y=8x -3向___平移(填“左”或“右”)___单位长度得到.2、要由直线y=2x +12得到直线y=2x -6,可以通过平移得到:先将直线y=2x +12向___平移(填“上”或“下”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“上”或“下”)得到直线y=2x -6;当然也可以这样平移:先将直线y=2x +12向___平移(填“左”或“右”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“左”或“右”)得到直线y=2x -6;以上这两种方法是分步平移.也可以一次直接平移得到,即将直线y=2x +12向___平移(填“上”或“下”)直接得到直线y=2x -6,或者将直线y=2x +12向___平移(填“左”或“右”)直接得到直线y=2x -6.六、直线与坐标轴围成的三角形的面积1、一次函数y=-2x+4的图象与x 轴交点坐标 是,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .2、一次函数y=2x -4的图象与x 轴交点坐标是,与y 轴交点坐标是.3、一次函数y=2x+b 与两坐标轴围成三角形的面积为4,则b=________________.4、直线443--=x y 与两坐标轴围成的三角形面积是 5、如果一次函数4+=kx y 与两坐标轴围成的三角形面积为4,则=k _____6、函数25+-=x y 与x 轴的交点是,与y 轴的交点是,与两坐标轴围成的三角形面积是。
八年级一次函数题目
八年级一次函数题目一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = (2)/(x)B. y = - 2x^2C. y = kx + b(k、b为常数,k≠0)D. y=√(x)+1解析:- 选项A:y=(2)/(x)是反比例函数,不是一次函数。
- 选项B:y = - 2x^2是二次函数,不是一次函数。
- 选项C:y = kx + b(k、b为常数,k≠0)符合一次函数的定义,是一次函数。
- 选项D:y=√(x)+1,自变量x在根号下,不是一次函数。
所以答案是C。
2. 一次函数y = 3x - 1的图象经过()A. 第一、二、三象限。
B. 第一、二、四象限。
C. 第一、三、四象限。
D. 第二、三、四象限。
- 对于一次函数y = kx + b(k≠0),当k>0,b<0时,函数图象经过第一、三、四象限。
- 在y = 3x - 1中,k = 3>0,b=-1<0。
所以图象经过第一、三、四象限,答案是C。
3. 若一次函数y=(m - 3)x + 5的y随x的增大而减小,则m的取值范围是()A. m>3B. m<3C. m = - 3D. m≤slant3解析:- 对于一次函数y = kx + b(k≠0),当k<0时,y随x的增大而减小。
- 在y=(m - 3)x + 5中,k=m - 3,因为y随x的增大而减小,所以m-3<0,解得m<3。
答案是B。
4. 已知一次函数y = kx + b的图象经过点(1, - 1)和( - 1,3),则k、b的值分别为()A. k=-2,b = 1B. k = 2,b=-1C. k=-2,b=-1D. k = 2,b = 1- 把点(1,-1)和( - 1,3)代入y = kx + b中,得到方程组-1=k + b 3=-k + b。
- 将两个方程相加,可得2b = 2,解得b = 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数复习题 姓名
一、 填空题
1、一次函数的图像b kx y +=不经过第三象限,则k 0,b 0.
2、已知函数1()1f x x
=-,那么(3)f = . 3、求下列函数自变量的取值范围 ①函数321-=
x y ②函数y x =+3中, ③函数1+=x x
y ④函数
y=x -2 ___ _____ 4、根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k 、b 的符号:
k___0,
,b___0 k___0,b___0
5、出租车收费按路程计算,3km
内(包括3km )收费5元;超过
3km 每增加1km 加收1.5元,则车费
y (元)与x (km)之间的函数关系式是
________________.
6、等腰三角形的周长为20,写出底边y 关于腰x 的函数
_____________,并写出
x 的取值范围______________;
7、下列各曲线中不能表示y
是x 的函数是( )。
A B C D
8、下列各图表示的函数中y 是x 的函数的 ( )
二、 解答题
1、若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,求k 的取值范围.
2、已知一次函数(4)2y m x m =+++的图象不过第二象限,求m 的取值范围是.
A D
3、已知y-3与x+1成正比例,且x=2时,y=7.
(1)写出y 与x 之间的函数关系式;
(2)当x=4时,求y 的值;
(3)当y=4时,求x 的值.
4、已知11+x y 与成正比例,12-x y 与成正比例,21y y y +=,当2=x 时,9=y ;当3=x 时,14=y ,求y 与x 的函数关系式.
5、已知函数
23(2)5m y m x -=-+是一次函数,求其解析式。
6、已知一次函数的图像过点(2,-1),求这个函数的解析式。
7、已知一次函数的图像经过 , 两点。
(1)求此一次函数的解析式;(2)求此函数图像与坐标轴围成的三角形面积。
8、一次函数的图象如图所示,求出该一次函数的表达式。
9、判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上?
10、将函数y =2x +3的图象平移,使它经过点(2,-1).求平移后得到的直线的解析式.
第8题图
11、已知一次函数y=kx+b的图象与直线y=-2x+3垂直,且过点(8,2),求此一次
函数的解析式。
12、已知一次函数y=(3-k)x-2k2+18.
(1)k为何值时,它是正比例函数?
(2)k为何值时,它的图象经过点(0,-2)?
(3)k为何值时,它的图象与y轴的交点在x轴的上方?
(4)k为何值时,它的图象平行于直线y=-x?
(5)k为何值时,y随x的增大而减小?
13、求直线y=-x-4与x轴和y轴的交点坐标,并画出这条直线.
14、、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下
(1
(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?
15、一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的
(1)用含(2)求出y 与x 之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中
需另外支出各种费用共1500元.
①求出预估利润P (元)与x (部)的函数关系式;
(注:预估利润P =预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
一次函数规律
1、直线11y k x b =+、22y k x b =+的几种位置关系:
(1)、平行:12k k =,12b b ≠;
(2)、重合:12k k =,12b b =;
(3)、关于y 轴对称:120k k +=,12b b =;
(4)、关于x 轴对称:120k k +=,120b b +=;
(5)、垂直:121k k ∙=-
2、平移规律:。